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Methods of generating prior distributions on spaces of probability
measures for use in Bayesian nonparametric inference are reviewed with
special emphasis on the Dirichlet processes, the tailfree processes, and pro-
cesses neutral to the right. Some applications are given.

0. Introduction. Recently there has been active research in a narrow but
important area, that of construction of prior distributions on spaces of probability
measures for use in deriving Bayesian decision rules in nonparametric statistical
problems. There are two desirable properties of such prior distributions: (1) the
support of the prior with respect to some suitable topology on the space of prob-
ability measures should be large, and (2) the posterior distribution given a sample
from the true probability measure should be manageable analytically.

One of the drawbacks of decision theory in general and of the Bayesian ap-
proach to it in particular is the difficulty of putting the cost of the computation
into the model. This drawback is particularly severe in Bayesian nonparametric
problems. There are no doubt examples in which “quick and easy” rules are
preferable to “optimal” rules for a Bayesian simply because it costs less to perform
the computations. On the other hand, Bayes rules are certainly desirable since
generally they are admissible and have nice large sample properties [12]. There-
fore, it behooves the statistician to suggest large classes of easily computable Bayes
rules in the hope that users may find some rules to their liking.

It is the purpose of this paper to review the literature in this area and the
somewhat limited success to date. Because the earlier papers of Freedman [19]
and Fabius [14] were concerned mainly with other problems, their value in
Bayesian nonparametric statistics has not been generally appreciated. It is hoped
that this paper serves to recognize this work and to clarify the relationship with
later work.

For ease of exposition, we restrict attention unless otherwise specified to prior
distributions on the space of all probability measures on (R, <#') where R is the
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616 THOMAS S. FERGUSON

real line and <% is the g-algebra of Borel subsets of R. Let
A = {P:. P is a probability measure on (R, &%)} .

(In this paper, the word ““measure” refers to a nonnegative o-additive set function.)
Let %" denote some suitable g-algebra of subsets of .5, for example the Borel
sets with respect to the topology of weak convergence. We use &7 to denote a
probability measure on (%, %), and Z to denote the expectation with respect
to. 7 We let P denote the random probability measure chosen according to &
so that { xdP(x) and P(B) for B € &% are random variables. Welet X, X,, - - -, X,
denote a random sample chosen according to P. The information X,, X,, - - -, X,
is to be used to make inferences about the true value of P.

We may restate the problem. Find &7 so that (1) the support of & with respect
to weak convergence, say, is %, and (2) the posterior distribution of P given
X, .-+, X, is manageable analytically.

1. The Dirichlet process. The simplest of the prior distributions & described
in this paper are the Dirichlet processes. There are a large number of Dirichlet
processes on the real line, one for each finite non-null measure @ on (R, &%).
We refer to a as the parameter of the process. There are various ways to describe
this process, denoted by <Z(«), of which two are presented below. The main
source of the results is [17].

We use “(a, B) for @« > 0and 3 > 0 to represent the gamma distribution with
density I'(a)f~“e~*/#x*~I , ,,(x), where I denotes the indicator function. If a =0,
a, P) is defined to be degenerate at zero. We use Fe(a, ) for « > 0 and
B > 0 to denote the beta distribution with density I'(a + B)(I'(«)['(8))'x*~}(1 —
x)F" U o1(x). If a = 0and g > 0, Fe(a, P) is defined to be degenerate at zero,
while if « > 0 and 8 = 0, “Fe(a, P) is defined to be degenerate at one.

For the purposes of this paper, it is convenient to define the m-dimensional
Dirichlet distribution with parameter (a;, a,, - - -, a,,), where a; > 0 and 37" a, >0,
as the distribution of (Z,/S, Z,/S, - - -, Z,,|S), where Z,, Z,, - - -, Z,, are independent
random variables with Z, ¢ “a,,1) i=1, ..., m, and S = };» Z,. The one-
dimensional marginal distributions of the Dirichlet are beta, for example,
Z,|S € Fe(ay, Y7 a;). A convenient source of information on the Dirichlet
distribution is Wilks [27].

