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THE LOWER LIMIT OF A NORMALIZED RANDOM WALK

By Cun-Hul ZHANG
State University of New York at Stony Brook

Let {S,} be a random walk with underlying distribution function F(x).
and {v,} be a sequence of constants such that y,/n is nondecreasing. A
universal integral test is given which determines the lower limit of S, /v, up
to a constant scale for limsup y,,/y, < c. The generalized LIL is obtained
which contains the main result of Fristedt—Pruitt (1971). The rapidly growing
random walks and the limit points of {S,/y,} are also studied.

1. Introduction. Let {X, X,, n > 1} be a sequence of independent random
variables with common distribution function F(x) and {v,, n > 1} be a sequence
of positive constants such that y,/n is nondecreasing in n. Put S, =
X, + -+ +X,, n> 1. We shall study the lower limit of the normalized random
walk {S,/v,}. Feller (1946) found an integral test which determines the upper
limit of {|S,/v,|}. The limit points of {S,/y,} have also been studied by
Derman-Robbins (1955), Kesten (1970), Erickson-Kesten (1974), Erickson (1976),
Pruitt (1981b), Mijnheer (1982), and Griffin (1983). We shall also study the
generalized law of the iterated logarithm for asymmetric random variables which
has been considered by Fristedt—Pruitt (1971), Klass (1976, 1977), Klass—Teicher
(1977), and Pruitt (1981a). The relationship between the results in this paper and
the previous papers will be discussed after the statement of the main theorems.

Chow-Zhang (1984) gave an integral test which determines the infinite limit
points of {S,/v,}. And it follows from Theorem 2 there that P{liminfS, /y, >
—o0} =1and E|X|= oo imply

P{s,m - ( £ X+ o(0) 4 o<1>} -,

i=1

where x* = max(x, 0). Therefore, as far as the lower limit is concerned, we only
have to deal with the case where F(0 — ) = 0. Unless otherwise stated, the
condition F(0 — ) = 0 will be assumed in the sequel.

Set
(1.1) m(x) = E min(X, x) = /0"(1 — F(t))dt, x>0,
(1.2) B(x) =v(x)/x, x>0,
(1.3) B~ '(x) =inf{y: B(y) > x}, inf? =0, x>0,

(1.4) I(\) = flwx_lexp[—B‘l(m(x)/?\)m(x)/.v;] dx, A>0,
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and
(1.5) 6=0(F,y)=inf(A: I(A\) = 0}, inf@ = oo,

where y(n) =v,, n > 1, y(0) = 0, and y(x)/x is continuous and nondecreasing.
The following theorem gives an integral test which determines the lower limit of
{S,/¥.} up to a scale constant.

THEOREM 1. Suppose that
(1.6) limsup v,,,/Y, = p < 0.
Then
(1.7)  p 'max(1.17,4/p)8(F,v) < liminfS,/y, < ped(F,y) a.s,
where e = 2.7182818... .

The proof of Theorem 1 is contained in Section 2. Consider the inequalities
(1.8) c,0 < liminfS,/y, < c,f as.

In (1.7) ¢, and c, are two constants not depending on F (note that there is no
assumption ‘on the distribution F in Theorem 1). But ¢, and c, are actually
functions of p and the ratio ¢,/c, is larger than one. Under various conditions on
{y,)} and F, (1.8) holds for larger ¢, and smaller 02 These improvements of (1.7)
are put at the end of Section 2.

THEOREM 2. Suppose that m(x) is a slowly varying function and that

(1.9) inf{ limsup v,/y,: w > 1} =1.

n<k<wn

Then P{limint S, /v, = ) = 1.

COROLLARY 1. Suppose that m(x) is a slowly varying function. Then
(1.10) liminfS,/b,=1 a.s.,
where the constants b,, n > 1, are defined by
(1.11) b(x) = inf{xm(y): (y/m(y))log,y = x},  log,y = (log(log y) )",

and
b, = b(n), n>1.

REMARK. (1.9) is the condition (2.9) in Kesten (1970, Theorem 2).

(S,} is said to obey a generalized law of the iterated logarithm if
(1.12) there exist constants {b,, n >1}, 0 < b, > oo such that
liminfS,/b, =1 as. .
In Corollary 1 these constants {b,, n > 1} are found for the case where m(x) is
slowly varying. The following theorem shows that (1.12) holds under a quite
general condition.
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THEOREM 3. Suppose that P{limS, = oo} = 1. Then at least one of the
following two conditions is satisfied:

(i) P{|X| > x} is a slowly varying function as x tends to infinity;
(ii) (1.12) holds for some {b,, n > 1} such that b,/n is nondecreasing.

REMARKS. 1. Theorem 3 holds without the assumption that F(0 — ) = 0.
2. P{limS, = o0} =1 is necessary for (1.12). 3. If E|X|= oo and b,/n is
nondecreasing, P{limsupS,/b, = 1} = 0 by the SLLN of Feller (1946).

The proof of Theorem 2 is contained in Section 2, and the proof of Theorem 3
is contained in Section 3.

