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LIMIT POINTS OF {n""“S,}

By Joor MIUNHEER

University of Leiden, the Netherlands

Let X), X;, - - - be a sequence of independent identically distributed (i.i.d.)
positive random variables in the domain of attraction of a completely asym-
metric stable law with characteristic exponent « € (0, 1), i.e. their common
distribution function G is given by

PX,>x)=1- G(x) = x“L(x),

where L is a slowly varying function at infinity. In this paper we study the set
of limit points of {n™"*(X; + .-+ + X,):n=1,2, - - .}. The sets of limit points
that are possible are {0}, {}, [0, ] and [b, o] for some positive number &.

In Section 2 we consider the case where L is non-decreasing and in Section
3 the case where L is non-increasing. In both sections we give the conditions
in terms of L for each of the limit sets.

1. Introduction. Let X;, X;, --- be iid. random variables with common stable
distribution function F(-; a, 1), with 0 < a < 1, and characteristic function ¢ given by

(1.1) loge (£) = — | £|*{1 — i sign(¢) tan(ra/2)}.

This standardization for the characteristic function of stable distributions is used in the
monograph [7]. In this monograph one can find the values of the several constants that
appear in this paper.

Put S, = X; +---+ X,, for n = 1, 2, -... Then n™/*S, has, for all n, the same
distribution as X;. The set of limit points of {n™/%S,(2 logsn)*~*/*} is given by the interval
[{2B(a)}"""/*, ], where B(a) is a (known) constant given in formula (2.1.7) of [7]. This
assertion easily follows from the results obtained in [10] or in Chapter 9 of [7].

In the case where X, X, .- are ii.d. positive random variables in the domain of
attraction of a completely asymmetric stable distribution with characteristic function given
by (1.1), their common distribution function satisfies

(1.2) PXi>x)=1-G(x) =x"L(x),

where L is a slowly varying function at infinity and 0 < a < 1. Put S, = X; +- - -+ X,.. Now
we can prove the existence of a sequence A, such that

(1.3) liminf, . h;"*S, = (2B (a)} "™ as.

As in the case where the random variables have a stable distribution, we can prove that
the set of limit points of {h;"/S,} is given by the interval [{2B(a)}" "%, ]. In [5]
Fristedt and Pruitt define a sequence of normalizing constants %, such that (1.3) holds, by
using the inverse of the logarithm of the Laplace transform of X;. In [8] we define an(other)
normalizing sequence %, by making use of the function L given in (1.2). There we also
prove the asymptotic equivalence of both sequences of normalizing constants.

It is proved by Kesten [6], Theorem 1, that the set of accumulation points of {n~/%S, }
is w.p. 1 equal to a fixed (non-random) closed set. In the same paper Kesten formulates the
following problem. Find the structure of the set of the limit points B (L, a) of the sequence
{n""S,}. Here follows a summary of the results obtained in Erickson and Kesten [1] and
Erickson [2].
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ExampPLE 1. (See [2] Theorem 5, page 804.)
L(x) = (2 logzx)"™ for x sufficiently large. Then B (L, a) = [b, «] for some (unknown)
b € (0, »). It follows from Theorem 2 of [8] that & = {2B (a)}" /.

ExaMPLE 2. (See [2] Example 1, page 817.)

L(x) = (2 logzx) " “exp{(1 — a)(logsx)(1 — cos(logsx))} for x sufficiently large. Then
liminf, ... n%S, = b a.s. for some (unknown) b € (0, ). It follows from the results
obtained in this paper that in this case B(L, a) = [{2B (a)}"*/%, ].

ExaMPLE 3. (See [2] Theorem 8 Part 1, page 818.)
Suppose lim,.., L (x) = 0 and [* x"'L (x) dx = o then B(L, a) = [0, «].

ExAMPLE 4. (See [2] Theorem 8 Part 2, page 818.)
Suppose lim, . L(x) = o, L satisfies, for x — o, L(x’) ~ L(x) uniformly for § €

[p7", p] for some p > 1 and

j x7'L(x) exp{—k(L(x))""} dx =
for every k£ > 0. Then B(L, a) = [0, «].

ExaMPLE 5. (Compare with [1] Example 5, page 578.)
L (x) = (logsx)” with 0 < 8 < 1 — q, for x sufficiently large. Then B(L, a) = [0, ].

