ON THE DECOMPOSITION OF A SUBADDITIVE STOCHASTIC PROCESS

By Andrés del Junco

University of Toronto

We give an elementary proof of the decomposition of a subadditive stochastic process as an additive process plus a positive subadditive process with time constant 0. The proof is based on two ideas. The first is a general idea for obtaining a kind of weak limit point for L_1 -bounded sequences of random variables, based on the martingale convergence theorem. The second is a general result about martingales which seems to be new and is of independent interest.

The proof of the ergodic theorem for a subadditive stochastic process, as originally given by Kingman in [2], depends on the following decomposition.

THEOREM 1. If x_{st} is a subadditive stochastic process with time constant $\gamma > -\infty$ then $x_{st} = y_{st} + z_{st}$ where y_{st} is additive and z_{st} is a positive subadditive process with time constant 0.

Kingman proves Theorem 1 by choosing a weak limit point $\mu \in L_1^{**}$ for the sequence $\{f_m\}$ defined by (6) below, and then showing that the finitely additive measure μ is actually countably additive. This is done by writing

$$\mu = \mu_{c} - \mu_{f}$$

where μ_e is countably additive and μ_f is purely finitely additive (see [5] for the definition and for the proof of the existence of the decomposition (1)), and then showing that μ_f is 0. This in turn depends on the fact that the sum of purely finitely additive measures is again purely finitely additive ([5], Theorem 1.17). Theorem 1 has also been proved by Burkholder [1] by applying a theorem of Komlós [4] to the sequence f_m .

Both of these proofs of Theorem 1 depend on rather deep results which are not widely known. The purpose of this paper is to give a more elementary proof of Theorem 1 based on the martingale convergence theorem. The basic idea is as follows. Let $\{\mathscr{F}_k\}$ be an increasing sequence of finite σ -algebras in the sample space (Ω, \mathscr{F}, P) which generate \mathscr{F} (up to null sets) and choose a subsequence $\{f_{m(j)}\}$ of $\{f_m\}$ such that for all k, $E(f_{m(j)}|\mathscr{F}_k)$ converges as $j\to\infty$, say to η_k . Then $\{\eta_k\}$ is an L_1 -bounded martingale which converges to y, say. Then y can be regarded as a sort of weak limit of $f_{m(j)}$ and it turns out that if the \mathscr{F}_k are chosen with a bit of care then y has enough good properties to carry through the proof. In fact is easy to see that y is just μ_e in the decomposition 1, but our argument avoids L_1^{**} altogether.

Received March 15, 1976.

AMS 1970 subject classifications. Primary 60G10; Secondary 60G45, 28A65.

Key words and phrases. Subadditive process, martingale.

Before proceeding to the proof of Theorem 1 we shall state and prove a lemma which will be needed and which is of interest in its own right. It seems likely that a more general result is true but we shall just prove the minimum that we require.

LEMMA 1. Let η_k be an L_1 -bounded martingale with respect to a sequence $\{\mathscr{F}_k\}$ of finite σ -algebras on a probability space (Ω, \mathscr{F}, P) and $\eta = \lim_k \eta_k$. Let \mathscr{G}_k be an increasing family of σ -algebras and l(k) and b(k) increasing unbounded integer sequences such that $\mathscr{F}_{l(k)} \subset \mathscr{G}_k \subset \mathscr{F}_{b(k)}$. Then $E(\eta_{b(k)} | \mathscr{G}_k) \to \eta$ almost surely.

PROOF. Suppose the result has been proved in case $\eta=0$. Then, in the general case, $\xi_k=\eta_k-E(\eta|\mathscr{F}_k)$ is an L_1 -bounded martingale with respect to \mathscr{F}_k which converges to 0. Thus $E(\xi_{b(k)}|\mathscr{G}_k)=E(\eta_{b(k)}|\mathscr{G}_k)-E(\eta|\mathscr{G}_k)$ converges to 0. Since $\bigvee_{k=1}^{\infty}\mathscr{G}_k=\bigvee_{k=1}^{\infty}F_k$, $E(\eta|\mathscr{G}_k)\to\eta$, so this would establish the result in general.

Thus we shall assume $\eta=0$. It is easy to see that $E(\eta_{b(k)}|\mathscr{G}_k)$ is an L_1 -bounded martingale with respect to \mathscr{G}_k and hence converges almost surely. We have to show the limit is 0.

