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ON THE DECOMPOSITION OF A SUBADDITIVE
STOCHASTIC PROCESS

By ANDRES DEL JUNCO
University of Toronto

We give an elementary proof of the decomposition of a subadditive
stochastic process as an additive process plus a positive subadditive process
with time constant 0. The proof is based on two ideas. The first is a general
idea for obtaining a kind of weak limit point for L;-bounded sequences of
random variables, based on the martingale convergence theorem. The
second is a general result about martingales which seems to be new and is
of independent interest.

The proof of the ergodic theorem for a subadditive stochastic process, as
originally given by Kingman in [2], depends on the following decomposition.

THEOREM 1. If x,, is a subadditive stochastic process with time constant y > — oo
then x,, = y,, + z,, where y,, is additive and z,, is a positive subadditive process with
time constant 0.

Kingman proves Theorem 1 by choosing a weak limit point pe L** for the
sequence { f,,} defined by (6) below, and then showing that the finitely additive
measure y# is actually countably additive. This is done by writing

(1) B=p—

where p, is countably additive and p, is purely finitely additive (see [5] for the
definition and for the proof of the existence of the decomposition (1)), and then
showing that p, is 0. This in turn depends on the fact that the sum of purely
finitely additive measures is again purely finitely additive ([5], Theorem 1.17).
Theorem 1 has also been proved by Burkholder [1] by applying a theorem of
Komloés [4] to the sequence f,,.

Both of these proofs of Theorem 1 depend on rather deep results which are
not widely known. The purpose of this paper is to give a more elementary
proof of Theorem 1 based on the martingale convergence theorem. The basic
idea is as follows. Let {<,} be an increasing sequence of finite s-algebras in
the sample space (Q, %, P) which generate % (up to null sets) and choose a
subsequence {f,,;} of {f,} such that for all k, E(f,,,,| %) converges as j — oo,
say to ,. Then {7} is an L,-bounded martingale which converges to y, say.
Then y can be regarded as a sort of weak limit of f,,;, and it turns out that if
the &, are chosen with a bit of care then y has enough good properties to carry
through the proof. In fact is easy to see that y is just p, in the decomposition

1, but our argument avoids L,** altogether.
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Before proceeding to the proof of Theorem 1 we shall state and prove a lemma
which will be needed and which is of interest in its own right. It seems likely
that a more general result is true but we shall just prove the minimum that we
require.

LeEMMA 1. Let v, be an L,-bounded martingale with respect to a sequence {.% ,}
of finite g-algebras on a probability space (Q, &, P) and 7 = lim, n,. Let &, be
an increasing family of ¢-algebras and I(k) and b(k) increasing unbounded integer
sequences such that &, C &, C F ,4,. Then E(y,u,|<,) — 1 almost surely.

ProOF. Suppose the result has been proved in case » = 0. Then, in the
general case, §, = 7, — E(y| % ,) is an L,-bounded martingale with respect to
F, which converges to 0. Thus E(¢,,,| <) = E()yu, | C,) — E(n| &) con-
verges t0 0. Since Vi, &, = Vi Fi, E(| £,) — 7, so this would establish the
result in general. ‘

Thus we shall assume » = 0. It is easy to see that E(y,,| &,) isan L,-bounded
martingale with respect to &, and hence converges almost surely. We have
to show the limit is 0.

Fix ¢ > 0. Choose k so large that

.2 7| < ¢ onaset Ge F,,, PG)>1-—c¢,
and also
(3) E(1nsa] — ) < €.

(This can be done since E|y,| ' sup, E|y,| by the martingale property.) Now
by (3)
(4) & > E([nw| — 1wl

= 24 PAE(700] — DI A)

where the summation is over the atoms 4 of &7 ,,. Since E((|9,,|— |miu|)|4 = 0
by the martingale property, (4) implies that there is a set G € &, P(G) > 1 — ¢
such that if 4 is an atom of &, contained in G

(5) E((175)) — [mw)l4) < €.

If 4 isanatom of &, contained in G N G, (2) and (5) imply E((|9,|)|4) < 2e.
It follows that |E(y,, | &) < (2¢)!onaset A’ C A, P(A'|A) > 1 — (2¢)t. Since
P(G N G) > 1 — 2, it follows that |E(y,.,| £,)| < (2¢)! on a set of probability
greater than (1 — 2¢)(1 — (2¢)?). Since ¢ is arbitrary this completes the proof.

For completeness we shall now recall the definition of and basic facts con-
cerning subadditive processes. A subadditive process x,, is a process x,, indexed
by all pairs (s, #) of nonnegative integers with s < ¢ such that

(a) The process {x, ,} is equivalent to the shifted process {x,,, ;,} (stétionarity);
b) x, < x,. + x,, for s < r < t (subadditivity);
(c) (1/n)E(x,,) > K for some constant K.
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Set g, = E(x,,). Then g,/n— 7y > —co. & is called the time constant of the
process.

