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1. Introduction and summary. In this paper the concept of statistical suffi-
ciency is studied within a general probability setting. It is not assumed that
the family of probability measures is dominated. That is, it is not assumed that
there is a o-finite measure u such that each probability measure in the family is
absolutely continuous with respect to u. In the dominated case, the theory of
sufficiency has received a thorough-going and elegant treatment by Halmos and
Savage [6], Bahadur [2], and others. Although many families of probability
measures of importance for statistical work are dominated, many others are not.
Nonparametric statistical work, especially, abounds with undominated families.
It seems appropriate, therefore, to see what can be learned about sufficiency in
the undominated case.

Let X be a set, A a o-field of subsets of X, and P a family of probability
measures p on A. The probability structure (X, A, P) is to be kept in mind
throughout the paper and is unrestricted except where specifically stated to the
contrary. Any subfield (= sub-o-field) entering the discussion is implicitly
assumed to be a subfield of A. If H is a collection of subfields, let V H denote
the smallest o-field containing each member of H. If Ay, A;, - - - are subfields,
write A; V A, for V{A;, Ay}, Vaai A, for V.{A;, A,, -}, and so forth. A set
N is P-null if N is p-null for each p in P, that is, if Nisin Aand p(N) = 0, p ¢ P.
If f and g are A-measurable functions, write f = g[p] if the set {z | f(z) # g(z)}
is p-null and write f = g[P] if this set is P-null. Let N be the smallest o-field
containing the P-null sets. If A; and A, are subfields, write A; C A[P] if A, C
A, V N, and so forth. A subfield B is sufficient if, for each bounded A-measurable
function f, there is a B-measurable function g such that [»f dp = [sgdp, B ¢ B,
p ¢ P, that is, such that ¢ = E,(f|B)[p], p ¢ P. Equivalent definitions are
obtained if “bounded A-measurable function” is replaced by ‘‘A-measurable
characteristic function” or by ‘“P-integrable function.” Of course, f is P-in-
tegrable if f is A-measurable and [|f| dp is finite for each p in P. A subfield B
is separable if it contains a countable subcollection such that B is the smallest
o-field containing the subcollection.

In Section 2, we give an example of a nonsufficient subfield containing a
sufficient subfield. This solves a problem posed by Bahadur (Problem 1 on page
441 of [2]). In fact, we show that often the collection of such nonsufficient sub-
fields is much larger than the collection of sufficient subfields. Analogous results
hold for statistics. Some of these and later results depend on Theorem 1 which
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gives a necessary condition for a subfield to be sufficient in the case that A is
separable.

Let A;, A;, --- be a sequence of sufficient subfields. Are the subfields
AN Ay, A vV A, NSA,, and VoA, |, necessarily sufficient? This question is
investigated in Sections 3 and 4. Using martingale theory, we show that, if the
sequence is decreasing (increasing), then M5_A.(Vr=iA,) is sufficient. If the
sequence is not necessarily monotone, it is still possible to show that A; N A,
and N5_.A, are sufficient under a small extra assumption involving N. This
result rests on a theorem proved in [3] regarding iterates of conditional expecta-
tion operators. One consequence of this result is of interest in connection with
the theory of minimal sufficient subfields. It is not necessarily true that A,V A,
is sufficient. This is shown in Example 4. Conditions under which A; V A; is
sufficient are examined.

The main result of Section 5 is related to Theorem 1 and indicates that if A
is separable then each sufficient subfield is essentially equal to one of a very
special type.

2. On a problem of Bahadur. In (2], Bahadur proves that if the family P of
probability measures on A is dominated, then a subfield of A containing a suffi-
cient subfield is sufficient, and lists as an unsolved problem the question of
whether this is true in general. That this is not true in general we now show by
an example.

ExampLE 1. Let X be the set of real numbers, A the collection of Borel sub-
sets of X, and P the set of probability measures p on A satisfying p(4) = p(—4)
for A in A. Here, if S € X then —Sistheset {x | —x ¢ S}. Let 4o = {4]4 €A,
A = —A}. Clearly, A is a subfield of A and if f is a bounded A-measurable
function then 2¢(x) = f(x) + f(—=z) defines an A,-measurable function g
satisfying [,fdp = [4g9dp, A €A, p ¢ P. Hence, A, is sufficient.

Suppose that S is a subset of X satisfying 0 ¢ S and S = — 8. Let

(1) B={AUAOIACS,A£A,A08A0}.

