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ON A STOPPED DOOB’S INEQUALITY
AND GENERAL STOCHASTIC EQUATIONS

By M. METIVIER AND J. PELLAUMAIL
Ecole Polytechnique and INSA

An upper bound for E(supgc,«.||M;|[*), where M is a square integrable
martingale and 7 a stopping time is given in terms of [M],- and (M), -.
Counter examples show that 4E({M ),-), which is easily derived as an upper
bound from a classical Doob’s inequality, when r is predictable or totally
unaccessible, is no longer an upper bound in general. The obtained majoration
is used to prove existence and uniqueness of strong solutions of a stochastic
equation dX, = a(t, X) dZ,, where a is a functional, depending possibly on the
whole past of X before ¢, and Z is a semimartingale. Our result thus extends to
systems “with memory” recent results by Protter, Kazamaki, Doleans-Dade and
Meyer.

Introduction. Recently P. E. Protter [12], N. Kazamaki [6], C. Doleans-Dade

and P. A. Meyer [3] have considered stochastic integral equations of the type

Xt = 50 + f{)a(s’ X.\") dZs

where a(s, X,-) is a function of the position of process X immediately before s, and
Z is a general semimartingale. Existence and unicity of the solutions were proved,
when a satisfies proper Lipschitz-conditions (see [5] too). In this paper we consider
the case, where X — a(s, X) is a functional of the process X, which may depend on
the whole past of the process before time s. The results of existence, unicity and
nonexplosion of solutions here obtained in Section 4 generalize to our more general
situation those of the above-mentioned authors.

These results, announced without proof in [9], will be compared with a theorem
independently proved by M. Emery ([5]). The comparison will be made precise at
the end. Let us say now that, in the case of driving terms which are real
semimartingales, Emery’s method extends C. Doleans-Dade and P. A. Meyer’s
method, while the technique used here rests on a powerful inequality, which is
proved in the first part. This inequality, which is most helpful in “keeping control”
of jumps of the stochastic driving term, makes it possible to reach immediately a
wide important class of vector-valued stochastic driving terms which are not
reducible to martingales and processes of bounded variation, as shown by a simple
counter example given in subsection 4.5.

In working out fixed point-methods for our purpose, we met the problem of
getting an upper bound of E(supyc, <T|Ms|2) in terms of E((M),-) and E((M],-),
where M is a square integrable martingale and 7 a stopping time. Although such an
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upper bound is trivially derived from a classical Doob’s inequality, when 7 is
predictable or totally inaccessible, the problem is far from being so easy when 1 is
neither predictable nor totally inaccessible. Section 1 produces counter examples
in this latter situation.

An inequality, which is valid for every stopping time 7, is derived in Section 2.

1. On a “stopped” Doob’s inequality—counter-examples.

1.1. Definitions and notations—problem. In all this paper a stochastic basis:
@, (%);er+ F, P) is given: (¥,),cr+ is an increasing, right continuous family of
o-subalgebras of a o-algebra & of subsets of 2, and P is a probability on (2, ¥%).
We make the usual completeness hypothesis: % is complete for P and every P-null
set in & belongs to all F,’s.

An H-valued process X, where H is a finite or infinite dimensional Banach space,
is a mapping from R* X Q into H.

A stochastic process will be said to be regular if it is adapted to the filtration
(%,);er+ (ie.: X, is ¥,-measurable for all 7) and if its paths are right continuous and
have left limits in every point # € R*. (When X is real, by a limit we mean a limit
in R, not in R).

The process X is said to be predictable if it is (strongly) measurable for the
o-algebra &P of predictable subsets of R* X © : ¥ is the o-algebra generated by
the class R of predictable rectangles, that is

R={]st]X F:s<t€R* FeY,}

A process X is called a P-null process, if almost surely the paths: t — X(¢, w) are
identically zero functions. Two processes will be called equivalent if their difference
is a P-null process.

When X is a regular process, we call AX the process:

AX(t, w) = X(¢, @) — limyy,, ., X(s, w).

For a stopping time r we denote by [7] the graph of 7.
We recall the following Doob-inequality for a real square integrable martingale
M.

(1.L.1) E(supy, < |M,|*) < 4E|M,

Considering a stopping time 7, and the stopped martingale M ,_ one can write:
(1.1.2) E(supoc,c.| M) < 4E|M,|* = 4ECM,) = 4E[ M,

where (M ) denotes the natural increasing process of |M|?> and [M] the quadratic
variation of M (see, for example, [7]).

When the martingale M is continuous, an inequality of the type (1.1.2) insures us
of the upper bound: E(sup,, <,|Ms|2) < d, when 7 is the stopping time defined by
T=inf{t : (M), >d}.

Unfortunately things are far from being so simple when M is discontinuous. A
natural question is then the following: do the following inequalities hold for a
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square integrable martingale M and a stopping time 77
(1.1.3) E supyc, . |M,? < 4E{M ), -;

(1.1.4) E supyc, | M, < 4E[M] _;
where f(”) means lim,,,, , ., f(s).

1.2.  Immediate answers and counter-examples. Let us assume that (M) - =
(M },, which is the case when 7 is totally unaccessible, or when M is continuous,
then (1.1.3) is a trivial consequence of (1.1.2).