In this paper we distinguish two cases. In Section 2 we make the assumption that L is
non-decreasing and in Section 3 that L is non-increasing. In both cases we shall prove an
integral test that decides which is the set of limit points of {n"/%S,}. The general case,
without the assumption that either L is monotone or L is slowly varying at infinity, is
more complicated and therefore not considered in this paper. Some of the approximations
of the probabilities that we shall use in this paper can also be derived in the general case.

See, for example, Mijnheer [8].

2. L non-decreasing. Consider the integral I defined by

(2.1) I(L k)= f xHL (x)}?0 exp{—k (L (x))/"} dx.

Note that the integrand is different from the one in Example 4 in the introduction. Define
the functions Y4, 2 > 0, by

(2.2) ) % Yi(x) = k(L (x)},

Then I can be rewritten as the well-known integral

(2.3) JWr) = (2k)‘1/zj W (x) exp{— % 1P/2e(?6)} dx.

This integral occurs in the generalized law of the iterated logarithm. See, for example,
Chapters 4, 5 and 6 in [7]. ’

THEOREM 2.1. Let X;, X, --- be a sequence of i.i.d. positive random variables with
common distribution function G given by (1.2). Let B(L, a) be the (non-random) set of
limit points of {n"'/*S,}. Suppose L is non-decreasing. Then

a. B(L, a) = {} if I(L, k) < o for all k > 0;

b. B(L, &) = [0, ] if I(L, k) = = for all k > 0;

c. B(L, a) =[b, ] with b € (0, ) if there exists a number ko such that I(L, k) = « for
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all k < ko and I(L, k) < x for all k > ko. The constants b and ko in Part c satisfy the
following relation

(2.4) ko = B(a){I'(1 — &) cos(ma/2)} /1" pe/=e)
where B(a) is defined in (2.17) of [7].

REMARK. Define the function
fR"—>R*
by
(2.5) f(x) = B(a){I'(1 — @) cos(ma/2)}" -y /0=,

As usual we define f(0) = o and f() = 0. Then we can summarize the assertions of
Theorem 2.1 as follows.

If I(L, k) < « for all 2 > ko then P(S, < 5,n"*1.0) =0for0 < b, < b =< oo, If I(L, k)
= oo for all £ < ko then P(S, n™"*€ (by —¢, by +¢) i.0) =1forall 0 < b < b; < o and all
e>0.

In the proof of Theorem 2.1 we need some parts of the proof of the generalized law of
the iterated logarithm and some approximations for the probabilities on events of the type
{S. = bn'*}. These results will be stated and proved below. Let {X(¢):0 < ¢ < o} be a
completely asymmetric stable process with characteristic exponent a € (0, 1). The
characteristic function of X (1) is given by (1.1). For ¢ > 0, X (¢) has the same distribution
as ¢/*X (1). The sample paths of these completely asymmetric stable processes with a €
(0, 1) are non-decreasing pure jump functions. The expansion of the distribution function
near the origin (see, for example, Part IV of Theorem 2.1.7 in [7]) is given by

(2.6) P(X(1) = x) ~ (2/a)/’P(U = (2B (a)) P2 /1) for x | 0,

where U is the standard normal random variable and B («) the constant given by (2.1.7) of
[7]. From the characteristic function given in (1.1), we can deduce the following expansion
for the distribution function F(-; a, 1) of a stable random variable

2.7) F(x;o,1) =1— Y51 Ax™".

The values of the constants A, can be found in Theorem 2.1.6 of [7]. Another standard
reference, Feller (1971) Vol. II, gives a different standarization for the characteristic
function of a stable random variable and therefore obtains other constants. But the values
of A, are only important in the relation between b and %, as given in (2.4). From the
expansion of the density p(-; a, 1), we easily obtain, for x — oo,

(2.8) pxa 1) =aAix™ + Ox™*7)
and
(2.9) 1-F(xa1) = Ax™+ 0(x™).

The following assertion is proved by Feller in [3]. In fact, he proved a more general
result because he did not assume that the function L in (1.2) is slowly varying at infinity.
For any sequence c, such that n™c, increases, we have P (S, > ¢, i.0.) = 0 or 1 according
as Y, P(X, > cn) < ® or = o. If we take c, = n'"*?/* for some & > 0 then ¥ P(X,, > c,) <
oo and, w.p. 1, we have, for all sufficiently large n, X,, = ¢, and S, < ¢,. Obviously the last
7 such that S, > ¢, is a random variable, depending on the sample path. The result above
suggests a truncation at c¢,. The next lemma gives a second truncation.