Clearly, B satisfies A C B C A. We now show that B is a o-field. It is obvious
that the union of a countable family of sets in B is in B. Let B ¢ B. Then there
are sets A and A, satisfying B = AU Ao, A C S, A €A, AocAy. Let Cp =
(—A)U Aand C = Cy — A. Since S = —8, o, € S and therefore C < S.
Using primes to denote complements we have that B = A’ N A4’y =
(CU )N A = (CN AU (C'hN A'y) which is the union of a subset of S
in A and a set in A, . Therefore, B’ ¢ B and B is a o-field.

Suppose that B is a sufficient subfield. Let f be a bounded A-measurable
function. Then, since B is sufficient, there is a B-measurable function ¢ satis-

fying

(2) jdep=fBgdp, BeB,peP.
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Let x ¢ S. Then {z} ¢ B and letting B = {z} in (2) gives
f(@)p(x) = g(x)p(x), peP,

where we write p(x) for p({z}). Let x ¢ X — S. Then {z, —z} ¢ B but neither
{z} nor { —z} belongs to B. Accordingly, g(x) = g(—=z), since g is B-measurable.
Letting B = {z, —z} in (2) and using the fact that p(z) = p(—=z) gives

[f(z) + f(—z)lp(z) = 29(z)p(x), peP.

If x ¢ X, then there is a p ¢ P such that p(xz) > 0. Therefore, we have that
(3) g9(z) = f(=) ifzes,
= 3[f(z) + f(—=)] freX — 8.

Let f(z) = —1ifz < 0, = 1if z = 0. Then f is A-measurable and the function
g of (3) is B-measurable and satisfies g(z) = 0ifz ¢ S, = 0if z ¢ X — S. Thus,
S =X — ¢g'({0}) is in B.

Now choose S to be a subset of X satisfying 0¢8, S = —8, and S zA.
Such a set exists, of course. Then, if B is defined by (1), we see that B cannot be
sufficient by the result of the above paragraph, for S does not belong to A and
therefore does not belong to B. ‘

In summary, a subfield can contain a sufficient subfield and yet not be suffi-
cient. We now prove several results which indicate that the probability structure
examined in our example is by no means unusual in this respect.

TurorEM 1. Suppose that A is separable. If B is a sufficient subfield, then there
s a separable sufficient subfield By satisfying

BhcBcB, VvV N.

We recall that N is the smallest o-field containing the P-null sets If the only
P-null set is the empty set, then N = {g, ¥} < Boand Bo V N = By. Accord-
ingly, the following result is an immediate ( onsequence of Theorem 1.

CoroLLARY 1. Suppose that A is separable and the only P-null set ¢s the empty
set. If B is sufficient, then B is separable.

Proor or TuroreEM 1. Since A is separable, there is a countable field A
such that A is the smallest s-field containing A, . Let B be a sufficient subfield.
Then, if 4 € Ao, there is a B-measurable function g, such that p(4 N B) =
[594 dp, B € B, p ¢ P. Let By be the smallest o-field with respect to which each
of the functions g, , A € Ao, is measurable. Since A, is countable, it is clear that
By is separable. Also, B, C B.

Let A, be the collection such that A ¢ A; if and only if A €A and there is a
By-measurable function ¢ satisfying

(4) | p(4n B) = [ gap, BeB,peP.
B

Then Ay — A, C A. Clearly, A, is a monotone class. Accordingly, A; = A since
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A is the smallest monotone class containing Ao . From the definition of A; and
the relation By C B, we conclude that By is sufficient.

We now show that B € B, V N. Suppose that 4 ¢B. Then 4 ¢ A = A; and
there is a By-measurable function ¢ satisfying (4). In particular,

0=p(An<X—A>>=LAgdp, peP,

p(A)=P(AnA)=ngdp, peP.

Therefore, if h is the characteristic function of 4, we have that g = h[P], using
the fact that 0 < ¢ =< 1[P], an immediate consequence of (4). Thus, h — g is
N-measurable, and h = g + (h — g), being the sum of two B, V N-measurable
functions, is By V N-measurable. Consequently, A £B; V N. This completes
the proof. :

In the following theorem let

e, =N{A|xcA cA}, a =N{A |z e 4 eAd,

where A, is a sufficient subfield. Let ¢ be the cardinal number of the set of real
numbers, ¢, the cardinal number of the collection of sufficient subfields, and ¢,
the cardinal number of the collection of subfields containing A, that are not
sufficient. Since we now know that 0 < ¢; is possible, it will not be too surprising
to find out that sometimes ¢y < ¢; .