Following Theorem 6 of Kesten (1970), the integral test of Erickson (1973)
determines the lower limit of {S,/n}. Complete information about liminf n~'/2S,
may also be obtained by the integral test [equivalent to (1.4)] of Mijnheer (1982)
under the condition that x%1 — F(x)) is slowly varying and monotone for
0 < a < 1. Pruitt (1981b) pointed out that liminfn~'/°S, is either zero or
infinity except for the critical power a =8, but no information about
liminf n~'/%S, is given in his paper. The interest of Theorem 1 is that it assumes
no condition on the distribution function F(x) and a very general condition (1.6)
on the normalizing constants, and that the test integral (1.4) is simple. The
disadvantage of Theorem 1 is that%he lower limit is not as fully determined as in
Theorem 2.1 of Mijnheer (1982) for the special case. However, our integral test
does give the complete information about liminfS, /vy, in Theorem 2 under the
condition that m(x) is slowly varying which covers a case left open by the
previous authors. The generalized LIL derived from Theorem 2 (Corollary 1) is
equivalent to Theorem 9.2 of Pruitt (198la) which contains Theorem 4 of
Klass—Teicher (1977) (in the sense that the ratio of our normalizing constants
and theirs tends to a positive constant). For the generalized LIL, finding neces-
sary and sufficient conditions for (1.12) was stated as an open problem in Pruitt
(1981a). Fristedt—Pruitt (1971) proved the validity of (1.12) under the condition
that F(0 — ) =0 and EX? < oo for some p > 0. Assume that F(0 — ) =0. It
follows from (i) of Theorem 3 that EX” > lim x?(1 — F(x)) = o for any p > 0.
Therefore, the condition for (1.12) in Theorem 3 is weaker than that in Theorem
4 of Fristedt—Pruitt (1971). It is an interesting fact, by Theorem 3, that the
validity of (1.12) is not completely determined by the “fatness” of the tail
1 — F(x). In fact, for any distribution function F(x), an F*(x) with “fatter” tail
(F*(x) < F(x)) may be constructed such that (ii) of Theorem 3 holds for the
random walk with underlying distribution function F *(x). In Section 3 Theorem
3 is restated more precisely as Theorem 3* where the sequence b,, n > 1, is
defined and a lower bound @, > 0 and an upper bound §* < oo are found for the
lower limit. The lower bound A, and the upper bound §* are both equal to one
(Corollary 2, Section 3) for a special case which is not covered by the previous
studies. A random walk {S,} is said to be rapidly growing if the underlying
distribution function satisfies (i) of Theorem 3. Some results about rapidly
growing random walks are presented in Section 4. Conditions are given under
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which lim S, /max;_,X; =1, a.s. and/or {S,} does not obey the generalized LIL
(1.12). Further discussions about this problem are also included in Section 4. A
brief discussion about the limit points of the normalized random walk is con-

tained in Section 5.

2. The integral test. Let X,X,, X,,... be a sequence of independent non-
negative random variables with common distribution function F(x) and y(x) be
a positive function such that y(x)/x is nondecreasing. We shall assume that y(x)
is continuous in x, lim . _, ;y(x)/x = 0, lim, _, ,y(x)/x = o, EX = o0, and

(2.1) v(2x)/y(x) <M < .

Set

(22) B(x) = v(x)/x and B(x)=inf(y: B(¥) = x},
(2.3) m(x) = fOxP{X > ¢} dt.

And define the functions A(x, A\) and constants u,, v,, £ = 1,2,... by
(2.4) m(h(x,\)) = f’“’"“p{x > thdt=AB(x), A>0,
0

(2.5) B(u,) =w* and y(v,) =w*, w>1.

We shall keep the above notations and assumptions in this section.

LEMMA 1. LetVY,Y,,...,Y, bei.i.d. random variables and {f,,..., fn} be a
submartingale with fy = Y, + -+ +Y,. Then for any positive t and real x

—tx ty\n
(2.6) P{ lr;ifoij} <e "(Ee'™)".
In addition, if EY =0, EY? = 02 < o0, P(Y < C} = 1, and x > 0, then
(2.7) P{ 1mafoj > x} < exp| —xC~'G(xC/(no?))],
<j<

where G(y) = [Jlog(1 + t)dt/y for anyy > 0.

This lemma is the combination of Example 7.4.7 and Lemma 10.2.1 of Chow
and Teicher (1978, pages 244 and 338). We take the constant b to minimize the
right-hand side of Lemma 10.2.1 there. We shall use this lemma to obtain the
bounds of probabilities.

LEmMMA 2. If P{S,/y, < M\ i.0.} =0, then

(2.8) Y. P{S./v, <A, forsomev, <n<wv,,} < oo.
Y k=1

REMARK. One can trace an analogy between this lemma and Theorem 2 of
Kesten (1970).
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ProoF. Let p(x)= P{S,/y,> MA\, all n>x} and m, K be two integers
such that w™ ! > M and p(x) > } for all x > vg. Then by (2.1) and (2.5)

X = Vpin > x/2 2 Vpyy

and
My(x — v5,1)/7(x) 2 ¥(x = 0,0,)/¥(x/2) 21 forx > vpp,
oG
- P(S,/v, < A for some v, < n < v;,}
k=K
= P{S,/v, < A some Dksn<uk+1}p(0k+m_vk+1)
k=K

IA
Mg

P{S,,/y,, < X some v, < n < v,,, and

k=1

Sj/‘Yj > MMy(Jj - Dk+1)/7(j) forall j > vk+m}

A
T8

P(S,/Y, <A some v, < n < v, and
1

S;/v; > A forall j > v}

m oC

oo
Y g (say) = 2 Y Qmri<m<00.0
k=1 i=1k=0

LEMMA 3. Let c* be the constant satisfying [ log(l + t) dt = c*G(c*) = 1.
Suppose that (2.8) holds. Then

/xx’lexp[—,B‘I(m(x)/(ck))m(x)/x] dx < o fore< (1+¢*) .

REMARK. c*=e—land (1 +c*) ' =1/e (e=2.7182818...).

PrOOF. Let 8 < 1/e and set X’ = min(X, h(n, 1)) and S, =
" min(X;, A(n,8))). Then

P{S,/v,> A} < (\y,) 'ES;+ P(S,#S;}
=8+ P(S,#S,}.