When 7 is predictable we may consider an “announcing sequence” (7,) increas-
ing towards 7 with 7, < 7 a.s. on [t < o]. In this case

E(Sup0<s<‘r|Ms|2) = limnTE(sup0<s<‘r,,|Ms|2) < hInnTE‘[I‘l]-r,I = limnTE<M>1-,,‘

Therefore (1.1.3) and (1.1.4) hold in this case.

The fact that (1.1.3) is true for predictable and totally unaccessible stopping
times would seem to indicate that this inequality holds for a general stopping time
7. Unfortunately this is not the case, as shown by the following simple counter-
examples, unless hypothesis of left quasicontinuity are put on the o-algebras (%,).

Counter-example to (1.1.3). We define: @ = (1,2}, 9, = {&, @} if t < 1 and
F=P@ift>Lr=1+41,,P0)=p, >0,PQ)=p,=1—p, >0.Thisisa
classical Dellacherie’s example.

The predictable rectangles are of the form ]s, ] X Q if s <1 and Js, t] X F,
F € (Q) if s > 1. Therefore the traces of predictable sets on [0, 7] are of the form
[0, 7] N II7'(%®) where B is a Borel set of R* and II is the projection R* X £ —
R*. It follows that the graph [] of 7 is included in the union {(1, 1), (1, 2} u
{(2, 2)} of predictable graphs but is not itself predictable.

We consider then the martingale:

M) =0 if r<1
:=1—)11—1{,}—pi21(2} if ¢>1.
It is easily computed:

1 1
M>=—+—]1 ool
< >1 (pl P2) [1, [()
1
E(Sup.\'(‘rlMslz) =—
P,
1 1 1
EKM> ) = W —+ —] = —.
(M>) Pz(pl Pz) 2

As the quotient p, /p, may be chosen arbitrarily big, this is a counter-example to
any inequality of the type (1.1.3) obtained by replacing the constant 4 by any other
constant.
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Counter-example to (1.1.4). In this example @ = {1, 2, - - -, n}. The o-algebras
%, are constant on [k, k + 1[ and ¥, is generated by the atoms: {1}, - -, {k},
{k + 1, - - n}. The probability law P is defined by:

P{l}=q P{2)=(1-gqq- - P(r—-1)=(1-q" %
P{n)=(1-¢q)"", 0<g<l
The martingale M is constant on [k, k + 1[ and:

1 1
M0=O, Mk+1=Mk—‘al(k+1)+(i—:7)l(k+2’...,”}.

The stopping time 7 is defined through 7(w) = w. It is seen as in the previous
example, that 7 is accessible but not predictable.
An easy calculation gives:

E[M] =

2(1—q)2+...+(n_2)£l__q£
q q

A )
q

— — 2 _ n—2
1 q+22(s q) 4o +(n_2)2(1 ‘I)

E(sup0<s<‘r|Ms|2) q q q

q
When ¢ tends to zero
E([ M] T~ 1
E(sup0<s<f|Ms|2) n - 1
It is, therefore, possible to chose ¢ and n in such a way that:
E supy,.|M;* > CE[M] _

where C is any positive constant.
2. Inequalities.
2.1. Statement of the results.

THEOREM 1. Let M be a real or H-valued (H: Hilbert space) regular square
integrable martingale. For every stopping time T there exists a regular square
integrable martingale W with the following properties.

@) Lo W = Lo M
and therefore

Lo, a[ W] = loo,u[ M].

(ii) The random measures d{W ) and d{M ) satisfy:

AWy < d{M).
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(iii) For every positive predictable process Y

If M is purely discontinuous, so is W.

THEOREM 2. Let M be a real or H-valued regular square integrable martingale.
Then the following inequality holds for every stopping time 7:

E(sup0<l<‘f”M“2) < 4E(<M>,- +[Md] )

where M is the pure discontinuous part of the martingale M (see [7] or [11]).
If the accessible part of [1] is previsible (in particular if the family (%,) is quasi-left-
continuous), then holds:

E(supoc .|| M,|?) < 4E{M),-.

The last assertion of Theorem 2 is trivial as noticed in the beginning of
subsection 1.2 above. As to the first part of Theorem 2 it is an easy consequence of
Theorem 1. Let M = M° + M¥ be the decomposition of M into its continuous and
its discontinuous parts. (See [11] Chapter II), and let W be the process associated
with M“ by Theorem 1. Then according to the classical Doob-inequality we get:

E(s9Poc | M) = E(supoc, | M7 + W) < 4ECME + W),
As the martingales M° and W are orthogonal, one may write:
E(supocc, || M%) = 4ECM ), + 4ECW ),
and according to properties (ii) and (iii):
E(supog, o, | M,|") < 4E{MC),- +<W),- +[ W] _}
SAE{(M®),- +(M*y - +[M9] _}
=4E{(M),- +{M?) _}.

This proves Theorem 2 as a consequence of Theorem 1.

This argument shows that inequality in Theorem 2 can be slightly improved in
the following way. Let (0,) be a denumerable family of predictable stopping times
with disjoint graphs such that the predictable part of a family of stopping times
carrying the jumps of M is included in U,[0,]. The family (o,) is not uniquely
determined, but the process X,AM, .1, ., is, and it is a square integrable
martingale, which we will call the pure jump part of M and will denote by MY. As
the process (M — M) is continuous the above argument for M — M“ can be
reproduced and gives immediately the following:

THEOREM 2'. Let M be a real or H-valued regular square integrable martingale.
Then the following inequality holds for every stopping time 1.

