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LARGE DEVIATIONS OF SUMS OF
INDEPENDENT RANDOM VARIABLES

By S. V. NAGAEV
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This paper deals with numerous variants of bounds for probabilities of
large deviations of sums of independent random variables in terms of ordinary
and generalized moments of individual summands. A great deal of attention is
devoted to the study of the precision of these bounds. In this connection
comparisons are made with precise asymptotic results. At the end of the paper
various applications of the bounds for probabilities of large deviations to the
strong law of large numbers, the central limit theorem and to certain other
problems are discussed.

0. Introduction. Let X,, X,, - - -, X, be independent random variables and
put F(x) = P(X; < x). Let us also put
o?=VarX, B?}=230?
AT =Zf,5ou" dF(u), A, = ZE|X]["
If the X, are identically distributed, then their common distribution function will be
denoted by F(x) and their variance by o*. We shall denote the distribution function
of the standard Gaussian law by ®(x).

Let S, = 27X,. It is customary to consider as large deviations the values
S, =2 x > 0(or S, < — x) for which the probability P(S, > x) (or P(S, < — x))is
small. It is also possible to examine large deviations of the type |S,| > x.

In the theory of large deviations there are two possible approaches: (1) the study
of the asymptotic behavior of P(S, > x) as n—> o0 and x — c0; and (2) the
derivation of bounds (particularly upper bounds) for P(S, > x). In this article we
shall concentrate mainly on the second approach. At the same time, we shall also
consider the asymptotic forms of many of the bounds discussed, partly in order to
demonstrate their precision. A very large part of the asymptotic theory of large
deviations is obtained under the assumption that the summands X; are identically
distributed.

We shall now try to give the briefest possible description of the inherent
regularities. First of all, the asymptotic behavior of P(S, > x) depends, on the one
hand, on the speed with which x — o as n — oo, and on the other hand, on the
speed with which 1 — F(x) decreases as x — 0.

If EX, = 0 and 0 < oo (for the sake of simplicity we shall assume that o® = 1),
then there exists a monotonically increasing function ¢(n, F) of n (the distribution
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746 S. V. NAGAEV

function F assumes here the role of a parameter) such that for 0 < x < ¢(n, F)
and n — oo,

(0.1) P(S, > x) = [ (;)}exp{—hm( )}(1+0(1))

Here A¥(u) is a partial sum of the so-called Cramér series containing the first s
terms (for the definition of the Cramér series see, for example, [43], pages 270-271),
where s depends on the rate at which 1 — F(x) decreases.

If Cramér’s condition is fulfilled, i.e., if there exists an A, such that
(0.2) Ee"™ < oo,

for |h| < hg, then s = o and ¢(n, F) = a(n)nil, where a(n) — 0 arbitrarily slowly
as n — oo (see [10] and [38)]).
If
Ees0X) « oo,
where g(x) is a continuous function with a monotonically decreasing continuous
derivative satisfying the conditions

ag( )

0<g(x)<—=—%, a<l1, x>B(g)

and
8g(x) > p(x)log x,
where p(x) tends to oo arbitrarily slowly when x — oo, then s = [a /(1 — a)] (We
shall assume by definition that Al°u) = 0), and ¢(n, F) is the solution of the
equation x? = ng(x) (see [22], [23], [26], [30], [32], [39]), and [40)). Finally, if there
exists a ¢ exceeding 2 such that
E|X,|' < oo,

then s = 0 and ¢(n, F) = (/2 — 1)n log n)? (see [30]).

If x > ¢(n, F), then, in order to obtain asymptotic expressions for P(S, > x), it
is necessary for the distribution function F(x) to behave in a sufficiently regular
way as x — co. (An exception is the case where condition (0.2) is fulfilled and
x ~ cn (see [10], [38], and [41])). For example, if

1 — F(x) = ’(—’f)a + o(1)), t>2,

as x — oo, where /(x) is a slowly varying function, then’
(0.3) P(S, > x) = n(1 — F(x))(1 + o(1))
for x > b¢(n, F), where b is any number greater than 23 (see [27).
If
1 — F(x) = eX®)(1 + o(1)),
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where x(x) changes regularly (we are not defining exactly in what sense) and
x(x)/log x - — o0, x(x)/x—0

when x — co, then the representation (0.3) is valid for x > ¢,(n, F), where in
general

o4(n, F)

lim SUP, oo 7y ¢(" F)

(see [26] and [29]). For example, if

x(x) = —x*(0 <a < 1),
then

&1(x, F) = p(m)n!/21-9),
where p(n) tends arbitrarily slowly to oo (see [26]). For

¢~(n,F)<x<¢,(n,F)

there exists a special representation which is a combination of (0.1) and (0.3) (for a
more detailed discussion of this see [26] and [32]). The results of the article [32] are

also discussed below in Section 2.
As to the upper bounds for P(S, > x), they do not require any limitations on the

distribution of the summands X, except perhaps for the existence of moments of
one kind or another. The bounds for P(S, > x) arise from the famous Chebyshev
inequality

0.4) P(S, > x) < B/x*

A detailed listing of inequalities of the Chebyshev type may be found, for example
in Savage’s survey [58].

In the present article the point of departure is D. X. Fuk’s and S. V. Nagaev’s
work [17], the results of which are given in Section 1.

The inequalities that are discussed in Sections 2 through 4 may at first glance
seem complex and not easily applicable. This is to some extent negated by the
rather numerous applications of these inequalities that already exist. Some of these
are discussed in Section 6. We note that the bounds for P(S, > x) which will be
discussed in the present article allow generalization to max, ., S, (see [7], [16], and
[33]) and to martingales (see [16]). The extension of these bounds to Markov chains
appears to be of interest.

To return now to the system of notation, everywhere below x > 0 is an arbitrary
number, ={yp,- ' ,y,} is .any set of n positive numbers, and y >
mai({ Y1 ©* 5 Y.} Weshall designate by A(z; «, *), B%(+, *), and u(~, *) sums of the
corresponding absolute moments of order ¢ truncated at the levels indicated in the
parentheses, second moments, and mathematical, expectations respectively. The
symbol Y signifies that the moments being summed are truncated correspondingly
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on the levels y,, y,, - - -, y,. For example,
A(t; =Y, 0) = 31/ _, c,<olul’ dF,(u),
BX—Y,Y) = (<, dF(u),
(=00, ¥) = 51, dF(u).
The symbols ¢, ¢;, c,, - - - designate constants—not necessarily the same at each

occurrence. The symbol ¢(8) denotes a constant which depends only on &. If a
constant is absolute, it is explicitly specified as such.

1. Bounds in terms of exponential moments. In [17] three types of bounds are
distinguished depending on the order of the moments involved. These types are
described by Theorems 1.1 through 1.3, formulated below.

THEOREM 1.1. Suppose that 0 < t < 1. Then we have the inequality,

where
t—1

x x xy
P =exp| = — Ziog[ 2 — + 1)}
! exp{ y y Og(A(t; 0,7) )}

If
'™ > At 0, ),
then
(1.2) P(S, > x) < ZIP(X; >y,) + P,
where
. t—1
P - exp[—;‘- B A(z,y?, Y) _x log(A()ZO, - )}

Obviously P, < P,.
THEOREM 1.2. For 1 <t < 2 we have the inequality

(1.3) P(S, > x) < 2iP(X, >y,) + P,,
where
x [(x—w(=Y,Y) K A(t; —-Y,Y) xy' !
P, = = + - log| ————— :
} exP[ y ( y »! log A(t; =Y,Y) 1

Let us turn now to the case ¢ > 2. We use the notations
x ayx _ p(—oo, Y)) F By'!
—— 1_.._. —_—— 7). [ R
exp{ﬂy (( Z)y y log A(t0,Y) 1
ta\ x x  u(—oo, Y)) Bxy'™!
- = - =2 ). logl ——+1]},
{(ﬁ 2 )y ('By y 8\ 41 0, 7)

ax(ax/2 — p(— o0, Y)) }
e'B¥(—~ 0, Y) )

o
]

o0
l
&1

B

P, = exp{ -~
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THEOREM 1.3. Suppose t > 2,0<a < l,and =1~ a.If

—1
(1.4) max[t, IOg(A'(‘i;LO,}-’S + 1) > ;Tl—}—ziajyoo—,)’)’
then
(1.5) P(S, > x) < Z{P(X, >y;) + P,
If
(1.6) max[t, log(;%)%;—;—) + l)] < -57(%7),
then
(1.7) P(S, > x) < ZiP(X; >y,) + P,

If, instead of (1.6), at least one of the conditions B > ta/2 and Bx > p(— o0, Y) is
fulfilled, then

(1.72) P(S, > x) < S7P(X, > y,) + Ps.

PrOOF OF THEOREM 1.3. Define

~

X=X if X <y,

1 1

=0 if X, >y,
and
S, = 31X,

It is not difficult to see that
(1.8) P(S, > x) < P(S, > x) + S1P(X, >y,).
On the other hand, for all positive A,
(1.9) P(S, > x) < e”"EehS = ¢ M [["EehX,
We now require the following

LeEMMA 1.4. Let X be a random variable satisfying

P(X >b)=0,b>0,p=EX,B=EX?a, = [, dF(u),

where F(u) = P(X < u). Then for positive h,

(1.10) log Ee"* < hy + e'Bh*/2,

if h <t/b, and ‘

(1.11) log Ee"™ < hp + e'Bh*/2 + a(e” — 1 — hb)/b’,
if h >1/b.

Proor. First of all,
(1.12) Ee"™ =1+ hp + [,cp(e™ — 1 — hu) dF(u).
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Suppose that & < t/b. Then
(1.13) fuco(€™ — 1 — hu) dF(u) < [,cipn(e™ — 1 — hu) dF(u) < e'Bh’/2.

From (1.12), (1.13) and the inequality
(1.14) logz<z-—1

the bound (1.10) follows.
Let us assume now that A > ¢/b. Then

(115) fugb(ehu -1- hu) dF(u) = fu(t/h + fu>t/h‘

The function (e” — 1 — hu)/u" increases for u > t/h, and therefore

e™ —1— hu
(1.16) Justyn = fu>1/h—_u,__ u' dF(u)
< a,(e" — 1 — hb)/b".

From (1.12) and (1.15), with the aid of (1.14) and (1.16) and the second of the
inequalities (1.13), we obtain the bound (1.11).

