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1. Summary. In this paper we present a method of constructing main-effect
plans for symmetrical factorial experiments which can accommodate up to
[2(s" — 1)/(s — 1) — 1] factors, each at s = p™ levels, where p is a prime, with
2s" treatment combinations. As main-effect plans are orthogonal arrays of
strength two the method presented permits the construction of the orthogonal
arrays (2s", 2[s" — 1]/[s — 1] — 1,5, 2).

2. Introduction. Let there be k factors each of which can assume s = p™ levels,
where p is a prime number. An orthogonal array of strength d, of size N, with %
constraints and s levels consists of a subset of N treatment combinations from
an s* factorial experiment with the property that all s* treatment combinations
corresponding to any d factors chosen from the k occur an equal number of times
in the subset. The array may be denoted by (N, k, s, d).

The concept of orthogonal arrays was first introduced by Rao [1]. He dis-
cussed the use of these arrays as fractionally replicated plans for symmetrical
factorial experiments which permit the estimation of main-effects and inter-
actions up to order (d — 2) when higher order interactions are negligible.

The plans for fractionally replicated symmetrical factorial experiments which
are developed in this paper are orthogonal arrays of strength two. We call these
plans main-effect plans because they permit orthogonal estimation of all the
main-effects when the interactions are negligible.

The main-effect plans derivable from the system of confounding developed by
Fisher [2] can be represented by the orthogonal arrays (s*, (s" — 1)/
(s — 1), s, 2). These plans fall within the class of optimum multifactorial de-
signs which were considered by Plackett and Burman [3].

It has been shown by Bose [4] that the maximum number of factors that it is
possible to accommodate in a symmetrical factorial experiment in which each
factor occurs at s = p™ levels and each block is of size s”, without confounding
any d-factor or lower order interaction, is given by the maximum number of points
that it is possible to choose in the finite projective geometry PG (n — 1, p™)
so that no d of the chosen points are conjoint. This is equivalent to showing
that the maximum number of constraints & in the orthogonal array (s", k, s, d)
is given by the maximum number of points it is possible to choose in
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1168 S. ADDELMAN AND O. KEMPTHORNE

PG (n — 1, p™) so that no d of the chosen points are conjoint. Clearly the
maximum number of constraints in the orthogonal array (s", k, s, 2) is equal to
the number of points of PG (n — 1, p™). Thus the maximum value of k is
(8" — 1)/(s — 1). These facts are relevant in view of the method of construction
to be presented.

3. Preliminary notation and lemmas. The finite projective geometry
PG (n — 1, p™) is a geometrical representation of n factors each at s = p™ levels
and their generalized interactions. We shall represent these n factors by
Xi1,Xs, -+, X.and their generalized interactions by k:1.X; + ko Xo + <+ 4 knXa
where the k; can take on any value of the Galois field GF (p™) and it is under-
stood that the coefficient of the first factor appearing in an interaction is unity.

Let ug, w1, -+, sy represent the elements of. GF (p™) and let wj, u:,
-+ -, us_; represent the squares of the elements of GF (p™). We shall denote the
set of squared elements of GF (p™) by GF* (p™). It is easily verified that apart
from the 0 element the set GF* (p™) forms a cyeclic Abelian group under multi-
plication. It follows from the cyclic property that (i) when p = 2, GF* (p™)
contains each of the elements of GF (p™) and (ii) when p is an odd prime, the
elements of GF* (p™) comprise a subset of (s + 1) distinct elements of GF (p™),
where one element occurs once and (s — 1) elements are duplicated.

Consider one of the factors X; in a main-effect plan in which each X; has s
levels, each occurring s”* times in a total of s™ treatment combinations. Let
X? be a pseudo-factor obtained by squaring the levels of X, . We now present the
following lemmas:

LemMA 1. When p is an odd prime, X: + kX; (k an element of GF (p™)) con-
tains 3(s + 1) distinct levels, one level occurring s™ " times and (s — 1) levels
occurring 2s™ " times tn s™ treatment combinations.