LEMMA 2.2 Let X1, X,, --- be a sequence of positive i.i.d. random variables with
common distribution function G given by (1.2). Let ¢be a positive slowly varying function
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at infinity and take b, = n**¢(n), n = 1, 2, - - - . Suppose that b, satisfies, for n — o,
(2.10) n~'b3(log:n)(L (b)) — 0,

(2.11) 712 (logan )2 (L (by))¥ 2 — 0,

(2.12) n7b2(L (b)) — 0.

Then

n—l/a{2;1=l X IX;=b;)} >0 as.

Proor. PutX, = X,J(X,<b,),forj=1,2,---,and s =Y EX?forn=1,2, ---.
From the theory of regular variation (cf. Feller [4] Vol. II, Section VIII-9), it follows that,
for n — oo,

sE ~ ki Y51 b7°L (b)) ~ ken b2 L (b,),
where k;, k; are independent of n. Condition (2.10) implies

X, = o(sa(logz s2)7%) as. forn— oo,
Kolmogorov’s law of the iterated logarithm (see, for example, [9] Chapter X) implies
(2.13) limsupr {3 =1 (X; — EX))} (252 loges2) ™ =1 as.
Consequences of (2.11) and (2.12) are

(2.14) {sn(logzsn)}*n"* — 0
and
(2.15) neyr EX;—0

for n — oo. Then (2.13), (2.14) and (2.15) imply the assertion stated in the lemma. [0

Take ¢, = n"*9% ¢>0,n=1,2, ---, and let b, satisfy the conditions as mentioned in
_ Lemma 2.3. Then it is obvious that only the truncated random variables X, I (b, < X, < ¢»)
contribute to the non-zero limit points.

We shall define new random variables which have the same set of limit points. The
following lemma will be useful in the approximation of the distribution function of these

new random variables.

LEMMA 2.3. Let t be a continuous and non-decreasing real function. Define
(2.16) Co={(x,y):x=t(y),yE (bn, &)}
U{(x,y):x=¢tbn),0sy=b}U {(x,y):x= t(c), &= ¥},
where b, and c, are chosen as before. Define
(2.17) T.(w) =inf{¢: X (¢, w) € Cy}.
Then for y € [b,, c.] we have

y
(2.18) P[X(T,) =y]= P[X(¢(b.)) < b, ] + J' fxeen(2) dz,
bil

where fx () is the density of the random variable X (t(z)).

PrOOF. Let b, =y, <y:< --- <y, =y be a division of [b,, y] which becomes dense
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for m — . Because of the monotonicity of X (-, w) it follows that

P[X(T.) =y]=P[X(#(b.)=b., or X(t(v))<v forsome vE [b,,y]]

= P[X(¢(ba)) < 0] + 272 Plyj-1 = X(t(y-1)) = 3]

Y
= P[X(t(bs)) = bu] + X7 j fraos,n(2) dz.
Y1

The inequality on the right-hand side in Part a follows if m — . [
Take A > 0 (fixed). Define the sequence of (non-random) stopping times T'y,,, n = 1, 2,
<« , by
Tyin(w) = (1 — A)AT'L(by)
for all w. Then we have, for b, < y,
1-PX(Tin)<y)=1-PX1)=(1-A)"A/L™(bn)y)
~ (1 —A)L(b,)y™ for n— oo

Because of the monotonicity of L, we see that there exists a number n,(A) such that for n
= n;(A) we have

(2.19) PX(Ti,n)=y)=1—-L(y)y™ = G(y)

for y = b,.
The standard representation of slowly varying functions is given by (see Feller [4] Vol.
II page 282)

Yy
(2.20) L(y) = c(y)exp{[ xle(x) dx},
1

where c¢(x) — ¢ € (0, ©) and e(x) — 0 for x — .

Let us first suppose that the function c is constant, i.e. we can write L(y) = ¢ exp
{JY x7'e(x) dx}. Because L is also non-decreasing, we obtain that L is a continuous
differentiable function and e(x) = 0 for all x. Define the functions ¢,,n = 1,2, ---, by

ta(y) = (1 + A)AT'L(b,) for 0<y= b,
(2.21) =(1+A)A'L(y) for b.=y=c,
=1+ A)Ai7'L(c,) for y> ca.

