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This paper proposes and develops a method for selecting a design to
estimate a set of linear parametric functions in cases wherein the adequacy
of the preliminary linear model is in doubt. The proposed method relies
on the norm of the aliasing matrix. If the expected value of the estimator
¢ of a set of linear functions ¢ = L;6; using a design T', under the true
model is E[ng] = ¢ + Ar0z, then the norm || A4r|| = (trace Ar’Ar)? is pre-
sented as a measure for use in determining “‘alias balance’’ and ‘‘alias
goodness.”” Therefore, | Ar| may be used in the selection of a design for
experimentation, and its behaviour under various operations is discussed.
Some theorems concerning aliases of rank equivalent and complementary
designs in certain settings are obtained.

0. Introduction. Consider a k;, x k, x --- x k, factorial and let T be the set
consisting of the N = []%_, k, treatment combinations. Assume the linear model,
i.e. E[Y,;] = W,60 and Cov[Y,] = ¢*V,, where 0 is a k-vector of unknown pa-
rameters, W, is the N X k design matrix and ¥V, is an N X N known positive
definite matrix. Suppose that an experimenter assumes in advance that the n,-
vector §, = 0 in the partitioned vector ¢’ = (6,/:6,), 1 < nm <k, 1 <n,<k—1,
n, + n, = k. Further suppose that his interest lies in estimation of a p-vector
of linear functions ¢ = L,6#, with a factorial arrangement or design. Let there
be a class of feasible designs (i.e. a class such that each design satisfies the ex-
perimental constraints and costs the same) such that each design is capable of
providing an unbiased estimator of L,6,. Let J. be the least squares estimate
of ¢ using design I' under the model E[ Y] = X;.0,. If the experimenter wishes
to find out how well ¢, has done under the general model E[Y;] = X,.0, +
X 0,, i.e. whether the restricted model E[Y,] = X,.6, was adequate or not,
then he should find out how large the bias is of ¢.. Since E[$;] = L,6, +
Ly(Xjr X)) Xip X0y = §r + Ap0y = ¢y + By, and MSE[¢;] = Cov[d;] +
A 0,0,/ 4! = V(T') + B(T'), it is clear that an experimenter will seek a design T’
which minimizes an objective function of MSE[¢]. This problem can be solved
only under very special assumptions, because MSE [¢:] depends on ¢* and 6,.
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One could introduce separate objective functions for ¥(T') and B(I') and find an
optimal design.

This paper does not take the approach outlined above. Instead, we utilize the
E[¢:] to show how one design can be preferred over another, through considera-
tion of the aliasing matrix 4,. The measure used is the norm ||4;|| = (trace
A’ Ap)Y, where A, is the alias matrix using the design I'. Some properties of the
matrix A are studied.

In Section 1 we provide the basic definitions of a factorial, factorial arrange-
ments and fractional factorial arrangements. These definitions are then utilized
in Section 2 for the discussion of selecting a design to estimate linear parametric
functions. In this same section we introduce the matrix norm |[|4;|| = (trace
A’ Ap)} as an objective function and point out some of its properties. The related
concepts of ““alias balance” and “alias goodness” as reflected through the aliasing
matrix are given along with an illustrative example to show the basic calculations.
The invariance of the alias measure ||4;|| and other results are given in Section
3 under the operations of replication and level permutation. Section 4 deals with
the aliases of two rank equivalent designs and Section 5 contains some results
on the problem of aliases of a design and its complement in a specific setting.
An illustration is provided for bringing out the notion of variance balance and
orthogonality in the case of complementary designs.

1. Preliminary definitions and notations.

DerINITION 1.1. A factorial arrangement I with parameters k,, k,, - - -, k,; m;
n; ry, 1y, - -+, ry is defined to be a collection of n = Y}¥_, r; treatments of T such
that the jth treatment in T has multiplicity »; = 0, with at least one nonzero r;,
and m is the number of nonzero r;’s. We denote such a factorial arrangement
by the symbol FA (k,, k,, - -, k;; m;n; ry, 1y, - -+, ry). Note that in design ter-
minology the multiplicity r; is the replication number of the jth treatment.

DEerINITION 1.2. A factorial arrangement is said to be complete if r; > 0 for
allj.

DEerINITION 1.3. A complete factorial arrangement is said to be minimal if
r; = 1 for all j and it is designated here by MFA (k,, k,, - - -, k,) or simply MFA
if there is no ambiguity.