Let us continue the proof of Theorem 1.3. Applying Lemma 1.4 to each of the
factors Ee™® in the right-hand side of (1.9) we obtain
(1.17) P(S, > x) < exp{h(u(— 0, Y)— x)+ %e’Bz(—oo, Y)hz}

if0<h <t/yand
(1.18) P(S~,, > x) < exp{h(p(—oo, Y) — x)
1 —
+le’BZ(—oo, Y)h* + f———l—’lXA(t; 0, Y)}
ifh>t/y.
Define
A(K) =%e'32(— w0, Y)I? — hx,
fi(h) =%e’Bz(—oo, Y)h? — ahx, 0<a<l,
1 —
Ay ==L 0, v) - pax, B=1-a
y

Further define

h = ax/eB(—w, Y), = % log( By~ /A(t; 0, Y) + 1).

We note that k, and h, satisfy equations fj(h) = 0 and f5(h) = 0, respectively. By
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virtue of the convexity of the functions f,(k) and f,(h) this implies that 4, and h, are
their points of minimality.

Let us first examine the case h, < t/y. Assuming in (1.17) that h = h; we
conclude that

(1.19) P(S, > x) <

Now let i, > h; >t/y. We assume h = h; on the right-hand side of (1.18). Then
P(S x) exl-"{hlﬂ( 0, Y) + fi(h) + fz(hl)}'

Since £,(0) = 0, f,(h,) < 0.Consequently also f,(h;) < 0. This means that (1.19) is

fulfilled in this case. Thus for A, < max{[¢/y, h,] the bound (1.19) is valid.

If we observe that the condition A, < max[¢/y, h,] is equivalent to (1.4) and take
into account the inequality (1.8), we see that the condition (1.4) leads to the bound

(L5).
Let h, > max[¢/y, h,]. Then, either h >h, >t/y, or h, <t/y <h,. In the

former case
fihy) + fy(hy) + hyp(—o0, ¥) < h2(e'Bz(—oo, Y)h/2 — x)
+ (" = DA(10,Y)/y" + hyp(— 0, ¥)
= Bx/y — h((1 = ¢/2)x — p(— o0, 1))
= Bx/y — axhy/2 — (Bx — p(—= o0, Y))h,
<(B—ta/2)x/y — (Bx — p(— o0, Y))h,.
Now taking & = h, on the right-hand side of (1.18), we obtain
P(S, > x) <P, <Ps
It now remains to examine the condition 4, < t/y < h,. In this case
f(hy) < hy(e'B*(— o0, Y)h/2 — x) = (/2 — 1)xh,.
Consequently
f(h) + hyp(— o0, ¥) < hy(p(—0,.Y) = (1 = a/2)x).
Taking A = h, in (1.17), we conclude that
P(S, > x) < exp{hy(p(—o0, Y) — (1 — a/2)x)} < P,
If Bx > p(—o0, Y), then
f(t/y) + p(— o0, Y)t/y < (e'B*(—o0, Y)h, /2 — x)t/y + p(—o0, Y)1/y
= ((a/2 = Dx + p(= o0, Y))t/y
= (w(—o0, Y) — Bx)t/y — axt/2y
< (w(—o0, Y) — Bx)hy, — axt/2y.
Now taking h = ¢/y in (1.17), we obtain
(1.20) P(S, > x) <Ps.
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However, if Bx < u(— o, Y) but, on the other hand, 8 > ta/2, then Ps > 1 and
the bound (1.20) becomes trivial.

Thus, if the condition #, > max[¢/y, h,] is fulfilled, which is equivalent to (1.6),
then

P(S, > x) <P,
If, in addition, at least one of the inequalities
Bx > u(—o,Y), B >ta)2
holds, then
P(S, > x) <Ps.
In order to complete the proof of (1.7) and (1.7a) it is only necessary to use
inequality (1.8).

The proofs of Theorems 1.1 and 1.2 are analogous, though significantly simpler.
Therefore, we do not reproduce them here, referring the reader to the work [17]

already cited above.
We turn now to several corollaries to Theorems 1.1 through 1.3. From Theorem

1.1 obviously follows:

COROLLARY 1.5. Suppose A" < 00,0 <t < 1. Then
(1.21) P(S, > x) < ZiP(X; >y) + (ed /xy' ™).

Observing that

w(—Y,Y)< AS/ (mjnl<i<n )’i)t_l’

we infer the next corollary from (1.3).

COROLLARY 1.6. If A+Y < 0,1 <t<2,and EX;=0,i=1,-" -, n, then, for
y' > 44 and x >y,
(1.22) P(S, > x) < SIP(X; >y) + (¢4, /™).

We turn now to the corollaries of Theorem 1.3. Setting 8 = ¢/(¢t + 2) in (1.7a)

we obtain

COROLLARY 1.7. Suppose t > 2,EX;=0,i=1,---,n,B=1t/(t +2), and
a=1— . Then

(123)  P(S, > x) < SIP(X, > ;) + exp{ — a’x?/2¢'BX(— o0, )}
+ (A(£; 0, Y)/ Bxy = )P

Setting y, = Bx,i =1, - - , nin (1.23) and bounding P(X; > y) by Chebyshev’s
inequality, we obtain
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COROLLARY 1.8. IfEX,=0and A < oo, t > 2, then
(1.24) P(S, > x) <cP4 x7" + exp{ — cPx*/ B2},
where ¢V = (1 +2/1t) and c® = 2(t + 2) %"

We shall now compare the inequalities given above with the corresponding
asymptotic results.

THEOREM 1.9. Let X, X,, - - - , X, be identically distributed and suppose that
1 — F(x) = I(x)x~'(1 + o(1)) as x — o0, where I(x) is a slowly varying function and
t > 2. If, in addition, EX, = 0, 6> = 1, and E|X,|**® < o for some § > 0, then

(125 P(S,>x)=(1- cp(x/n%))(l + o(1)) + n(1 — F(x))(1 + o(1))

for n — o0 and x > n.
This result is due to A. V. Nagaev [27]. Asymptotic relations of this type were
obtained earlier under more restrictive conditions.by Yu. V. Linnik [22] and S. V.

Nagaev [28] and [29]. 1 . .
It is not difficult to see that if n2 < x < a(n log n)z, where a < (¢ — 2)2, then

n(l — F(x)) = o(l - d)(x/nil)),
and if, on the other hand, x > b(n log n)%, b>(t— 2)%, then
1 — ®(x/n7) = o(n(1 — F(x))).

Thus,

(1.252) P(S, > x) = (1 — @(x/n?))(1 + o(1)),
if x < a(nlog n)il, anda < (¢t — 2)%, and

(1.25b) P(S, > x) = n(1 — F(x))(1 + o(1)),

if x > b(n log n)% and b > (¢t — 2)%. On the other hand, for n — o0 and x — oo,
n(l — F(x))/P(max, ;. X; > x) > 1,
if only n(1 — F(x)) — 0. Clearly, the latter condition is fulfilled if x > b(n log n)%.

This makes possible the following interpretation of relation (1.25b): for
sufficiently large values of x the sum S, exceeds x essentially because one of the
summands X,,i =1, - -, n, assumes a value exceeding x. On the other hand,
equation (1.25a) shows that for relatively small x the contribution of an individual
summand to a value of S, exceeding x is small in comparison to S,, itself. Thus the
nature of large deviations is different for large and for moderate values of x.

The philosophy set forth, useful not only for explaining (1.25a) and (1.25b),
served also as the basis for the proof of (1.25) in the previously mentioned paper
[27].

We shall now give a direct probabilistic proof of (1.25b) under the assumption
that x — oo faster than (n log n)%. Although this proof is based on the same initial
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considerations as in [27], we shall rely substantially on the bound (1.23), which
appeared after [27]. Let us assume for simplicity that /(x) = 1.
The following equation will serve as the point of departure:

(1.26) P(S, > x) = nP(S, > x, X, >y, max, ., ., X; <)
+P(S, > X, UrcickcnlXi >, X, > 1))

n
+P(S, > x, max, ., , X, <y)=nP, + P, + P,,.

n

>
>

Now let x = x, and x,/(n log n)il—> . Lety =y, =x,/a,, where a, = (log n)%.
Then it is easy to see that

n
Py, < (5)P2X, > ).
From this follows
P,, = O(nz/y,f’).

Furthermore,

n?/y¥ = n’a/x? < n'~"a(n/x)).
Consequently,
(1.27) P,, = o(nP(X; > x,)).

Let us now turn to the probability P,,. It is not hard to see that for all x, and z,
(128) Py, = fo—oooP(Xl > max[ym Xn — u]) dP(Sn—l <u, max1<k<n—1Xk < yn)

=[5 +[Th+ =L+ L+1,

-We now choose x;, — oo so that

x,/x,—> o,  x,/(nlog n)%—-a ©,  y,/x,—0.
It is clear that
(1.29) P(S,_; > X;, maX; <1 Xi < ¥p) < P(S;_y 2> x7),
where
S, = SiX/,
X/ =X, X < Vu
=0, X, >y,
We note that

lirny—»oc f0<u<yut dF(u)/IOgy = t.
Therefore, by virtue of (1.23),

(130) P(S,_, > x;) < exp{ —a®;2/2ne'} + ((2mn logy,)/ By}~ ")P=/”"
=1II, + IL,
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where 8 = t/(t +2)and a = 1 — B. For sufficiently large n,
x/in~/? exp{ —a’x;2/2e'n} < exp{ —a’x;’/4e'n} <n”".

Consequently,
(1.31) II, = o(P(X; > x,))
We note that y, / nios 0. Therefore, for all £,0 < & < ¢, and for sufficiently large n,

L, < (mys ") = nfoty(e= 0Pt tal/ x,

< n((é*’)/2+l)ﬂa,’.+1/2a’:/x’:’

where o, = x,,/,.

If t — e > 2, then
tn((e—t)/2+ DBa,+1/2 — 0.

lim, , o,
Thus
(1.32) IT, = o(P(X, > x,)).
From the bounds (1.30), (1.31) and (1.32) follows
(1.33) P(S,_, > x;) = o( P(X, > x,)).
Comparing (1.29) and (1.33) we conclude that
(1.34) P(S,_y > X}, maX, k1 Xk < ¥n) = o(P(X, > X,))-
Since

< P(S,_; > X, maX;ccn—1 X < V)

it follows by (1.34) that

(1.35) I, = o( P(X; > x,)).

From Chebyshev’s inequality we have

(136)  P(S,_; < — 2, MaX cxcn1 X < y,) < P(S,_, < —z,) < n/z2.

1
We select z, in such a way that z,/n?— oo and x, /z, — co. Then, by virtue of

(1.37) I, = o(P(X, > x,))

and

(1.38) P(X, > x, + z,)/P(X, > x,)—> 1.
Further,

(1.39) P(X, > x, — x;)/ P(X, >x,) — 1.