PROOF OF THEOREM 1. x,, isa process indexed by At = {(s,7): s, te Z*, s < 1}
and thus is equivalent to a canonical process %,, with sample space R** in the
same way that a process indexed by Z+ is equivalent to a process with sample
space R?" (see, e.g., [1], Chapter 2). Furthermore %,, has a canonical stationary
extension X,, to a process indexed by A = {(s, #): s,t € Z, s < t} with sample space
R*, just as in the one parameter case ([1], Proposition 6.5), which has the same
joint distributions as x,,. Note that X,, is necessarily subadditive. We shall as-
sume that x,, is itself X,, which allows us to assume the technically convenient
facts that, first, the sample space (Q, &, P) is separable and, second, there is an
invertible measure preserving transformation ¢ of Q such that x, 00 = x,,; ;4;.
(Concerning this assumption see the remark at the end of the paper.) For any
measurable function f'let Sf = foo. Note now that the proof of the theorem is
reduced to showing that there is a y ¢ L, such that E(y) = 7 and Y72} S%y < x,,.
Indeed this would imply that >}!Z! S < x,, for s < rand one can then set y,, =
Zg;i St)’ and Zoy = Xgp — Vst»

Now, as in [2], Section 6, set

©) fo= o B (5 — %)

For m = n we have
1

-1 Qif -1
1208w = " 720 21 (Xi i1 — Xigr,g44)

1 - -
D D (= )

(where a = max (0, s — m), b = min (s, n))

m+n—1
Z =1 Xog — Xps

IIA

min-lx,, (by subadditivity)

8=1

[Z;Ll Xos + (m - n)xon + Z:‘;II xm]
=R, say.

Note that as m — oo, R,™ — x,, a.s. and in mean. Furthermore f,, < x,, for all
m and E(f,) = (1/m) 3™, (9; — 9;-1) = gn/m is bounded, so that E|f, | must be
bounded, say by M. :

Choose an increasing sequence of finite g-algebras &, which generate .5 and
such that for each i there are two increasing unbounded integer sequences /,(k)
and b,(k) such that

*g_;i(k) Co(Fy) C F o -
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(One way to do this is to let 5#], 5%, - - - be a sequence of finite s-algebras
which generate &, choose a bijection £ from Z*+ to Z x Z* and set

— §1(m)
'—gz-k - Vmgka ! %z(m) ’

where &£(m) = (&,(m), £,(m)).) Since &, isa finite o-field and ||E, f,,]|.. is bounded
for fixed k, we may choose by a diagonal selection process a subsequence {f,,;}
of {f,} such that E, f,, ; converges to some 7,¢L,, for all k. (The sense of con-
vergence here does not need to be specified since it amounts simply to conver-
gence of an n-tuple of real numbers.) Obviously n, will be & ,-measurable and
it is easy to check that 7, is a martingale with respect to &, and that E|y,| < M
since E|f,| < M. Thus 7, —yeL,. Now, using the fact that E(Sg|¥) =
SE(g|oG) for any g-algebra & and g€ L,, we have

Ey(STmiir) = S'E(fmiis|0°F 1)
= SE[E(fm| Zﬂ(m)lgi%]
— SUE(ny,0 | 6°F 1) as j— oo.
Now since Y77 Stf,.; < R,™? we have 312} E, S, ., < E,R,™ and since
R,™9 — x,, in mean, letting j — co we get
(7 i SiE(nbi(k)lai‘g-k) = E,xy, -
As k — oo the left-hand side of (7) converges to };7= S’y a.s. by Lemma 1 and
the right-hand side converges to x,, a.s. Thus we have };72} S < x,,. Inpar-
ticular nE(y) < g, for all n so E(y) < y. It remains only to show that E(y) = 7.
Note that E(E, f,,) = g,/m, so E(y,) = y. Also since xy = f,., E,xy = E, f,, sO
E,xy = 7. Thus applying Fatou’s lemma to E, x,, — 7, we get
E(xy) — E(y) = Eliminf (E,x,, — ;)
< liminf E(E, xy, — 7;)
= E(xy) — 7.
Thus E(y) = 7.

REMARK. It may seem unnatural to assume that ¢ is invertible. However it
appears that this assumption is also necessary in Kingman’s original proof ([2]).
The equation Sk = «T on page 509 is not correct unless S is defined by Su(4) =
(6 4) which requires at least that ¢ take measurable sets to measurable sets.
Furthermore on the same page one needs to know that if z is a purely finitely ad-
ditive measure then Sz is also, which seems to require the invertibility of S.

(Note that ¢ and S in this paper correspond to 6 and T respectively in [2], Sec-
tion 6.)
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