DEefrINITION 1. Let a(-) be a finite non-null measure on (R, <#), and let P(-)
be a stochastic process indexed by elements of <. We say P is a Dirichlet process
with parameter a and write Pe J(a), if for every finite measurable partition
{B,, ---, B,} of R (i.e. the B; are measurable, disjoint, and J B, = R), the

random vector (P(B)), - --, P(B,)) has a Dirichlet distribution with parameter
(«(By), - - -, a(By)).

In particular, for every Be <&, P(B)e <Fe(a(B), a(R) — a(B)) and therefore
&P(B) = a(B)/a(R).

For the second definition of the Dirichlet process on (R, &%), it is convenient



PRIOR DISTRIBUTIONS 617

to use the distribution function form of the measures. Let
a(t) = a((— oo, t]) and F(f) = P((— o0, t]) .

DEFINITION 2. We say Pe Z(a) (or F e Z(a)), if the process F(f) may be
writtenas Z,/Z_ vhere Z, is a process with independent increments, Z, ¢ “{a(7), 1)
and Z_, = lim,_,, Z, ¢ Z{a(R), 1).

To contrast these definitions, note that although the existence of the process
of Definition 1 requires a demonstration, the existence of the process of Definition
2 is immediate since the existence of the independent increment process with
gamma distributions, sometimes called the gamma pracess, is well known. On
the other hand, Definition 1 may be used to define the Dirichlet process on an
arbitrary measurable space, whereas the extension of the gamma process to
arbitrary spaces is not so well known. Nevertheless,

Fact 1. These two definition are equivalent.

An alternative definition, that views the Dirichlet process as a limit of Polya
urn schemes, may be found in Blackwell and MacQueen [4].

Fact 2. If F € Z{(a), then with probability one F is discrete.

It is well known that the separable version of the gamma process on the real
line increases only in jumps with probability one. Therefore F with probability
one is a discrete distribution function. The gamma process, and hence the
Dirichlet process on an arbitrary measurable space, also gives probability one to
sums of point masses. This may be seen easily using a result of Ferguson and
Klass [18]. Using the first definition, results of Blackwell [3] show that Dirichlet
processes on arbitrary spaces concentrate on discrete distributions.

Fact 3. The support of Z(«) with respect to the topology of weak convergence
is the set of all distributions whose support is contained in the support of a.

This is a version of desirable property 1 mentioned in the introduction. If the
support of «a is R, then the support of Z(a) with respect to convergence in law
is &

Fact 4. For any nonnegative measurable function g, § g(¢) da(f) < oo if, and
only if, § g(t) dF(f) < co with probability one.

This exhibits a strong connection between the parameter a of the process and
the random distribution function F. In particular, a kth moment of a exists if
and only if a kth moment of F exists with probability one. The main result, that
shows the Dirichlet process satisfies the second desirable property, is the following.

THEOREM 1. If Fe Z(a)andif X,, - - -, X, is a sample from F, then the posterior
distribution of F given X,, - .-, X, is D(a + 3.7 0y,), where 6, is the measure giving
mass one to x.
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In distribution function form, the posterior parameter of the process is

a(t) + 2¢ I[Xi,w)(t) .

ExampLEs. Consider the problem of estimating an unknown distribution
function F by a distribution function £ with loss function L(F, F) = § (F(t) —
F(1))* dW (1), where W(r) is a given non-random weight function (finite measure).
Suppose as a prior distribution, we take F ¢ “Z(a). If we have no observations
from F, then since F(f) € Ze(a(t), a(R) — a(t)), the Bayes estimate is
(1.1) (1) = F(t) = a()fa(R) =g Fol?) -

We may consider F(f) as our prior guess at F(f). The Bayes estimate based on
a sample X, - .-, X, from F is therefore
(1.2) R =ZFO|X, -, X)) = (@) + Tt fr,e))/(@(R) + 1)

= PaFy(1) + (1 — pa)Fa()

where F, is the sample distribution function,

(1.3) FAt) =~ % figy(0)
and
(1.4) P = a(R)/(@(R) + 1)

The Bayes estimate F, is thus a mixture of the prior guess F, and the sample
distribution function F,. If a(R) is large compared to n, F, gives most of its
weight to F,, while if a(R) is small compared to n, £, gives most of its weight
to F,. Thus, one may consider a(RR) as a measure of the strength of belief in
the prior guess, measured in units of sample size. The parameter of a Dirichlet
prior is specified by the function F,, and the real parameter a(R).