LeMMmA 2. When p = 2, X} contains each of the s levels s™* times.

LemMa 3. When p = 2, Xi + kX (k any element of GF (p™) except 0) contains
1s distinct levels each occurring 2s™ " times.

Lemma 3 can be proved as follows. Let x; range over the elements of GF (p™)
which represent the s levels of X;. As z; ranges over the elements of the field so
does z; + k where k is an element of GF (p™). Also if z; + k = x; (mod 2) then
z; + k = x; (mod 2). Hence z;(x; + k) = zx; and z;(x; + k) = xx;. Thus
whatever values of x;(z; + k) are achieved they are achieved for at least two
values of z; .

It will now be shown that the values of z;(x; + k) are achieved for exactly
two values of z; . Let y be the generator of the field and let z; = y* and k = .
Thus z:(z; + k) = y*(y* + ¥°). Suppose that

v+ Y) =y + o)
where

y* =y and y* 4+ y® =y
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Hence
W+ v = @)+ v
W+ + @+ =0
W+ )" +y + ) =0
This implies that either y* 4 4" = 0 and therefore y* = y” which is a contradic-
tion or that y* + y* + y* = 0 and therefore y* + ¢* = y” which is a contradic-
tion. Hence the values of z;(x; + k) are achieved for exactly two values of z; and
Lemma 3 is proved. _
LemMa 4. The factor represented by X: + k.X: + D ik X, (ks and k; ele-
ments of GF (p™)) where at least one k; = 0, contains each of the s levels s times.
LemMA 5. The levels of X: + kX + koX; whick occur in a plan with the u,
level of a,X; + a:.X; , where k1 , k2 , a1 and az are elements of GF (p™) and az # 0
are given by the values of x7 + kyx; + kex; + c(aw; + asx;) — cu, where ky + ca,

= 0 and x; ranges over the elements of GF (p™).
Proor. When a,X; + a.X; takes on the u; level then a;x; + axx; = u,; and thus

z; = (U — 1)/ .

Hence the levels of the factor X2 + k.X; + %X, which occur with the level u,
of &, X; + a:X; can be represented by

z3 + ks + oz = zF + ki + ko(ue — au)/an

= 7 + (ks — kean/az)zs + (ko/az)u .
Since k; + ca; = 0, then ¢ = —ks/a, . Thus
22 4 (ky — ketn/az)zi + (ko/ar)ue = x5 + kyti + kox; + c(ax: + ax;) — cue,

and the lemma is proved.

Two factors X; and X; are said to be orthogonal to each other if each level of
X ; occurs the same number of times with every level of X; . Two factors X; and
X ; are said to be semi-orthogonal to each other if (i) for p an odd prime, one
level of X ; occurs s” 2 times and (s — 1) levels of X ; each occur 25" times with
each level of X, and (ii) for p = 2, 1s levels of X, each occur 2s™* times with
each level of X, .

It follows from Lemmas 1, 3, and 5 that when p is an odd prime or when
ki — kear/as 5 0, then a,X; + a:X; is semi-orthogonal to X7 + kX + kX, .
It follows from Lemmas 2 and 5 that when p = 2 and k; — kea:/as = 0 then
a1 X; + a.X ; is orthogonal to X7 4+ kX + k.X; . Employing an argument similar
to that used in Lemma 5 it can be deduced that kX? + k.X:+ X; and kX’ +
k:X; + X; are orthogonal to each other when &k, #= Fk, .

Lemma 5 can be generalized to include more than two factors as stated in
Lemma 5a.
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LemMA 5a. The levels of X7 + kiX: + D i k; X j which occur in a plan with
the ue level of a;.X: + i a;X; are given by the values of

&t + ks + 2 ks + claws + D ar;) — cus
iz iz

where k; 4+ ca; = 0 for all j = 1. If the a; and the k; are not of such a form that
k;j + ca; = 0 for all j % 1 and some c contained in GF (p™) then the two factors
are orthogonal.