Fix $\varepsilon > 0$. Choose k so large that

$$|\eta_{l(k)}| \leq \varepsilon \quad \text{on a set} \quad G \in \mathscr{F}_{l(k)}, \quad P(G) > 1 - \varepsilon,$$

and also

$$E(|\eta_{b(k)}| - |\eta_{l(k)}|) < \varepsilon^2.$$

(This can be done since $E|\eta_k| / \sup_k E|\eta_k|$ by the martingale property.) Now by (3)

(4)
$$\varepsilon^{2} > E(|\eta_{b(k)}| - |\eta_{l(k)}|)$$

$$= \sum_{A} P(A)E((|\eta_{b(k)}| - |\eta_{l(k)}|)|A) ,$$

where the summation is over the atoms A of $\mathscr{F}_{l(k)}$. Since $E((|\eta_{b(k)}|-|\eta_{l(k)}|)|A\geq 0$ by the martingale property, (4) implies that there is a set $\bar{G}\in\mathscr{F}_{l(k)}$, $P(\bar{G})>1-\varepsilon$ such that if A is an atom of $\mathscr{F}_{l(k)}$ contained in \bar{G}

(5)
$$E((|\eta_{b(k)}| - |\eta_{l(k)}|)|A) < \varepsilon.$$

If A is an atom of $\mathscr{F}_{l(k)}$ contained in $\bar{G} \cap G$, (2) and (5) imply $E((|\eta_{b(k)}|)|A) < 2\varepsilon$. It follows that $|E(\eta_{b(k)}|\mathscr{G}_k)| < (2\varepsilon)^{\frac{1}{2}}$ on a set $A' \subset A$, $P(A'|A) > 1 - (2\varepsilon)^{\frac{1}{2}}$. Since $P(\bar{G} \cap G) > 1 - 2\varepsilon$, it follows that $|E(\eta_{b(k)}|\mathscr{G}_k)| < (2\varepsilon)^{\frac{1}{2}}$ on a set of probability greater than $(1 - 2\varepsilon)(1 - (2\varepsilon)^{\frac{1}{2}})$. Since ε is arbitrary this completes the proof.

For completeness we shall now recall the definition of and basic facts concerning subadditive processes. A subadditive process x_{st} is a process x_{st} indexed by all pairs (s, t) of nonnegative integers with $s \le t$ such that

- (a) The process $\{x_{s,t}\}$ is equivalent to the shifted process $\{x_{s+1,t+1}\}$ (stationarity);
- (b) $x_{st} \leq x_{sr} + x_{rt}$ for $s \leq r \leq t$ (subadditivity);
- (c) $(1/n)E(x_{0n}) > K$ for some constant K.

Set $g_n = E(x_{0n})$. Then $g_n/n \to \gamma > -\infty$. γ is called the time constant of the process.

PROOF OF THEOREM 1. x_{st} is a process indexed by $\Lambda^+ = \{(s,t): s,t \in Z^+, s \leq t\}$ and thus is equivalent to a canonical process \bar{x}_{st} with sample space $R^{\Lambda+}$ in the same way that a process indexed by Z^+ is equivalent to a process with sample space R^{Z^+} (see, e.g., [1], Chapter 2). Furthermore \bar{x}_{st} has a canonical stationary extension \bar{x}_{st} to a process indexed by $\Lambda = \{(s,t): s,t \in Z, s \leq t\}$ with sample space R^{Λ} , just as in the one parameter case ([1], Proposition 6.5), which has the same joint distributions as x_{st} . Note that \bar{x}_{st} is necessarily subadditive. We shall assume that x_{st} is itself \bar{x}_{st} which allows us to assume the technically convenient facts that, first, the sample space (Ω, \mathcal{F}, P) is separable and, second, there is an invertible measure preserving transformation σ of Ω such that $x_{st} \circ \sigma = x_{s+1,t+1}$. (Concerning this assumption see the remark at the end of the paper.) For any measurable function f let $Sf = f \circ \sigma$. Note now that the proof of the theorem is reduced to showing that there is a $y \in L_1$ such that $E(y) = \gamma$ and $\sum_{i=0}^{n-1} S^i y \leq x_{on}$. Indeed this would imply that $\sum_{i=s}^{t-1} S^i y \leq x_{st}$ for $s \leq t$ and one can then set $y_{st} = \sum_{i=s}^{t-1} S^i y$ and $z_{st} = x_{st} - y_{st}$.

Now, as in [2], Section 6, set

(6)
$$f_m = \frac{1}{m} \sum_{j=1}^m (x_{0j} - x_{1j}).$$

For $m \ge n$ we have

$$\sum_{i=0}^{n-1} S^{i} f_{m} = \frac{1}{m} \sum_{i=0}^{n-1} \sum_{j=1}^{m} (x_{i,j+1} - x_{i+1,j+i})$$

$$= \frac{1}{m} \sum_{s=1}^{m+n-1} \sum_{t=a}^{b-1} (x_{ts} - x_{t+1,s})$$

$$(\text{where } a = \max(0, s - m), b = \min(s, n))$$

$$= \frac{1}{m} \sum_{s=1}^{m+n-1} x_{as} - x_{bs}$$

$$\leq \frac{1}{m} \sum_{s=1}^{m+n-1} x_{ab} \quad (\text{by subadditivity})$$

$$= \frac{1}{m} \left[\sum_{s=1}^{n} x_{0s} + (m - n) x_{0n} + \sum_{s=1}^{n-1} x_{sn} \right]$$

$$= R_{m}^{m}, \quad \text{say}.$$

Note that as $m \to \infty$, $R_n^m \to x_{0n}$ a.s. and in mean. Furthermore $f_m \le x_{01}$ for all m and $E(f_m) = (1/m) \sum_{i=1}^m (g_i - g_{i-1}) = g_m/m$ is bounded, so that $E|f_m|$ must be bounded, say by M.