From (1.38) and (1.39) it follows that
lim, _,, sup_, <,4<)QI]P(X1 x, — u)/P(X, >x,) — 1] =0.
For sufficiently large n
P(X, > max[ y,, x, — u]) = P(X; > x, — u)
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for all u < x,, and, therefore,
(1.40) I, = P(X, > x,)P(—z, <S8, < X, MaX; ¢ cn X < y)(1 + o(1)).
It is not difficult to see that

(1.41) P(max, cxcn1Xp < ¥p) =1+ 0(n/y;) =1+ o(1).
From (1.34), (1.36) and (1.41) follows
(1.42) P(—z, <S,_, <X, MaX|pcn1Xpx SVp) =1+ o(1).
Comparing (1.40) and (1.42) we conclude that
(1.43) I, = P(X, > x,)(1 + o(1)).
Taking into account (1.35), (1.37) and (1.43), we obtain from (1.28)
(1.44) P, = P(X; > x,)(1 + o(1)).

Finally,

P3n < P(Sr: > xn) < P(Sr:—l > Xn —yn)‘
From this it follows, by virtue of (1.33), that

(1.45) P,, = o(nP(X, > x,)).

From (1.26), with the aid of (1.44) and the bounds (1.27) and (1.45), we obtain
(1.46) P(S, > x,) = nP(X; > x,)(1 + o(1)).

Since

1 — ®(x,) = o(n/x)),
the representation (1.25) for P(S, > x,) is valid.
On the other hand, in consequence of (1.35) and (1.44),
P,=1+1,+ o(P(X, > x,))
= P(S, > X, X, >y, MaX; cpcn1Xp < Vo Spmy <x)(1 + o(1)).
Using this representation, as well as the identity (1.26) and the bounds (1.27) and
(1.45), we obtain

(147)  P(S, > x,)
= P(S, > x,, UL_ { Xy >pp max, X; <y 20 X; < x, 1)1 + o(1))

in place of (1.46). Since x,/x, — o0, equation (1.47) shows that the level x, is
actually exceeded because of the fact that one of the random variables X, w1 <k
< n, assumes a much larger value than the other X,,j #k, 1 <j <n, while the
totgl contribution X}, j # k, to the sum S, is significantly less than that of X,.
Equation (1.25) explains the presence of the summands 37P(X; >y;) and
exp{ — a’x?/2e'B*(— 0, Y)} on the right-hand side of inequality (1.23). Moreover,
because of (1.25) one may get the impression that the term (A(z; 0, Y)/ Bxy ' ~HEx/Y
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is superfluous. We shall now construct an example which shows that, in general,
this is not so.

Let the random variables X, X,, - - - , X, be identically distributed and assume
only the values —1, 0, 1 and suppose P(X;, = — 1)=P(X,=1)=p. Lety, =y
> 1. Then

B2 =2nmp, A(t;0,Y)=np <npy'

and, consequently,
(1.48) (A0, Y)/xp'~ ')x/y < exp{ log(npy/x)}

Let x/y = m and np = A. Obviously, for x > A,
o™ losA/m) 5 o —xlog(x/N).

Consequently, for all @, 0 < a < 1,
(149)  exp{ —a®x*/2¢'B}} = exp{ —a’k*/4e'A} = o(exp{m log(A/m)}),
if m— o0, x/\— o and A < m. It follows from (1.23), by virtue of (1.48) and
(1.49), that, for sufficiently large m and x /A,
(1.50) P(S, > x) < 2 exp{ Bm(log(\/m) — log B)}.

Let us assume now that m?/n — 0 and A/m — 0. We shall also take m to be an
integer. It is not difficult to see that

(1.51) P(S, >x)> (2 )pm(1 —2p)" "
Also
(1.52) m*/n—0=min="(") 1,

M/n—-0=(1-2p) "1,

A/n—0=(1—2p)"e?
It is clear that, under our assumptions, Am/n —0 and A*/n — 0. Therefore, it
follows from (1.51) and (1.52) that, for sufficiently large n,
(1.53) P(S, > x)> %‘m—!e—”
Now, applying Stirling’s formula, we conclude that, for sufficiently large » and m,
(1.54) P(S, > x) > exp{m/2 + mlog(A\/m)}.

Comparing (1.49) and (1.54) we see that
exp{ — a2x2/2e’Bz} = o(P(S, > x))

if m — o0, m*/n—0,\/m—0 (providedy > 1,A\/m —0= x/\ - ).

At the same time the right-hand sides of inequalities (1.50) and (1.54) for B close
to 1 differ little from each other (in a definite sense, of course). This means that the
bound (1.23) is close to the optimal one.



758 S. V. NAGAEV

The fact that, in our example, X, assumes only three values, is entirely consistent
with the fact that the extremum of a functional, involving independent random
variables, is reached for random variables that admit a finite number of values (see,
for example, {19]). As to inequalities (1.21) and (1.22), their asymptotic analog is
Heyde’s result [18], which showed that if X, X,, - - - , X, are identically distrib-
uted and the distribution of the random variable S, /b, converges to the stable law
with the exponent a, 0 < a < 2, a # 1 (which satisfies some additional restric-

tions), then
P('Snl > xnbn) = nP('XlI > xnbn)(l + 0(1))
for n — o and x, — oo0. Here b, are the normalizing constants.
Let us cite another inequality of the type (1.3).
THEOREM 1.10.  Suppose B*(— 0, Y) < 0. Then
(1.55) P(S, > x) < Z1P(X; > y,)
+exp{x/y — (x/y — p(— o0, Y)/y + B (=, Y)/y?
Xlog(xy/B*(— 0, Y) + 1)}.

Let us formulate two corollaries to Theorem 1.10.

COROLLARY 1.11. Suppose EX; = 0,i=1,- - -, n. Then
(1.56) P(S, > x) < ZiP(X; > y) + (B}/ %) e/,
COROLLARY 1.12. If X; < L and EX; =0,i=1,- -+ ,n, then

P(S, > x) < exp{x/L — (x/L + B}/L*)log(xL/B} + 1)}.
The last inequality was obtained independently by Bennett [3] and Hoeffding

[20].
In conclusion we note that, with the aid of the arguments that led us to the
asymptotic representation (1.46), we may obtain lower bounds for P(S, > x)

without demanding at the same time that the X, be identically distributed or that
P(X; > x) behave in a regular fashion. Let us assume for the sake of simplicity that

EX;=0,i=1,---,nand B,,2 < o0. It is not difficult to see that
(L57)  P(S, >x) > Zj_,P(S, > x, X; > x, max,, X, < x) = 3P,
Now

> [45_xP(X; > max[x, x — u]) dP(S] < u,max,_;X; < x)
> P(X, > 2x)P(S] > —x, max,,;X; < x),

where
A
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It is clear that
P(S] > —x, max, ., X; <x) > P(§) > —x) — P(max,,;X; > x).
On the other hand,
P(S;>-x)>1- B?/x*

and

P(max,_;X, > x) < B}/x*.
Therefore,
(1.58) P, >3 P(X; > 2x)

if x > 2B,. From (1.57) and (1.58) it follows for x > 2B, that
P(S, > x) > 1Z1P(X; > 2x).

2. Bounds in terms of generalized moments. Let g(x) be a nondecreasing
function such that g(x) — o as x — oco. Let us assume

by = [ €™ dF(u), B, = Ziby.
If lim,_, g(x)/log x = co and b, < oo, then the bound

(2.1) P(X; > x) < e_g(x)bgi
is for large values of x more precise than the bound
P(X; > x) < x f&u’ dF,(u).

This suggests that in terms of generalized pseudomoments b it is possible to
obtain more precise bounds for P(S, > x) than the bounds in Section 1, at least for
large values of x.

We shall study separately the cases lim,_,, g(x)/x = 0 and lim inf,_  g(x)/x
> 0.

Let us turn first to the former case. In order to better imagine what bound to

expect here, we shall analyze one asymptotic result from [32]. Let X, be identically
distributed, EX, = 0, 6> = 1. Let us assume that as x — c©

1 — F(x) = eX™(1 + o(1)),

where x(x) is a nonincreasing function which is defined for x > 0 and satisfies
these conditions:

@@ lim,_,  xx'(x)/logx = — .

(i) There exists an a, 0 < a <-1, such that ax(x)/x < x'(x).

(iii) Ix"(x) < — x'(x)/x < Lx"(x).

(iv) 0 < — x""(x) < Lx"(x)/x.
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Here /, L and L, are positive constants.

Assume that

E|X V™ < oo,
where N(a) = [(3 — 2a)/(1 — a)]. Let us introduce the notation
K(u) = EIZV((X)X kuk:

where x , are the semiinvariants (cumulants) of the random variable X . Let A (z)
be the segment of the Cramér series consisting of the first N(a) — 3 terms.

Let us now examine the equation
(22) K'(=x((1 = u)x)) = ux/n
in the range 0 < u < 1. Denote by 8 = B(x, n) the smallest root of this equation
(if, of course, it has at least one solution). Further let A(n) be the positive root of
the equation
(23) x(x) + x*/n=0.
(The definition of A(n) is proper since equation (2.3) has exactly one strictly

positive root.)
Write

Py(x) = n(1 — x"((1 = B)x)m)"2(1 — F((1 = B)x))
-exp{ — (Bx)*/2n + A (Bx/n)( Bx)’/n?},
Py(x) = (1 - Q(x/n%))exp{?\a(x/n)x3/n2}.

THEOREM 2.1. If lim,_  xn~ /%= = oo, then

(24) P(S, > x) = P,(x)(1 + o(1)).

If lim sup,_, xn~ /@~ < o0 and lim sup,_, nx"((1 — B)x) < 1, then
(2.5) P(S, > x) = (Py(x) + Py(x))(1 + o(1)).

If lim inf ,_  nx"((1 — B)x) > 1 and A(n) < x or x < A(n), then
(2.6) P(S, > x) = P,(x)(1 + o(1)).

The implicit function B8 = B(x, n) plays a part, as we see, in the definition of
P,(x). Therefore, one can determine the precise behavior of P,(x) as x — oo only
after having studied how B(x, n) behaves for large values of x and n. We therefore

turn now to the study of B(x, n).

First of all, since x(x) does not increase, x'(x) < 0 and consequently, by virtue
of condition (ii), x(x) < 0. Therefore, condition (ii) may be rewritten in the form
X (x)/x(x) < a/x.

Integrating this inequality from 1 to y > 1 we get
log(—x(»)) — log(=x(1)) < alogy,
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ie.,

2.7 —x(x) < =x(1)x*, x>1
This means that

(2.8) —x(x) < —ax()x*"1, x> 1
Further, there exists u, > 0 such that, for all 4, 0 < u < y,

(2.9) K'(u) < 2u.