THEOREM 2. Suppose that A is separable, Aq is a sufficient subfield, the only
P-null set is the empty set, and

(5) card {ae, |z ¢ X, a, # @} = c.

Then,
0w=Zc<2=¢.

Proor. By Corollary 1, each sufficient subfield must be separable. Therefore,
(6) ¢ < card {B | B is a separable subfield}.

Since A is separable, card A < ¢ (see Problem 9 on page 26 of [5]). There is a
one-to-one function from the set of separable subfields of A to the set of countable
subcollections of A. If B is a separable subfield, the value at B of this function
may be, for example, any particular countable subcollection of A such that B
is the smallest o-field containing the subcollection. Since card A = ¢, the set of
countable subcollections of A has cardinal number less than or equal to ¢. Thus,
the right hand side of (6) is less than or equal to ¢, implying that ¢o < c.

We now show that 2° < ¢, where ¢; is the cardinal number of the collection of
subfields containing Ao,. Consequently, ¢co < ¢z, ¢z = €2 — €, €1 = ¢z, and
2c é C .

Let S be a subset of X such that X — S is the union of some subcollection of
{ae: | x € X, a, # aos}. Clearly, the collection of such sets S has cardinal number
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greater than or equal to 2°; using (5). Let
(7) B={AU 4|4 C 8,4 A, 4,cAq}.

Since A is separable, if z ¢ X then a, is the intersection of a countable number of
sets in A and hence is in A. (Note that the partition {a.} of X, induced by A,
is also the partition induced by any field with the property that A is the smallest
o-field containing it. Here, since A is separable, a countable field with this prop-
erty exists.) Since A, is sufficient, A, is also separable. Accordingly, ao £ Ao,
z £ X. From these facts, it follows that

(8) S = {z | a, ¢B}.

For if x ¢ S then a, C a,; C S and a, is the union of a subset of S in A, itself,
with a set in Ao, the empty set, and hence is in B. If z is not in
S then a, # a; € X — S, a, is not in Ay (for otherwise ao, = a,), and a, does
not have the right form to be a set in B. From (8) it follows that the mapping
S — B described in (7) is one-to-one. Thus the cardinal number of the collection
of B’s is greater than or equal to 2°.

Let B be asin (7). Then Ay © B C A. It remains to show that B is a o-field.
Let B ¢ B. Then there are sets 4 and A, satisfying B = AU 4,, A C S, A ¢ A,
AoeAy. Let Cp = Ufao, |z A4} and C = Co — A. If Cyisin Ag then X — B
is in B and B is a o-field by the same reasoning as in Example 1. We now prove
that Co is in A, . Since A, is sufficient there is an A¢-measurable function ¢ satis-

fying
(9) (AN au) = fo,g9dp, X, peP.

If £ X then g is constant on a, since g is A¢-measurable and from (9) we have
that

p(AN a,) = g(x)p(a), peP.

Since the only P-null set is the empty set, if A N ao, is empty then g(z) = 0
and if A N aq, is nonempty then g(x) > 0. It is clear from the definition of Cy
that if 2 £ Co then AN ay, is nonempty and if z is not in Co then A N ao, is empty.
Thus, X — ¢ '({0}) = Co, implying that C, is in A, . This completes the proof.

ReMark 1. In Example 1, a, = {z} and a,, = {z, —2}, and it is clear that the
conditions of Theorem 2 are satisfied. Many probability structures relevant for
nonparametric statistical work satisfy the conditions, hence the conclusion, of
Theorem 2. Among these, in addition to the one described in Example 1, the
following is typical:

ExampLE 2. Let n be an integer > 1, X Euclidean n-space, A the collection
of Borel subsets of X, and P the set of all probability measures p on A of the
form p = ¢ X --- X ¢, where ¢ is a probability measure on the os-field of Borel
subsets of the real line. If x = (21, -+, %) € X, let to(x) be the set of all points
(s, , %), where (41, -+, %,) is a permutation of (1,---, n). Let A,
be the subfield of A induced by the statistic & . That is, A is the collection
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such that 4 ¢ A, if and only if 4 ¢ A and there is a subset D of the range of &
such that &7(D) = A. Here, ao, = fo(z) and a, = {}, and the assumptions of
Theorem 2 are satisfied.

ReMARK 2. With reference to Example 1, let ¢ and ¢ be functions on X satis-
fying to(z) = |a|if x e X, t(x) = zif xS, = |2] if x ¢ X — S. The statistics
to and ¢ induce the subfields A, and B, respectively, of Example 1. Since a sta-
tistic is sufficient if and only if its induced subfield is sufficient, we have that
to is sufficient but ¢ need not be sufficient. This is in spite of the fact'that & =
F(¢) for some function F'.