LeMMA 6. When p is a prime the complements in GF (p™) to the elements in
GF(p™) are the set of elements in GF*(p™) each multiplied by an element of GF (p™)
which is not an element of GF*(p™). If the set of elements in GF*(p™) and their
set of complements are taken together in one set, the elements of GF(p™) are obtained.

Proor. From abstract group theory (see Birkhoff and Mac Lane [5]) we employ
a lemma which states that two right cosets of a subgroup are either identical or
without common elements. Now the elements of GF*(p™) form an Abelian sub-
group of the elements of GF(p™). Hence multiplying each element of GF*(p™)
by an element of GF(p™) which is not an element of GF*(p™) yields the com-
plementary set to GF*(p™).

It is clear from Lemma 2 that when p = 2 the set complementary to GF(p™)
is the null set.

4., Construction of main-effect plans.

TrEOREM 1. There exists a main-effect plan for [2(s" —1)/(s — 1) — 1] factors,
each at s = p™ levels, with 25" treatment combinations.

Proor. In order to facilitate the presentation of the proof of Theorem 1, let
n = 2. First construct an orthogonal main effect plan for (8 — 1)/(s — 1)
factors each at s levels in §* trials, represented by the two factors X; and X and
their generalized interactions X; + X, , Xi + 2Xz, -+, X1 + (s — 1)X,,
where the coefficients 1,2, - -+, (s — 1) are elements of GF(p™), addition and
multiplication being performed within this field. To these add

(¢ —1)/(s=1) —1]
factors represented by
X+ X, X+ 4+ X, X425+ X, -, Xi+ - 1DX1 4+ Xe.

These [2(s" — 1)/(s — 1) — 1] factors in s” observations represent the first
half of the main-effect plan.

Note from the preceeding lemmas that when p is a prime number, X; + a.:X»
and X? + k:X; + X are semi-orthogonal and also that X; and X7 + k:X; + X
are semi-orthogonal for all a; and k; in GF (p™) except a; = 0. All other pairs
of factors are clearly orthogonal. If p = 2 and (k; — ai/a:;) = 0, then a:.X; +
a:Xs and X3 + k;X; + X, are orthogonal.

The second half of the plan is chosen so that the pairs of factors which are
orthogonal in the first half are also orthogonal in the second half and pairs of
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factors which are semi-orthogonal in the first half are semi-orthogonal in a
complementary manner in the second half. The factors in the second half which
correspond to the factors of the first half can be denoted by

X1, X, Xi+Xo 46, X1 +2Xo+ b2, -+, Xa 4 (s — 1)Xo + boa

kX1 + Xo, kX3 4 Xy + Xo 4 o,

EX: + Xy + Xo + oy oo, kXS 4 koo Xs + Xz + Gt
where the coefficients by, ba, -+, bs—a, k, k1, k2, -+, ks, C1,C0 5+, Coas

which are to be determined, are elements of GF(p™).

From Lemma 5, it is seen that the levels of X3 4 X, which occur with the
u; level of X, are given by the values of 2§ + u. where z; takes on the values of
the elements of GF (p™). Without loss of generality we may let u; = uo = 0.
When p is an odd prime, the values of X} + X, , where k is an element of
GF (p™) but not an element of GF* (p™), which occur with the u; = 0 level of
X, are given by the values of &z} . As shown in Lemma, 6, kzi complements x; .

Thus, when p is an odd prime & can take on the value of any element in GF(p™)
which is not an element of GF*(p™). If p = 2 it is clear from Lemma 2 that k = 1.