DEFrINITION 1.4. A factorial arrangement is said to be a fractional factorial
arrangement, or simply a fractional replicate, if some but not all r;, > 0. We
denote a fractional replicate by FFA (k, k,, - - -, k,; m; n; 1y, 1y, - - -, 1) OF simply
FFA (m; n; r,, 1y, - - -, ry), whenever the underlying factorial structure is clear.

With each treatment g in T we associate a random variable ¥,» which is called
an observation or response or measurement, with E[y ] = 0'f(g), where 6 is a
k-vector of unknown parameters, also called factorial effects, and f is a k-vector
of k continuous real-valued known functions on the g’s in 7. In matrix notation
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the linear model is written as:
(1.1) E[Y,] = W,0, Cov[Y,] = o¢*V,,

where ¥V, is a known positive definite N X N matrix, which with no loss of
generality can be assumed to be the identity matrix of order N. The element
in the gth row and the jth column of W, is equal to f;(9). The N X k matrix
W, is known as the design matrix corresponding to observation vector Y, and
the parametric vector 6. Linear models of type (1.1) are popular in applications
and a celebrated one is the polynomial model. Note that the model in (1.1) is
associated with the minimal complete factorial arrangement.

Corresponding to a factorial arrangement I' the model for the n X 1 observa-
tion vector Y induced by (1.1) is equal to.

(1.2) E[Y,] = X0,

where X is an n X k matrix simply read off from W, taking repetitions of treat-
ments in I' into account.

2. Estimation of linear parametric functions. In this section we introduce a
general partitioning of ¢ in order to estimate a set of linear functions of its
components. We distinguish four distinct cases. This general framework in-
cludes the classical BLU estimation of #, response surface fitting, odd and even
resolution problems, and biased fitting or estimation as special cases. Consider
the following partitioning of the vector 6,

0" = (01,502'303') ’
where 6, is an n,-vector to be estimated, 6, is an n,-vector not of interest for
estimation and not assumed to be known, and 6, is an n;-vector assumed to be
knownsuchthat: 1 <n <k, 0<n<k—1,0<n<k—1withn + n, +
ny = k. Let L, be a p X n, matrix of rank < p and suppose our interest lies in
estimating the set of p linear functions of 6, given by ¢ = L,6,. Explicitly we
then have the following four cases:
i) n ==k, n,=n,=0

(i) n,=0, ng # 0

(iii) n,+.0, n,#0

@iv) n,#0, n,=0.
Case (i) with L, equal to the identity matrix of order k gives us the BLU estima-
tion problem of . If L, = W, then under case (i) we have the response surface
fitting problem. Cases (ii) and (iii) with L, equal to the identity matrix of order
n, lead to odd and even resolution problems respectively. The biased linear
estimation problems fall under either case (iii) or case (iv).

The above partitioning of the vector ¢ induces a partitioning of the design
matrix X so that the model in (1.2) can be rewritten as:

(2.1) E[Y;] = X0 = X10, + X0, + X0, .
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Since 0, is assumed to be known (2.1) reduces to

(2.2) E[Y *] = X;p 0, + Xy 0,, where Y .* = Y, — X,.0,.
Hence without loss of generality we may hereafter assume 6, = 0. Problems
related to cases (i) and (ii) have received considerable attention in the published
literature. Interest is currently being shown in “bias optimality”. This interest
stems from the fact that many researchers are becoming concerned with the
correctness of their models. Many problems of “bias optimality” or “bias good-
ness” still remain to be resolved. Some of these problems present themselves in
the following natural way. The experimenter is fairly certain that his model is:

(2°3) E[Y;] = X1 0,, .

and uses the standard least squares technique to estimate L,6,. However, he
wants to find out how bad his action is if indeed model (2.3) is not adequate,
i.e. the true model is (2.2). This means that he wants to find out the behaviour
of ¢, under model (2.2). The following are some of the properties of . under
model (2.2):

(2.4) E[SZ;I‘] = L0, + Ar0, = ¢r + By,

where 4. = L(Xi; Xjp)" X} X,r. Here (+)~ denotes a generalized inverse. We
define A to be the alias or contamination matrix. It follows that any optimality
measure of ¢ should not only be based on the covariance of ¢ alone but rather
on its mean square error (MSE). This quantity is equal to:

(2.5) MSE[¢;] = Cov[f] + 46,0, 4, = V(T) + B(T).
The problem of biased estimation as introduced above can now be formally
stated.