Or with reference to Theorem 2, let to(x) = ao if x € X, i(z) = a,ifx ¢ 8, = ao,
ifx ¢ X — S, where S is as described in the proof of Theorem 2. One can proceed
as in the above paragraph and obtain a similar conclusion.

Remark 3. Example 1, Theorem 2, and the above remarks indicate that some-
times a nonsufficient subfield or statistic can be as “informative” as a sufficient
subfield or statistic. Accordingly, the definition of sufficiency in terms of con-
ditional expectations, like most definitions, does not seem to capture all of the
intuitive content commonly associated with the concept being defined. Needless
to say, this, in itself, is not necessarily regrettable.

3. Sufficiency in the general case. Throughout this section, except in Example
3, (X, A, P) is any probability structure. Making no further assumptions, we
now prove several results about the sufficient subfields of A. These results
are easily shown to be true if P is assumed to be dominated. Without this
assumption, these results and their proofs become somewhat more interesting.

TuaeoREM 3. Suppose that Ay, Ay, - - - are sufficient subfields.

(i) If A, D Ay D - -+, then N3_A, is sufficient.

(ii) If A, C Ay C - - -, then Vn_iA, is sufficient.

Proor. Let f be a bounded A-measurable function. There is, for each n, an
A,-measurable function g, such that g, = E,(f|A.)[p], p ¢ P. Let g(z) =
lim,g.(x) for all z at which the limit exists, = 0 otherwise.

Suppose that A; D A; D - - - . Then g is [ 5_,A,-measurable. By the continuity
theorem for conditional expectations [4, p. 331], liMnswgn = E(f | No—iAL)[p],
p ¢ P. Therefore, g = E,(f| N5=A,)[p], p ¢ P. Hence, N5_A, is sufficient.
The proof of (ii) is similar.

TueoreMm 4. If A, and A, are sufficient subfields and N is contained in at least
one of these subfields, then the subfield Ay N A, is sufficient.

Proor. Suppose that A; and A, are sufficient subfields and, without loss of
generality, that N C A, . If n is a positive integer let As,y = A; and Ay, = A, .
Let f be a bounded A-measurable function. Define g1, g2, - - - inductively as
follows: Let g; be an A;-measurable function satisfying g1 = E,(f | A1)[p], p € P.
If g,_: has been defined, let g, be an A,-measurable function satisfying
gn = Ep(ga|Av)[p], p € P. Such a sequence ¢, g2, - - - exists because A,
A, , -+ are sufficient subfields. Let g(z) = limu.g2.—1(z) for all 2 at which
the limit exists, = 0 otherwise. Let h(z) = lim,.ge.(z) for all  at which the



SUFFICIENCY IN THE UNDOMINATED CASE 1197

limit exists, = O otherwise. Then ¢ is A;-measurable and % is A;-measurable.
If pisin P let A,, be the smallest o-field containing A, and the collection of
p-null sets. Then, by a theorem proved in [3], limnswgn = Ep(f| A, N Agy)[p],
p ¢ P, implying that g = E,(f | A, N Agp)[pl, p € P, and that {z | g(x) = h(x)}
is in N. Thus, since N C A;, we have that ¢ — h is Ay-measurable. Therefore,
g = h + (g — h) is the sum of two A;-measurable functions, hence is Ay,-measur-
able. Since ¢ is measurable with respect to both A; and A, , it is A; N As-meas-
urable. Moreover, for p ¢ P,

g = Ey(g | AN Ap)p]
= E,(E,(f AN Agy)| AiN Ag)[p]
= E,(f| AN Ay)[p],

since A; N A, is contained in A;, N Ay, . Thus, A; N A, is sufficient.

COROLLARY 2. If Ay, A, , - - - are sufficient subfields such that N C A, ,n = 1,
2, -+, then the subfield N 5_A, is sufficient.

Proor. Let B, = M;_;A; . Then, by induction and Theorem 4, each subfield
B. is sufficient. Applying part (i) of Theorem 3 now gives the desired result.

Consider the following two properties which a sufficient subfield Ay may or
may not have: .