Similarly, one may estimate the mean of an unknown distribution F with loss
function L(F, f1) = (§ tdF(¢) — f)*. For the prior distribution F e Z(a) with
§ da(t) < oo, the Bayes estimate based on a sample X, - .., X, from F is

fn=E 1AFO)| X, -, X,) = { tdE(F ()| X,, - -+, X,)
= §tdF,(1) = pap + (1 — p)X,

where X, is the sample mean and g, is the prior guess at the mean
to = § tdFy1).

It is interesting that the Bayes estimate of the mean depends on the parameter
of the Dirichlet prior only through the values of y, and a(R).

Similar results are obtained by these methods for the following problems: (1)
Estimating moments, or a variance or covariance; (2) Estimating a median or
other quantiles; (3) Estimating P(X > Y)in a two-sample problem; (4) Estimat-
ing a quantile by a “tolerance” region; (5) Testing one-sided hypotheses con-
cerning quantiles. Brunk and Pierce [5] have applied these methods to the
estimation of a cumulative regression. G. J. Hall, Jr. [20] has discussed the
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Dirichlet prior for use in an adaptive sequential search problem. Two other
applications are presented in the last section of this paper.

These methods may be extended, though with less success, usually because
of the relative difficulty of computing the Bayes decision rules, to such problems
as bio-assay, regression or observation with error, and empirical Bayes. In these
more complex problems, even if the prior is a Dirichlet process, the posterior
often turns out to be a mixture of Dirichlet processes, wherein the parameter of
the process «, is indexed by a variable u taken to be random. This subject is
treated in detail by Antoniak [1].

The bio-assay problem has also been treated by Ramsey [26] and by Kraft and
van Eeden [23], the latter using a tailfree process (disCussed in the next section)
for a prior.

For certain other problems, particularly hypothesis testing problems, these
methods turn out to be unsuitable. For example, consider the goodness-of-fit
problem of testing the hypothesis that a distribution on [0, 1] is uniform. If for
the alternative hypothesis we take Z/{(«a) for a prior where « is uniform, a(f) = ct
on [0, 1] for some ¢ > 0, then the only non-trivial non-randomized Bayes rule
is to reject the null hypothesis if and only if some two observations are exactly
equal. This is really a test of continuity against discreteness.

2. Tailfree processes. The limitations of the Dirichlet process stem mainly
from the fact that it chooses discrete distributions with probability one, so that
we expect to see some observations repeated exactly. To avoid these limitations,
we should try to find workable priors that choose continuous distributions with
probability one. There are some among the tailfree processes of Freedman [19]
and Fabius [14], which we now describe.

Let {z,; m = 1,2, ...} be a tree of measurable partitions of (R, <#); that s,
let =, 7, - - - be a sequence of measurable partitions such that =, ., is a refine-
ment of =, for eachm = 1,2, ..., and Uy =, generates 7.

DerINITION 3. The distribution of a random probability P on (R, &) is said
to be tailfree with respect to {r,} if there exists a family of nonnegative random
variables {V,, ;;m = 1,2, ..., Be r,} such that

(1) the families {V, z; Ben,}, {V; 5; Bem,}, - - - are independent, and

(2) for every m=1,2, ..., if B;en;, j=1,...,m is such that B, >
B,> ... DB, then P(B,) = [T, Visn

Corresponding to Theorem 1 for Dirichlet processes we have the following for
tailfree processes.

THEOREM 2. If the distribution of P is tailfree with respect to {r,} and if X,,- - -, X,
is a sample from P, then the posterior distribution of P given X, - - -, X, is tailfree
with respect to {r,}.

In addition, the posterior distributions of the ¥’s of Definition 3 given X, - - -, X,
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may easily be computed. A simple example illustrates the main ideas. We con-
struct tailfree processes on the interval (0, 1] with respect to {z,} where =z, is the
set of all dyadic intervals of length 12", z,, = {(({ — 1)/2",i/2"};i =1, ..., 2™}.

0, 1]

P A1 X0 A
3 3] 33 G4l (.11
FiG. 1.