ProBLEM. Let A(L)) = {T',, T, - - -, I',} be a set of s competing designs from
the same [] k; factorial for the purpose of estimating L,6,. Suppose that all de-
signs in A(L,) satisfy the constraints of the experiment and cost the same amount.
Further, assume that each design in A(L,) is capable of providing an unbiased
estimate of L,#, under model (2.3). (A necessary and sufficient condition for
this is that for every I'; in A(L,) there exists a p X n matrix K, such that L, =
Kp Xir,.) Therefore A(L) is a class of feasible designs and the experimenter
makes a choice of a design from A(L,).

An experimenter should not choose his design in a random manner from among
the designs in A(L,), but instead he should introduce a meaningful objective
function into his problem. This function which we denote by Q(.) measures
quantitatively a certain quality associated with each design in A(L,). He then
chooses a design in A(L,) which minimizes Q(T'), T € A(L,).

Having assumed that every design in A(L,) is feasible leads us to consider those
objective functions which reflect the statistical properties of ¢.. In practice, an
experimenter will be unlikely to know his Q exactly. Fortunately there is usually
a kind of insensitivity to using a slightly incorrect Q, i.e. if Q’ is the one he
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“should” use and Q" is a slightly different one, the design which minimizes Q"
will not be too far from the design which minimizes Q’. This being so, in the
absence of exact knowledge of this Q’, design theorists often consider a Q”” which
makes computation and interpretation simple.

Perhaps the most reasonable Q will be the one which reflects a magnitude of
MSE (¢;) or, in general, a convex combination of V(T') and B(T'). However,
this is not an easy problem because MSE (¢;) is a function of ¢* and 6, and thus
one would have to deal with an objective function such as:

(2.6) Q) = max,, trace[(T') + BI)],

where A is some specified set of parameter values. In certain situations where
the experimenter knows something about the relative magnitudes of o and 6,0,
and the measure is the one given in (2.6), some progress is possible. For example,
if 6%/6,0, is “large” (the usual case in the philosophy of this section, viz., of
primarily worrying about 8, = 0), then the quantity to be minimized is approxi-
mately the trace of V(T). On the other hand, if ¢?/6,'0, is “small,” then the trace
of B(T) should be minimized. Note that these are approximate statements based
on a priori knowledge concerning ¢? and 6,'6,. These difficulties can be partially
overcome or circumvented if the experimenter limits his concern to V(') and
to B(T) separately. This means that two quantities should be introduced for
measuring the magnitude of #(T') and B(T'). Quantities such as the sum or the
product of the eigenvalues of P(T') can be associated with P(I'). The trace and
similar quantities can be associated with B(I'). For a different approach to this
problem, see Anderson (1960), Box and Draper (1959, 1963), Draper and Herzberg
(1971), Draper and Lawrence (1965a, 1965b, 1965c), Folks (1958), Hader,
Manson and Cote (1971), Karson, Manson and Hader (1969), Kiefer (1972), and
Thompson (1973).

In this paper we shall consider a somewhat different approach which utilizes
the expected value of ¢,. Among the various measures which can be introduced,
those which take into account all the entries of 4, and their magnitudes are
the appealing ones. Among such well-known norms (e.g. see Bodewig (1959))
is the following:

(2.7) QL) = |4l = (X ZjaiT))* -
The norm ||4;|| enjoys some desirable properties which the other common norms
do not possess, namely:

(1) ||4g|| is orthogonally invariant, i.e. ||P, 4;|| = ||4p Py|| = ||4r|| if P,and P,
are orthogonal matrices.

(2) ||4g|| = (trace 4,'A4;)}, which implies that ||4,]| is the positive square root
of the sum of the eigenvalues of A.’4;. In particular, if 4, is a square matrix,
then ||4;|| = (trace 4,'A;)} = (trace 4. 4")t = (X, 4X(T))}, where the 2,’s are
the eigenvalues of A;.

Note that in fractional replication, as defined in this paper, the matrix Ay is
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never equal to zero, if the number of components in 6 is k = N, which is the
case in the classical setting of factorial experimentation. This implies that || 4;||
(and indeed any other norm of A4;) is never equal to zero in fractional replica-
tion, or, to put it in another way, fractional factorial designs can be characterized
by the amount of contamination associated with their alias matrices.

Before closing this section we introduce the concepts of “alias balance” and
“alias goodness.”