For every function ¢, we define a set C, as in Lemma 2.3 and a stopping time 7%, as in
(2.17). From Lemma 2.3 we have, for y € [b,, ¢,],

y
(2.22) P[X(T3n) = y] = P[X (£ (bn)) < ba] +[ Jre,en(2) da.
bn

Because {X(¢):0 < ¢ < o} is a stable process, we have
P[X(tx(bn)) < bx] = P[X(1) < £"/%(bs) b0 ].
From the expansion given in (2.9), it follows that the last probability is equal to

(2.23) F(£:"*(bn)bn; @, 1) = 1 = (1 + A)L(5,) ;" + O (L*(ba)6:™)

for n — oo.
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From the scaling property and the expansion given in (2.8), we obtain

Yy
(2.24) [ fxe,en(2) dz = (1 + A){(8°L(b.) —y™"L(y)} + Ra,
b

n

where R, = 0(b7,27'L?(b,)y) for n — oo,

The results in (2.23) and (2.24) together with our choice b, = n'/*¢(n), where ¢is a
slowly varying function at infinity, give, for y € [bn, ¢.],

(2.25) P[X(T2n) =yl =1- 1+ A)y"L(y) + R,

where R} = 0 (n"?*® for n — o and some § > 0.
Thus there exists a number n2(A) such that for all n = n,(A) we have for y € [bn, ¢x],

(2.26) P[X(Tzn) =yl=1-y"L(y) = G(y).

In the general case, the function c in the representation (2.20) is not constant. Then we
define slowly varying functions L, such that

y
L.(y) = En(y)exp{j x7'En (x) dx},
1

where the functions &, are constant, &, is non-negative, and L (y) < L, (y) for y € [ba, 4]
and 7 sufficiently large. We define the stopping times 7%,, by making use of the functions
L,. This yields (2.26) in the case that we only make the assumption that L is non-
decreasing. Now we can summarize these results.

LEMMA 2.4. Let the distribution function G be given by (1.2). Let {X(¢):0 =t < x} be
a completely asymmetric stable process with characteristic exponent o € (0, 1). Suppose
b, = n'*¢(n) and satisfies (2.10), (2.11) and (2.12). Take ¢ > 0 and c, = n""*/*. Then
there exist two sequences of stopping times {T\,} and {T: .} such that, for sufficiently
large n and y € [b,, c.], we have

(2.27) P(X(Tz») =y) = G(y) = PX(T1,n) = ).
The stopping times satisfy, for A > 0 and for n — o,

(2.28) Sk Tie~ (1 — A)AT'nL(B,)

and

(2.29) 1+ 8)T"An 'L 0 {(Ton+ -+- + Ton} > 1 as.

PROOF. Assertion (2.27) is a combination of (2.19), (2.26) and the remarks after that
formula. From the theory of slowly varying functions (see for example Feller [4]), it follows
that

Si-1 L(br) ~nL(b,) for n— .
This implies (2.28). From the definition of T5,,, we have, for some constant c,
| ETs,. — (1 + A)AT'L (b,)| = eL (¢,)b7°L (by).
This yields
(2.30) (1+A) AT LT B (E (T + - + Ton)} > 1 for n— oo,
There exists some constant & such that
S jALTHb) Var(Te,) < k ¥5-1j 2L72(b)) L (c)) < ce.
Convergence of the last series and (2.30) imply (2.29).
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From Lemma 2.2 and the assertion before that lemma, it follows that {n~'/*S,} and
{n™V* ¥%-1 XpI(br < Xi < cz)} have the same set of limit points. We write F instead of
F(-; a, 1). Define the sequences of real numbers ¢, and s,, n = 1,2, ---, by

(2.31) tn= b {F7'G(bn)} ™
and

(2.32) s = ci{F'G(c.)} ™™
Then

P(X(t,) = b,) = G(b,)
and
P(X(s,) = cn) = G(cn).

Define the sequence of random variables X}, n = 1, 2, - .., with distribution function F}
given by

Fi(x) =P(X(t) <x) for 0=x=<2b,
(2.33) =G(x) for bp,=x=ec,
= P(X(sn) < x) for x=c,.
Then it easily follows that {rn""/*S,} and {n~'/*S}}, where
(2.34) Str=X{+ ...+ X},

have the same set of limit points.
In the next lemma we give some bounds for probabilities on events in which the random

variables S} occur.