(2.9)

1

Set p = P{X > h(n, 8\)}, we may assume that p < 3,
P{S,=S,} = P{X, < h(n,8\),i=1,...,n}
(2.10) > exp[—np(l +p)]
i > exp[— (1 + p)nm(h(n, X)) /h(n, 5))]
= exp[— (1 + p)8Ay(n)/h(n, 8))].
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On the other hand, it follows from Lemma 1 that
P(S;/v, 2 N} = P{S; — ES] 2 (1 = 8)Ay,}
< exp|— (1 = $)Ay,(A(n,81)) "'
xG((1 ~ )My, h(n, 80)/(nE(X")))]. -
Since G(*) is increasing and E(X’")? < h(n,8\)8AB(n), nB(n) = v,,
P(S1/v, 2 A) < exp[— (1 = $)Ay,(h(n, 83)) 'G(1 - 8)/8)].
It follows from the assumption 8 < (1 + ¢*)~! that
(1-8)/8>c*
and
(1-8)87'G((1 — 8)/8) > c*G(c*) = 1.
Set ¢ = (1 — 8)87'G((1 — 8§)/8) — 1> 0. Then
P(S;/v, 2 \} < exp|—(1 + &)8\y,/h(n,80)],
P(S,/v, <A} 2 P{S,= 8} = P{S;/v, 2 A}
> exp[— (1 + p)\y,/h(n, 8X)] — exp[— (1 + &)8Ay,/h(n, )]
= exp[— (1 + p)dAy,/h(n, 80)]
x (1 — exp[ — (& = p)8Ay,/A(n, 8M)]).

Since P(S,/v, <A} = o(1) as n — oo, either lim inf v, /h(n, 6A) = 0 or
limy,/h(n, 8\) = co. Assume that v, /A(n’,8A) = 0 for n” = oo. Then

P{Sn'/Yn’ = A} = P{Sr:’/Yn’ = >\} + P{Sn’ #* Sr:'}
<6+ o0(1) by (2.9)and (2.10).
This is a contradiction to P{S,/v, < A} = o(1). Therefore,

(2.11)

(2.12) P{S,/v, <A} =2 'exp[— (1 + p)dAy,/A(n, 8\)] forlarge n.
Let n be the smallest integer in [v,, ®), n — 1 < v, < n.
v,m( (v, 8X))/h(v,, 6X)
(2.13) > v,m(h(n,8\))/h(n,8N) [m(x)/xis nonincreasing]
> nm(h(n, X)) /h(n, 8X) — m(h(n,8X))/h(n, 8X).

Since y(2*) < M*y(1), lim,k~'log v, > 0 and v, > 2k® for large k. Let h, =
h(n, 8\). If (np + 1ym(h,)/h, > log2, then n(m(h,)/h,)* > npm(h,)/h, > ;

32
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and nm(h,)/h, > (n/2)"/% > k for large k. By (2.10), (2.12), and (2.13)
exp[ —8Ay(v,,),/Rh(v,, 8X)] = exp[ —v,m(A( vy, 8X)) /(v 8X)]
< exp[—(n —1)m(h,)/h,]
= exp[ = (1 + p)nm(h,)/h, + (np + V)m(h,)/h,]
= exp[— (1 + p)8Ay,/h(n, 8))
+(np + 1)m(h,)/h,]
< exp[—(1 + p)dAy,/h(n,8)\) + log2]
+exp[—k + m(h,)/h,]
< 4P{S,/v, <A} + 2¢ * for large k.

Let m be an integer such that w™ > M. v, ,, = 2v, > v, + 1 for large &, since
v(2x)/y(x) < M. By (2.14) and (2.8)

(2.14)

oc

;Kexp[ —8\y(v,)/R( v, 8))]

< Y 4P(S,/y, <\ forsome v, < n<v,,,} + 2 2e *
k

(2.15) -

<4mY P(S,/y, < A forsome v, <n < v,,,} +2(e— 1)
k
< 0.

Set x, = h(v,, 8X). Then m(x,) = 6AB(v,) < wm(x, ;) for k > 2.
v, < B (wm(x,)/(8X)),
dAy(vg)/h(vy, 8X) < B~ (wm(xy)/(8X))m(x,) /%y,
fy x lexp[— B (w?m(x)/(8N))m(x)/x]|dx

y/K

(2.16) <[] & el (wmlx)/(M)m(y) /5]

< (log K Jexp[ — B~ '(wm(x,) /(X)) m(y) /]
forx, , <y/K<y<ux,,

ka x lexp[— B (w?m(x)/(8N))m(x) /x| dx

Xk

(2.17) <Yy (logK)exp[—B*‘(wm(xk)/(m\))(K/w)jm(xk)/xk]

J=0

< (log K )exp[ — B~ '(wm(a,) /(8X))m(x,) /x,](1 = o(1)) '
for K > w.
Therefore, by (2.15), (2.16), and (2.17)

flxx”‘exp[—B“‘(w2m(x)/(8>\))m(x)/x] dx < .
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The proof is finished by choosing w and 8 such that § <1/e, w > 1, and
c<8/wr<1/e.0

LEMMA 4. Suppose that
(2.18) fwx-lexp[—B*I(m(x)/x)m(x)/x] dx < 0.
1
Then for every constant ¢ < max((2/M)?/3.415,(2/M)?/2),
P{S,/y, <cAi.o.} =0.