DEFINITION 2.1. A fractional factorial design I is said to be contamination or
alias balanced if (3 ; a3;(T))t is constant for all i.

Note that this definition 1mphes that in an alias balanced design the aliasing
associated with each element of L, 0 is equal to ||AF||/c, where ¢ is a positive
constant. We say that the ith component of L/IE is estimated with less aliasing
than the 7th component of L0, if (5, a%)} < (X, @)t

DEeFINITION 2.2. Let T'; and T, be two competing fractional factorial designs

in A(L,). Then T, is said to be alias better than T, if || A || — ||4r,|| < 0. We
define ', and T', to be alias equivalent if || 4 || = ||4r,|[-

An illustrative example. Let t = 3 and let the k, = k, = k; = 2 levels of each
factor be denoted by 0 and 1. Assuming model (1.1) for the following N = 8
observations we have:

Yooo + - - 4+ - 4+ + —||la
Y100 + + - - — = 4+ +4+||a
Yoro + - 4+ - - 4+ — 4+ ||as
(2.8) E Juo | _ + + + + - - = -]l
Yoo + - = 4+ 4+ = — +||%
Yin + + - = 4+ 4+ — —||%
JYou + = + - + - 4+ —||a
L V| L+ + + 4+ + + + + || as]

Note that the parameters a;, a,, - - -, & in (2.8) are the standard factorial effects
in the order y, 4, B, AB, C, AC, BC and ABC. Let I'; = {(000), (011), (101),
(110)} be a fractional factorial design, where (x,x,x;) refers to a treatment com-
bination with the ith factor being at the x, level, i = 1,2, 3. For this fraction
n =4 and m = 4. The equation system (1.2) for I', is:

@,

a,

Yooo + - = + - + 4+ —||a
E}’011=+—+—+—+—a4
Yin + + - - + 4+ = —||a
Yo + + + + - = — —]|%
a,

| X |
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Suppose now that the experimenter is interested in obtaining information re-
garding four parameters specified by 6,’ = (a,, a3, @;, a;). Here n, = 4 and we
assume n, to be equal to zero, so that n, = 4. The partitioned system for the
fraction T, is then:

+ - - —||la + + 4+ —||a

I e S o % B e el |
Bml= 1 4 o 4 lalt - + - —||a
+ 4+ 4+ =l [+ - - ]l

The rank of X in this example is clearly equal to 4, so that separate informa-
tion for each component of ¢, is available. Therefore, if we let L, be the identity
matrix of order 4 we obtain: )

0 0 0 —1
0 0 —1 0 .
Arl = 0 —1 0 0 with “AI‘IH =2.
—1 0 0 0

Note that for this design T';, >7;a?,(I')) = 1, i = 1,2, 3, 4 and hence ', is alias
balanced.

Next, consider the competing fraction I', = {(000), (001), (101), (111)}. Clearly
6, as defined earlier is estimable by the design I'. The alias matrix associated
with T, is:

11 1

-1 1 0 -1
=1 1 0 1

0 —1 —1

Hence the measure of aliasing for T'; is equal to ||4.,|| = 2(3). T, and T, are
both alias balanced, but I', is better than I', from this viewpoint.

3. Invariance of the measure of aliasing under various operations. In this
section we shall characterize some operations which leave the measure of aliasing
|| Ap|| invariant. These operations arise naturally in many practical and theo-
retical settings.

A. The replication operation. Let I' be an FFA (m;n;r, 1y, -+, ry) and let
T'(a) be a copies of I'.  The process of obtaining I'(a) from I' will be denoted
as the replication operation. Let T' be an FFA and let the greatest common di-
visor of the nonzero r;’sbed. Then if r/ = r;/d, 3} r/ = n’, and T, is the same
FFA with the r;’s replaced by r;/’s and n replaced by n’, I is said to be the
reduced form of . A minimal proper fraction, designated as Iy, associated with
T' is the design obtained by deleting all duplications of treatments in I'. Now
with respect to the replication operation the following results are easily verified:

THEOREM 3.1. The amount of alias associated with T is invariant under the rep-
lication operation, i.e. ||Ap|| = ||4rw]|-
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COROLLARY 3.1. The amount of alias associated with the fraction T" is the same
as the amount of alias associated with the reduced form of T', i.e. ||Ap|| = ||4y,)||.

THEOREM 3.2. The amounts of alias of the fractions T and T, are related through
the replication matrix R = diag(r,”, r,”", -+, r,") i.e.