LEMMA 2.5. Let S} be defined by (2.34). Let U be a standard normal random
variable. Suppose lim, L (x) = . Take some b > 0. Let the functions y; and f be defined
by (2.2) and (2.5).

a. There exist positive constants b', k' and k, with

O<b<b <wandk’ =f(b)
such that
P(S}=bn"%) <= ki P(U = Yn(bn)).

b. For § > 0 there exist positive constants b”, k" and k; with0 < b<bd”" <b(1+§) <
and k” = f(b") such that

P®n'*(1 —8) =S} = bn'/*(1 + 8)) = ke P(U = Y4-(bs)) + 1,

where r, = 0(n"*?) for n — o,

Proor. a. The expansion of the tail of F~* and the definition of G as given in (1.2) give
that the numbers £, and s, as defined in (2.31) and (2.32) satisfy, for n — oo,

(2.35) © ta~ A7'L(bs)
(2.36) and 8n ~ AT'L(cn).
From the theory of slowly varying functions, we obtain
Sk tr ~Ai'nL(b,) for n— .
Thus for n sufficiently large we have
i1 Tie < Yh=1 te.
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It follows from Lemma 2.4 and the definition of F that there exists a number n; = ni(4)
such that for n = n, we have

PX(Ty») =y)= Fi(y) forall y€& (0, ).
Let ¢ > 1. Then for n = nz(A, ¢) we have
P(Sk=y) = cPXQiz1 Tre) =)
for all positive y. From (2.28), it follows that for n sufficiently large we have
P(S} = bn'*) = ¢, P(X(1) = b” AV*L7%(bn)).
From lim,_,. L (x) = o, the expansion (2.6) and the definitions in (2.2) and (2.5), we obtain
P(S} =bn"") <= =k P(U = yr (ba)).

b. From Lemma 2.4 and the definition of F}, it follows that there exists a number nz =
ns(A) such that for all n = n; we have

(2.37) P(X(Te.) =y) < Fit(y) for all positive y.

Remember that the stopping times T;,, n = 1, 2, - -+ , are random stopping times. From
Chebyshev’s inequality we obtain, for ¢ > 0,

rn=P(|Xk=1 (Tor — E T2r)| > enL(by))
< e 2L7%(b,) Var(Xi-1 To)
< ce2n7 L 74(by) Yi-1 ti(ch) L (br) "

for some positive constant ¢ and #(-) is used to define T:;. From properties of slowly
varying functions and the choice b, = £'/*/(k), it follows that, for n — o

(2.38) rn=o(n"?)
and
(2.39) Yit E Top ~ (1 + AAT'RL ().

We can write
P(nV*b(1 - 8) < S =n"*b(1 +8)) = P(S¥ =n"*b(1+8)) — P(Si = n'’*b(1 —§)).

The last probability on the right-hand side has an upper bound as given in Part a of this

lemma.
From (2.37), it follows that for any positive constant ¢ > 1 there exists a number n, =

n4(4, ¢) such that, for all n = n,, we have
P(S; =n"*b(1 +8)) = c P(XTi1 Top) < n'/°b(1 +9))
=c P(X($hoi Top) = nV°b(1 + 8) A | Tk=1 (Top — ETok) | < enL(br))
+ ¢ P(X(Dpoi Tep) < nV*b(1 + 8) A\ | Xi=1 (Top — ETop) | >enL(br))
=P, + Ps.
From the scaling property of stable processes and (2.39), we obtain
Pi=P[X(1) = (1+ A+ &) A6 (1 + 8){L(b,)} ).
From the expansion given in (2.6), lim._... L (x) = o, (2.2) and (2.5) it follows that
Py = ¢ P[U = - (ba)].
Then the assertion stated in Part b easily follows. O
Let {r,} be a sequence of integers, such that

(2.40) b, /bs, , ~ exP{Yi*(bn)} forj— o,
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where v, is defined by (2.2).

LEMMA 2.6. Let {b,} satisfy the conditions as given in Lemma 2.2. Let n; be defined
such that (2.40) holds and let the integral J ({») be defined by (2.3). Let U be the standard
normal random variable. Suppose lim,_, Yi (x) = ®. Then J () < o iff

T P(U = d(by)) < .

ProoF. A similar assertion is proved in the proof of the generalized law of the iterated
logarithm. We shall write 3, instead of b, . Then we have, for some constants ¢; and cz,

o 34 (Byer) eXp<— > ap%wm)) < 3 Wa(Brer) eXp<— 2 ap‘iw,-ﬂ)) 10g(8 +1/8,)

=JWn) =T, ¥e(B)) exp(- % \P}‘Z(B;‘)) log(B+1/B,) < 2 X ¥x'(B)) eXp(- % \Pi(ﬁj)) .