E(Sup0<l<‘l’”M1”2) <4E(KM ), - +[Mj] )

—

where M’ is the pure jump part of M.
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2.2. Proof of Theorem 1. The proof rests on two lemmas.

LemMa 1. Let (R, &, P) be a probability space, § a sub-o-algebra of ¥, A an
element of % and S* the o-algebra generated by § and {A}. For every 8 *-measur-
able (real or H-valued) square integrable random variable Z, such that E(Z|9) = 0,
the following equalities (where A* = Q — A) hold:

@) E(1y]9).E(IZ|%1,18) = E(1,.|8).E(IZ|*1,.]9) as.;

(b) E(LelIZ|P) = E(14.E(|Z|P]9))-

Proor. (This very simple proof was mentioned to us by J. Jacod.) One may
write Z = 1,X + 1,.Y, where X and Y are §-measurable. The condition E(Z|9)
= ( gives:

(2.2.1) E(1,]8).X = —E(1,]9)Y.
As
E(|1Z1%1,18) = 11X I*.E(14]8)
and
E(|Z|*.1l8) = 1Y I?. E(1,1.|S)
the inequality (2.2.1), which implies
IXIPLE(L8)] = 1Y IP[ E(LelS) ]

gives immediately the formula (a) of Lemma 1.
As to formula (b) it is derived from formula (a) through the following chain of
equalities:

E[1,.E(|Z|PI8)] = E[1,.E(IZ|*1,48)] + E[1,.E(|Z]1,4|)]
= E{E(1,9).E(|Z|>148)} + E{E(1,9).E(I|Z]|*1,.|9)}
= E[{E(1,+19)-E(IIZ[1,+|9)} + E(1,419).E(I|Z[%1,.|$)]
= E{E(|Z|*1,:18)} = E(IZ|PLy).
LEMMA 2. Let o be a predictable stopping time, h a real or H-valued % -measur-

able square integrable random variable such that E(h|%,-) = 0. Let T be a stopping
time. We define R = {6 < 7,6 < 0},A={6 <71} B=R -4,
o ,(w)y=0w) if weA
=400 Iif w&Ad
o(w) if wEB
=400 if w€&B.
We denote by 3} the o-algebra generated by ¥,- and A. Then the processes:
M= 1R‘1[0, oo['h

op(w)

and
W = l[oA, oo[h + 1["3» w[E(hI?};*—)
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are regular square integrable martingales, for which properties (i) to (iii) of Theorem 1
hold.

Proor. Using an announcing sequence (o,) of stopping times for ¢ we prove

easily that:
R,={0, <7} €%, NG,
and, therefore,
R=n,R, N {lim,e, <o} €Y.

The hypothesis on 4 then implies that M is a martingale.

To prove that W is a martingale, it is enough to show that M — W is a
martingale. But
(22.2) M — W= (h— Eh|F})], o

From there on we show that M — W is the regular version of the martingale
(E(9|%)),er+» Where:

@ = ly(h — E(h|F*)) = 15.h — E(15.h|FX).

Let (0,) be an announcing sequence for o, as above. As E(¢|¥,-) =0 and
E(¢|9,) = ¢ we have clearly E(¢|%,) =0 for t <o and E(¢|%,) = ¢ for t > 0.
This proves that

E(p|%)=M,— W, as.foralls.
From the definition of M and W we get
<My = 1E(||AIP|F,-)-1o, oof
and
Wy = 1-{E(1L,.|1#11%5,-) + E(15 | E(RIF)IF,-) } Lo, o
The one jump of (W) is carried by [o] and bounded by
1{ E(Ly:l1RI5,-) + E(1,E(I2IM1F3)|F,-)} = 1E(IAIF,-)-

Comparing with (M) we get immediately the inequality d{W ) < d{M) as.,
which is property (ii).

As M and W have jump only on [o] and coincide on [o,], the property (i) is

clear.
We have also for every predictable positive Y:

E(fio.nYd[ W]) = E(1;. Y, ECHIF2)I?) + E(L Y, |1AI1%).
By applying Lemma 1(b) with Z = 1,( Ya)ilE(h|"J“,*_) and F,- = §, we get
(223) E(fo,n¥d[ W]) = E(1,Y,|hIP) + E{1,Y,E(|E(RIFL)AF,-)}.
From the conditional Jensen’s inequality we deduce:
E[1,|E(RITO)IPIF,-] = 1a{ E[LIEKIF)IF,-] + E[1I1ERIF)IF,- ]}
< 1RE(L|17IP|%,-) + E[ 151 E(h|F2)I9,- ]
< MW,
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This last inequality with (2.2.3) proves the formula (iii) of Theorem 1 for the
martingales M and W of Lemma 2.

ProoF OF THEOREM 1. Let [7] = [7,] + [7,] the decomposition of [7] into its
totally inaccessible and its accessible parts. If AM, = 0 a.s. the process (M ) has
no jump on the stopping time 7. Therefore

E(f[o,r]Y[ dM]) = E(f[o,f]Yd<M>) = E(f[o,f[ Yd<M>)

“and Theorem 1 is trivially irue with M = W.

In the general situation we consider a sequence of predictable stopping times
(7,), n > 0 with disjoint graphs, such that [7,] C U [7,].