I. If B is a sufficient subfield satisfying B C A, then Ay C B[P].

II. If B is a sufficient subfield then A, C B[P].

A sufficient subfield A, satisfying (II) is sometimes termed a minimal suffi-
cient subfield. It might be at least as appropriate, however, especially if the
discussion is restricted to subfields containing N, to use “least” or “smallest”
in place of “minimal?” and, instead, apply the adjective ‘“minimal” to any
sufficient subfield A, satisfying (I). Whether this is true or not hardly matters in
the light of the following result:

CoRoLLARY 3. If A s a sufficient subfield satisfying (1), then A, satisfies (II).

Proor. Suppose that A, is sufficient and satisfies (I). Let B be sufficient.
Let A; = B V N. It is easy to see that A, is sufficient. By Theorem 4, AN A,
is sufficient, and, therefore, using (1), Ao C (AN A;)) VN CA; VN =BV N,
the desired result.

RemARrk 4. The condition involving N in Theorem 4 cannot be eliminated
entirely as the following example shows:

ExampLE 3. Let X be Euclidean 2-space, A the collection of Borel subsets of
X, and P the family of all probability measures p on A satisfying p(D) = 1
where

D={zx|z = (01, m) e X, 21 = x}.
For ¢z = 1, 2, let A; be the subfield of A induced by ¢; where t:(z) = z;, z ¢ X.

It is easy to check that A; and A, are sufficient but that A; N A, = {g, X} is

not sufficient.
ReMARK 5. The uncountable analogue of Corollary 2 is not true. That is,
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there can exist a family H of sufficient subfields, each containing N, such that
N{B|B ¢ H} is not sufficient. Such an example is given by Pitcher [7]. If no
such example existed, there would always exist a minimal sufficient subfield,
contrary to fact [7].

Lemma 1. If B is a sufficient subfield and A belongs to A, then the smallest o-field
containing BU {A} is sufficient.

ProoF. Let C be the smallest o-field containing B U {A4}. Then

C = {(B.N A)U (B,N 4")|B:eB,i = 1,2}

where A’ = X — A. For the purposes of this proof, if 4 is P-integrable let A’
denote any B-measurable function satisfying A’ = E,(k|B)[p], p ¢ P. Let
r = 1 — s be the characteristic function of 4.

We now show that C is sufficient. Let f be an A-measurable function into [0, 1].
Let

gi(z) = (rf)'(x)/r'(x) if o'(z) #0,
=0 if (z) =0,

and let g. be defined similarly using s in place of . Then g; and g, are B-measurable
and :

g = rg1+ 8g2

is a C-measurable function. Since 0 < rf < r, we have that 0 = (¢f)' = ' [P],
g1 = (rf)’ [P], and 0 £ g1 < 1 [P]. Similar results hold for s and g, . Let C =
(BN A)U (B;N A') where B; ¢B, ¢ = 1, 2. Then, for p ¢ P,

_ — ’ — ’
fﬂlmydp = fBlryl dp fBl(ryl) dp Llr g1 dp

- Ll(rf)’dp - fmrfdp = fB‘nAfdp-

Similarly, fa,m'g dp = fanA,fdp, p ¢ P. Hence /;f dp = fcg dp,p e P.

The sufficiency of C follows.

TueoreM 5. If A; is a sufficient subfield and A; is a separable subfield, then
A, V A, s sufficient. In particular, if B ¢s a separable subfield containing a suffi-
cient subfield, then B is sufficient.

Proor. Let A, , A, , - -+ be sets in A such that A; is the smallest o-field con-
taining {4, Az, - - -}. Let By = A and define By , By, - - - inductively as follows:
If n is a positive integer and B,_; has been defined, let B, be the smallest o-field
containing B,_; U {4,}. Using Lemma 1, it follows that each of By, By, -+ is
sufficient. Clearly, B, € B, C --- and V2=B. = A; V A, . Thus, by Theorem
3, A, V A, is sufficient. The second assertion of the theorem is an immediate
consequence of the first.

" 4. On the smallest subfield containing two sufficient subfields. Let A; and
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A, be sufficient subfields containing N. Then A; N A; is sufficient by Theorem 4.
Is A; V A; also sufficient? It is perhaps somewhat surprising to discover that
A; V A; need not be.

ExampLE 4. Let X be the set of all points ¢ = (21, 22) of Euclidean 2-space
satisfying |@;] = |zo| and 2, £ 0. Let ri(z) = (21, — 22), r2(x) = (—21, 22),
aiz = {z, ri(z)}, € X, and A; be the smallest o-field containing {a.. | x ¢ X},
i1=1,2.Let B=A; V A,D = {x|zeX, 2, = 2}, and A be the smallest
o-field containing B U {D}. If z ¢ X, let p, be the probability measure on A
putting probability 4 on each of the points z, (21, — 22), (—1,22), (—21, — 22).
Finally, let P = {p, | # ¢ X}. The set 4 is in A; if and only if there is a countable
set S C X such thatU{a., | x £ S} is either A or A’, primes being used to denote
complements. A subset B of X is in B if and only if B or B’ is countable. Thus,
if z ¢ X then {z} &£B but D is not in B. Clearly,

A ={(B.N D)U (B:N D')| B; £B,i = 1,2}.