”AF” = IIKPMX;.PM(X{I‘MRX.IFM)_X;FMRXZI‘M“ ’
and
[[Ar, |l = (1K 3y Xir s (Xr s Xar )™ Xiry Xaryl| »
where 1", 1", ... r,'" are the nonzero r;’s in the reduced form of T.

COROLLARY 3.2. The amount of alias of a fraction I" is equal to the amount of
alias of T'y if X, has full rank.

The preceding corollary indicates that with respect to aliasing the effect of
replication is of no consequence if the design matrix is nonsingular, i.e. the
measure of aliasing is invariant under replication as long as the design matrix is
of full rank. The practical consequence of this corollary is that the experimenter
is economically better off using the proper minimal fraction in this situation.
This result, by the way, also shows the unimportance of the classical notion of
unbalanced (unequal numbers) designs as far as aliasing is concerned. Unequal
numbers designs do affect analysis problems and variance considerations.

B. The permutation operation. Let I' be a fractional factorial design and let
o(I") be the corresponding permuted design obtained by applying a permutation
of levels to the treatment combinations in I". In the development below we show
that ||Ap|| = ||4,||, if 6, is selected in a particular way, i.e. under certain con-
ditions on the elements of #, the measure of aliasing is invariant under level
permutations.

Formally, let the k; levels of the factor F, be identified as {0, 1, 2, - - ., k, — 1},
i=1,2,...,t. LetQ be the set of permutations of the form o = (o,, @,, - - -, ,),
where o, is a permutation acting on the levels of the ith factor. A realistic
choice of {L,, 6,, '} implies that the design I should be capable of providing the
desired statistical information on L,#,. However, not all realistic choices of
{Ly, 0,, T'} guarantee the invariance of information and amount of aliasing under
a permutation w. An interesting and open problem is to characterize the set
{L,, 6} such that a permutation w leaves the information and/or amount of alias-
ing invariant. A partial solution to this problem is provided by Theorem 3.3
below.

Denote an element of 4 by the symbol 4,"14,% - . . 4%, where x, € {0, 1,2, - .-,
k; — 1}. Note that in this notation the mean g = 4,°4," - .. A4,° and {4,°4; - ..
Ag—l AilAg+1 e Ato’ ALA - - Ag—l AizAg+1 e AS e ALAY - Ag—l Atki_lAgH' ot
A"} represents the set of k; normalized orthogonal parametric contrasts associated
with the ith factor and the mean.

DeriNITION 3.1. The parametric vector 4, is said to be admissible if and only
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if whenever 4,%14,72 ... 4% - .. A% belongs to ¢, and x; + 0, (1 < i < ¢), then
A4 ... AF ... A7 also belongs to 6, for all z # 0.

(3

The following lemma was obtained by Srivastava, Raktoe, and Pesotan (1971).

LemmA 3.1. If T is an arbitrary fraction and w(T') is the permuted fraction 0b-
tained by the action of w € Q, and 0, is admissible, then there exist orthogonal matrices
P,, and P,, such that X, = X1 P, and X,,r, = X1 P,,.

We next have
THEOREM 3.3. The amount of aliasing || Ay|| is invariant under Q if 0, is admissible.

Proor.
| 4uosl| = 11K Xir Prul(Xor Pro) (Xir Pu)]™(Xir Puy) Xor P |
= ||Kp Xip(Xir Xir) ™ Xir Xor P »
by a property of generalized inverse.
= ||4¢| > by property (1) of the norm.

4. Aliases of two rank equivalent designs. Let us explore now the behaviour
of the alias measure of two rank equivalent designs. More specifically, consider
two fractions I and I'* from the same factorial such that (i) they have the same
cardinality, (ii) the corresponding design matrices X, and X.. have the same
rank, and (iii) the corresponding matrices X, and X, have the same rank. We
assume that L, and 6, are the same for both designs. From elementary algebra
we know that:

Xire = E, Xp Fy and Xore = E, X Fy

where E,, E,, F, and F,are nonsingular square matrices of appropriate dimensions.
This leads us to the following expression for the alias measure of design I'*.

||| = || K By Xip Fy[(By Xip Fy) (B X FY) (B X FY)'Ey X Fy|
If E, and E, are orthogonal and

(X Fr) (Xip F1)]™ = F7 (X Xyp)~F/
then:

“A["“ = “KI"er(X;r‘X‘lr)_X;r erFall .
Finally, if F, is also orthogonal then it follows that ||4.|| = ||4;||. Note that
Theorem 3.3 is a special case of the above setup, i.e. E, and E, are identity ma-
trices, and F, and F, are orthogonal matrices. Further characterizations of E,,
E,, F, and F, are needed so that relations can be established between || 4;|| and
||4r+|| under various settings.