A method for determining the constants by, by, +++ , bs—1, k1, ko, -+, ko1,
€1,C, " ,Co1,whens = p™ and p is an odd prime is now presented. In order
that the levels of X3 + X, which occur with the 0 level of X; + a;X: -+ b; be
the complements of the levels of X ? 4+ X, which occur with the 0 levels of X; +
a:X: , b; must be such that the values which kz} — (1/a;)x; — bi/a; takes when
a; ranges over the field GF (p™) complements the values which 2} — (1/a:)z;
takes. Now #1 — (1/a;)x; consists of one element of GF (p™) occurring once
and (s — 1) elements occurring twice. Let the unique element of GF (p™)
be wu; . Then 2} — (1 /a;)x; = u; must have only one solution as x; ranges over
the elements of GF (p™). Thus 1/a2 4 4u; = 0 and hence 4u; = —1/a . Since
ki — (1/a:)x; — bi/a; must complement x; — (1/a;)2;, the equation

kxi — (1/a)z — bi/ai = w
must also have only one solution. Therefore

1/a} + 4k(bi/a; + w) = 0.
Substituting 4u; = —1/a? in this equation and solving for b; we get
(1) | bi = (k — 1)/4ka; .

To find the levels of X7 + d:X; + X which occur with the 0 levels of X note
that there exists an element of GF (p™), us say, such that 2} + da; = us has

only one solution.
Thus di + 4us, = 0 and hence 4u; = —d- . In order that the levels of kX% +

k;X; + X; + ¢; which occur with the 0 levels of X, complement those given by
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xi + dazy , then ka} + ki, + c¢; = us must have only one solution. Substituting
4u, = —d; in this equation and solving for ¢; we get
(2) ci = ki/4k — di/A.

To find the levels of X? + d;X; + X, which occur with the 0 levels of X; +
a;X, note that there exists an element of GF (p™), us say, such that 2} +
(di — 1/a;)x; = us has only one solution. Thus

(di — 1/a:)’ + 4us = 0 and 4us = — (d: — 1/a;)’.

Since kxzi + (k1 — 1/a:)z1 + (¢c; — bi/a;) must complement z5 + (d; — 1/a:)x: ,
the equation

kxi + (ks — 1/a)z + (ci — bi/a:) = us
must also have only one solution as x; ranges over the elements of GF (p™).
Therefore

(ki — 1/a:)* — 4k[(cs — bi/a;) — us] = 0.
Substituting 4us = — (d; — 1/a;)* and equations (1) and (2) into this equation
we get

(3) ki = kd; .
Hence equation (2) can be rewritten as
(4) ci = dix(k — 1).

Thus k is determined by choosing an element of GF (p™) which is not an
element of GF® (p™). By letting a; = 1, 2,---, s — 1 we can deter-
mine by, by, -+, bs—y from equation (1). Then settingd; = 1,2,---,s — 1
we determine ky, ke, « -+, ks—1 from equation (3) and ¢, ¢z, + -+, -1 from

equation (4).

The procedure employed above cannot be applied when p = 2 since 3 + cx;
consists of s elements of GF (2™), each occurring twice. Thus there exists no
element w such that 3 + cz; = w must have only one solution.

We deduce from Lemma 2 that when p = 2, then &k = 1. In order that the
levelsof X} + X, which occur with the0 levelsof X; + a:Xs + bi(a; = 1,2,3, - -,
s — 1) complement the levels of X ? + X, which occur with the 0 levels of X; +
;X then the levels given by #; — (1/a;)x; — bi/a; must complement the levels
given by #; — (1/a:)z; when z; ranges over GF (2™). It is easily verified that
b; can be any one of the 2”7 elements of GF (2™) which are not given by
i — (1/a))z, .

In order that the levels of X3 4 %:X; + X, -+ ¢; which occur with the 0 levels
of X, complement the levels of X3 + d:X; + X, which occur with the 0 levels of
X , then the values given by «} + k.2 + ¢; must complement the values given
by z: + dix; . It can be shown that k; = d; and ¢; can be any one of the 2"
elements of GF (2™) which are not given by the values of z; + duz; .
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By finding the values of X3 + k:X; 4+ X; + ¢, which occur with the 0 levels
of X; + a:X; + b; and which complement the values of X7 4+ d.X; + X that
occur with the 0 levels of X; + a:;X, a set of b; and ¢; which satisfy all the re-
quirements to have the second half of the plan complement the first half of the
plan can be determined.

