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A NONUNIFORM BOUND ON CONVERGENCE
TO NORMALITY

By C. C. HEYDE
Australian National University

Various asymptotically correct bounds on the uniform metric for dis-
tance between distribution functions in the central limit theorem for sums
of independent and identically distributed random variables have previously
been given. It is shown in the present paper that corresponding nonuniform
bounds can be given for the difference between distribution functions.
These results have much wider applicability, such as for obtaining proba-
bilities of moderate deviation or for dealing with L, metrics, 1 < p < oo.

1. Introduction and results. Let X,, i = 1,2, ... be independent and identi-
cally distributed random variables with EX, = 0, EX* = 1, and distribution
function F. Write S, = Y7, X,, n = 1, G(x) = P(|X,| £ x), F,(x) = P(S, < xn?),
and denote by @ the distribution function of the unit normal law. We shall
establish the following theorem.

THEOREM 1. Suppose E|X,[*** < oo for some 0 < a < 1. Then for all x,

(1) [Fu(x) — ©(x)] < (1 + [x]***)7'e,(a)
where
(2) cl(@) = Clnt {3y dG(y) + n=* {3, y*** dG(y)}

C being a universal constant. Furthermore, writing A, = sup, |F,(x) — ®(x)|, the
following results hold.

(i) The conditions Y, n~'A, < oo and Y} n~'c,(0) < oo are equivalent and hold
if and only if EX;*log (1 + |X}|) < co.
(if) For 0 < 6 < 1, the conditions Y, n=**?A, < oo and 3 n='+%%,(0) < oo
are equivalent and hold if and only if E|X,|**? < oo.
(iii) For0 < 6 < 1, the conditions A, = O(n=*"*) and ¢,(0) = O(n~**) asn — oo
are equivalent and hold if and only if {7 x* dG(x) = O(z7°) as z — co.

This theorem extends results of Heyde [2] and of Ibragimov [5] which deal
with the uniform metric in (i), (ii) and (iii). The result is useful for many pur-
poses, such as for obtaining probabilities of moderate deviation (e.g. to generalize
Theorem 4 of Davis [1]), for obtaining results on L, metrics, 1 < p < oo, for
departure from normality or for estimating differences of the kind Eb(S,) —
Eb(ntY) for large n and suitable functions 4, ¥ having a unit normal distribution.
A sample application, establishing a similarity of behaviour of the L, metrics,
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1 < p < oo, is given in the following corollary which extends Theorem 2 of
Heyde [3].
COROLLARY 2. Put :
[1Fo = @, = (12 |Fu(x) — ©(x) dx)'7, I=p<eo,
[[F = @l = sup, [Fu(x) — D(x)] -
Then, for 0 <6 < land 1 < p < oo, the following two conditions are equivalent:
(@) EX?*log(l + |X))) < 00 if 6 =0, EJX,"*¥° < 00 if 0 < 5 < 1,
(b) % n|F, — @], < co.
It should be remarked that the complementary result to this corollary which

deals with the case of ||F, — @[, = O(n="%), 0 < § < 1, has been obtained, by
quite different methods, in Theorem 4.3 of Ibragimov [5].

2. Proofs. To prove Theorem 1 we start by taking x > 2 for definiteness.
The case x < —2 can then be dealt with by replacing the X,’s by —X,’s and the
case |x| < 2 will follow from a bound on the uniform metric of Osipov and
Petrov [7].

Put

X, ™(x) = X, if |X] < nix,
=0 otherwise,
and write S, ™(x) = > #_, X,"(x). We have
Fy(x) = P(S, < ntx, $,(x) < nix) + P(S, < nx, 8,™(x) > nbx)
< P(S,%(x) < nx) + nP(|X] > nix)
and similarly
1 — F,(x) < P(S,™(x) > nix) + nP(|X,| > ntx)
so that
F,(x) = P(S,™(x) < ntx) — nP(|X;| > ntx)
and hence
(3) [Fu(x) — ©(x)| = [P(S,™(x) = nix) — O(x)| + nP(|X,| > nix).
Now put ,(x) = EX,"(x), ¢,%(x) = Var X,"(x). We have, writing

Va = [g'n(x)]_ln_i[n%x - nﬂn(x)] ’

|P(5,"(x) < ntx) — D(x)|
4) = [P([0,()]7(Sa™ (%) — npa(x)) < ny,) — O(y,)]

+ [P(ya) — P([0,(0)] %) + [@([0,(x)]*x) — D(x)| .