Let x, be the root of the equation —x'(x) = uy If (1 — u)x > x,, then, in
consequence of (2.9),

(2.10) K'(=x'((1 = u)x)) < =2x'((1 = u)x).

Let B, = B,(x, n) be the smallest root of the equation

(2.11) 2x'((1 — u)x) + ux/n =0, O<u<l,

and let B, = B,(x, n) be the smallest root of the equation

(2.12) 2ax(1)((1 — w)x)* "' + ux/n =0, 0<u<l.
If the condition

(2.13) (1=B)x>1

is satisfied, then, according to (2.8),

(2.14) By > By.

Let us now rewrite equation (2.12) in the form

(2.15) u(l — u)' ™% = nygx®72,

where vy, = — 2ax(1).
The function u(1 — u)'~* reaches its maximum at u = 1/(2 — «), where the

value is
y,=(1-0a)"*C-0a)**<1
Clearly, for x>~* > ny,/v, equation (2.15) has a solution. It is not difficult to see
that
B<1/(2 - a)
Suppose
(2.16) x > max[(2 — a)x,/ (1 — @), (2 — @)/ (1 — a), (nyo/7)"/®™].

Then equation (2.15) has a solution, (2.13) is satisfied and, in addition, (1 — 8,)x
> xo. By virtue of (2.14) this means that (1 — B8,)x > x,. Making use, now, of
(2.10), we obtain

K'(=x'((1 = B)x)) < =2x((1 — B)x) = Byx/n.

It follows from this that equation (2.2) has a solution in the interval 0 <u < S,.



762 S.V. NAGAEV

Thus, if x satisfies (2.16), then
B< B, <1/2- a)

It is not difficult to see that 8,(x, n) — 0, if nx*~2 — 0. Consequently, also

(2.17) B(x, n) -0,
if nx*~2 — 0. From (2.8) and (2.17) it follows that for nx*~2 —0,
(2.18) X ((1 = B)x)—0.
For sufficiently small u,

K'(u) > u/2.
Therefore, from (2.2) and (2.18) it follows that, if nx*~2 — 0, then
(2.19) Bx/n> —=x((1 - B)x)/2

for n exceeding some n,,.
On the other hand, if the inequality (2.19) is satisfied then by virtue of condition

(i),

i
(1 - ) < ZBLZBL
Thus,
(2.20) nx"((1 — B)x) =0,

if nx*=2 0.
From (2.2), by virtue of (2.18), it follows that, for nx*~2 — 0,

Bx/n— 0.
~ This means that
(221)  lim sup,, -2 g exp{ — (Bx)’/2n + A, (Bx/n)(Bx)’/n?} < 1.
From the representation (2.4) and the relations (2.20) and (2.21) there follows the

existence of constants ¢ and ¢, such that
(2.22) P(S, > x) <cnP(X, >x/2)
if x > ¢,n'/@=9,
Let us turn now to the case A(n) < x < ¢,n'/@~%, It is evident that

x <c;p/C=® =1lim, | x/n=0.

This means that in the range x < ¢,n'/@~9,
(2.23) exp{ — (Bx)*/2n + A (Bx/n) ,Bx)3/n2} <c exp{ - (,Bx)2/4n},
Py(x) < ce™/4n,

Two cases are possible: 0 < 8 <% and % < B < 1. Let us bound
n exp{ —(Bx)*/4n) for 3 < B < 1. To this end let us examine the behavior of A(n)
as n — o0. In consequence of condition (ii),

(2.24) A(n)/n > —X(A(n))/ .
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If A(n) > 1, then, because of (2.3) and (2.7),
A?"%(n) < —nx(1).
Thus

A(n) < max[ 1, (—nx(1))/"2],
and, consequently,
(2.25) lim, . A(n)/n=0.

The function —x'(x), as we have already seen, is nonnegative. By virtue of
condition (iii), x”(x) > 0. This means that the function —x’(x) does not increase.
Further, x'(x) cannot be identically 0 because this would contradict condition (i).

Therefore, it follows from (2.24) and (2.25) that

lim, . A(n) = .
Again using condition (i), we obtain
— X (A(n))A(n) = p(n)log A(n),
where p(n) — 00 as n — c0. From the last relation and from (2.24) it follows that

(2.26) —1}2—’571—) > p(n)log A(n)/a.

From this it follows, in particular, that
A(n)n‘%—> 00
as n— o0.
Assume A(n) = }\(n)n%. Then (2.26) assumes the form
aA*(n) > P_(jQ log n + p(n)log A(n)

since A(n) — oo; it then follows from the last inequality that
lim inf, ., A%*(n)/p(n)log n > ja.

Hence for all positive &,

lim ne~*Nm/n = q,

n—o0

From this it follows that for 8 > % and x > A(n),

(2.27) ne= B’/ < co=x/20m,
On the other hand, if 8 < %, then
(2.28) P(X, > (1 - B)x) < P(X, >x/2).

From the representation (2.5) and the bounds (2.23), (2.27) and (2.28) we conclude
that if A(n) < x < ¢;n/@=® and nx”((1 — B)x) < A < 1, then

(2.29) P(S, > x) < c(1 = N~ 2(e™%/%" + nP(X, > x/2)).
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Finally, by virtue of (2.6) and (2.23), if

x<en Ve px(1—=B)x) =1  and x > A(n),
then
(2.30) P(S, > x) < ce™*/%,

This bound remains valid also for x < A(n).
From (2.22), (2.29) and (2.30) it follows that

(2.31) P(S, > x) < c(1 = N~ 2(e=*/27 4 nP(X, > x/2))
except, perhaps, for those values of x > A(n) for which the equation (2.2) does not
have a solution or A < rA”((1 — B)x) < L.

In A. V. Nagaev’s work [26] it is proved in the special case x(x) = — x¢ that for
any x > 0 one of the representations of type (2.4), (2.5) or (2.6) is valid. This
enables one to obtain the bound

(2.32) P(S, > x) < c(e™/" + nP(X, > x/2)),
which is satisfied for all positive x. The bound (2.32) is already close to the bound

P(S, > x) < c(l -~ <I>(x/n2) + nP(X, > x))

which follows from (1.25).
Our considerations make very plausible an inequality of the type

(2.33) P(S, > x) < exp{ —a;x*/B2} + Z1P(X, >y) + R,
where R is a correction term which by analogy with (1.23) has the form

R = ¢(B,, exp{—a2g(y)})ﬁx/y.

Here ¢, a,, a,, B are constants depending only on the function g. (The summands
X; are not assumed to be identically distributed.)

Regrettably, such a bound is in general not correct even in the case of a regularly
varying function g (satisfying, for example, conditions (i)—(iv) mentioned at the
beginning of the section). In order to convince ourselves of this, let us examine the
following example.

ExampLE 2.2. Let g(u) = u*, 0 <a <1, and suppose X;,j =1, n, are
identically distributed, where X, can assume only the values —z, 0,z > 0 with
corresponding probabilities p, 1 — 2p, p. Let us hold fixed the values c, B8, a;, a,
and the ratio y = x/y. We shall demonstrate now that 1t is possible to choose
n, z, p, y so that inequality (2.33) is violated.

Let us introduce the additional notation A = np. It is not difficult to see that in
our case B, = Ae*" and B? = 2Az%. Let us now relate z and y through z% =

a,y%/2. In addition, let us assume that Ay = 1. Then
(2.34) (B, exp{ —a,8()})"" = y = exp{— oy Bry*/2},
exp{ —a;x*/B2} = exp{ =22/~ 1o a5 %y }.
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It is easy to verify that

(2.35) P(S, > x) > ()pm(1 - 2p)"™,
where m = [x/z] + 1. Since m is fixed,
(2.36) P(S, > x)>5(m!)y™

for sufficiently large n and y. Comparing (2.34) and (2.36), we see that for large n
and y,
P(S, > x) > exp{ —a;x*/ B2} + ¢(B,, exp{ —azg(y)})ﬂx/y.

It is clear from the example we have examined that the bound for P(S, > x), in
the case where g(u) is not a logarithmic function, must be more complex than
(2.33). We shall now formulate one result in this direction that was recently
obtained in [35].

Let us first introduce the necessary definitions and notations. Let G(8), § > 2,
be the class of functions g(u) over (0, oo) with continuous nonincreasing derivatives
satisfying the conditions:

(a) g'(u) > o0 as u — oo;

(d) g'(u) >8/u.

Put S(u) = e $g'(u)u’.
Let v, {v,)3, B be positive constants such that S}y, = 1, 8 =1 — v,/2 — v,/9,
v < 1, and let a be the solution of the equation (# + 1)/u = e*~!. It is not hard to
see that the function S(u) is strictly decreasing and therefore has an inverse.
Indeed,
log(u%—8™) = 2 log u — g(u).
By virtue of condition (b),

2 (21og u — g(u)) =2/u ~ () < 0.

Thus the function u’e ~#®* is nonincreasing. Consequently the function S() is also

nonincreasing.
Let us now show that the function S(u) cannot have intervals of constancy.

Indeed, suppose S(u) is constant over [a, b], where b > a. Then g’(u) is constant
and 2/u — g'(u) is identically O for u € [a, b], i.e., 2/u is constant over [a, b],
which is impossible.

We denote by S ~!(u) the inverse function to S(u).

THEOREM 2.3. If g € G(98), then for all positive x,
(2.37) P(S, > x) < exp{vs/v — v, Ba’x*/2(a +'1)B}}
+exp{ys/y — Bax/S " '(v,ax/e’B,,))
+ (v/v:) BR/ exp{vs/y — g(vx)B/ v}
+3(1 — F(yx).

An analogous but less precise bound was obtained earlier in [56].
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Let us cite now an example that illustrates the precision of the bound (2.37). An
analogous example was constructed in [35].

ExampLE 2.4. Let X, X,, - - - X, be defined in the same way as in Example
2.2. As before, A = np, but m = x/z. Let us select a,0 <a < 1,8 > 2, and
suppose that z > (8/a)!/%.

Assume now that
g(u) = 8logu + (1 —log(8/a))8/a, 0<u<(8/a)"®,
=u” (6/a)/* <u<z,

b
=z%+ az® (u — 2), z<u<x

Thus g(u) is defined for 0 < u < x and, as is easy to verify, it satisfies condition (b)
in this interval. Obviously it is possible to extend the definition of g(u) for u > x so
that conditions (a) and (b) are satisfied.