Xgoo  Xopy

©3 & & G

A simpler notation for the variables V,, , of Definition 3 is more appropriate
for the tree of dyadic intervals. Let .¢¢, - - - ¢, denote the binary expansion of
the dyadic rational Y7 ¢;2-7, where each ¢, is zero or one. If Ber,, is of the
form (.¢, - - ¢,, .6, - - €, + 27™], then fore, = 0 we use Y,.., todenote V,, 5,
while for e, = 1weuse 1 — Y, .., todenoteV, ;. This is possible since P is
assumed to be a random probability. Then P(B) is the product of all the variables
associated with the path in the tree from (0, 1] to B, so that

2.1) P(B) = (IIF-tiej=0 Yepoorej Y Fosijma (L = Y, )) -

For example P((§, 4]) = Y(1 — Y,)(1 — Y,,). The independence hypothesis of Def-
inition 3 requires that the Y variables be independent between rows in Figure 1.

If we choose all the Y variables independently, with Y. €Fe(a,... _o
a,..., 1), then the posterior distributions of the Y variables given a sample
X, -+ -, X, from Pagain has the same structure—independent with beta distribu-
tions. The posterior distribution of Y, ..., givenX, ..., X, is Fe(a.,..... o+
M,a... _.+ N), where M is the number of X,’s that fall in (.¢, --- ¢,_,0,
.& +++&,_;1]and N is the number of X;’s that fallin (.e, - - - ¢,,_; 1, .e; -+ - ¢, _, 1 +
2-"].

The Dirichlet process is tailfree with respect to every tree of partitions. The
above scheme is a Dirichlet process if the parameters add in the following way.
For every e, --- ¢

m’

(2.2) a, ... m = ael..-emo + ael---eml M
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Thus, the tailfree processes are much more flexible than the Dirichlet. There
are twice as many parameters at your disposal for each row in Figure 1. With
this extra freedom, we can choose the parameters (a’s) so that the random prob-
ability P is continuous singular or absolutely continuous with probability one.
It is worthwhile to investigate three cases.

(a) a.,.., = 27" This yields a Dirichlet process and P is discrete with prob-
ability one. Conditions on the a’s that lead to discrete P with probability one
have been given by Blackwell [3].

(b) «,...., = 1. This yields a random probability P of a type considered by
Dubins and Freedman [13] and shown to be continuous singular with probability
one. .

(c) a,,..., =m* This yields a P absolutely continuous with probability one.
Conditions on the a’s that lead to absolutely continuous P with probability one
may be obtained from the work of Kraft [22] and Metivier [24].

The drawback of (a) as a prior in the goodness of fit problem of Section 1 was
due to the discreteness of P. Use of priors (b) and (c) partially overcomes this
limitation, but unfortunately new drawbacks are introduced. A minor one is
that &F(¢) is now more difficult to compute. If ¢ is not dyadic rational, Z°F(r)
is an infinite series.

The main drawback is that the dyadic points of subdivision play a strong role
in the posterior distributions. For each of (a), (b), and (c), the prior guess at F
is, from symmetry, the uniform distribution, &F(f) = ¢, t € (0, 1]. The posterior
expectation given a sample of size 1, & (F(f)| X = x) is still uniform in the dyadic
intervals in which x does not lie, but it has corners at the dyadic rationals near
x in cases (b) and (). Atx, &(F(f)| X = x) has a discontinuity in case (a), infinite
slope in case (b), and bounded slope in case (c). We further note in case (c) that
even though the density with respect to Lebesgue measure exists with probability
one, the density has discontinuities at all the dyadic rationals with probability
one.

It should be considered a liability that the points used to describe the process
appear strongly in the almost sure properties or in the posterior expectations.

3. Characterization of the Dirichlet process. Are there tailfree processes
other than the Dirichlet for which the points of subdivision chosen for the tree
of partitions do not play an essential role in the behavior of the process? Except
for three trivial types of processes, the answer is no. This and two other char-
acterizations of the Dirichlet process given here are due to Doksum [11] and
Fabius [15]. The three trivial types of processes seem to appear in all these
characterizations. They are

T,. P non-random (F = F).

T,. P degenerate at a random point (F = I .., where X has distribution F).

T,. P concentrated on two non-random points (F = Ulj, ., + (1 — U)l,«,
where U has an arbitrary distribution on [0, 1], and a < b).
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Types T, and T, are limits of the Dirichlet process as a(R) — co and a(R) — 0,
respectively, with F, fixed.