The process S = 2,AM, 1;, . is a square integrable martingale, and, denoting
by N the martingale M — S and by M" the martingale AM, 1;, . we have

(22.4) [Yd{M) = [Yd{N) + 2,/ Yd{M")
and
(2.2.5) JYd[M] = [Yd[N] +Z,/Yd M"]

for every positive predictable process Y.

To each M” we associate the martingale W” of Lemma 2. All martingales N and
W" are orthogonal and the series N + X, W" converge in the space of square
integrable martingales and we write W for the sum of the series. The properties (i)
and (ii) of Theorem 1 follow immediately from the definition of W and Lemma 2
and we get for every positive predictable process:

E(fo,nYd{W ) = E(fio,n Yd{N }) + E(Z,f10,nYd{M" )
< E(fio,q YA(N ) + E(Z,(f1o,{ YA W™ > + [10, 4 Yd[ W"])

< E(fio, q YAW)) + [1o 1 Yd[ W]).

This proves the property (iii).
It is clear from the definition of W, that this process is a pure jump martingale in
the sense of Theorem 2’ as soon as N = 0.

3. A genersal stochastic equation—lemmas on semimartingales. The equation,
which will be considered, will be written:

(3.1 dX(t) = a(t, X) dZ(1)
or in integral form
(32) X(1) = & + Joa(s, X) dZ(s)

where £, is an initial value. The process Z and the functional a of the process X will
be described now. The hypothesis on Z and a will give, in particular, a meaning to
the stochastic integral in (3.2), and the notion of solution of (3.2) will be given a
precise definition.
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3.1. Predictable functionals of a process. In (3.2) the functional a will be
defined in such a way, that for a regular process X, (a(s, X):s € R*) is a
predictable process.

We will write @ for the Boolean ring of subsets of R* X @ generated by the
family {]s, /] X F; s <t € R*, F € 9,} of so-called predictable rectangles, and
denote by ? the o-algebra of predictable subsets of R* X §, which is by definition
the o-algebra generated by @.

In order to define the predictable functionals of a process, we introduce the
following spaces.

Let H be an Hilbert-space, we will denote by DY the set of all the mappings from
R* into H, which are regular (i.e., according to definitions in 1.1: are right
continuous, have left limits in every t € R™).

For every t € R* M denotes the o-algebra generated by the “cylinders”
{f:f € DY f(s) € B} where s < t and B is any Borel-set in H.

We set O == Q x D" and we consider on OV the increasing family
(), crr = (F, ® D), g+ of o-algebras.

DEFINITION 1. The o-algebra of subsets of 3", generated by the family {1s, 1] X
F:s<teR*, Fe 55:‘} is called the o-algebra of predictable subsets of 3™, It will
be denoted by PH. A mapping a : & — K, where K is a Banach space, will be said
a K-valued predictable functional of the H-valued regular processes, if it is a
measurable mapping from (&, $") into X.

ReMARK 1. It should be noted that a predictable functional a is a nonanticipa-
tive functional of (z, f) in the following natural sense: let f and g be two regular
mappings from R* into H, such that f(s) = g(s) for every s < ¢. Then a(¢, w, f) =
a(?, w, g). This follows immediately from the fact, that nonanticipative in this sense
means only: adapted to the family (55:‘),6,” of g-algebras.

ProrosITION 1. Let K be a separable Banach space and X a regular H-valued
process. For every K-valued predictable functional a the process
(1, w) = Y(1, 0) = a(t, w, X(w))
is a predictable K-valued process (we write X(w) for the mapping t — X(t, w)) and
Y(t, w) depends only on the values X (w) s < t.

PrOOF. Because of the assumptions on K it is sufficient to prove the proposi-
tion for K = R. The classical monotone class-argument reduces then the proof to
the case, where a is a functional of the following form:

a(ta w,f) = I]u,v](t)'lF(w)‘lG(f)
with
u<veER*, FeYF, G

If X is a regular H-valued process, it is immediately clear that 15(X) is
%, -measurable for every G € D¥. In this case (¢, w) - a(t, @, X(w)) is clearly the
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indicator-function of a predictable rectangle. Moreover X, (w) = X,(w) for every
s < t implies a(?, w, X'(w)) = a(?, w, X(w)). The proposition then follows.

ExXAMPLE. Let a be a mapping from R* X @ X H in K, such that for every
t € R* and & € H the random variable a(¢, . , h) is %,-measurable and ¢ — a(t, .
, h) is left continuous. Then, denoting by f(¢7) the left limit of f at point ¢, it
follows from the left continuity of ¢ — a(?, w, f(7)) that (¢, w,f) - a(t, w,f) =
a(t, w, f(t 7)) defines a predictable functional of ¢z and f. Therefore the process
(¢, w) = a(t, w, X,-(w)) is a predictable process for every regular process X.

This is the situation considered in [3] and [2], which thus appears as a special
case of our situation here.

Let us remark that for every f € " the mapping t —sup, || fll(s) is left
continuous. The mapping (z, f) — sup, || f|I(s) is, therefore, a predictable func-
tional and there follows immediately the following lemma, which we state for easy
later reference:

LemMa 3. If a is a predictable functional, the functional 1 f. g, _ fOl<d) ais
Jor every d > 0 a predzctable Sfunctional too.
The same holds for a®, where

a%(t, w, f) = a(¢, w, f9)
and

1) = (1 A f”’)f(t) with || fll, = supocs <l )]l

3.2. Hypothesis on Z. We recall the following definition (see P. A. Meyer
[11]): a regular real or G valued process Z is called a semimartingale if it is the sum
of a local martingale M and of a process V, the paths of which have bounded
variation on any finite interval. There is no loss of generality in assuming Z, = 0.