Let us fix constants y;, i = 1, 2, 3 on the right-hand side of inequality (2.37). In
addition to this, let y = 1 and x = e", and for the sake of simplicity let m be an
integer. Suppose now that n — co, m — 00, m*/n—0 and A = bm, where b is a
constant which will be defined later.

Making use of the inequality (2.35) and Stirling’s formula, we conclude that,

for n sufficiently large,
(2.38) P(S, > x) > exp{m(log b — 2b + 1)} /2(2mm)?.
It is not difficult to see that
B,, exp{ —g(x)} = Aexp{ g(z) — g(x)} = bm exp{az® — az*"le*"}.

-1,z

Since m = z " 'e?,

(2.39) (B exp{—2(x)})” = o(P(S, > x))
for all positive 8. Further,
(2.40) x2/B2? = m?/2\ = m/2b.

Let us now subject b to the condition
v1Ba*/4a+ 1)b=2b—1logh—1+e¢,
where ¢ is an arbitrarily small positive number. Then by virute of (2.38) and (2.40),
(2.41) exp{ —v,Ba’x*/2(a + 1)B}} = o(P(S, > x)).
The bounds (2.39) and (2.41) show that, under our assumpt.ions,
| R = exp{vs/v ~ Bax/S~N(v,ax/e"B,,))

becomes the biggest summand in the right side of (2.37). In our case,

S(u) = au’z* Vexp{—z* — az* " '(u — z2)}, z<u<x
Therefore, for any positive ¢ there exists a u(e) such that

S(u) < exp{—(1 - e)(z* + az* '(u — 2))},
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if u(e) < z < u < x. Consequently, if
exp{ — (1 — &)(z* + az*"!(x — 2))} < v < 8(2), u(e) < z,

then
(2.42) S~ (v) <z'7% (1 ~ &) 'log(1/0) + (a — 1)z/a.

Now B,, = Ae*’, and hence x/ B,, = ze™*"/b. Therefore, for sufficiently large z,

exp{ — (1 — &)(z* + az*7!(x ~ 2))} < y,ax/e°B,, < S(z) = az®*'e™*".
Making use now of (2.42), we conclude that
S~ (v,ax/e’B,,) < (1 + )z,

for all positive ¢ if z is sufficiently large. This shows that
(2.43) R < exp{ys/y — Bam/ (1 + ¢)}

for large z.
Comparing the bounds (2.38) and (2.43), we see that they differ essentially only

in the constant factor in the exponent. Let us now turn to the case
lim inf, g(x)/x > 0.

Suppose that the function g(-) has a positive nondecreasing derivative. Then, in
particular, it follows that g(:) is convex. In addition, there exists a finite or an

infinite limit im,__ g(x)/ .
THEOREM 2.5. For any x > 0,
(2.44) P(S, > x) < IIN(by(x/n) + bg/.)exp{ —ng(x/n)},

" where

b(x) = €50, o8 " dF;(u).
This bound was recently obtained by S. K. Sakoyan and the author.

ProoOF. Obviously,

(2.45) P(S, > x) < e ™I[1Ee"®.
Further,
(2.46) Ee™ = [0 e" dF(u) + [& ™ 8Wes® dF (u)

< fo__weh“ dF}(u) + bg/ SUp, 0 ehu—g(w)
Let us introduce f(u) = hu — g(u). Obviously f'(u) = h.— g'(u). If h = g(x/n),
then f'(x/n) = 0, ie.,

(2.47) SUp,50 et =8 = phx/n—g(x/n)
By virtue of the convexity of g(-)
g'(x/n)x/n > g(x/n) — g(0).
Consequently, as & = g'(x/n),
ehx/n—g(x/n) > e 80
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This shows that
(248) (O e™ dF(u)
< exp{g(0) + hx/n — g(x/m)}[*e™ dF(u), k= g/(x/n).
From (2.46), by virtue of (2.47) and (2.48), it follows that
Ee" < (by(x/n) + b, )exp{hx/n — g(x/n)},  h=g(x/n).

Taking & = g’(x/n) in (2.45) and making use of the bound just obtained, we arrive

at the result of the theorem.
The bound (2.44) is better that the trivial bound P(S, > x) < 1 only, generally

speaking, for sufficiently large x. Indeed, let X,j=1"---,n, be identically
distributed with EX, = 0 and o2 = 1. Clearly, by > %@ Therefore, in our case
5(5,(x/n) + by) > &0+, e > 0.

This means that the right side of (2.44) may tend to 0 as n — oo only under the
condition lim inf, , x/n > 0. At the same time, according to Chebyshev’s in-
equality,

lim, . P(S, >x) =0
if x/ ni— .

The parameter n which enters on the right side of (2.44) does not represent the
essential characteristics of the distribution of the sum S, if only because the latter
does not change with the addition of summands which equal 0 with probability 1.
Therefore, the bound (2.44) is more precise when the X; are identically distributed.
The only case where the right side of (2.44) does not depend on »n is g(u) = Tu.

At the same time inequality (2.44) has a very clear probabilistic interpretation.
Let n be fixed while x — c0. Then

H'lt(bj(x/n) + bgj) - H'l'bgj‘

Therefore, for all positive e,

(2.49) P(S, > x) < (1 + ¢)ll}b, ;e "8/,
if x is sufficiently large. On the other hand,

(2.50) P(S, > x) > IP(X; > x/n),
because

NH{X, > x/n} C{S, > x}.
Further, forallj, 1 < j <n,
(2.51) b, je 5%/ > P(X, > x/n).
If
P(X; > y) ~ b, e 5%
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as y — oo (We are not stating more precisely in what sense equivalence is meant),
then by (2.49) and (2.50),

(2.52) P(S, > x) ~II1P(X; > x/n).

This shows that for large values of x all summands X; contribute approximately
equally to the value of the sum S, > x.

On the other hand, if one assumes from the beginning that the equivalence
relation (2.52) is valid, then, on account of (2.51), the inequality (2.44) becomes
completely transparent.

Our discussion demonstrates that the bound (2.44) is not as weak as it may
seem at first glance. This is also confirmed by exact asymptotic results. We cite one
such result obtained by A. V. Nagaev in [25]. Let A(u) be a strictly increasing
function, #(0) = 0, and let m(u) be an inverse function to A(u). Suppose that the
functions A’'(«), m’'(u), u*h’(u), u*m’(u) are convex. Let

H(x) \: \
q(x) =\ 5= exp{ — [oh(u) du}.
We shall say that the absolutely continuous distribution function F(x) lies in
Q[h(x)] if p(x) = F’(x) is square integrable and
p(x) = q(x)(1 + o(1))

for x — oo. Let f(s) = [* e™ dF(u), where F(x) € Q[h(x)]. Then f(s) is defined
for 0 <s <s, where sy =lim, , A(u). Let us consider the function M(s) =
f(s)/f(s). Since M'(s) > 0 for 0 < s < sy, the function M(s) has an inverse which
we designate as H(u). It is not difficult to see that H(u) is defined for u in [0, o),
where H(c0) = s,

THEOREM 2.6. Let X;,j =1, ,n be identically distributed with EX, = 0 and
0% < o0, and suppose

Flu)=P(X,<u) € Q[h(u)].
Then

)E exp{ — nfXH(u) du}(1 + o(1))

P(S, > xn) = —lx—(

as x — 0.

The role of the function g(x) is here taken by [iH(u) du. It is interesting to
compare the bound (2.44) with Bernstein’s inequality ([4], page 162). However fast
g(u) increases as u — oo, the most that Bernstein’s inequality can yield is the bound

(2.53) P(S, > x) < exp{ —x*/2B}}.
It is clear that if g(x)/x* — oo when x — oo, then the bound (2.44) for large x is
more precise than (2.53).
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Suppose lim,_, g(x)/x = o0, b, < o0, EX; =0, and /O u? dF(u) < oo,
j= 1,---,n Put
g(T) = [Fe™u? dF(u) + [ ou® dF(u).
It is evident that g(7) < oo for allj, 1 <j <n, and positive 7. It is not hard to
see that if 0 < A < T, then
Ee® < o8 /2, j=1--,n
Let
G(T) = 21g(T).
Applying V. V. Petrov’s [42] generalization of Bernstein’s inequality (see also [43],
page (70), we conclude, for all positive 7, that

(2.54) P(S, > x) < exp{ —x?/2G(T)}, 0<x <TG(T),
and
(2.55) P(S, > x) < exp{—Tx/2}, x > TG(T).

Thus the bound (2.54) is best for relatively small x, beyond which the bound
(2.55) begins to be operative. Whatever T may be, for sufficiently large x the bound
(2.44) is more precise than (2.55). We note that in the case g(u) = Tu the bound
(2.44) transforms itself into an-exponential of the type (2.55).

3. Bounds in terms of moment products without repetitions. The common
element in the inequalities discussed above is that averaged characteristics appear
on the right hand sides. Therefore, the precision of the bounds depends to a
considerable extent on the individual properties of the distributions of the

summands.
Let us investigate the inequality (1.56) from this point of view. Assuming n = 3,

y = x/2, we get the bound
P(S, > x) < S3P(X, > x/2) + 4 (S}0?/ x2)’.

Obviously,

{Z3x, > x} c UH{X, > x/2} U ({23x, > x} n n}{X; <x/2)).
On the other hand,

{23, > x} N NHX <x/2} CU; N {X; > x/4}.
Consequently,
P(S, > x) < DIP(X; > x/2) + Z, . P(X; > x/4) P(X; > x/4)
< 33P(X, > x/2) + 256, 0707/ x*.

The summand 256 ¢%2/x* obviously arises from the case in which the level x is
exceeded because of the large values taken by the random variables X; and X;. Let
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us now write 4¢*(Z}6?/x%)? in the form

46’ (230t /x* + 23, 0702/ x*).

The summands o'/ x* do not have such an intuitive probabilistic interpretation as
o?0?/x* and, therefore, they give the impression of being superfluous. On the other
hand, if one of the dispersions o? is large in comparison with the others, then
Si0}/x* may greatly exceed 25, _, 077/ x*.