PrOOF. Consider the case where n — 1 < u,_, < n < u, for some integer n.
Set X’ = min(X, A(n, Kb)) and S/ =Y/ min(X,, h(n, Kb)), K > 1. Then
ES!/j = Kby,/n and (S;/j, j = -+, n + 1, n} is a martingale. By Lemma 1

P(S,/y; < b/w forsome u;,_, <j < u,}
< P{S/(n/j) < by, for some n <j < u,}
= P{n(ES} - S/)/j > (K — 1)by, for some n <j < u,}
< exp| - (K - 1)by,(EX") 'G((K - 1)bv,EX'/(nh(n, Kb)EX"))]
= exp| — (K — 1)by,(Kby,/n) 'G((K - 1)EX"/(Kh(n, Kb)))]
= exp| - (K — 1)K 'nG((K - 1)K 'm(h(n, Kb))/h(n, Kb))].
Since 1 > m(x)/x —» 0 as x = o0 and G(x)/x — ; asx — 0,
P{S;/y; < b/w forsome u;,_, <j < u,}
(2.19) < exp| - (K — 1)’K~2nm(h(n, Kb))/(h(n, Kb)2w)]
for large k.

Let x, = h(uy, Kb). u,_, > B~ '(m(x,_,)/(Kb)) = B~ '(m(x;)/(wKb)). Since
B(2x) < (M/2)B(x), B~Y((2/M)x) < B~*(x)/2. Therefore,

(K — 1)’K2(2w) 'nm(h(n, Kb))/h(n, Kb)
> (K - 1)’K~%(2w) 'u,_,m(h(u,, Kb))/h(u,, Kb)
(2.20) > (K - 1)’K2(2w) "B~ (m(x,)/(wKb))m(x,) /x,
> (1 - 1/K)*(2/w)B((2/M)’m(x,)/(wKb))m(x,)/x,
> (1 - 1/K)(4/w)B~((2/M)’m(x,) /(wKb))m(x,)/x,.
Setl <w<2,
(221) (1-1/K,)’(2/w)=1, K,=K\(w), lim K(w) < 3.415,

(2.22) (1 -1/K,)(4/w)=1, K,=Ky(w), lim Ky(w) = 2.
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Choose w > 1 such that w — 1 is small enough and that
(2.23) w’e < max((2/M)*/K (w),(2/M)’/Ky(w)).
It follows from (2.19)-(2.23) that
P{S;/v; < b/w for some u;,_, <j < u,}

< exp| — B~ W(w2em(x,)/b)m(x,) /2]
Since m(x,) = Kbw*, m(x,,,)/m(x,) = w.

Xpr1/%p 2 W,

ka”x‘1exp[—,3_l(m(x)/7\)m(x)/x] dx

Xk

(2.24)

(2.25) > exp[—,B_l(wm(xk)/7\)m(x,z)/xk]ka“x‘1 dx

> exp[ B~ '(wm(x,) /N )m(x,) /2] (log w).
Set b/w = c\. It follows from (2.24), (2.25), and (2.18) that P(S,/y, <cA
io} =0.0

ProoOF oF THEOREM 1. Since the behavior of y(x) on a compact interval has
no effect on the lower limit, we may assume that M = p + ¢ for any ¢ > 0.
Suppose that § = §(F,y) > A > 0. Then I(A) < oo and by Lemma 4

(2.26) limint S, /v, > A max((2/M)*/3.415,(2/M)*/2) as.
Let A —» 8 and ¢ — 0. We have
(2.27) liminfS, /vy, > p ?max(1.17,4/p)0(F,y) a.s.

Suppose that # < A/e < oo. Then I(cA) = co for some ¢ < 1/e. It follows
from Lemma 2, Lemma 3, and Hewitt—-Savage zero-one law that

(2.28) Y P{S,/y, <\ forsome v, <n <v,,,} =
k

and

(2.29) liminfS,/y, < M\ as.

Let A = ef and ¢ — 0.

(2.30) liminfS,/y, < pef as.O

ProoF oF THEOREM 2. Since m(x) is slowly varying,
Var(min( X, &)) < E(min(X, h))? < 2["x(1 ~ F(x)) dx
(2.31) .
=2hm(h) - 2[ m(x)dx = o(1)hm(h) ash — .
, . 0
Let X’ = min(X, h) and h = h(n, Kb).
limG((K — 1)by,EX’/(nVar(X’)))/G((K — 1)EX’/(Kh)) = .
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Therefore, the right-hand side of (2.19) may be replaced by exp[ —nm(h)/h] and
K may be taken close to one. Following the proof of Lemma 4 line by line, we
have

(2.32) I(\) < oo implies P{S,/y, < cAi.o.} =0 foranyc <1.

Similarly, by (2.31) and the method in the proof of Lemma 3, we have

(2.33) (2.8) implies I(cA) < oo foranyc < 1.

Also, we can make use of Theorem 2 of Kesten (1970) because of (1.9). The rest of
the proof is obvious. O

ProoF oF COROLLARY 1. Assume that EX = co. Since y/m(y) and log,y
are increasing and continuous, B((x/m(x))log,x) = m(x), where B(x) = b(x)/x.
(2.34) B~ Y m(x))m(x)/x = log,x, x>0.

It is easy to verify that b(x) is a regular varying function with exponent one.
Hence, (1.9) holds and 6(F, b) = 1.0

Let us consider improving (1.7) under various conditions.

THEOREM 4. Let 0(F,v) be defined by (1.5) and 0 < a < 1.

(i) Let p(w) = limsup y(wx)/y(x), w > 1. Then
(2.35) c,0(F,y) < liminfS,/y, a.s.
holds for ¢, = sup{(w/p(w))"/K (w): w> 1l andn = 1,2,...}, where K (w) is
defined by (1 — 1/K (w))?/2 = w™ ™.

(ii) Suppose that (1.9) holds. Then
(2.36) liminfS,/y, < c,0(F,y) a.s.
holds for c, = e = 2.7182818... .

(iii) Suppose that y(x) is regular varying with exponent 1/a. Then (1.9) holds
and (2.35) holds for

¢ =207[(1 - a) /(2 = )] [a/(2 - )]

(iv) Suppose that 1 — F(x) is regular varying with exponent —a and that
v(x) is regular varying with exponent 1/a. Then (2.35) holds for ¢, = [(1 — a)/
@2 — )] 9/*[a/2 — a)] and (2.36) holds for
(2.37) ey = [a(1 = a)(@ = ) Tex(a) + 1](1 - )T,
where c*(a)G(c*(a)) = 2 — a)/a.