If in the above decomposition the process V has locally integrable variation (i.e.:
there exists an increasing sequence (7,) of stopping times such that lim,7, = + o
and the variation of the paths of V, , on every interval [0, s] is an integrable
positive random variable), then the process Z is called a special semimartingale (see
[11] Chapter 4).

The processes Z, which we will now consider, belong to a class of processes,
which will be shown to include the semimartingales.

DEerFINITION 2. Let 6 be a stopping time. A real (resp.) G valued process Z will
be said to satisfy the condition (*, K) if the process [ YdZ is defined (see Remark 2
below) for every bounded predictable process Y with values in K (resp. in
£(G; K)), and if there exists a real increasing regular process Q, such that for every
bounded predictable process Y with values in K (resp. £(G, K) and for every
stopping time 7 and o, with 7 > o, the following inequality holds:

(") E(sWPhcrcrllfio, n Y AZ,? < E{[(Q,- — Q) V 1] /16, 4l Yl 4O, }
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ReEMARK 2. The process [YdZ is well defined when Z is a semimartingale.
Every semimartingale satisfies (*), as will be stated in Proposition 3. It can be
shown (see [8]), that, as soon as (*) holds for Z some Q and every indicator
function Y of predictable rectangle ]s, f] X F, then the process [YdZ can be
defined on [o, [ and satisfies (*) for the same Q and every predictable process Y
such that the right member of (*) is finite.

ReMARK 3. It should be noted that Q is not assumed to be integrable. This is an
interesting feature of our method here. We will work, in fact, in stochastic intervals
[0, [ such that E[(Q,- — Q,)][,~q] < 0.

PROPOSITION 2. Let Z be a process of the form Z = M + V, where M is a right
continuous square integrable martingale and V a right continuous process with finite
variation. Then Z satisfies the condition (*, K) for every Hilbert space W, with an
associated process Q5 which is integrable, if V has integrable variation.

Proor. If we apply the inequality of Section 2 to the martingale (N,,, —
N,);cr+> Where N = [YdM, we get:

E {80y i,llf10, 0 Y,AZ,I1P} < 4E { [y, 4| V,IPd([ M], + <M),)}.
Let A be the variation of the paths of V. The Schwarz inequality gives then:

E{supo<t<f||f]o, 7] stl/;llz} < E{supo<t<-r(At - Ao)f]o, t]” Ysllszs}
< E{(AT_ _Aa)f]o, 1'[” YsIIZdA:}'
If we set Q = 8((M] + (M) + 24 we get immediately the inequality (*).

PROPOSITION 3.  Every semimartingale is a (*, K) process. More precisely, for
every d > 0 there exist two processes Z% and V with Z = Z% + V2 and such that:

@®

Ve =Sz, e

where (T}) is an increasing sequence of stopping times and the &’s are "ka -measurable
random variables with ||§, | > d.

(i) Z? is a (*, K) process for every Hilbert space W with associated process Q
having no jump greater than 16d* + 2d.

PrOOF. We consider the well-measurable subset of R* X @ : {||AZ| >d} =
{(t, w) 1 |1 Z(2, w) — lim, Z(s, t)|| > d}.

As every path of Z has a finite number of jumps > d on any finite interval this
set is the union of a denumerable family of graphs of an increasing sequence (7,)
of stopping times. Then we set:

Vd = zkAZT;‘]'[Tk, oo[-
The process Z¢ = Z — V¥, which has bounded jumps, is a special semi-

martingale (see P. A. Meyer [1]). Therefore, there exists an increasing sequence (7,)
of stopping times with lim?7, = oo and for each n a square integrable martingale
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M?*™ and a process V%" with integrable variation 4", such that Z¢ , = M%” +
4 Ta A Tw A
Ven.
We set:
Q= 2,11, o 8[ MEIF] + 8KMATRYS + 24273

Taer N Tat1 Ao

—8[ ME ] - 8(MER Y — 2427 ).

As in the proof of Proposition 2 we get for every stochastic interval [o, 7; and
every n:

E{supa<t<('r/\‘r,,)Va”f]a,t]stZsllz} < {[Q(T/\T,,)—W—Q,]f]o,(‘r/\T,,)Va[” Ys”2dQs}‘

Letting n increase towards + oo we get property (*).
None of the processes M*" and V%", having jumps greater than 4, the same
holds for [M*"] and {(M* ™). Therefore, no jump of Q is greater than 1642 + 2d.