Thus the precision of the bound (1.56) is at its best when the summands are
identically distributed and it may decrease considerably if the distributions F; differ

greatly. Our reasoning makes the bound

P(S, > x) < ZTP(X; > y;) + cE,-<ko,-20,f/x4,

very plausible, ¢ being an absolute constant. A bound of this type was obtained in
[33].
In order to formulate this bound we require some additonal notation. For a
random finite set of numbers {},-, we take
zp{uk}l = Euklukz AR uls’,
where the summation extends over all ky, k, - - - , k, that belong to I and satisfy
ki <k, < --- <k, Let

D, = Zp{olf}l,.’ Jo=A{L2- -, n},
and
D,(Y) = 2p{f|u|<yk“2 dFk(“)}JH'
THEOREM 3.1. Supposep > 1,n > l,and y; <x/A, i=1,-- -, n. Then
GO P(S) > x) < SP(X]| > ) + (T,D, + A¥D,(Y))/x¥,
where

+ a 1
A, = iap—”ap ~1):,  T,=p!/(1-a),

and o, is an arbitrary number from the interval (0, 1). For a, we may choose ( pH¥P*2,

We note that the right-hand side of inequality (3.1) tends to P(|X,| >y,) as
0,—0,j =2, -, n. This attests once again to the fact that the bound (3.1) may
turn out to be considerably more precise than (1.56), There is an analogous
extension of the inequality (1.23) (see [34]).

Let us put

a;(,) = (o dFk(u), D;S’) = Zp{al(c’)}Jn.

THEOREM 3.2. Suppose X, < b, EX, =0, k=1, ,n,p is any positive in-
teger and vy is any number between 0 and 1. Then for ya/2 > (2p — 1)b > 0 and
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t>0,
(32) P(S,>a)< max[exp{(y - l)yaz/e’Bpr'/P},((DIS”'))V’/Yabt)(lw)a/b

where 3, = 2(2p — 1).
Suppose

Dp(')(Y) = zp{al(c’)(yk)}l,,’
where
(Vi) = Jocuz ¥t dFi(u).

COROLLARY 3.3. Suppose X,, k =1, - -, n, are symmetrically distributed, p is
any positive integer, 0 <y <1, and t >0. Then for yx/2 > (2p — 1)y,y >
max;cx<nYr
(33) P(S, > x) < Z'P(X, >y,) + P,
where P, is equal to the value of the right side of (3.2) in which D, and D'*" are
replaced by D,(Y) and D\'* (Y respectively.

Let us put

DY) ==, {& (v},
where
&;Ct)(yk) = fpk<u<yk(u - ""‘k)’ dFk(u)’
p‘k = fu<yku dFk(u)’

D—p( Y) = 2p{fu<yk(u - I‘l‘k)2 dFk(“)}Jn'

COROLLARY 3.4. If y(x — p(—o0, Y))/2 > 2p — 1)y — u*), where p is any
positive number, 0 < y < 1, and p* = min, ; b, then, for any positive y, satisfy-
ing the condition max, ;< Vx < Y,

P(S, > x) < Z1P(X, >y,) + Py,
where Py is equal to the value of the right side of (3.2) in which D, and DI'*" are
replaced by D,(Y) and D{'*(Y) respectively for a = x — p(—o0, Y) and b = y —
p*.
The reason for the appearance opo(’) instead of A(¢; 0, Y) in the right side of
inequality (3.2) is the same as that for the presence of D, and D,(Y) in inequality
(3.1). It remains for us to comment on the substitution of B*(— oo, ¥) for D)/,

At first glance it may even seem that the inequality (3.2) ‘contradicts the central
limit theorem since, according to the latter,

(34) P(S, > x) > l—loe-xz/"’, B2 = B2,

for x that is not too large in comparison to B.
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But D,'/? may be significantly smaller than B2 only in the case where one of the
dispersions, say o2, is comparable in size with B2 Indeed, let the dispersions
o/,i=1,---,n be ordered by size: 6? > 06} > - - - > . Assume that 52 =

=¢~'e},a = D,/B%, B = 5°/ B%. We shall see the connection between a and f.
Let us introduce the notation

Bz(il, i2, c ey, l_‘.) = szJ,,;jséip"‘,i,ojz’
DP(il’ iy * vy is) = Ep{"jz}jel,.;jséjp“uj;
It is not difficult to see that for alls < p — 1
(3:5) Bz(il’ iy yi) > (11— ,B)Bz >(1- :B)Bz(iv Ity is—l)’
if the i; are pairwise distinct. Further,
1
(3.6) D, = ;270,.21),,_1(1') = aB¥ = q3"6?B2 D,

From (3.5) and (3.6) there follows the existence of an i, such that
D, (i) < apB?*~D < ap(1 — B)'TPB*®=1(i)).
Repeating the reasoning, we conclude that there exists an i, for which
D,_,(iy, iy) < ap(p — 1)(1 — 3)3—2p32(p_2)(i1’ ip)
and so on. Finally, we come to a set i}, iy, « - - , i,_ such that
D(iy, iy - - - ip—l) =Biy iy - -, ’}—1)
<op! (1= By PPBi iy, - - -, Ih_1)-
" This means that
ap! (1 = Y772 > 1,
and thus
B > 1~ (ap)?"@7 0,

We see that for a —0, 6°/B%— 1. Incidentally, the Ljapunov ratio is L >
oi/B> and, therefore, cannot tend to 0 as a —0. The ratio B%/D,/” may be
considered as a measure of the variance of the distribution of the summands.

Let us now return to inequality (3.4). Assume that the random variables X, i =
1,2,- -, are bounded and identically distributed and that EX 1 =0. Let us
consider a sequence {X}{° of random variables which does not depend on the
sequence {X;}{°.

We require that EX;? = 0 and

lim,_,,, P(|X,;| >eB,) =0
for all ¢ > 0, where
B? = (n — 1)Var X, + Var X7,



774 S. V. NAGAEV

and

lim, ,, Var X?/B2 = 1.
In the given case X, plays the role of X,, for each n and therefore, according to the
general system of notation introduced in Section 0, S, = X, + =X, It is not
hard to see that the sequence S,/ B, converges to 0 in probability. Consequently,
inequality (3.4) cannot be satisfied for values of x comparable to B, when n is
sufficiently large. At the same time, one of the dispersions in the case examined,

namely Var X, is comparable in magnitude to BZ2.

4. Generalizations to the multivariate case. Let X, X,, - - -, X,, be indepen-
dent random variables with values in a separable Banach space . Let us put
A, = STE|X,| and B? = A, = Z7E|X,[>. Here and below | X;| denotes the norm of
X,. Put S, = 27X, as before.

The problem of large deviations for the sum S, may be presented in the
following way. Let G be a region in % not containing 0, and put p(G) = inf{|x]|,
x € G}. Let us consider the probability P{S, € G}. It is clear that, if p(G) is
large, then the probability P(S, € G) is small. It is desirable to bound this
probability in terms of the numerical characteristics of the individual summands
X, — for example, in terms of moments of the form E|X;|".

The simplest case is where G = {x : |x| > r}, that is, G is the complement of a
sphere in . We will examine this case below. It is evident that

4.1) P(S, > r) < E|S,]*/
If % is a Hilbert space and EX, = 0 for 1 < i < n, then E|S,[* = B2. This allows
us to rewrite inequality (4.1) in the form
Bﬂ
4.2) P(S,| >r) < — -
r
This inequality coincides in form with inequality (0.4).

There arises, naturally, the problem of generalizing the inequalities discussed in
Sections 1, 2 and 3. In the first place, the problem of generalizing the classical
Bernstein inequality to random variables with values in a Banach space was raised
by Yu. V. Prohorov. Initially it was solved for the finite dimensional space R*. In
1968, Yu. V. Prohorov [50] obtained the following bound.

THEOREM 4.1. Let X, X5, - - + , X,, be independent identically distributed random
vectors with values in R*; suppose EX; = 0 and |X,| < L. Then for n > k
(4.3) P(IS,| > 1) < c exp{ — r2/8¢%Ln),
where
c=1+ (e5/12/7r2%)02/L2, o’ = E|X ]~

This bound was refined by A. V. Prohorov (see [44], [45] and [46]).
The condition n > k (conditions of this type appear also in the works of A. V.
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Prohorov) does not seem very natural, especially if one compares the bound (4.3)
with the inequality (4.2) which, generally speaking, is less precise, but, on the other
hand, does not depend on dimensionality. And indeed, as it soon became apparent,
the bound »n > k in (4.3) is connected, not with the essence of the matter, but with
the method of proof.

In 1970, V. V. Yurinskii [61] proposed a clever method which permits the
reduction of multivariate bounds to univariate ones. This method freed Yurinskii
of limitations connected with dimensionality and he immediately obtained the
Bernstein inequality for the Hilbert space case. For identically distributed random
variables X;, Yurinskii’s result takes the following form.

THEOREM 4.2. Suppose EX, =0, |X,| < L. Then

1 2 ’
(4.4) P(|Sn| > mi) < 2exp ——r—(l _rL 1 ) ,
202 2623

if0 <r<(¢®/L)n? and
P(IS,,I > rn%) <2 exp{ —rn";/4L’},

if r >0%n3 /L, where o® = E|X,[; L' =3L(1 + (1 + 402/ L??).
Yurinskii’s method made it possible also to derive an inequality having the form
(1.24) in R* (see [12]).

THeEOREM 4.3. (S. S. Ebralidze, 1971). Let X, take values in R* and suppose
EX;=0,i=1,---,n. Then

(4.5) P(|S,| > r) < 4exp{—K,r*/Bl} + K,A4,/ 7,
" where K, and K, are absolute constants. (One may take, for example, K; = 2—14 and
K, = 30000.)

Since the right side of the bound (4.5) does not depend on the dimensionality,
the latter is valid also for separable Hilbert spaces.
In 1974 Yurinskii [62] also succeeded in obtaining an exponential bound in the

case of random variables in a separable Banach space.

THEOREM 4.4. Let X,,i =1, - -, n satisfy the condition
!
E|X|" < T E|XPL™2, m>2
Then
(4.6) P(|S,| > r) < exp{— (r*/8B} — rB/4B})/ (1 + a/2)},

where a = rL/B?2, B = E|S,|.

The right side of inequality (4.6) depends heavily on the ratio 8/B,. Suppose
that EX; =0,i = 1,- - -, n and %X is of type 2. That is, suppose that there exists
an A such that for all » and all X, X5, - -, X,,

(4.7) E|S,? < AB2.
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Then the inequality (4.6) may be rewritten in the form

(4.8) P(|S,| > r) < exp{ — (r>/8B? — 43r/4B,)/ (1 + a/2)}.

Condition (4.7) plays an important role in research devoted to the law of large
numbers and the central limit theorem in Banach spaces (see, for example, [15] and
[21].

Recently, F. 1. Pinelis, combining methods of [17] and [62], extended inequality
(3.2) to separable Banach spaces.

THEOREM 4.5. Suppose |X;| < L,j=1,---,n,p is a natural number, 0 <y
< 1, and y(r — E|S,|)/2 > 2p — 1)2L. Then, for all positive t,

P(|S,| >r) < max[(D(r+1)/Lp(r+1))B
exp{(y = D"+ ¢)7'(r - E|S,)L/2(DP)"} |

where B = (1 — y)(r — E|S,|)/pL and Dp(’) = EP{E|X,(|’},".
For the definition of the sum without repetitions of X, see Section 3.