REMARK. ac*(a)logc*(a) = 2 as a — 0. It follows that in (2.37) ¢, =
e (1 + o(1)) as a — 0.

PROOF. (i) Similar to the proof of Theorem 1: K, =K,(2) in (221) is
replaced by K,(w) for some w apd n such that (w/p(w))"/K ,(w) is close to the
sup.

(i) Use Theorem 2 of Kesten (1970) instead of Lemma 2.

(iii) B~ (x) is regular varying with exponent a /(1 — «). Choose K in the proof
of Lemma 4 to be (2 — a)/a (optimal value).
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(iv) The relations
limx(1 — F(x))/m(x) =1-«a
and )
lijrcnxm(x)/Var(XI{X <x))=(1-a)'(2-a)/a
are used in the proof of Lemma 3. And the relation
liarcnxm(x)/Var(min(X, x)=(1-a) '(2-a)/2

is used in the proof of Lemma 4. The arguments in the proof of (ii) and (iii) are
also used. O

3. The generalized law of the iterated logarithm. In this section we shall
assume that F(0 — ) = 0, EX = o, and that
(3.1) lin;inf(l - F(2x))/(1 — F(x)) < 1.
Define
(3.2) p =p(w)=1-1liminf(1 — F(wx))/(1 - F(x)), w>1,
(3.3) p*= p*(w*) = inf{p(w): w > w*}, w*=1,
(3.4) 6,=0,(p*)suchthat 6, — 0,logf, = p*, 0,<1, O0<p*<l,
6*= 0*(w*, p*) such that 6* > u, and

3.5

B3 (e u)log(6% /) — (8%/u) + 1 = w(1 = p*)/u,
where

(3.6) u = max(1, v + w*p*)

and

(37) v=2(1-0,)""(1-p*) -1 ifp*<1,

=0 if p* =1.

For fixed w* and p*, choose constants wy, ps, Ay, Ny, 04,04, ¢, k> 1, and
function b(x), x > 1, as follows:

(3.8) lilrenwk = w* and lilrenpk = p*, pp <1,

(3.9) 1 - Fwghy) < (1= pp)(1 = F(hy)) <1 = Flw,hy, -),
(3.10) ny(l = F(hy)) = (1 - Pk)_llog k,

(3.11) 0, — 0 logb,=p,, 0,<1,

(8.12) v, =2(1-6,) %(1—py) -1, 1v,>0 sincep,<]1,

¢, = nyhy(1 — F(hy)) if EXI{X < h;} < v,h,(1 — F(h,))

(3.13) =n,m(h,), otherwise, m(x)= fox(l — F(t)) dt,
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where &, , is chosen (large enough) such that

(3.14) Crs1/Mpr1 Z Cr/ Mg li;nhk =

and

(3.15) (F(Ry))™ = %,

516 b(x) = xey/may  Mp=E < Mg,
= xc,/ny, 1<x<n,.

By (3.11) and (3.12)
(3.17) (1-6,)/3<v,<(1-86,), k=L

Therefore, ¢,/n, > EXI{X < h,} - o and it is possible to choose {4} satisfy-
ing (3.14) and (3.15). Also, it is clear that

(3.18) b(x)/x is nondecreasing and limb(x)/x = oo by (3.14).
X
We shall keep the above notations and assumptions throughout the section.

Now, we are able to restate Theorem 3 in accord with what there is in the
proof.

THEOREM 3*. Suppose that p*(w*) > 0 for some w* < . Then
(3.19) 0, < liminfS,/b, < 6* a.s,,
where b, = b(n), n > 1.

REMARKS. 1. If p* > 0 and w* < oo, then0 <0, <1<6*<o0.2. If1<
w* < oo and (3.1) holds, then 0 < p*(w*) < 1.

COROLLARY 2. Suppose that p*(1) = 1. Then
(3.20) liminfS,/b,=1 a.s.,
where b, = b(n), n > 1, and b(x), x = 1, is given by (3.16).

REMARK. Here the exact sequence {b,} for which (3.20) holds is given for a
case different from the cases where the exact sequences were given previously
[see, for example, Klass-Teicher (1977), Pruitt (1981a), and Mijnheer (1982)].
Usually, the condition that 1 — F(x) is regular varying (smoothness) with expo-
nent in [ —1,0) (moment) is required. However, the condition p*(1) = 1 means, to
certain degree, that 1 — F(x) is extremely unsmooth and it does not imply
Ef(X) < o for any unbounded function f(x).

An example will be given after the proof.

ProOF. (i) Let0 <A <@, and p, = 1 — F(h,). Suppose that
(3.21) ¢p = nyhy oy [EXHX < h,} < v,hyp, by (3.13)].

Set X! = h,I{X,>h,} and S; =X} X/ <S,, n>1. Then S//h, has a bi-
nomial distribution b(n, p,) and {S;/n,n = n,,y,...,2,1} is a martingale. By
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(2.6) of Lemma 1 and (3.16),
P{S, < \b, forsome n, <n <n,,,}

< P(S,/(nh,) < Ap, forsomen, <n<n,,}

ng

<exp[tApyn, (1 —p, + pre™)
< exp[—ppny(1 — et = t\)].
Take t = —log A. By (3.10) and (3.11)
ppn(1 —e P —t\) =p,n,(1 — A+ Alog])
= [(@ =X+ XlogA) /(1 — p)]log &,
1—A+Alogh>1—p* by(34).