Now the assertion of the lemma easily follows from the following well-known asymptotic
expansion of the tail of the standard normal distribution function

P(U=x) Ll 2 g . O
T X

Now we can prove the main result of this section.

PrOOF OF THEOREM 2.1. Suppose lim. . L(x) < . Then I(L, k) < o for all £ > 0.
The law of the iterated logarithm (see [5], [8] or Chapter 10 in [7]) implies

(2.41) liminf,_.. n7%8,(2 logan)" /% = c € (0, ©) as.

This implies liminf,_, n7'/%S, = 0 a.s. As in Lemma 2.5 we obtain, for any b > 0 and & >
0, that there exist constants b;, £, and k&, such that for all n

Pb(1—e)n* =8, =b(1 +e)n'* 1= kiP[bi(1 —e) = X1 = bi(1+¢€)]= k.
The constant #; is independent of r and depends only on b and e. Then we easily obtain
Pb1 —e)nY =8, =b(l+¢e)n""i0]=1

from Corollary 2, page 1178 of Kesten [6]. This implies & € B(L, a). Since this holds for all
b > 0, we have B(L, a) = [0, ]. Thus the theorem is proved in the case lim,_... L (x) <
oo, Therefore we shall, from now on, suppose that lim,_,., L (x) = o°.

First we shall prove Part c. Let b satisfy (2.4). We shall show that

(2.42) liminf, .. n""*S, = b as.
As we have seen, it is sufficient to prove that
(243) liminf, .. n”/*S% = b as,

where S*, is defined by (2.34).

Take ¢ > 0, let A, be the event {S* =< b(1 — &)n'/*} and let B, be the event {S%, =
b(1 — e)nj{i}, where n, is a subsequence of integers such that &, satisfies (2.40). Obviously
we have

(2.44) {Ario0} C {Bjio}.

Tt follows from (2.40) and the choice b, = n'/*¢(n), where ¢is a slowly varying function,
that n,+1/n; — 1 for j — c. Then we have

P(B,) = P(S% = b(1 — )n}{%)
= P(S} = b(1 — &)n;’*) for some ¢, € (0, ¢) and j sufficiently large

= ki P(U = yx (b,)) by Lemma 2.5, Part a,
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where %, is some positive constant and k2’ > ko. Because I(L, k) < o for all 2 > k,, it
follows from Lemma 2.6 that Y, P(B;) < . The Borel-Cantelli lemma gives P (B jlo.) =
0. From (2.44) we obtain P (A, i.0.) = 0. This yields (2.43).

Next we shall show that every point in the interval [, «) is a limit point of {S,n~*/*}.
Take b, > b and ¢ > 0. Define the events D,,n =1, 2, --- by

bi(l1—e)n'* <8, < b (1+e)n"~

We remark that S, is the sum of n iid. random variables but S* is the sum of n
independent non-identically distributed random variables. We shall write, for n =
1,2’ s ,Sn= U+ V. + W,,,Where

(2.45) U =Y XiI(0= X, < b)),
(2.46) Va=YLXI(b:; <X, <c)
and

(247 W, =Yt Xil(ci= X; < ).

Similarly we can write S% = U% + V*% + W*. From the definition of S* it follows that, for
all n, V, and V% have the same distribution. We showed in Lemma 2.2 that, w.p. 1.,

nV*U,—> 0 and n YU} — 0.

Lemma 3 from Chapter X of Petrov [9], page 296 impliesA together with (2.10) and (2.11)
that, for e > 0 and § > 0,

(2.48) P[U, = en"*] < (logn)™"?

for n sufficiently large. We obtain the same upper bound for P[U* = en"*].
Next we shall derive an upper bound for P[W,, = en"*]. By Markov’s inequality we
havefor0< B <a

P[W, = en"*] = e Pn P EWSE,
From the results in Chapter VIII in Feller [4] Vol. II and ¢, = n**?/%, we obtain
EWE<EY: Xfle;=Xi<w)<kn™
for some constant % and 8, > 0. We obtain the same upper bound for P[W* = en'/*]. Let
Pi=Pl0< U, <en""/4A (b—n"* = Vo = (b +e/2n"* A 0= W, < en'’e/4]

and P the probability on a similar event in which U%, V* and W* occur. Then we easily
obtain

P, =P[(b—en'/*= 8, = (b+en",
P[(b—e)n"* < V, < (b + ¢/2)n**] — P, = o((logn)™°) for 6 > 0 and n — oo,
P%=P[(b — ¢/2)n"" < S*% < (b + ¢/2)n'/*]
and
P[(b— e)n'/* < V% =< (b + ¢/2)n"/*] — P* = o((logn)™*"*)" for § > 0 and n — .