When n > 2 the same procedures will yield the desired plans if Lemma 5a
is utilized in place of Lemma 5. Thus the theorem is proved.

b. Examples. Some of the more useful orthogonal arrays which can be con-
structed by the above procedures are: (18, 7, 3, 2), (54, 25, 3, 2), (32, 9, 4, 2),
(128, 41, 4, 2), (50, 11, 5, 2), (250, 61, 5, 2), (98, 15, 7, 2), (128, 17, 8, 2) and
(162, 19, 9, 2).

Bose and Bush [6] have constructed the arrays (18, 7, 3, 2) and (32, 9, 4, 2)
by other procedures and have shown that [2(s” — 1)/(s — 1) — 1] is the maxi-
mum number of constraints that arrays of size 2s” can accommodate.

We now present two examples of the construction of main effect plans for
[2(s™ — 1)/(s — 1) — 1] factors each at s = p™ levels with 2s* treatment com-
binations. The first example illustrates the construction of a plan for eleven
factors, each at five levels with fifty treatment combinations. This plan is the
orthogonal array (50, 11, 5, 2).

The eleven factors which represent the first twenty-five treatment combina-
tions are denoted by X;, X,, X1 + Xo, X1 + 2X,, Xi + 3X,, X; + 4X,,
Xi 4+ X, Xi + Xi + X5, Xi + 2X; + X5, Xi + 3X; + X, and
X? 4+ 4X, + X,. The corresponding eleven factors representing the sec-
ond half of the plan are denoted by X;,X,, X; + Xo 4+ b1, Xi + 2X, + b,
X, + 3Xe + by, Xo + 4Xe + b, KXT + Xo, BX: + Xy 4+ Xe + o,
kX1 4 kX1 + Xo + &, kX1 4 kX1 + X 4 s and kX1 + kaXy + X5 + ¢4 -

The elements of GF (5) are 0, 1, 2, 3 and 4. Hence the elements of GF*(5)
are 0, 1,4, 4, 1. From Lemma 6, therefore, k = 2 or k = 3. Let us choose k = 3.
Hence, from equation (1)

b,‘ = l/a,- .

Thus, when
a; = 1 then bl =1

a; =2 then b, =3
a; =3 then b3 = 2
a; =4 then by = 4.
Now, from equations (3) and (4)
ki = 3d;and ¢; = 3d; .
Thus, when
d; =1, then k =3,¢1 =3
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di = 2, then kz = 1, Cy = 2
di = 3, then ks = 4, C3 = 2
di = 4:, then k4 = 2, Cy = 3.

The eleven factor representations for the second half of the plan are therefore
givenby:Xl,Xg,Xl +X2+ 1,X1+2X2+ 3,X1 + 3X2 + 2, X1 +4X2 + 4:,
3X: + X;,3X1 + 38Xy + Xo + 3,3X1 + Xy + Xz + 2, 3X1 + 4X, + X + 2
and 3X; + 2X; + X, + 3.

The second example will illustrate the construction of the plan for nine factors
each at four levels with thirty-two treatment combinations. This plan is the
orthogonal array (32, 9, 4, 2).

The nine factors which represent the first sixteen treatment combinations
are denoted by X1, X;, X; + Xz, X1 + 2Xz, Xi + 83Xz, Xi + Xo,

X:+ X1+ Xo, X1 + 2X; 4+ X, and X; 4 3X; + X, . The corresponding nine
factors representing the second half of the plan are denoted by X;, X,

X1+X2+b1,X1+2X2+bz,X1+3X2+ba,X§+X2,X§+k1X1+X2+Cl ,
X? + koXy1 4 X2 + ¢, and X5 + ks X; + X, + ¢ . The coefficients are elements
of GF (2°) and all additions and multiplications are performed within this field.