5. Various applications. Let X, X,,- - -, X,, - - - be an infinite sequence of
independent random variables. We shall say that the strong law of large numbers is

satisfied if
S
P[limn_,m(—" - med(i)) = 0} =1
n n

To study the applicability of the strong law of large numbers, one can, without loss
of generality, consider random variables X, which are symmetrically distributed
(see, for example, [48], Section 1).
Let
={n:27+1<n< 2" and x, = 21,2n€,’Xn.
Yu. V. Prohorov [47] proved that the strong law of large numbers is satisfied if and

only if, for all positive &,
(5.1) SFP(x, > €) < 0.

Thus, the problem of finding necessary and sufficient conditions for the strong law
of large numbers is reduced to the obtaining of upper and lower bounds for
probabilities of large deviations of the sums 2, ., X,,.

Using bounds for large deviations discussed in Sections 1, 2 and 3, we can
formulate without undue difficulty variants of sufficient conditions for the strong
law of large numbers. Let us mention several results obtained according to this
prescription. We first introduce the following notation, in which the summation
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always extends over the k in I,
K(1, 6, r) = 2_"2fu<2’8,“’ dF,(u),
K, ,=2""2E|X[,
H(S,r) = 2'2’2f,u|<2r6’u2 dF, (u),
H, =230l
By inequalities (1.5) and (1.7a), if 8 = ¢/(¢ + 2), then
(52) P(x, >¢) < ZP(X, >23,)
+ (8 /K(1, 8, 7) + 1) ™% + exp{ —e,/ H(3,, 1)},

where &, = et /(t + 2), &, = 2e2/e’(¢t + 2)% and ¢ > 2. It is not hard to see that if

Se(e8 7 /K(1, 8, 1) + 1)

and
2100 exp{ _EZ/H(an r)}

converge for all € > 0, then the series formed from them by the replacement of ¢,
and e, by e also converge for all positive ¢, and vice versa. For this reason we

obtain from condition (3.1) and inequality (5.2):

THEOREM 5.1.  Let there exist a sequence of positive numbers {8,} such that

(5.3) Er2ie P(X, > 278) < oo,

(5.4) Se(e8 " /K(1, 8, 1) + 1) 77" < oo, 1> 2,
and

(5.5) S exp{—¢e/H(S,, r)} < oo

for all positive . Then the strong law of large numbers holds for the sequence { X, }.

COROLLARY 5.2. Suppose E|X,|' < oo for all k and for t > 2. Then the combined
conditions (5.3),

(5.6) Se(ed! /K, + 1) < o,

and

(5.7 S®e~¢H < o, all &>0,
1

are sufficient for the strong law of large numbers.

Taking 8, = ¢/ in (5.3) and (5.6) we get:

COROLLARY 5.3. Suppose t > 2 and 8 > 1. Then the combination of conditions
(5.7,
(5.8) SPP(X, >ke) < oo, all >0,
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and
(59) SP(K, )’ < oo

is sufficient for the strong law of large numbers.
If t = 2, then K, , = H,, and, therefore, condition (5.9) implies condition (5.7) so

that we obtain:

COROLLARY 5.4. If condition (5.8) is satisfied and if there exists a B > 1 such
that
(5.10) S®HP < oo,

then the strong law of large numbers holds.
Taking B =1 in (5.9) and making use of Chebyshev’s inequality to bound

P(X, > ke), we get:
COROLLARY 5.5. Conditions (5.7) and
(5.11) SPE|X,|/k' < o0, t>2,

are sufficient for the strong law of large numbers.
It is not hard to see that the combination of conditions (5.7) and (5.11) is less

restrictive than the condition
(5.12) SPE|X, | k! < oo,
introduced by Brunk [8] (see also [47]). Indeed,
SPH!/? < o0 =3¢ exp{ —¢/H,) <
’for all positive e. On the other hand,
H!? = (2775, EX))? < 2770/ 0s, _ E(X, [\

Thus, from condition (5.12) we obtain condition (5.7). We note that in conditions
(5.9) and (5.10) K, , and H, may be replaced by K(¢, 8, r) and H(J, r) respectively,
where § is arbitrarily small but fixed. Theorem 5.1 and and its corollary are taken

from [17].
Let us turn now to Theorem 3.2 for the purpose of obtaining sufficient condi-
tions for the strong law of large numbers. We are obliged to introduce some

additional notation. Let
Di(r, 8) = Z,{ B ()},
where
’(lt)(s) = f|u|<n8'u't an(u)
(see the definition of 2, in Section 3 above). Let us put

D,(r, §) = DP(r, 8).

Making use of inequality (3.3) to bound P(x, > ¢), we get the following combina-
tion of conditions which is sufficient for the strong law of large numbers.
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THEOREM 5.6. If condition (5.8) is satisfied and there exist, in addition, § > 0,
t > 2 and an integer p > 1 such that

(5.13) S exp{ —e2¥/D)/7(r, 8)} < oo,
for all € > 0 and
(5.14) =D (r, 8)/2" < oo,

then the strong law of large numbers holds.
If ¢ = 2, then condition (5.13) follows from condition (5.14), and we obtain the

following result.
COROLLARY 5.7. If there exist 8§ > 0,t > 2 and an integer p > 1 such that
(5.15) Z¥D,(r, 8)/2%" < oo,

then the strong law of large numbers holds.
Condition (5.15) is somewhat weaker than Egorov’s condition

Zian¥Ealgl - - o) < oo,
(see [13]) where the internal summation extends over all j, j,, - - - ,j, satisfying
0</; <)<+ <j,<n

Let us now return to the problem of necessary and sufficient conditions for the
strong law of large numbers. Put X; = X, V7, where V; is the indicator of event

|X,| < ne,
and let x; =272, ., X,. It is easy to see that
(5.16) P(x, > ) = P(x > )| < Z,e, P(IX,| > o)
If the series Z°P(X, > ne) converges, then
ZPP(xS >e) < 00=3I7P(x, >¢) < 0.
Because of (5.1), this means that the combination of conditions (5.8) and
(5.17) _ SPP(x; >¢e) < ©

for all ¢ > 0 is sufficient for the strong law of large numbers.

On the other hand, condition (5.8) is necessary for the strong law of large
numbers. Turning again to (5.16), we see that condition (5.17) also is necessary for
the strong law of large numbers. Thus, the combination of conditions (5.8) and
(5.17) is necessary and sufficient for the strong law of large numbers.

Since the random variables X,; are bounded, exponential bounds for P(x, > ¢)
are possible. If we have inequalities of the form

h(Fy_ v, Fy) <P >8) < S(Fn_ v B,

where Ff is a function of the distribution of the random variable X and ¢ is an
absolute constant, it is clear that the combination of conditions (5.8) and

(5.18) 2 (Fy e, ) < o0

is necessary and sufficient for the strong law of large numbers.
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Of course, a condition of the type (5.18) is significant only in the case when the
evaluation of

FA(F_ 4, FY)

is less complex than direct evaluation of P(x, > € ). Let us now formulate the
result which we were able to obtain by this method in [31]. Let

j;u(h’ 8) = j|u|<neehu an(u)’

U €) = 2 i /£, (s ).

Define h,.(e) as the solution to the equation y,(h, ¢) = en, if sup, y,(h, &) > en,;
otherwise put A,(¢) = 0.

THEOREM 5.8. The strong law of large numbers holds if and only if

() 27P(X, > ne) < oo,

(i) SPeHEm < oo,

Jor all positive «.

Condition (ii) seems not very effective at first glance. Nevertheless, a criterion for
the strong law of large numbers is quite easily obtained from it as a corollary,
namely,

Sy exp{—¢/H,} < oo, all e>0
for random variables X, satisfying the additional condition
X, = 0(n/log log n)
(see [31]). This criterion was at first introduced by Prohorov [49]. The application of
- Theorem 5.8 is considerably more advantageous than a direct proof.

We also note that, with the aid of Theorem 5.8, it is not difficult to get sufficient
conditions of the type that figure in Theorem 5.6 for the strong law of large
numbers (see [36]).

Bounds for probabilities of large deviations also play a major role in the proof of
the law of the iterated logarithm. Making use of bounds of the type (1.55) for
P(max; <, S, > x), A. L. Sahanenko [55] obtained sufficient conditions for the
law of the iterated logarithm which in form are close to Teicher’s conditions (see
[60]), though weaker. The conditions of Sahanenko also contain as a special case
the conditions of Egorov [14].

Let us now touch upon applications to nonuniform bounds on the rate of
convergence to the normal law. Assume first for simplicity that the X; are
identically distributed and that EX, =0, 0> =1, and B; =E|X,|® < 0. Also
assume for the moment that F(x) satisfies an additional condition

1— F(x) = -IL);)(] + o(1)),

as x — 0o, where /(x) is a slowly varying function, and ¢ > 3. If x > b(n log n)il,
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where b > (t - 2)%, then for sufficiently large n,
n(1 — F(x)) > 2(1 — @(x/n?)).
Turning now to (1.25), we see that for x > b(n log n)%,
&(x/n?) — P(S, <x) > —Z—(l — F(x)),

if n is sufficiently large.

Thus, we do not lose much in the way of precision if for x > b(n log n)2 we

make use of the trivial bound
1
(519) A, (x) = |8(x/n7) — P(S, <x)| < 1 - &(x/n2) + P(S, > x).

If F(x) varies irregularly as x — oo, our reasoning loses its precision. Neverthe-
less, as we shall presently see, it also makes sense in this case to start from
inequality (5.19) (for sufficiently large x, of course). The inequality (5.19) reduces
the problem of estimating the difference ®(x/ n%) — P(S, < x) to that of estimat-
ing the difference between the probabilities of large deviations for S, and for a
normally distributed random variable.

Taking ¢ = 3 in inequality (1.24), we get the bound
(5.20) P(S, > x) < c;nfs/x* + exp{ —c,x*/n},
where ¢, = (1 + 2/3)° and ¢, = 2/25¢°.

Let us now find the lower limit of those x for which
(5.21) c\nBs/x* > exp{ —c,x*/n}.

-This inequality may be put in the form

yz(cz - )% 10gy) > log 17/ Bacy,
where y = x/n%. Since logy <y,
cy — % logy >¢, — 3/y >¢,/2,
for y > 6/c,. Consequently, the inequality (5.21) is satisfied at least for
1
x> ¢(n) = max[6n%/c2, (%’21 log(n%/c1 ,83))2}.