Now we have
) 1
(2.49) Sior = PID) = B2 nj" S, ., PIDA).

We may restrict ourselves to the case where the slowly varying function ¢ is non-increasing.
From (2.40) and b, = n'/*#(n), it follows that

ns— nJj-1 —
NN 2 o yib,).
n;
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for some constant c.
From Lemma 2.5 Part b, it follows that the series (2.49) diverges according as

1
(2.50) Y ¥ (ba) eXp{— 3 \I/i"(bn,.)}

diverges, where k” > ko. Take k; € (ko, k"), then I(L, k) = c and divergence of the series
(2.50) easily follows. By Corollary 2 in Kesten [6] page 1178, we have b, € B(L, «).

If we take a sequence &, with &, — 0 for £ — o and b, in a countable dense subset of
[, ) then we easily obtain that, w.p. 1, [, ] is the set of limit points of {n""/*S,}. This
completes the proof of Theorem 2.1 Part c.

Part b has already been proved in the case lim,...L(x) < . In the case lim, .., L(x) =
oo, Part b follows from the proof of the second assertion of Part c. Finally, Part a follows
from the proof of the first assertion of Part c. [0

We conclude this section with two examples.

ExaMPLE 1. (See also Examples 1 and 5 in Section 1.)
L(x) = (2 logex)* for x sufficiently large. Then
I(L,k) <o forall B>1—a or B=1—a and k>%
=0 forall 0<B<l—a or B=1—a and k='A
B(L,a) =[0,0] for 0<B<1-a
= [b, o] forsome >0 if B=1-a
= (oo} for B>1-a.
For B < 0 see Example 1 in Section 3.
ExampLE 2. (Compare with a remark after Theorem 3.1 on page 1117 in Wichura
[10])
L(x) = exp(log x/logsx) for x sufficiently large.
This slowly varying function does not satisfy the condition in Example 4 of Section 1.

I(L, k) < o for all 2 > 0 and therefore B(L, a) = {}.

3. L non-increasing. In this section we use results of stable processes which are
related with the heavy tail of the completely asymmetric stable distribution. Now there
are only two possible sets of limit points. Define the ingegral I, by

3.1) I(L) =f x'L(x) dx.
Define the function ¢ by
(3.2) Y(x) = {L(x)} ™%

then we can rewrite

IL(L) = f "W (x) dx.

This integral occurs in the generalized law of the iterated logarithm for the heavy tails of
random variables with a stable distribution. (See Chapter 8 in [7] for stable distributions
or [3] for random variables in the domain of attraction of stable distributions.)

In this section we shall prove the following theorem.
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THEOREM 3.1. Let X1, X;, --- be a sequence of positive i.i.d. random variables with
common distribution function G, given by (1.2). Let B(L, a) be the (non-random) set of
limit points of {n"**S,}. Suppose L is non-increasing. Then

a. B(L, a) = {0} if L(L) <o

b. B(L,a) =[0,0] if L(L)= .

RE.MARK. The assertions of the theorem above are equivalent with the following two
assertions.
Forall b€ (0, ), P(S,=bn"*io0)=0 if L(L)<o.
Forall b€ (0,o) and £>0, P(S.n/*€(b—¢eb+eio)=1 if I(L)=oo.

We define the sequences b, and c, as in Section 2. In the proof of Theorem 3.1 we make
use of the following lemmas. 2

LEMMA 3.2. Let t be a continuous and non-increasing real function. Define
(3.3) Co={(x,5):x=Uy), y € (b, &)}
U{(x,):x=tbn), 0= y= b} U {(x, y):x= tcn), y= & }.
Define T,(w) by (2.17). Then for y € [ba, c.] we have

y
(3.4) P[X(t(b.)) < b.] +f fxwwn(2) dz < P[X(T») < y],
b’l

where fxu() is the density of the random variable X(t(z)).

