SOME CONSEQUENCES OF RANDOMIZATION IN A
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By GEORGE ZYSKIND
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1. Summary. The present paper envisages a generalized situation of the
balanced incomplete block design in the sense of allowing for the sampling of
sources of experimental material, of blocks within sources, of experimental
units within blocks, and of treatments under consideration. A model for an
arbitrary observation of a generalized balanced incomplete block design is
derived explicitly from the physical way in which the experiment is performed,
ie., from the way in which the sampling and randomization procedures are
carried out. The correlational structure of the observations is therefore implicit in
the model. The model initially uses no assumptions of additivity of treatments
with experimental material. It is shown that expected values of squares of par-
tial observational means, as well as the expected values of products of individual
observations, admit simple and easily specifiable expressions in terms of quan-
tities called cap sigmas and denoted by 2’s. The expected values of mean squares
in the analysis of variance table are then derived. Consequences of the presence
of various types of nonadditivity on the usual test of no treatment effects are
discussed for fixed, mixed and random situations. For example, when the blocks
actually used in the experiment form a random sample from an infinite popula-
tion of blocks then the presence of interactions of blocks with treatments pro-
duces no bias in the comparison of the error and adjusted treatment mean
squares. The correlational structure of the observations under the simplifying
additivity assumption is examined for the standard balanced incomplete block
design. It is shown that the usual forms of estimators of treatment comparisons
are appropriate and that the 2’s play the roles which the block and plot vari-
ances have in the corresponding assumed infinite model. In the presence of non-
additivities of treatments with the experimental material the usual forms of
the linear estimators are no longer best.

2. Introduction. The balanced incomplete block design was first introduced
by Yates (1936a). Although it has always been vaguely recognized that the
validity of the suggested analysis of the design has its roots in the randomization
procedures followed in performing the experiment, the analyses actually given
have claimed their justification from some a prior: assumed error structure.
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Thus, there exists the intrablock analysis which purports to assume only one
kind of error, and there is also the analysis, first exhibited by Yates (1940),
which combines intra and interblock information, based on the assumptions of
two kinds of error. Equivalently to the last procedure both intra and interblock
information can be utilized by considering in the assumed model blocks as ran-
dom uncorrelated variables and by carrying out the consequent generalized
least squares analysis. Rao (1959) obtained the expectations under randomiza-
tion of mean squares with non-additivity, for the standard case of the incomplete
block design; that is, no sampling was considered of any of the entities, i.e.
blocks, units in blocks, treatments.

In recent years the models for a large number of experimental designs have
been expressed in a form exhibiting explicitly a one-one correspondence with the
way the experiment has been carried. Many of the models have been studied
under general conditions allowing for the sampling of the entities under con-
sideration and involving the presence of all possible interactions and not in-
volving any specialized assumptions. For a large class of balanced situations,
e.g. completely randomized, randomized block, Latin square, split-plot, and a
number of cases in which treatments are subject to error, it has been found
that the introduction of population quantities termed Z’s allows considerable
simplification and unification in obtaining second moment results, and par-
ticularly in obtaining expected mean squares in the analysis of variance. Some
references on these matters are Kempthorne (1955), Wilk (1955a, 1955b),
Wilk and Kempthorne (1957), Cox (1958), Zyskind and Kempthorne (1960),
Folks and Kempthorne (1960), Kempthorne et al (1961), Zyskind (1962).
The balanced incomplete block design structure is not balanced in the sense
that there is no unique analysis of variance which gives all of the relevant in-
formation. The question arises therefore as to the utility and applicability of
the above general approach to the case of the balanced incomplete block design.
In addition to the question of the possible simplicity of the T expressions for the
expectations of squares of sample means there is also the novel issue as to whether
the expectations of the products of two different sample observations admit
simple and easily specifiable = expressions. This issue arises in the balanced
incomplete block design because here some of the mean squares, such as that
for treatments eliminating blocks, are not expressible as linear functions of
squares of partial observational means. It seemed appropriate therefore to con-
sider the case of the balanced incomplete block design in as broad a way as
possible from the point of view of sampling of the entities such as sources of ex-
perimental material, blocks, units within blocks and treatments, which are in-
volved. The results of the present paper were obtained independently of those of
Rao (1959). They are less general in the sense that they are limited to the case
of the balanced incomplete block design only; however, they are more general
in the sense that they allow for the possibility of sampling of all of the entities
under consideration and hence for the exploration of the mixed, fixed and random
situations. In addition the present paper explores the role played by the = quan-
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tities. A preliminary report of the present results was presented at the annual
statistical meetings in Washington in 1959, and subsequently an abstract was
published by Zyskind (1960).