Characterization 1. If P is tailfree with respect to every tree of partitions, then
P is either a Dirichlet process or of types T;, T, or T,.

From Definition 1 it follows that the Dirichlet process is the only random
probability measure for which the distribution of (P(B,), - - -, P(B,,)) is Dirichlet
for every measurable partition {B,, ---, B,}. Therefore, characterizations of
the (finite-dimensional) Dirichlet distributions lead to characterizations of the
Dirichlet process. The characterization of the Dirichlet distribution given by
Darroch and Ratcliff [8] may be so used. If the Darroch-Ratcliff characterization
of the Dirichlet distribution is strengthened as in Fabius [16], the resulting char-
acterization of the Dirichlet process contains Characterization 1.

A related characterization of the Dirichlet distribution based on a different
independence condition, called neutrality, leads to a second characterization of
the Dirichlet process. The concept of neutrality is due to Connor and Mosimann
[7]. The independence condition used below is essentially in the form given by
Fabius [15], and weakened slightly in Fabius [16].

Characterization 2. If P is neutral with respect to every finite measurable
partition (that is, if for every measurable partition {B,, - - -, B,}, P(B)) and the
vectors (P(By)/(1 — P(B,)), - - -, P(B,)/(1 — P(B,))) are conditionally independent
given P(B,) + 1), then P is either a Dirichlet process or of types T,, T, or T,.

Although the above characterizations may be considered as attractive proper-
ties of the Dirichlet process, the next characterization may be considered as a

drawback.

Characterization 3. If for every measurable set B, the posterior distribution of
P(B) given a sample X,, - - -, X, from P, depends on X, - - -, X, only through the
number of observations that fall in B, then P is either a Dirichlet process or of
types T, T, or T,.

One would like to have a prior distribution for P with the property that if X
is a sample from P and X = x, then the posterior guess at P gives more weight
to values close to x than the prior guess at P does. For the Dirichlet process
prior, the posterior guess at P gives more weight to the point x itself, but it treats
all other points equally. In particular, the posterior guess at Pactually gives less
weight to points near x but not equal to x. From this point of view, the tailfree
process prior that chooses absolutely continuous distributions with probability
one would seem to be more appropriate.

4. Processes neutral to the right. A large class of prior distributions on &~
that are not dependent on the partition points used to describe the process has
recently been discovered by Doksum [11].

DEFINITION 4. A random distribution function F(f) on the real line is said to
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be neutral to the right if for every mand t, < t, < --. < t,, there exist inde-
pendent random variables V,, V,, - - -, V,,, such that (1 — F(t,), 1 — F(t,), ---,
1 — F(t,)) has the same distribution as (V,, V,V,, ---, [IF V).

Essentially, this says that F is neutral to the right if 1 — F(1,), (1 — F(t,))/
(1 —F)),---,(1 —F(t,))/(1 — F(t,_,)) are independent when £, < £, < - - - < £,,.
Because of the possibility of the denominators being zero with positive proba-
bility, we prefer to use Definition 4 instead. Note that if F is neutral to the right
then Y, = —log (1 — F(r)) has independent increments. Doksum gives a simple
characterization of processes neutral to the right.

Let Y, be a process with independent increments non-decreasing a.s., right
continuous a.s., lim,, Y, =0 a.s. and lim,_,_ Y, = 4 oo a.s. We allow the
possibility that Y, = co with positive probability for finite 7. Then F(f) = 1 — e~ "¢
is a random distribution function neutral to the right.

For such a process Y, there exist at most countably many fixed points of dis-
continuity #,, f,, - - -. The corresponding jumps S,, S,, - - -, are independent non-
negative (possible infinite-valued) random variables with corresponding densities
fep fep -+ - (With respect to some convenient measure). The difference

(4.1) Z, =Y, — 2 Silye(t)

is a non-decreasing process with independent increments without fixed points of
discontinuity and therefore has Lévy formula

(4.2) log Ee*”¢ = ub(f) + {3 (e — 1) dN,(2)

where b is a non-decreasing continuous function with lim, ,_, 5(t) = 0, and where
N, isa continuous Lévy measure, that is, for every B € <&, N,(B) is non-decreasing
and continuous in ¢, and for each ¢, N, is a measure on the Borel sets of (0, o).
We define Z, to be + co unless

(4.3) §5 2/(1 + 2) dN,(2) < oo .
The process neutral to the right is specified by the four quantities {t,, ;, - -},
{fep [ty - ++} b, and N,.