3.3. Hpypothesis on a. The various hypotheses which will be made on a, beside
predictability, are of Lipschitz type. For easy further reference we define:

DeriniTION 3. The functional a will be said to satisfy:
(L,) if there exists L > 0 such that

(33.1) la(t, @, f) — a(t, @, )| < L sup,,[| f(s) = f(s)]
for all z & R™, f, f' € DH.
(L,) if for every d > O there exists a constant L, > 0 such that
(332) la(z, ,f) —a(s, , Il < Lysup,, [ f(s) = f(s)l
forallt € R*, and f,f" € {g : g € D", sup,_,|| g(s)|| < d}.
(L,) if there exist C > 0 such that
(3.3.3)  Jla(s @, Il < Csuppe o[ If(9)]| + 1] forallz € R*, f € DM,
(L,) if for every d > O there exist a constant C, > 0 such that
(334) lla(z, @, )l < Csupogoe [ lf(s)I + 1]
for all # € R* and f such that supy, || f(s)]| < d.
4. Existence and unicity of strong solutions of equation (3.2). In all this section

Z will be a G-valued process (G: Hilbert space) and a a predictable £(G; H)-
valued functional on QY. &, is an H-valued %,-measurable random variable.

4.1. Strong solutions. In this paper we will consider only strong solutions of
Equation 3.2. A process X defined on the open (resp. closed) stochastic interval
[0, of (resp. [0, o)) is said to be a strong solution of (3.2) on [0, of (resp. [0, o]) with
initial value &, if the process (f§a(s, x) dZ,), is well defined on [0, of (resp. [0, o]) as
a regular process and differs from X — £; by a P-null process. (Following Proposi-
tion 1, X need only be given regular on [0, o[ with left limit at o, for a(s, X) to
exist on [0, o].)
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Two solutions X and X’ are said to be equal if they are defined on the same
stochastic interval [0, o and if the processes X.1;, , and X1, ,; are equivalent.

4.2. Preliminary lemmas on existence.

LemMMA 4. Let us assume that Z is a (*, H)-process with associated process Q, a
satisfies (L,) and (L;) with Lipschitz-constant L and constant C respectively. We
suppose, moreover, Q bounded by q >0 on [0, of with g < (1/L)A1, and & €
L%(Q, F,, P). Then (3.2) admits a unique regular solution X on [0, o].

Proor. We consider the space A (o; H) of regular H-valued processes X
defined (up to an equivalence) on [0, of with the norm:

1
X1 5,0 =[ E(suPoc ol X;I?)]? < o0.

We define the operator U on A(e; H) by:
(4.2.1) (UX), =& + [qa(s, ., X) dZ..

This is possible because of (L,;) (see Remark 2). From the most classical fixed
point theorem, the existence and unicity of the solution X on [0, o will follow from
the fact that U is a contraction.

But:

IUX = UY |4, s = E{sWPoc,callfio, a(als, ., X) — als, ., Y)) dZ,|I*}

and the (*, H) condition gives:
IUX = UY|R,, < E(Q,-V1).Ji yllals, ., X) = a(s, ., V)| dg,)
<(gVDeL|X = Y|, o

Because of the assumption on ¢, U is a contraction.

Let £ be a solution on [0, o[. In view of the boundedness of a, the process
10, 48(8s - » &) dZ)o<,<, has a.s. left limits, when ¢ increases towards o. It is then
clear, because of the last assertion of Proposition 1, that the process X defined by:

Xt = £11[I<U] + 1[,>a](limsTa£s + a(a, .£) AZa)
is the unique solution of (3.2) on [0, a].

LEMMA 5. (Extension principle for solutions). We assume, that Z is a (*, H)
process and the random functional a satisfies L, and L,. Let £ be a regular process,
such that 1i i€ is a strong solution of (3.2) on [0, o]. Then, if Plo < o] > 0, there
exists for each € > 0 a stopping time 7 and a regular process X on [0, 7], such that
P[r > 0] > Plo < 0] — ¢ and X is the unique strong solution of (3.2) on [0, 7].
More precisely

(4.2.2) Xt = gt Ao + f]o,t v ,,]a(s, .y X) dZs.
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d . .
ProOF. We call F; ={supy,,ll§ll < 5} € 9,. As lim,,,. . ¢ exists a.s. on

o < oo we can choose 4 in such a way that
P(F;) >P[o< o] —¢

where ¢ > 0 is given.
We define next the stopping time

'r"i=inf{l ot >0,(Q1V1)'(Q’ - Q") >Zlf.}
d

From the right continuity of Q we get
(4.2.3) [rs>0] =[0 < o]
As F, € 9, we may consider the stopping time
7 = 1g7y + lcpo.
We consider next the subspace of A(7;, H) (see proof of Lemma 4) consisting of

those processes X, such that 1 ;X = 1, ;€ and define the operator U on this
subspace by:

UX; = g[,\a + f]a,a Vt]a2d(s’ . ’X) dZs

where a?¢ is the predictable functional of Lemma 3. Exactly the same reasoning as
in Lemma 4 shows that U is a contraction and there exists a unique process X on
[0, 7[ such that
(42.4) X, =bno* floive@(s, ., X)dZ,
fort <rj.
Let us define now the stopping time 7:
r=1inf{z:¢ > o||X,|| > 2d} A T].

Because of the right continuity of X of the definition of 7] and of (4.2.3) we get
[t > o] D F, and therefore P[t > 6] > P[0 < oo] — &. According to the definition
of 77 and 7, the inequality supy,,||X;|| < 2d holds for every (¢, w) € [0, 7 and
therefore the processes X and § o, + [}, .y A0S, - » X) dZ; coincide on [0, [.