But, using Theorem 2 of Nagaev [6],

P[0, (x)] (S, (x) — npea(x)) < niy,) — ©(p,)
(5) = CEX,™(x) — po(x)*n 20, ()] (1 + [ya[5)~

< 8CE|X,"™(x)|*n~t|x — nbp,(x)|72,

C denoting a universal constant.
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Now, for x = 2 we have
|ta(X)] = [§y>ata ¥ AF(X)] S $53, 7 dG(x) = n72x7 (3, ) dG(y) = mmix7?,
so that
(6) () = x7 = x| — el 2 4,
and hence, from (5),
[P([ou(X)]7(Sa ™ (%) — npa(x)) S 12y) — ()]
< 64CE|X,"(x)’n~tx—?
O = 64Cn=ix~9({3} ) dG(y) + §24* y* dG(y))
< 64Cnix=?{{3* ? dG(y) + (nbx)'== {3 y*+ dG(y)}
< 64Cx O n= 5 Y dG(y) + nm {5y dG(y)] |
Further, for x > 1,
nP(|X,| > nix) < x= O sup, o,y wHP(1X| > u)
(8) = XTHOnme R sup, ., §7 Y dG(y)
S xm@ronmel {5y dG(y) -
It now remains to bound the terms [®(y,) — @([o,(x)]"'x)| and |D([a,(x)]"*x) —
®(x)| from (4). Since e** > Lu* for u > 0 we have
P(,) — P[0 (0)]7x)| = (27)7F VO Gonro, o1 €4 du
®) = 2027)7F SRR ooy 47 du
< 4Q2m)tnix? ()|
using (6). Also,
(10)  mip, ()] < 1§31, dG(y) < X1 §51, Y dG(y) < x~ §54 ) dG(y)
and hence, from (9) and (10),
[D(y,) — P([o,(0)] )| < 4(27)~4x7" {524 * dG(y)
(11) < 4Q2m) 7 xm 0 (54 )* dG(y)
< 4(2m)hxmHOnmER (2 Y dG(y)
Next, since et** > tu* > 1u® for u = 2, we have for x = 2,
|D([0,(x)] %) — P(x)| < 4(2m)~4 {5l w2 du
=22r) x 1l — 0,X(x)]
(12) < 4(27)tx~ {3, 11 dG(y)
< 4(2m)hxm B {3,y dG(y)
< 4(2m)hx=rOn=e {2,y dG(y) |
Hence, using (3), (4), (7), (8), (11) and (12), we have for |x| = 2 that there exists

a universal constant C such that, a fortiori,

(13)  |Fu(x) — @) < C(1 + [af*){n~t §3F ydG(y) + n=* {3, )"+ dG()} -
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Furthermore, the inequality of Osipov and Petrov [7] can be specialized to give
(see (2) of Heyde [4] wherein we take r, = C, = n!; K, is a universal constant)
IF,(x) — @(x)] < nP(X,] > n¥) + Kyn~o,(1)]7° {3 dG(y)

(14) + n&(zrc)_t[on(l)]_llSlyléniy dF(.y)l
+ (2me)™ §3 y* dG(y)
and noting (8), (10) and ¢,(1) —> 1 as n — oo, we observe that the right hand
side of (14) is upper bounded by the right hand side of (13) for suitable universal
Cand |x| < 2. This ensures that (1) also holds for |x| < 2 and hence completes
the proof of (1). In order to complete the remainder of the proof we first obtain
a simple bound for ¢, (0).
Write L(y) = {2 x*dG(x). Then
n 3y dG(y) = —nt 3t y dL(y)
=i L)y,
and, since L(y) | as y increases,
(13) c,(0) < 2Cn~+ 3 L(y) dy .