The function b corresponds to the non-random part of the process Y,. If 56 =0,
then Y,, and hence F(t), increase only in jumps a.s., so that F is discrete with
probability one.

Corresponding to Theorems 1 and 2, the main result for processes neutral to
the right is

THEOREM 3. If F is neutral to the right, and if X,, ---, X, is a sample from F,
then the posterior distribution of F given X,, - - -, X, is neutral to the right.

The paper of Doksum also contains a description of the posterior distributions
of F in terms of the prior distribution of F. We give below an alternative de-
scription of Doksum’s result in terms of the distribution of the process Y,. Itis
sufficient to give this description for n = 1 since the description for arbitrary
sample size would follow by repeated application.



624 THOMAS S. FERGUSON

Let the prior distribution of Y, be specified by {#,, ta, - - -}, {fis f1,p -} b, N,,
and let X be a sample from F(f) = 1 — e~"t. The posterior distribution of Y,
given X = x is best treated in two cases.

Case 1. x is one of the prior fixed points of discontinuity, say x = f,. The
posterior distribution of Y, given X = x = ¢, is specified by

(1) the same set of fixed points of discontinuity and the same deterministic
component function, b,
(2) the posterior Lévy measure

dN,(z|x) = e *dN(2) for t < x
= e *dN,(z) + d[N,(z) — Ny(2)] for t > x,
(3) for i + k, the posterior distribution of the jump at ¢,
fe(s]x) = ce™*f,(5) for 1, < x
= fu,(5) for t,> x,

(4) the posterior distribution of the jump at x = ¢,

fo(s1t) = ¢(1 — e™)f, (s)
(where ¢ represents a normalizing constant).

Case 2. x is not one of the prior points of discontinuity. The posterior dis-
tribution of Y, given X = x is the same as in Case 1 (1), (2), (3) except that x
may now be a fixed point of discontinuity, and (4) is replaced by

(4’) define the measure g, on (R, <Z) for each fixed Borel subset B of [0, co)

to satisfy

pp((— o0, 1]) = §5 (1 — €7%) dN(2) + b(1)15(0)
where as usual I, denotes the indicator function. Note that y,; < p.,- The
posterior distribution of the jump S at x is given by P(S € B|x) = ¢5(x), where
@5 is the Radon-Nikodym derivative of p, with respect to g .-

One may state conditions (1), (2) and (3) more simply as the condition that
the distribution of the increments Y, — Y,_, for t < x and ¢ > 0 are changed by
multiplying the density by e~* and renormalizing, while the distribution of the
increments Y,,, — Y, for ¢t > x and ¢ > 0 remain unchanged.

It is best to take an example of the use of (4’). Suppose there are no fixed
points of discontinuity, and suppose dN,(z) = r(f)N(z) where N(z) is a fixed
measure such that { z/(1 4 z) dN(z) < oo, and where y() is non-decreasing and
continuous with y(f) — 0 as # — — oo and y(f) — oo as t — co. Suppose further
that b(¢) and 7(r) are absolutely continuous. Then

(4.4) ps((— 0, 11) = 7(£) §5 (1 — =) dN(2) + B(HI5(0) ,
so that
(4.5) os(t) = (1 — gy 32 =€) dN@ | gy 0)

7 (1T — e) dN(z)
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where

(4.6) q(t) = /(' (1) & (1 — e77) dN(z) + b'(1))

represents the probability that the jump at the new fixed point of discontinuity
is zero. If b = 0, then ¢ = 0 and the distribution of the jump is independent
of where it occurs. Note that the distribution of the new jump is not necessarily
infinitely divisible.

It is interesting to view the Dirichlet process as a process neutral to the right.
If Fe Z(a), then F is neutral to the right, and if a is continuous then Y, =
—log (1 — F(1)) has no fixed points of discontinuity. This implies that if Xe
He(a, B) then Y = —log (1 — X) is infinitely divisible, The density of Y is

@.7) fry) = f,%)%) (1 — e ), ()

and the moment generating function of Y is

— Fewr — L(@+ BT (B —u)
(4.8) M,(u) = Ee** = T« + f — ) for u < B,

an unlikely looking function to be the moment generating function of an infinitely
divisible distribution. The follow lemma gives the Lévy representation of this
moment generating function.