The proof of this lemma follows the same lines as the proof of Lemma 2.3. We omit the
proof.

LEMMA 3.3. Let G, X(t), b, and c, be given as in Lemma 2.4. Then there exist two
sequences of stopping times {T1,} and {T2.} such that, for sufficiently large n and y €
{bn, cx], we have

(3.5) P(X(Tr) = y) = G(y) = PX(T1,n) = )
and, for n — o,

(3.6) 1=-MATRT LY (b)) {T1i+ ++- + Tin} > 1 as.
and

3.7 Y1 Tor ~ (1 + A)AT' nL(bn).

PrOOF. The proof is essentially the same as the proof of Lemma 2.4. We only mention
the points of difference. We define T3,, n=1,2, - -+, by

(3.8) T2n(w) = (1 + A)AT'L(bn)

for all w. Now the stopping times Ty ,,n =1, 2, ---, are random. In the case where the
function c in representation (2.20) is constant we define the function ¢, by

t.(y) = (1 — A)AT'L(b,) for 0<y<b,
(3.9) =(1-A)A7L(y) for b,=y=c,
= (1 —-A)Ar'L(c,) for y>cn,

where A is some positive constant. In the general case we proceed in a similar way as in the
proof of Lemma 2.4. 0
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LEMMA 3.4. Let S be defined by (2.34). Suppose lim,_,.L(x) = 0. Take b > 0. Let the
function Y be defined by (3.2).
a. There exists a positive constant k; such that

P(S} = bn'*) < ki L(b,) = ki ™*(bn).
b. For § > 0 there exists a positive constant k; = ky(b, 8) such that
P®n'*(1 — 8) =S¥ = bn'*(1 + 8)) = ko L(b,) + rn,
where r, = o(n"¥?) for n — .
ProoF. Part a. Similarly as in the proof of Lemma 2.5, we can show that
P[X(Ton) =yl =Fi(y) forall ye (0, )

for n sufficiently large. The assertion easily follows from (3.7), the scaling property of
stable processes and the expansion of the heavy tail of a stable distribution as given in
(2.9).

The assertion in Part b can be proved following the same lines as the proof of Lemma
2.5 Part b. 0

LEMMA 3.5. Let {b,} satisfy b, = n"*¢(n),n =1, 2, -, where ¢is a slowly varying
function. Take m > 1. Let n,, denote the largest integer smaller than m*, k=1,2, ---.
Then

L(L) <o iff Yi-; L(bs,) < co.

Proor. Since L is non-increasing we have, for some constants ¢; and ¢z,

b, b,
a”'e;log m ¥io1 L(b,) < Y51 L(by,) f x N dx = Y5 f x7'L(x) dx
b, b,

Pr-1 Rpy

by,

= L(L) = Y71 L(b,, ) j x7'dx < a'eslog m Y51 L(by, ). O
b,

-1

ProoF oF THEOREM 3.1. Suppose lim,,.L(x) > 0. Then I;(L) = . Again (2.41) holds.
As in the proof of Theorem 2.1 it follows that B(L, @) = [0, »]. From now on we shall
suppose lim,_,..L(x) = 0. Suppose I,(L) < . Define, for n =1, 2, . - -, the events

An:8% > an'/e,

where a is some positive real number. It follows that P(A, i.0.) = 0. This implies
lim, .. 8¥n™"* = lim supn-~Si¥n~"* = 0 a.s. Because {S,n/%} and {S*n~""} have the
same limit points, we have proved Part a of the theorem.

Suppose I(L) = « and lim,,.L(x) = 0. Take b > 0 and 8 > 0. Define, for n = 1, 2,
-+ +, the events D, by

D,:b(1 - 8)n* <S8, < b + &)n""
It easily follows from Lemma 3.5 and the monotony of L that
Y n 7 P(D,) = .
By Corollary 2 of [6] we have b € B(L, a). Since this holds for all & > 0, we have B(L, «)
= [0, o]. a
ExampLE 1.
L(x) = (2 logsx)®, B <O.
L(L)=0  forall B. B(L,a)=[0, «].
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EXAMPLE 2.
L(x) = (log x)%, B<0.
L(L)<» for B<-—1
=0 for -1=8<0.
B(L, o) = {0} for p<-1
=[0,0] for -1=8<0.
ExAMPLE 3.

L(x) = exp(—log x/log.x) for x sufficiently large.
L(L) < and B(%, a) = {0}.
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