As ||a(s, w, X)|| < C,, for every (s, w) € [o, 7] the limit

XT_ = limm; t<‘rf]ﬂ,‘r v a]a(s, .y X) dZ_v

exists. As in the preceding Lemma we see that the process
a0t f]o,.v a]a(s’ ., X)dZ,
defines also the unique solution of (3.2) on the closed stochastic interval [0, 7].
LEMMA 6. Let us assume, that Z is a (*, H) process, with associated increasing
process Q, &, is any H-valued random variable (%,-measurable) and a satisfies (L,)

and (L,). Then ¥ ¢ > O there exist a stopping time 7 with P[1 > 0] > 1~ eanda
process X on [0, 7] such that X is the unique regular solution of (3.2) on [0, 7].
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Proor. We choose first a d > 0 such that
P&l > d] <e.

Applying Lemma 3 we substitute to a the function a®?, which satisfies (L,) and (L,),
with the constant L,, and C,, respectively.
We define:
1
c=inf{t:Q,>—A 1}.
{ & Ly,
Because of the right continuity of Q, P[o > 0] = 1. We apply Lemma 4 to the
equation

X, =& N2d + [;a*(s,., X) dZ,.
But X is clearly a solution of (3.2) with initial condition &, on the stochastic
interval [0, 7], where

r=inf{7: | X,|| >2d} Ao.
Because of the right continuity of X
[7>0] 2 {ll%ll <24} and therefore P[7>0]>1-—c.

4.3. Maximal solutions.

DErFINITION 4. The couple (7, X) where 7 is a stopping time with P[r > 0] > 0
and X a process on [0, 7[ is said to be a maximal solution of (3.2), if X is a regular
process, which is a solution of (3.2) on [0, o[ and if for any other couple (7, X’)
with the same property the inequality 7 > 7 a.s. and the equality 1y X = 15 (X’
imply 7/ = 7.

THEOREM 3. (Existence and unicity of maximal solutions). Let Z be a (*, H)
process (this is the case if Z is any semimartingale). We assume conditions L, and L,
on a. Then there exists a maximal solution (1, X') of (3.2.).

The couple (7, X) is unique in the following sense: for any other maximal solution
(7', X’) one has v = 7’ a.s. and X' — X is a P-null process on [0, [.

Moreover, the stopping time v of a maximal solution is predictable and on [T < 0]
holds

hm suptT‘l’; t<-r<oo||Xt” = +oo0.

PROOF. We consider the family S of couples (7, X), where 7 is a stopping time
with P[r > 0] > 0, X is a regular process and is the unique solution of (3.2) on
[0, 7[; the set S is not empty according to Lemma 6. We will denote by 7, the
essential supremum of those stopping times 7 and by (r,) an extracted increasing
sequence such that 7., = lim,7, a.s. (The sequence may be indeed assumed to be
increasing because of the unicity property: if (r,, X;) and (7,, X,) belong to §, X,
and X, are equivalent on [0, 7, A 7,[ and, therefore, X exists on [0, 7, V 7,[ such that
(1, V 75, X) belongs to ).
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Because of the unicity property the process X is well defined by 1 X =
lio, (X, on [0, 7 [ and (7., X) € S. The couple (r,, X) is clearly the unique
maximal solution.

We consider now the following family of stopping times:

vd = 1, Anf{t : | X7| > d)
v? = sup,»’.
We have clearly »? < 7 a.s. and we prove that:
(43.1) P({ri=r1,]Nn[1,<])=0.
Let us assume indeed that P[»? = 7_ < o0] > 0.

As the process X is bounded on [0, »[, the process [fa(s, .X) dZs has a limit
when t1v9 t <

We can then extend X into a solution on [0, »¢] by the already used procedure
(see proof of Lemma 4).

By the extension Lemma 5 there would exist a (7, X’) with 7 > »“ and
P[r" >»?=1_]> 0 such that (7, X’) € S. This would mean (v, X’) € S and
P[7" > 1,] > 0, contradicting the definition of 7. This proves (4.3.1). But the
definition of »? and the regularity of X show:

d

T = lim, 1%,
This equality and (4.3.1) imply the predictability of 7.
4.4 Conditions for nonexplosion.

THEOREM 4. Let Z be a real (resp. G-valued) semimartingale, and a an H-valued
(resp. £2(G; H) valued) predictable functional on QY. We assume condition (L,) and
(L,) for a. Then the unique maximal solution (1, X) of (3.2) is such that 1 = + oo.

PROOF. Let us choose ¢ > 0 with ¢ < (1/L) A1, and, Q being an increasing
process associated with Z, such that (*) holds, define recursively

To=0

Th+l = inf{t >7,0, -0, > q}-
We have
Q‘f,.—+l - Q‘l’n < q for all -

Applying Lemma 4 we derive the existence of a unique solution on [0, 7,].

Assuming that the solution is uniquely defined on [0, 7,] we prove it is uniquely
defined on [0, 7, ,]. As clearly lim,17, = 4+ oo a.s. the theorem will follow.

To proceed with this induction we consider as in the proof of Lemma 4 the
subspace of A (r,,, H) consisting of those processes X, such that I X =
lig, .1 X", where X" is the already defined solution on [0, 7,], and we define the
operator U on this subspace by:

UXt = th/\‘f,. -+ f].,-m.,.n v,]a(s, .y X) dZs.
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The existence and unicity of the solution X”*! on [0, 7, [ follows from the
contraction property of U and the unique extension of X"*! to [0, 7,,,] is as in
Lemmas 4 and 5 defined through the formula:

Xr= X2+ a(r,,, ., XPT)AZ

Tn+1 Tt 1’

where a(7,,, . , X"*") depends only on the values of X"*! on [0, 7, [.