It follows from (3.8) that there exists an ¢ > 0 such that
(83.22) P{S,<Ab,forsomen,<n<n,,,} <k "9 forlarge k.
Consider the other case where
(3.23) ¢, = m(hy)n, [EXI{X < h,} > v,h,p,by (3.13)].
Set X, = min(X,, A,)and S, =X X/ <S,, n> 1. Then

ES; =b,=ncy/ny,  npsn<ng,,

P(S, < \b, forsomen, <n <n,,}
< P{(ES;-8S;)/n>=(1—\)cy/n, forsome n, <n <n,,}
(324) < exp|-(1 = Nm(hy)(m(hy)/n;) "
XG((1 = Nm(h)m(hy)/Var(X"))]
<exp[-(1 = AN)n,G((1 = \)m(h,)/h,)] by (2.7) of Lemma 1.
Since m(h,)/h;, = 0 as k = o0 and G(x)/x — ; as x = 0,
(1 = MG (1 = Mm(hy)/hy) = (1 + 0(1))(1 = N)ryum(hy)/(2hy),
m(hy) > (1 + v,)h,p, Dby (3.23),
npm(hy)/hy> (1 + 0)n,p, = (1+0,)(1 = p) 'logk
=2(1 - 6,) *logk by (3.23)and (3.12).
By (3.24)
P{S, < \b, forsomen, <n <n,,,}
,4 < exp[— (1 + 0(1))(1 = A)’(1 - 6,) log &].

By (3.4), (3.8), and (3.11)
(3.25) li}renok =4,.
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Since A < 8, (3.22) holds for both cases. Therefore,
(3.26) P{S, <\b,i.0.} =0 forany A <46,.

(i) Let p, = (1 — F(h)), k=1, and for each k > 1, let X(k),
X(@, k), X2, k),... beiid. random variables such that

(3.27) (X, <wyh,} c{X,=X(n,k)} c {X, <w,h,)}
and
oy P XOLR) = (=01~ F()

= P{X, # X(n, k) and X(n, k) = 0}.
Set
(3.29) T,=X(1,k)+ - +X(n,, k), k=1,2,...,
and
(3.30) A, = {Tk=Snk}’ k=1,2,....

It follows from (3.10), (3.15), and (3.28) that

[~<)

Y P(4,) = X (1-n;'loghk)"” = o,
k=1 k=1

k k
P{Ak+1 U A,.} = P{[X,. =X(i,k+1)aln,<i<n,,,| U Aj}

j=m Jj=m

(3.31) k

{ Ua }exp[(nkﬂ ny)log P(X = X(k + 1))]
k
Ua

< ZP{ }P{Ak+1} by (3.15) and (3.28).

By (3.31), Hewitt-Savage zero-one law, and Lemma 4.2.4 of Chow-Teicher
(1978),

(3.32) P{A,i0.) = P{T, =S8, io.} = 1.
Let
(3.33) 0* <A< and p,=1-F(h,),
u, =max(l,v, + wyp,), k=1
If ¢,/n, = h,p, [EXI{X < h,} < v,h,p, by (3.13)], then

EX(E) < EXI{X < h,} + wohy(p, — P{X + X(k)})

< 0uhDy + WehyDapy < UhyDy = wicy/ 1y
Otherwise, ¢,/n;, = m(h,) [EXI{X < h,} > v,h,p, by (3.13)],
EX(k) < max(1, wyp,)m(h,) < uyc,/n,.



574 C.-H. ZHANG

Therefore, in both cases,
EX(k) < upc,/n, and ET, < uc, = u,b(n,), k=1,

(y—l)G(y—1)=fy—llog(1+t)dt=ylogy—y+ 1, y=>1,
0

P(T, > b(n,)}
< P{T,— ET,> (A — u,)c,} forlargek
< exp[ (N = up)el wkhk)_lG(()\ - uk)ckwkhk/(nkwkhkukck/nk))]
= exp[—ck(wkhk)_l(}\ —u,)G((\ - uk)/uk)] by (2.7) of Lemma 1,

ck(wkhk)_l(}‘ — u)G((N — uy)/uy)
> n,pwy, 'uy(N/u, — 1)G(A/u, — 1) by (3.13)

> (log k)(1 — pg)~ 'wy 'up[(A/uyog(A/u,) — (A/u,) + 1] by (3.10)
> (1+¢)logk

for large & by (3.5)—(3.8), (3.11), and (3.33), where ¢ is some positive constant.
Hence, it follows from (3.32) that

P{T, > \b(n,)} <k * forsomee >0
and
P{T,>\b(n,)io.} =0=1—- P{S, <Ab,i.0.}.
(iii) Proof of Corollary 2. Since p* = w* = 1, by (3.4)—(3.7) v =0, u = 1, and
*=0,=1.0
EXAMPLE 1. Let x, = exp[k%?] and P{(X = x,} = k/(k + 1)!, k > 1. Then
liminfS,/b,=1 as.,
where
b, = nexp[k?]/k! for (k+ 1)!'logk <n < (k+ 2)!log(k + 1).

Also, we have EX? = oo for any p > 0.

REMARK. The condition of Corollary 2 is satisfied [p*(1) = 1] if
P{(X =x,} = P(X>x,}(1+0()) as k> oo for an unbounded sequence of
positive constants {x,}.

Proor. Set h,=x,—1, w,=x,/h,, pp,=k/(k + 1), n, = (k+ 1)!logk.
Then (3.8)-(3.10) hold and ¢,/n, = h,/k!= (1 + o(1))x,/k! by (3.11)—(3.13). It
is clear that (3.14) holds and Theorem 3* still holds if (3.15) is replaced by
n(1 — F(h,,,)) = o(1) which is satisfied for the constants and F defined above.
. . O

4. Rapidly growing random walks. Let {S,=X" X;,n > 1} be a ran-
dom walk with underlying distribution function F(x). In this section we shall put
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on the restrictions that F(0 — ) = 0 and that 1 — F is slowly varying as x tends
to infinity. A random walk with such a distribution is called a rapidly growing
random walk. It will be demonstrated in this section that the following statement
(4.1) is true for rapidly growing random walks under quite general conditions.