LEMMA 1. If Y = —log (1 — X) where X € e(a, B), then

— (o uz e_ﬂz(l _ e—al) 7
tog My(u) = §5 (e — 1 ©Co S0 d

Proor. Using the formula I'(x) = x~'I'(x + 1), one may write (4.8) as
" 1z B+ RN+ B —ut K)) D@+ 4+ n)T( —utn)
9) M) <H’°' (@+B+kPB—u+ k)) TB+nl(a+p—u+n)

Stirling’s formula, I'(x) ~ (27x)¥(x/e)® for large x, implies that the term involving
the gamma function on the right side of (4.9) tends to 1 as n — co. Hence,

— Yy B+k(@+B—u+k)
log My(u) = k=°10g(a+ﬁ+k)(ﬁ—u+k) for u<p.

Consequently, the Lévy representation

2

logl_u

—2z
=fr(ev — 1) _dz for u < 2
z

for the moment generating function of the negative exponential distribution with
parameter 2 implies

log My(u) = Xp, §5 (e — 1) M e** dz for u< B

from which the lemma follows immediately.
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Returning to the Dirichlet process as a process neutral to the right, let F ¢ Z{(a)
and Y, = —log (1 — F(f)). Then F(f) € Fe(a(t), a(R) — a(t)) so that the Lévy

measure for Y, is
e—(a(R)—a(t))z(l — e—a(t)z)

(1 —e*):z
— e—a(R)z(ea(t)z _ 1)(1 _ e—z)—lz—l dz
provided 0 < a(f) < a(R). Therefore,
‘UB((—OO, t]) —_ SB e—a(R)z(ea(t)z — l)z—l dZ

op(t) = a(R) §z e *R*dz .

Thus, the distribution of the jump in Y, at t = x, the new fixed point of dis-
continuity, is independent of where it occurs and is negative exponential with
density a(R)e-*®»=[ _(s).

If in further samples from F, k more observations fall at x, r more observations
fall above x, and the rest of the observations fall below x, the posterior distri-
bution of the jump in Y, at x has density ce=(*®+ms(1 — e=*)¥[ _ (s), a density
of the form (4.7).

It is useful to note that when F is neutral to the right, Z'F(¢) can be computed
directly from the moment generating functions of the variables involved in Y,.

EFty=1—-Zexp{-Y,}=1—-&exp{—2Z, — 7], S}
=1- MZt(_l) ]._.[tjét MS‘,(_I) .

Furthermore, the moment generating functions for the posterior distributions of
the increments Y, — Y,_, for7 < xande > 0and Y,,, — Y, fort > xande > 0
may easily be found from the corresponding moment generating functions of the
prior. However, to compute the distribution of the jumps at new fixed points
of discontinuity it is useful to have knowledge of the Lévy form of the moment
generating function of Z,.

dNt(Z) =

so that

5. Applications. 1. Adaptive sampling with recall. Let Fe Z(a) where
{ #da(f) < oo, and let X, X,, - -- be independent identically distributed obser-
vations from F. Consider the problem of finding a stopping rule N to maximize

&(max,g,; <y X; — Nc)

where ¢ > 0 and where X, = 0.

The interpretation of this problem is as follows. You have an object to sell.
Bids for the object come in one at a time chosen independently from some dis-
tribution F you do not know exactly. A Dirichlet process with parameter «
expresses your prior knowledge of F. It costs you an amount ¢ to wait from
one bid to the next. You may stop viewing bids at any time and either sell the
object for the maximum of the bids you have seen so far, or throw the object
away and receive zero. Looking at a bid is costly, but it always gives information
about the true value of F and it may be a large bid. When do you stop looking?
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The condition § 2 da(f) < co implies that &X;? < co, and Theorem 1, page 352
of De Groot [9] implies that there is an optimal rule. Since the problem is
monotone (see Chow, Robbins and Siegmund [6]), and one can show that the
expected return can be approximated by the expected returns of truncated prob-
lems, this rule is the one-stage look-ahead rule. It is optimal to stop at the first
n for which your present return is greater than or equal to your conditional
expected return if you continue one more stage and stop. That is, stop at the
first n for which