Choose an increasing sequence of finite σ -algebras \mathscr{F}_k which generate \mathscr{F} and such that for each i there are two increasing unbounded integer sequences $l_i(k)$ and $b_i(k)$ such that

$$\mathscr{F}_{l_i^{(k)}} \subset \sigma^i(\mathscr{F}_{k}) \subset \mathscr{F}_{b_i^{(k)}} \, .$$

(One way to do this is to let $\mathcal{H}_1, \mathcal{H}_2, \cdots$ be a sequence of finite σ -algebras which generate \mathcal{F} , choose a bijection ξ from Z^+ to $Z \times Z^+$ and set

$$\mathscr{F}_{k} = \bigvee_{m \leq k} \sigma^{\xi_{1}(m)} \mathscr{H}_{\xi_{2}(m)} ,$$

where $\xi(m)=(\xi_1(m),\,\xi_2(m))$.) Since \mathscr{F}_k is a finite σ -field and $||E_kf_m||_\infty$ is bounded for fixed k, we may choose by a diagonal selection process a subsequence $\{f_{m(j)}\}$ of $\{f_m\}$ such that $E_kf_{m(j)}$ converges to some $\eta_k \in L_1$, for all k. (The sense of convergence here does not need to be specified since it amounts simply to convergence of an n-tuple of real numbers.) Obviously n_k will be \mathscr{F}_k -measurable and it is easy to check that η_k is a martingale with respect to \mathscr{F}_k and that $E|\eta_{0k}| \leq M$ since $E|f_m| \leq M$. Thus $\eta_k \to y \in L_1$. Now, using the fact that $E(Sg | \mathscr{G}) = SE(g | \sigma G)$ for any σ -algebra \mathscr{G} and $g \in L_1$, we have

$$\begin{split} E_k(S^if_{m(j)}) &= S^iE(f_{m(j)}|\sigma^i\mathscr{F}_k) \\ &= S^iE[E(f_{m(j)}|\mathscr{F}_{b_i(k)})|\sigma^i\mathscr{F}_k] \\ &\to S^iE(\eta_{b_i(k)}|\sigma^i\mathscr{F}_k) \quad \text{ as } \quad j\to\infty. \end{split}$$

Now since $\sum_{i=0}^{n-1} S^i f_{m(j)} \leq R_n^{m(j)}$ we have $\sum_{i=0}^{n-1} E_k S^i f_{m(j)} \leq E_k R_n^{m(j)}$ and since $R_n^{m(j)} \to x_{0n}$ in mean, letting $j \to \infty$ we get

(7)
$$\sum_{i=0}^{n-1} S^i E(\eta_{b_i(k)} | \sigma^i \mathscr{F}_k) \leq E_k x_{0n}.$$

As $k\to\infty$ the left-hand side of (7) converges to $\sum_{i=0}^{n-1} S^i y$ a.s. by Lemma 1 and the right-hand side converges to x_{0n} a.s. Thus we have $\sum_{i=0}^{n-1} S^i y \le x_{0n}$. In particular $nE(y) \le g_n$ for all n so $E(y) \le \gamma$. It remains only to show that $E(y) \ge \gamma$. Note that $E(E_k f_m) = g_m/m$, so $E(\eta_k) = \gamma$. Also since $x_{01} \ge f_m$, $E_k x_{01} \ge E_k f_m$ so $E_k x_{01} \ge \eta_k$. Thus applying Fatou's lemma to $E_k x_{01} - \eta_k$ we get

$$\begin{split} E(x_{01}) - E(y) &= E \lim \inf \left(E_k x_{01} - \eta_k \right) \\ &\leq \lim \inf E(E_k x_{01} - \eta_k) \\ &= E(x_{01}) - \gamma \; . \end{split}$$

Thus $E(y) \ge \gamma$.

REMARK. It may seem unnatural to assume that σ is invertible. However it appears that this assumption is also necessary in Kingman's original proof ([2]). The equation $S\kappa = \kappa T$ on page 509 is not correct unless S is defined by $S\mu(A) = \mu(\theta A)$ which requires at least that θ take measurable sets to measurable sets. Furthermore on the same page one needs to know that if π is a purely finitely additive measure then $S\pi$ is also, which seems to require the invertibility of S. (Note that σ and S in this paper correspond to θ and T respectively in [2], Section 6.)

Acknowledgment. I would like to thank John Baxter for several very helpful discussions concerning Lemma 1.

REFERENCES

- [1] Breiman, L. (1968). Probability. Addison-Wesley, Reading, Mass.
- [2] BURKHOLDER, D. L. (1968). Discussion following [3].

- [3] KINGMAN, J. F. C. (1968). The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B 30 499-510.
- [4] KINGMAN, J. F. C. (1973). Subadditive ergodic theory. Ann. Probability 1 883-909.
- [5] Komlos, J. (1967). A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18 217-229.
- [6] Yosida, K. and Hewitt, E. (1952). Finitely additive measures. Trans. Amer. Math. Soc. 72

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TORONTO TORONTO, ONTARIO M5S 1A1 CANADA