In consequence of (5.20) this means that
(5.22) P(S, > x) < 2¢,B;n/ X%,
1

for x > ¢(n).
Since for x > n2
1 - @(x/nzl) < e eX/n,
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by virtue of (5.21)

(5.23) 1 - d)(x/n%) < enBs/ X3,
only if x > ¢(n). From (5.19), (5.22) and (5.23) it follows that for x > ¢(n),
(5.24) A, (x) < 3enB;/ x>
On the other hand, the method of conjugate distributions leads to the bound
(5.25) A,(x) < Yl—'|33e_72"2/" + n(1 — F(y;x)),
nz2

which is valid for §8; < -;/“niI and 0 < x < Y(n), where Y(n) = n%(nEl / ,83)%, and
Y1 * * * , Y4 are absolute constants.
1
If B;/n2 is sufficiently small, then y(n) > ¢(n). In consequence of (5.24) and
(5.25),

A, (x) < lg__{fge_nxz/,, + B3(3¢, + v33)n/ X2
n2

Therefore,
|®(x) — P(S,/n? < x)| < cBs/n3(1 + x%),

where ¢ is an absolute constant. An analogous result is of course also valid for
— x. The bound

(5.26) |®(u) — P(S,/n% <u)| < cBy/ni(1 + |uf’)

was initially obtained in [30] by using precisely this approach.

 From the asymptotic representation (1.25) it is not hard to see the impossibility

of replacing the |u|* in the right-hand side of (5.26) by a higher power of |u|.
Utilizing the method of [30], Bikjalis [5] extended the bound (5.26) to random

variables that are not identically distributed.

THEOREM 5.9. (Bikjalis, 1966). Suppose that EX, = 0, E|X,| = 0, E|X,|> < o
for all k. Then there exists an absolute constant ¢ such that
cL,
1+ |u

(5.27) |®(u) — P(S,/B, <u)| < ,
where L, is the Ljapunov ratio 7E|X,|*/ B,.

Somewhat later L. V. Osipov [37], used a completely different approach to
generalize the bound (5.26) in another direction.

THeoreM 5.10. (Osipov, 1967). -Let X; be identically distributed and suppose
EX,=0,0>=1, E|X,|" < oo for some r > 3. Then

(5.28)  |[®(u) — P(Sn/n% < u)| < -i—i-(-%i;(ﬂ3/n7' + ElX‘lr/n(r—2)/2)'
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Finally, S. K. Sakoyan [56], using bounds of the type (3.37), recently bounded
the difference ®(u) — P(S,/B, < u) in terms of generalized moments.

Let G(8), 8 > 2, be the class of functions on (0, oo) with continuous nonincreas-
ing derivative satisfying the conditions

(1) lim,_,, g'(u) = oo;

(2) 8/u < g'(u) < 8eB8W1/y8+1,
Obviously G(8) C G(8) (for the definition of G(8) see Section 3). Let us put

L, = B,/B}.

THEOREM 5.11. (Sakoyan, 1974). If EX, = O for all k, g € G(8), & > 3, and
L,, <1, then foru > 0

(5.29) |®(u) — P(S,/B, <u)| <c(8)(L, + L,,)e 5",

The bound (5.29) simultaneously generalizes (5.27) and (5.28).
Inequalities for probabilities of large deviations may be used to bound the mean
deviation of P(S,/B, < u) from ®(u)—that is, to bound
/2w 8(|u)|P(S,/B, <u) — B(u)| du,
where g(u) is a nonnegative function. Let us mention several results obtained
through this approach.

THEOREM 5.12. (S. V. Nagaev, 1965). Let the X, be identically distributed with
EX, =0,0% =1, B; < oo and suppose there exists an ny such that the distribution of
S,,, has an absolutely continuous component. Then

[ | Pa(u) = 277272 |uf du

EX} :
2 ||1 [2 ul|u? — 3le™/? du + o(l/n%),
6(27n)?

where p,(u) is the density of the distribution of S,/ n.
THEOREM 5.13. (Bikjalis, Yasyunis, 1967). Let the X, be identically distributed
with EX, =0, 0> = 1, 8; < 0. Then

EX? 2
f°_°°°u2|P(Sn < un%) - ®(u) — Lo(1— ud)e /? du = o(l/n%),
6(27n)?

if X, has a nonlattice distribution.

THEOREM 5.14. (Sakoyan, 1975). If EX, = 0, for all k, g € G(8), 8 > 3, and
L,, < 10, then

55 g ()| P(S, <uB,) — ®(u)| du < c(8)(L, + Lg,).
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We now point out a curious application of inequality (1.55). This concerns an
upper bound of E|S, |’ for # > 2. Let us assume that EX, =0,k = 1,- - - , n. Since
for this condition u(— o, ¥) < 0 and p(— Y, o) > 0, the following bound can be
deduced from inequality (1.55):

P(S, > x) < SUP(X,| > y) + 2 exp{)—)f - % log(xy/B? + 1)}.
Lety = x/c, ¢ > t/2. Multiplying both parts of the above inequality by 7x‘~! and
integrating with respect to x from 0 to oo, we get
E|S,|" <c'4, + 2te°[Px""'(1 + x*/B2Xk) ™ ¢ dx.
The integral in the right-hand side of the inequality is equal to
"~ 271'?B(t/2, ¢ — t/2) B},

where B(a, 8) = flu*"'(1 — w)®~! du. On the other hand, it is known that for
t>1

E|S, > o E(21x2)",

where a, depends only on 7 (see [24]).
According to Holder’s inequality,

E(21x?)"* > B!

Further,
(Z5x2)" > BIxl,

from which follows

E(Z1x2)"? > 4,
Consequently

E|S,|" > a, max[ B}, 4,].

Thus, the following theorem holds.

THEOREM 5.15. (Nagaev, Pinelis, 1977). Suppose t > 2 and EX, = 0,
k=1,---,n Then for all ¢ >t/2

(5.30) E|S," < c'4, + tc'/%°B(t/2,c — t/2) B},
where
B(a, B) = [u""'(1 — w)’ ™" du,
and - ’
E|S,|" > a, max[ B, 4,],

and a, depends only on t.



LARGE DEVIATIONS 785

Note that the bound of Dharmadhikari and Jogdeo [11] follows from (5.30),
except for a constant factor that depends only on .

Inequality (5.30) may also be derived from the bound for E|S,|"g(S,) obtained
by V. V. Sazonov [59] for m > 2, g(x) being a nondecreasing, even, nonnegative

function that is subject to the condition x,/g(x,) < x,/g(x,), for 0 < x; < x,.
In addition, other values for the coefficients are obtained according to B, and 4,.

One should mention also the work of Rosén [51], in which it was proved that if,

fork=1,:---,nandm=1,---,p,
EXZ™ < Mo,
then
ES> < ¢ p)max[(E’l‘)\}fpk)p , E'{A,f”pk].

This inequality is evidently a special case of (5.30). In the case of ¢ = 3, inequality
(5.30) is cited (without proof or explicit expressions for the coefficients) in [54]
(page 663) and [1] (page 259, inequality (1.4)). For random variables which are
functions on [0, 1], the bound (5.30) is obtained in [52] (see also [53]).

Incidentally, it follows from inequality (5.30) that for g(u) = ¢ log u, the restric-
tion L, < 10 in Theorem 5.14 is superfluous. Indeed, in this case

Jex Y P(S, < xB,) — ®(x)| dx
< E|S,|'/tB! + [£x'~V(1 — ®(x)) dx
< ce(0)(L,, + 1).

One of the possible applications of inequality (5.30) is to the study of the
- convergence of series of the form

(5.31) 2Pn'P(S, > en®), s>0, ¢>0.
Let us now consider the following example. Suppose EX, =0, n=1,2,- - -,
and SPE|X,[*/n'*!' < . By virtue of (5 30),
P(|S,| > ne) < E|S,|*/e¥n® < n~¥c(1)e~*(ZE|X, ¥ + BY).
On the other hand,
BnZI < nt—lzrlnE'XkIZt,
Consequently,

SPP(S, > ne)/n < c()e ¥ n " 280 _E|X, ¥

= c(0)e HELLEIXEr ioinT T < 0
for all positive e, and we have reproved the result of Baum and Katz [2].
Of course, to bound sums having the form (5.31) one can make direct use of the
inequalities obtained in Sections 1 and 3. Assume, for example, that the X, are
identically distributed, EX, = 0, 0* < o0, E(X,') < oo (X;* = max[0, X]),
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a >3, pa > 1, and let us bound
S = 3enP*2P(S, > n®).
First of all, because of (1.56)

2 \B8
(5.32) P(S, > n®) < n(1 — F(n®/B)) + pﬂeﬂ( d ) ,

n2a—l

for all positive 8. Let us now write 2 in the form
(533) 2 = E"Za—]<02 + 2,,2a—1>02 = 21 + 22.
Putting 8 = ap/(Qa — 1), we get

2
(5.34) L () P 1’6—02@1’-')/(2“—‘).

Simple caiculations show that

ap—1 a 2ap—lﬂp n7/8 -1

n®~ (1 — F(n*/B)) < p Jin—ny/gu” ™ (1 — F(u)) du

forn=2,3,- - .0n the other hand,
1 — F(1/B) < E(X[*)'B".
Therefore
(535) ZPn® (1= F(n®/B)) < (27 /ap + 1)BPE(X;" ).
From (5.32), (5.34) and (5.35) it follows that
2

(536) S, < (2% /ap + 1)BPE(XTY + %—Bﬂeﬁozw*ﬂ/(h—').
If 6> < 1, then £, = 0. If 0> > 1, then
(537) 21 < 2,<nzu—|<ozn"“_2 < aZ(pa—l)/(2a—l).
On the basis of (5.33), (5.36) and (5.37), we conclude that
(5.38) SenPe2p(S, > n*) <c,(a, p)E(XY

+ cz(a’p)OZ(pa—l)/(Za—l),
where
c(a,p) = (227 /ap + 1)B,

cap)= T8+ 1, B=ap/ (2 ).

Since inequality (1.56) is valid also for P(S, > n*), where S, = max; < <, Sk
(see, for example, [7]), it is possible to replace S, by S, on the left-hand side of
(5.38). It is indeed such a bound that is obtained in [9] (page 53, inequality (1.9))
(although without explicit expressions for coefficients ¢,(a, p) and c,(a, p)). For
this however, the authors required lengthier reasoning, since they started by

deriving an inequality of the form (1.56).



LARGE DEVIATIONS 787

The examples discussed show that the application of the inequalities of Section 1
allow a simplification and standardization of this subject.
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