5. Aliases of a design and its complement. In this section we relate the alias-

ing of a design to the aliasing in its complementary design given that these designs
satisfy certain regularity conditions.

DerFINITION 5.1. An FFA(m;n;r,r, ---, ry) is said to be a (0, 1) binary
fractional factorial design if r, = 0 or 1 for each i.
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Note that a binary fractional factorial design is an FFA with m = n.

DEFINITION 5.2. Two (0, 1) binary fractions I' and T' from the same &, x
ky x ... x k,factorials are said to be complementary to each other if ' U I' = T..

It follows that if I" is an FFA (m; n; ry, ry, -+ +, ryy) then [ is an FFA (N — n;
N —nf,F, ---,Fyysuchthatr, + 7, =1,i=1,2,...,N.

DEFINITION 5.3. A (0, 1) binary fractionI" such that the n,-vector @ is estimable
under the assumption that the n,-vector 6, = 0, n, + n, = k, is said to be variance
balanced and orthogonal if X, X, = 4/, , where 2 is a nonzero scalar and 1, is
the identity matrix of order n,.

Let T and T be two (0, 1) binary complementary fractions such that T' is
variance balanced and orthogonal for the n,-vector 6, and T is variance balanced
and o_rthogonal for the n,-vector ,, i.e. Xy X;p = 4,1, and Xjz X5 = 4,1, , where
FT'ul'=T,n + n, = kand 4, 4, are nonzero scalars. The following lemma
relates ||4;|| to ||45|| in the classical orthogonal factorial setting.

LemMa 5.1. If T and T are as described above and n, + n, = N, W,'W, = I,
then (i) || Arl| = [(N — m)(1 — )/4,]* and (ii) || 45|| = [n(1 — 2)/4,]*

Proor. We give a proof for (i); an analogous proof can be obtained for
(ii). Since the alias matrix A, = (X} X;p) ' X, Xor = 4,7 X1 Xpr and 44, =
AT X Xip Xip Xop = 47 X0r Xop = 47y — Aly_n) = 471 — )Ly, it fol-
lows that ||4;|| = [trace (4 4p)]E = [(V — n)(1 — A,)/4,]%

Note that in the above setup ||4;|| — 0 as n — N as intuitively expected. Pro-
ceeding under the same setting we observe that |det X;;| = 4, and |det X,5| =
LY-m72, Also from a theorem in Muir and Metzler (1933) we know that
|det X,;| = |det X5, so that 4,» = 2,"~". Hence the following result holds:

THEOREM 5.1. Let T and T' be as in Lemma 5.1, then knowledge of || Ay|| implies
knowledge of ||Ag||. Further, if n = N|2 then ||A;|| = ||4g||.

COROLLARY 5.1. LetT'* be an a fold (0, 1) binary variance balanced and orthogo-
nal fraction in the classical fractional factorial setup, then I'* is alias balanced.

Proor. The proof follows from Corollary 3.1 and the fact that by Lemma 4.1,
Af«Ar,« is a multiple of an identity matrix.

Further exploration of relations between the aliases of I' and T" are desirable
in less restrictive settings.

An illustrative example. Consider the 2 x 2 x 2 factorial with the usual set of
treatment combinations 7 and the usual parametric vector 6. (See equation 2.8
of Section 2.) Let I' = {(000), (011), (101), (110)} to estimate 6, = (y, A4, B, C).
The corresponding complementary design is I' = {(100), (010), (001), (111)} to
estimate 6, = (4B, AC, BC, ABC). The matrices required to obtain ||4;|| and
45| are:
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[+ - = =] [+ + - -
Xp=|T — + and  Xo—|T — * —
+ 4+ - + + - - +
o+ o+ + = L+ 4+ 4+t
[+ + + =] [— — + 4]
o A I P
+ - = -] + + + 4]

The reader can easily verify that ' and T are (0, 1) binary variance balanced
and orthogonal fractions which are also alias balanced. Moreover, I' and I
carry the same amount of aliasing, i.e. ||4;|| = ||45||-
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