THEOREM 5. Let Z be a real (resp. G-valued) semimartingale and a an H-valued
(resp. (G; H)-valued) predictable functional on QV. We assume the conditions Ly
and (L,) for a. Then the maximal solution (X, 1) of Theorem 3 is such that T = o0 a.s.
(i.e.: there is no explosion).

PrOOF. We have to prove that for every positive number a we have P([r < a))
= 0. Assuming on the contrary that P([r < a]) = 26 > 0 we will derive a con-
tradiction.

Let Q be a process associated with Z, according to Proposition 3. There exists a
positive number p and a stopping time 7” such that

" =1inf{t: Q, V| Xol| >p}Aa
and A
P([r" >7]n[r<a]) >5.
We define 7 :== 7 A7”, and the positive process on [0, [ : X* == sup,, || X,|*
From Theorem 3 follows:

(44.1) [a>r >7] C {limg[|lX,]| = co}.

We will derive a contradiction with the assumption § > 0, by proving that the
condition P[a > 7' > 7] > 8 > 0 would have the following inequality as a con-
sequence:

(44.2) E(X%- 1}y cop) < 2Cp2%18/%0,
This would contradict indeed the equality E{X}*-.1.._,} = oo, which follows
from 6 > 0 and (4.4.1).
In order to prove (4.4.2), we define by induction the following sequences of
stopping times (7,) and sets (F,), writing G = [t < 7" < a] for simplicity:
o, =inf{r:1>0,|X,]*>3}Aa
Fy =[x} >3]
and forn > 1:
0,41 =1nf{t: 1 >0, |X,|? > 3"} A (0,15 + algg)

F, . = [X* > 3””].

n On+1
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It is clear from the definitions that X;"I > 3 on G and moreover:

(4.4.3) 0, <oand X} > 3" 'as.on G;
(4.44) lim,6, = 7’ a.s. on G;
(4.4.5) SUP, <i<o,, MIXe — Xo Il 2 2X3 Liaso,, 50,1

From this last inequality (and the elementary inequality (@ + b)? < a? + 2b? for
b > 2a!) we get

2
lig, .1 <ai¥s., < lig,<aXg + 28UP, <o, IX, — X, |I°.

Op+1
Writing x, = E[lj, ., X ], the assumptions on the process Z and a then imply
for the sequence (x,):

Xpsr < %, + 2E{sup, o Wf1o,., qa(s, ., x) dZ,|1*}
<X, + 2E{[(Q,,,, = @) V1][10, .. llaCs, ., x)|I? dQ, }
< x, + 2CE{(Q,,,, — @, )(1 + supoi o, I1X,17) }

<x, +2C( + 3"*"")(ge1 — )

if we write g, for E(Q, ).
But according to (4.4.3) and the assumption § > 0, we have x, > 3”718, so that
the last inequality gives:

C
Xug1 S (1 + 18'3(‘1n+l - qn))xn + 2C(qn+1 - qn)'

As Q and X, are bounded by p on [0, /[, this implies
X,41 < 2an+1pe(180/6)q.,+1 < 2Cp2e(l8C/8)p-
Because of (4.4.4) inequality (4.4.2) follows, and therefore the contradiction.

4.5 Comparison with other methods and results and conclusion..

(1) We proved in Section 3, Proposition 2, that the class of Hilbert-valued
processes which satisfy the (*)-inequality (Definition 2) includes semimartingales.
Here is an important usual example of an L2-valued continuous deterministic
process which is not a semimartingale: consider the “spectral” (nonrandom)
process Z, defined by Z, = 1,5 ; € L% Q.,). The function ¢t — Z, is, as is well
known, of unbounded variation on any interval |0, a], « > 0, and has a zero
“martingale part”. It satisfies, however, the condition (*) with process Q : Q, = t.
Processes of this type are to be met frequently as soon as infinite-dimensional-
valued processes are considered. The techniques tied to the bounded variation of
the “nonmartingale part” of a semimartingale are not extendable to this case.

(2) In [5] M. Emery considered the following situation: Z is a real semi-
martingale and F is a mapping of cadlag processes into cadlag processes, with a
nonanticipative property and satisfying a Lipschitz condition, which is essentially
condition (L,) above. If € is the canonical space of paths, then Emery’s situation is
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contained in ours. When § is not the canonical space, these inclusions do not hold
anymore, which leads to the following remark.

(3) We assumed the functional a to be defined path-by-path, because such a
functional is given in most physical problems. But it is clear that a more abstract
form can be given to the theorem, involving a functional & mapping cadlag process
into locally bounded predictable processes, adapted in the following sense:

X, =X/ forall s<t=(aX), = (aX’),

and satisfying the lipschitz condition:

(L) llaX — ax’||, < Ly()(sup, || X; — X{||) for all 5 > 0, all ¢ and all couples
X and X’ of cadlag processes such that sup, || X,|| < b and sup, [ X;|| < b.

The results and proofs in such an abstract situation would be pure rewording of
what has been done in this paper.

(4) Since the writing of the manuscript of this paper, the authors have developed
stability results, which are in the process of being published.
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