Solving for ¢, so that the levels of X' + X, which occur with the 0 level of
X, + X, + b, complements the levels of X7 4+ X, which occur with the 0 level
of X; + X, we find that b, = 2 or b; = 3. Similarly we find that b, = 1 or
b, = 2 and that b3 = 1 or b; = 3.

As we wish the levels of X; + k:.X; + X: 4 ¢; which occur with the 0 level
of X; 4+ a.X, to be complements to the levels of X7 + k:X; 4+ X, which occur
with the O level of X; + a:X, we find that

k1= 1, kz =2, ,C3= 3,
by + ¢ =1or3, by + ¢ =1or2, 3b; + ¢, = 1lor2,
3b: + ¢c2 = 2 or 3, 2b; + ¢ = 1lor3 and 2b; + ¢c; = 2 or 3.

Values of by , bz, b3, ¢, ¢z and ¢; which are consistent with all the above equa-
tionsare by = ¢; = 2, by = ¢a = 1 and by = ¢3 = 3. A second set of solutions is
by =¢ =38,bp = ¢, = 2and by = ¢c3 = 1. These are the only two possible sets
of solutions for this plan.

Since the coefficients satisfy all the properties required to make the second
half of the plan complement the first half every pair of factors is orthogonal.

6. Some useful orthogonal arrays. In this final section we present the factors
which represent the first and second halves of the arrays (18, 7, 3, 2) and (54,
25, 3, 2) and the treatment combinations which constitute the array (50, 11, 5, 2).

The factors representing the first half of the orthogonal array (18, 7, 3, 2) are:

X, X, X0+ X, X+ 2%, Xi+ X, Xi + Xi+ Xo, Xi + 2X1 + X, .
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The factors representing the second half of this array are:
X, X, X1+ X+ 2, X+ 25+ 1,2X2 4+ X5, 2X2 + 2X, + Xa + 1,
2Xi+ X+ X2+ L.
The factors representing the first half of the orthogonal array (54, 25, 3,2) are:
X1, X, X1+ X, Xi 4+ 2X2, X5, Xo + X5, X1 + 2X;, Xo + X5, Xo + 2X5,
X+ X4+ X5, X + X, + 2X;, Xy + 2Xe 4+ X5, Xy + 2X, + 2X;,
X+ X%, X+ X+ X%, X 42X +%, X+ X, X+ X + X,
X1+ 2X:+ X0, Xi+ Xo+ Xo, X1+ X+ X + X5, X3+ 2X0+ Xo + X3,
X:+ Xo + 2X5, X1+ X1+ Xo + 2X5 ;X5 + 2X: + Xo + 2X;.
The factors representing the second half of this array are:
X1, X, X+ X4+ 2, X4+ 2X,+ 1, X, Xo + X4+ 2, X0+ 2X, + 1,
Xo+ X, X0+ 2X:, Xu+ X0+ X3+ 2, X0+ Xo + 2X5 + 2,
X+ 2X, + X5 + 1, Xy + 2X, + 2X; + 1,
2XT + Xo,2X  +2Xs + X, + 1,2X1 + Xu + X, + 1, 2XT + X5,
2X7 + 2X, + X5+ 1,2X: + Xs + X5 + 1, 2XT + Xo + X,
2Xi 42X, + Xo+ X5+ 1,2X1 4+ Xy + Xo + X5 + 1, 2X: + Xo + 2X;,
2XT + 2X; + Xo + 2Xs + 1,2X; + X; + Xo + 2X; + 1.

The factors representing the orthogonal array (50, 11, 5, 2) were deduced in
Section 5. The following fifty treatment combinations constitute a main-effeet
plan for eleven factors each at five levels and the array (50, 11, 5, 2). The treat-
ment combinations are divided into two sets of twenty-five, the first set being
the first half of the plan and the second set being the second half of the plan
(see Table 1 following references).
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