(4.1) There do not exist constants b, — co such that liminfS,/b, =1 a.s.

The argument is composed of two steps. Theorem 5 gives conditions under which
(4.2) limS,/X*=1 as., X}= max X,.

1<i<n

Theorem 6 gives conditions under which (4.1) holds if S, there is replaced by X *.
An example will be given below for which

(4.3) liminf X*/b, =1 a.s. for some b, = 0.

THEOREM 5. Let L(x) = (1 — F(x))~ . Suppose that
(4.4) fwflP{ux <X <x}dudL(x) < 0.
o o

Then (4.2) holds.

THEOREM 6. Let L(x) = (1 — F(x))™'. Suppose that
(4.5) limsup(log L(x))(L(2x) — L(x))/L(x) < oo.
Then (4.3) does not hold.

We shall put the proofs at the end of the section. It is clear that the random
walk does not obey the generalized law of the iterated logarithm [i.e., (4.1) holds]
if the underlying distribution function satisfies (4.4) and (4.5). Darling (1952)
proved that lim E(S,/X*) = 1 for rapidly growing random walks. Pruitt (1981a)
constructed an example satisfying (4.1) by using the integral test of Erickson
(1973). The works of Teicher (1979) and Klass (1984) are also related to the
almost sure properties of rapidly growing random walks. While this paper was
being revised, the paper of Maller-Resnick (1984) appeared which contains
Theorem 5 as part of their Theorem 3.1. The proof of Theorem 5 here is different
from theirs and very simple. The following example shows that (4.3) holds for
some rapidly growing random walks.

ExaMPLE 2. Let 1 — F(x) = exp[ —log x log,x/log,x], x > e® Define the
normalizing function b(x) by
(4.6) n(x)(1 — F(b(n(x)))) =logx, -x=e,

where n(x) = exp[x/(2log x)].
:Then 1 — F(x) is slowly varying as x tends to infinity and

(4.7) liminf X*/b(n) =e™' as,
where X * = max,_;_,X;, n>1,and e = 2.7182818... .
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Proor. Clearly,
(4.8) lim(1 — F(ovx))/(1 — F(x)) =1 foranyo >0,

(4.9) limn(x +1)/n(x) =1, dn(x)/dx = n(x)(2logx) " '(1 + o(1)),
(4.10) lim(n(x + 1) — n(x))(2logx)/n(x) = 1.

It follows from (4.6), (4.8), and (4.10) that

(4.11)  lim(n(x + 1) — n(x))(1 = F(vb(n(x)))) =1 foranyo > 0.
Therefore, by Theorem 2 of Klass (1984), P{X ¥ < vb(n)i.0.} = 0 iff

[~

2 exp[-n(k)(1 — F(vb(n(k))))] < eo,

k=1
dF(x)/dx = (1 = F(x))(x log,x) ~'(logzx)(1 + (1)),
(4.12) log,b(n(x)) = (1 + o(1))log x,
log;b(n(x)) = logyx + o(1),
(1 = F(vb(n(x)))) — (1 = F(b(n(x))))
~ (~log 0)(1 — F(b(n(x))))(log x)(log;x)(1 + o(1)).
Hence,
n(k)(1 — F(vb(n(k)))) =logk — (log vlog,k)(1 + o(1)).O

PROOF OF THEOREM 5. We assume that F(x) is continuous without loss of
generality. By Theorem 3.2 of Darling (1952),
E(SyXx—1)=n[ (1= F(x)) [(L(x) - L(w))/L(ux) dudF"~(x)
0 0

4.13
(4.13) _ Lwn(n _ I)Fn—z(x)j(;lP{ux < X < x}dudF(x).

Since
Y 4*exp[2*log p| < 4fw4xexp[2xlog p)dx
k=1 0
< 4(—log p)_2f°°ye‘y dy/log?2
0
<6(1-p)% oO0x<p<1,
Y E(Su/X5—-1) < 6[°°L2(x)f‘P{ux < X < x) dudF(x)
k=1 0 0
(4.14) ~6[" ['Plux < X = x} dudL(x)
N 0 Y0

< oo by (4.4).
(Actually, X2_E(S;:/ X5 — 1) < oo iff (4.4) holds.)
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Let G, be the o-algebra generated by all the random variables A =
h(X,, X,,...) such that the function A(x,, x,,...) is symmetric to the permuta-

tion of the first n variables x,,..., x,. Set
n
S'(ll) = Z Xj’ l <n, n > 2,
J=1, i
X,‘li’=max(ijlsj5n,j=;&i), i<n, n>2,
and

X)=max(X;:1<j<n, X, +#X¥), nx2
(X is the second largest among X, ..., X,.)
We have
E[Sn—l/Xn*fllGn] = nlE[ Z Sr(zi)/Xr(zi)lGn]
i1

=n (n - 1S/Xr + (S, - X1)(1/X7 - 1/X})/n
= S/X;+n (S, - Xy - X2)/X]
—2(S, - X¥)/X}).
Therefore,
(4.15) E[(S,-1/X 1 = DIG,] = n7 ' (n = 2)(S,/X . — 1).
Set
f(n) = E[(SyXr - 1G], j=n.
It follows from (4.15) that for 3 < n <j < 2n
(4.16) S/X*—-1<j(j—-1)n (n- 1)71fj(n) <5f(n) as.
By the Doob inequality and (4.14),
P{sup(S,/X¥ —1: n>2™) > 5u}

< Y P{max(f,(2%):2*<n <2¢')>u} form>3
k=m

<

u 'Ef;(2¥) >0 asm — oo forany u > 0.

it

k
This finishes the proof. O

PROOF OF THEOREM 6. We shall prove by contradiction. Assume that
(4:17) P{limian,;"/b,; =15} =1 forsome b, - 0.