Here N = {g, X}, hence is contained in any subfield.

Let 7 = 1 or 2. Then A; is sufficient, as we now show. Let f = fi 4+ f: where
f1 is the characteristic function of By N D, f, is the characteristic function of
B:N D', and B, and B; belong to B. Let g1 = fi + fi(r:), g2 = f2 + fo(rs), and
g = (g1 + ¢2)/2. If B, is countable, then {z | gi(z) # 0} is countable. If By’ is
countable, then'{z | gi(z) # 1} is countable. Therefore, in either case, since
g1 = gi1(r:), g1 is A;-measurable. Similarly, g. is A;-measurable implying that g
is A;-measurable. If A; ¢ A; and p ¢ P, it is clear that [4f(r:) dp = [4.f dp,
implying that

Jagdp = [45(f + f(r:)) dp = [a.f dp.
Therefore, A; is a sufficient subfield.

However, B = A; V A;is not sufficient. Otherwise, there would exist a B-meas-
urable function g satisfying p(D N B) = [zgdp, BeB, p ¢ P. In particular,
(DN {z}) = [(s}9 dps , z € X, implying that ¢ is the characteristic function of
D. This is a contradiction since D is not in B.

RemARk 6. The proof of Theorem 4 was based on a theorem proved in [3]
which gives a simple way of obtaining the operator E,(- | Ay Ay) from the
operators E,(- | A;) and E,(- | A;). That there can be no closely analogous
result for obtaining E,(- | A; V A;) from E,(- | A1) and E,(- | A;) is implied
by the above example.

Of course, certain extra assumptions, in addition to the assumption that A,
and A; are sufficient, imply that A; V A is sufficient. One such extra assumption
is that P be a dominated family of measures. Another is that either A; or A,
be separable (see Theorem 5). Still another is given in the following theorem.

TuroreEM 6. Suppose that A is separable. If A, and A, are sufficient subfields,
then Ay V A, is sufficient.

Proor. By Theorem 1, there are separable sufficient subfields B, and B, such
that

B.CA;cCcB; VN, 1 =1,2.
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Therefore, B; V B, is sufficient, by Theorem 5, and
Bl VBZCA] VAzCBl VBzV N,

implying that A; V A, is sufficient.

CoroLLARY 4. Suppose that A is separable. If Ay, Az, - -+ are sufficient sub-
fields, then Vo_iA, is sufficient.

Proor. It follows from Theorem 6 that V;_,A; is sufficient for each_ positive
integer n. By Theorem 3, the desired result follows.

b. Separability and sufficiency. Separability of A or of one of its subfields
plays an important role in Theorems 1, 5, 6, and elsewhere in the above sections.
Even so, probably less can be said about sufficiency in the separable case than
about sufficiency in the dominated case. Whether or not this is true, it should
be kept in mind that nearly all, if not all, of the probability structures of im-
portance in statistical work satisfy the condition that A is separable, but many
do not satisfy the condition that P is dominated.

As usual, let (X, A, P) be any probability structure. Let D be the collection
of Borel subsets of the real line. If By is a separable subfield of A then there is
an A-measurable function f such that (D) = {f (D) |D e D} = By. (See
Lemma 4 of [1], for example. Bahadur’s blanket assumption that X is Euclidean,
and so forth, is, of course, not needed and not used in his proof of Lemma 4.)
Therefore, as an immediate consequence of Theorem 1, we have the following:

THEOREM 7. Suppose that A is separable. If B is a sufficient subfield, then there
18 an A-measurable function f such that

f7(D) = B[P].

This should be compared to a result of Bahadur: If A is separable, P is domi-
nated, and B is a subfield, then there is an A-measurable function f such that
f1(D) = B[P]. (This follows from Lemmas 3 and 4 of [1].) Theorem 7 indicates
that if one adds the assumption that B is sufficient, then one can drop the as-
sumption that P is dominated.

Of course, in Theorem 7 and the above, f could equally well be a measurable
transformation into any Euclidean space with D again denoting the collection
of Borel subsets of the space.
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