MaXg <, X; — n¢ = E(MaAXygjcpy X; — (n 4+ De| Xy, -0, X))

Let M, denote max,g;, X;, and rewrite this condition as: Stop at the first n for
which

¢ = &(max (0, X,,, — M,)| X, ---, X,)
= { max (0, x — M,) dF,(x)
= p, § max (0, x — M,)dF(x) + (1 — p,) § max (0, x — M,) dF(x)
= p, § max (0, x — M,) dF(x)

where F,, F,, F, and p, are as in Section 1. This application was pointed out to
me by J. B. MacQueen. A similar application may be made to the exponential
version of this model in which Y, = " max,., X;. The optimal rule is the one-
stage look-ahead rule. It stops at the first n for which (1 — g)M, = fp,, | max (0,
x — M,) dFy(x).

2. An adaptive investment model. Consider an investor with initial resources
X, who makes investments during discrete time periods in m different investment
opportunities. Denote by b, the m-vector whose jth component b;; is the amount
invested during time period i in investment opportunity j. If X;_, denotes the
investor’s fortune at the beginning of the ith period, we require of b, that

(5.1) Trab;=X, and  b; 20

for all i. Denote by Y, the random m-vector of returns, whose jth component
Y,; = 0is the return per unit invested during time period / in investment oppor-

tunity j. Given Y, we may compute X, from X;_, and b, by the formula

(5:2) X, = (Xomy — 2T biy) + 27 b;Yy; -

It is the objective of the investor to maximize the expected value of the utility
of his fortune at the end of n time periods. For logarithmic utility, adaptive
problems can be handled. Therefore we desire to maximize

(5.3) &logX, .

We assume that Y,, Y,, - - -, Y, are independent identically distributed from
some unknown distribution function F. As a prior distribution for F, we take
the Dirichlet process whose parameter « is a finite non-null measure on m-di-
mensional Euclidean space, F € Z(a).
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In addition to (5.1) there are further constraints on the choice of the b, that
reflect the requirement that the rule be non-anticipatory; that is, b, may be a
function only of X, b,, Y;, b,, Y,, -+, b,_,, Y,_,, and not of Y,, ---,Y,. The
problem then is to find a sequence b,, - - -, b, subject to these constraints to
maximize ¥ log X,,.

This problem when F is known and multinomial (Y; takes only the values
(,o,---,0,(0,1,...,0),-.-,(0,0, ---, 1)) was introduced by Kelly [21].
That Kelly’s model could be extended to the adaptive case was noticed by Bellman
and Kalaba [2]. Further results along these lines were obtained by Murphy [25].

The optimal rule for these problems is the rule that, at each stage, maximizes
the expected log of the resources one stage ahead. The proof as in Kelly is by
backward induction. At the beginning of the nth stage one is to choose b, to
maximize &(log X, |Y,, - - -, Y,_,). Definingc, by b, = ¢, X,_,, we may compute

n—-1
g(log Xn | Yv ct Yn—l)
(5'4) = log Xﬁ—l + g(log (1 - Z?.:l c'nj + Z;Ll cannj) ] Yl’ D] Yn--l)
= log Xy 4+ §log(l — X7 c(y; — 1)) an—l(Y)

where F,_, is £(F|Y,, - -+, Y,_,) as in Section 1. The optimal rule chooses c,
to minimize this integral subject to the constraints y;c,; < 1 and c,; = 0.

ni = n
Therefore, at the beginning of stage n — 1, the investor wants to choose b, _; to
minimize the expectation of (5.4) given Y,, - - -, Y, _,. Since the last term of (5.4)
does not depend on b,,_,, this is equivalent to minimizing &'(log X, _,| Yy, - - -, Y,_,).
This procedure obviously continues down to the first stage. The optimal rule is
therefore: Choose ¢;, i = 1, ..., n to maximize

§log (1 + Xrici(y; — 1)) dF,_(y)
subject to the constraints ;7 ¢,; < land ¢;; = 0, and invest b, = ¢, X,_,. This

is a convex programming problem foreachi =1, ---, n.
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