Since X ¥ is nondecreasing in n, we can also assume that b, is nondecreasing in n
and that lim b, = oo.



578 C.-H. ZHANG

Let p, =1 — F(b,) and §, = F(2b,) — F(b,).
P{X* <2b,} <exp|—n(1 - F(2b,))] = exp[ —np, + nd,].
By (4.5) there exists a constant K > 4 such that for large n
8, = (L(2b,) — L(b,))/(L(2b,)L(b,)) < Kp,(~log p,) .
For nd, > K? and large n
np,(~logp,) '>K=4 and np,> 3logn.
Therefore, there exists a constant K * such that for large n
P{X}* < 2b,} < exp[—np, + K?] + exp[ —2log n]
<K*P{Xx<b,} +n 2
And
m
P{ U [x¢ < 2bk]}
k=n
m—1

= kg P{X} < 2b, and X* > 2b, forall k <j < m)
+P{Xx <2b,)
m—1

- Y P(Xp< 2bk}P{ max X, > 2b; forall k <j < m}
k=n k<i<j

+P{X} <2b,}
m-—1
< ¥ K*P(X} < bk}P{ max X; > b, forall k <j < m}
hen k<i<j
m
+K*P{X*¥<b,}+ ) k2
k=n

m
< K*P{ Ullxz< bk]} +2n~! forlarge n and any m > n.

k=n

It follows from (4.17) that lim , P{U?_ [ X} < b,]} = 0. Therefore,

11311»{ O [xr < 2bk]}

(4.18) k=n
< limK*P{ Ulxx< bk]} + lim2n~' = 0.
n k=n n
The proof is finished since (4.18) is contrary to (4.17) which is equivalent to (4.3).

]

5. The limit points. Let {Z(n), n > 1} be a sequence of random variables
and {y(n), n > 1} be a sequence of positive constants. The accumulation points
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of {Z(n)/y(n)} are
(5.1) A(Z,y) =N{Z(n)/v(n): n 2 m},

where the bar indicates the closure in the topology of R = [ — 00, 0].
Define

- B(F,y) = {u e R: P(S,,/v(n,) > u} = P{n, > 0} =1,
for some random variables n,, & > 1} .

By Theorem 1 of Kesten (1970),

(5.3) P(B(F,y) =A(S,v)} =1, (S(n)=8,,n>1),

provided that limy(n) = co. In this section we consider the limit points of the
normalized random walk for which — o0 & B(F, y) or co & B(F, y).
Let us start with a simple pointwise argument.

PrOPOSITION 1. Let {2(n)} and {y(n)} be two sequences of constants with
limy(n) = . Set z, = 2(n) and v, = y(n), n > 1.
(1) If limsup(z, — z,_,)/Y, < 0 and limsupv,/y,,, < 1, then
[0,0] N A(z,7) = [(liminf 2, /v,) ", limsup z,/7,],
where A(z, v) is defined by (56.1) and [a, b] = D if b < a.
(i) If limsup(z, — 2,,_,)/Y, < 0 and liminfy,/y,., = 1, then
[-,0] N A(z,y) = [liminfz,/y,, — (limsupz,/y,)” ].

Proor. (i) For b > 0 and large n,
(22/Yn = 2n-1/Yn-D)I{20-1/ Y01 < b}
< (2, = 27-1)/Yu + b(¥aer /72— 1) " = 0(1).
Therefore, b € A(z,v) if b > 0 and {z,/y,} crosses over b “up hill” infinitely

many times.
(ii) For z,_, < 0 and n large,

2,,/Yn < (zn - znfl)/Yn + zn—l/Yn < (1 + 0(1))2n71/yn—1 + O(l)'D

COROLLARY 3. Suppose that v,/n is nondecreasing and limy, /v, _, = 1. If
P(liminf S, /y, > —o0} =1 or P(limsupS,/y, < o} = 1, then the set B(F,y)
in (5.2) is a closed interval in R.

REMARK. This corollary reduces the problem of finding B(F,y) to the
problem of finding the lower limit of the normalized random walk for the cases
where — oo & B(F, v) and (1.9) holds [in particular, the cases in Mijnheer (1982),
Examples 2 and 5 in Erickson-Kesten (1974), and Example 1 of Erickson (1976)].

PrOOF. Use Theorem 2 of Chow-Zhang (1984) and (ii) of Proposition 1. O
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COROLLARY 4. Let {b,} and {m,)} be two sequences of constants. Suppose
that, for some ¢ > 0 and = > 0,

(54) - o < liminf(S, — m,)/b, < limsup(S, — m,)/b, < o0 a.s.,
(5.5) P{S,<m,} >7, P{S,>m,}>x forlargen,
and
(5.6) b,/n® is increasing in n.
Then there exist constants a and b for which
(5.7) P{A(S, - m,,b,) =[a,b]} =1,

where A((S — m), b) is defined by (5.1), (S — m)(n) = S, — m,, and b(n) = b,.

REMARK. This corollary is related to Theorem 6 and Problem 5 of Kesten
(1972).

PROOF. Clearly, (5.5) still holds if m,, is replaced by m,_, + median(X) and
7 is replaced by 7 /2. By Theorem 6 of Kesten (1972),

(5.8) lim(m, — m,_,)/b, = 0.
By (5.4)
limsup|X,,|/b, < o0 a.s.

It follows from (5.6) that
(5.9) lim X,,/b, =0 as.
The corollary follows from (5.6), (5.8), (5.9), and (ii) of Proposition 1. O
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