Now suppose 0 < 6 < 1 and EX*log (1 + |X}|) < oo if 6 = 0, E|X,[**’ < oo
if 0 < § < 1. Here and below we use C to denote a positive universal constant
which may differ from one expression to the next. Using (15), we have

Yo e, (0) < C g, nm0mR N (L, L(y) dy

C Mg, n0=92 T L((k — DAYk — (k — 1))
C Ty k ALk — 1)) S, nm o0

C i kL ((k — 1))

C S k9 R, E(X((n — 1 < |X,| < nh))
C Ty mPEQG(n — 1) < |X,] < ni)}

< CEX 'Y < oo, if 0<o<1, or,

< C By log (n+ DE(XM((n — 1)} < |X,| < nh)}
< CEX?log (1 4 |X||) < o0, if 6=0.

Conversely, if 0< d < 1and J n=*%%,(0) < oo, then (2) gives 3} n~'**2L(nt) < oo
and

IA A IIA

IA

Yo, nm L) = Yz, nmon Te EGH(KE < | X)| < (k + DY)
= X ELGI(R < X < (k + 1))} ko neo
> C Xp, KPEX(K < |X) < (k + 1)
= CE|X|**+?, if 0<o<1, or
> C Y, log kE[X (Kt < |X,| < (k + 1))}
> CEXlog (1 + |Xi|), if 6=0.
The equivalence of Y n*2A, < co and EX?log (1 + [Xj|) < oo if 6 =0,
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E|X,|"*° < 00 if 0 < § < 1, follows from Heyde [2] and hence the proof of (i)
and (ii) is complete.

Finally, to prove (iii) we first suppose that L(y) = O(y~°) as y — co. Then,
using (15), ¢,(0) = O(n=**). On the other hand, if ¢,(0) = O(n~**) then certainly,
from (2),

L(n*) = {33 5" dG(y) = O(n~*")

which yields L(y) = O(y~’) as y — oo as required. The equivalence of A, =
O(n=%*) and L(z) = O(z7%) as z — oo was obtained by Ibragimov [5]. This com-
pletes the proof of Theorem 1.

To establish Corollary 2 we first observe that the equivalence of (a) and (b)
for p = co follows from Theorem 1 as does the result that (a) implies (b) for
1 < p < co since (a) gives 3] n=1+%%,(0) < oo and ||F, — ®@||, = O(c,(0)). To
see that (b) implies (a) note that the proof of the necessity part of the theorem of
[2] is still applicable with minor modification (involving applications of Holder’s
and Minkowski’s inequalities if p > 1).

Acknowledgment. I am indebted to J. R. Leslie for a helpful comment.

REFERENCES

[1]1 Davis, J. A. (1968). Convergence rates for probabilities of moderate deviations. Ann. Math.
Statist. 39 2016-2028.

[2] Heypg, C. C. (1967). On the influence of moments on the rate of convergence to the normal
distribution. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 12-18.

[3] Heypg, C. C. (1969). Some properties of metrics in a study on convergence to normality.
Z. Wahrscheinlichkietstheorie und Verw. Gebiete 11 181-192.

[4] Heypg, C. C. (1973). On the uniform metric in the context of convergence to normality.
Z. Wabhrscheinlichkeitstheorie und Verw. Gebiete 25 83-95.

[5] IsrAGIMOV, I. A. (1966). On the accuracy of the Gaussian approximation to the distribution
function of sums of independent random variables. Theor. Probability Appl. 11 559-
576.

[6] NAGAEv, S. V. (1965). Some limit theorems for large deviations. Theor. Probability Appl.
10 214-235.

[7] Ostpov, L. V. and PETROV, V. V. (1967). On an estimate of the remainder in the central
limit theorem. Theor. Probability Appl. 12 281-286.

DEPARTMENT OF STATISTICS
AUSTRALIAN NATIONAL UNIVERSITY
P.O. Box 4 CANBERRA

A.C.T. 2600

AUSTRALIA