3. Considerations under the general case. We consider that the experimental
material has a hierarchical structure as follows. The experimental units are
arranged in sets of size K, each set being called a block. Also, the blocks are
arranged into sets of size B, and there are S such sets, called sources, of experi-
mental material altogether.

The treatments whose effects are to be investigated are 7 in number and are
identified by the subscript w, w = 1,2, - -, T. There is also an a prior: arrange-
ment of the first ¢ integers into b groups each of size k, where each one of the
integers occurs altogether in r of the groups, any two integers appear together in
M of the groups, and

(1) tr = bk.

The different groups are denoted by the subscript , w = 1, 2, -- -, b; and the
elements in the groups by the subscript », v = 1, 2, - -+, k; so that every ww
combination denotes a particular integer z, z =1, 2, --- , &

The above situation is adapted to the standard case of the balanced incomplete
block design by putting the number of treatments equal to ¢ and having the ¢
treatments associated through their subscripts with the corresponding ¢ integers,
thus obtaining b distinct treatment groups. Further, the number of sources of
experimental material is taken equal to one, the number of blocks within a
source equal to b, and the number of experimental units within a block equal to
k. The experimental procedure consists then of associating randomly the treat-
ment groups with blocks, and then within the achieved combinations of treat-
ment group and block of applying the individual treatments of the group to
the individual units of the block at random. If the block and unit entities are
denoted by the indices j and m respectively,j = 1,2, --- ,b;m = 1,2, --- | k;
then the experimental procedure is fully characterized mathematically by the
introduction of two sets of random variables as follows:

B} = 1 if treatment group u is associated with block ;7 in the outcome of
the experiment and
0 otherwise;
1 if in the block with which treatment group w is associated the
treatment v falls on plot m and
Pur = 0 otherwise.
The distributions of the random variables so defined follow entirely from the
randomization scheme employed in carrying out the experiment. Thus, P{B} =
1} =b,PBf =0} =1—0b", P{Pi, =1} = k™, P{Pis, = 0} = 1 — k™.
Also, the variables B; are uncorrelated with the variables P, and the moments
of these variables can be easily obtained. To develop a model for the simple
balanced incomplete block case denote the conceptual response due to treatment

I

B;
Pin

I
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w = w falling on plot m of block j by Yjmus = Yjmw . Then there are bkt such
conceptual responses and the performance of the experiment yields a subset of bk
of these. If the observed response on the (wv)th treatment is denoted by X, ,
then the relation of X, to the set of observed responses is given by
(2) Xuv = Z B}‘Pzrnyjmuv .

jm
Because the properties of the variables BJ, P, can be easily obtained, the proper-
ties of the X,,’s can also be worked out.

For the general case described at the beginning of the present section, a ran-
dom sample of ¢ treatments is taken from the 7' treatments under consideration.
The chosen treatments are then associated with the integers 1, 2, 3, ---, ¢
according to the order of their choice, so that in this manner b chosen treatment
groups each of size k are obtained. Independently for each chosen source the
b treatment groups are randomly associated with b out of the B existing blocks of
that source, within each chosen block treatment group combination the %
treatments of the group are randomly associated with & out of the K experi-
mental units of the block, and altogether s sources out of S are randomly se-
lected for the performance of the experiment.

Among the random variables describing the experimental procedure we now
have

Si" = 1 if the s*th chosen source in the sample is the th source of the popu-

lation and

8¢ = 0 otherwise; ¢* =1,2,---,s,and ¢ =1,2,---, S.

Other sets of variables Bi.}, Piuw, T’ are defined analogously to the standard
case already described. Thus, for example, Bi+¥ = 1 if in the ¢*th selected source
integer group w is associated with the jth block of the source and is equal to
zero otherwise.

In this general situation denote the generic conceptual response by Y muw
and the observed value on the treatment associated with uv in the *th selected
source by X+, . Then
(3) Xivw = 2 Si'BiiPunTo"Y ijm -

T jmw

The expression for X+, can be put into a more familiar form when use is
made of the following identical decomposition for Y;jm., , where the absence of
subscripts denotes the averaging over the population ranges of the indices
omitted. Now

Yijmo =Y+ (Ysi = Y) + (Yi; = Yi) + (Yijm — Yi5) + (Yo — T)
(4) 4+ Y —Yi—= Yo+ YY)+ (Yiu— Y — Y0 + Y
+ (Yijmo — Yijm — Yijo + Yij)
= u+ 8i+ Bi) + Pijowy + To + (8T)iw + (BT) it
+ (PT)sjcmo) -
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The correspondence between the combinations of Y’s within the brackets and
the briefer symbolic expressions for these population components should be
evident.

Substituting the identical expansion for Y;;m, in the expression for X, we
obtain

Xivuw = u + 22 8°8: + 22 8Bt} B
1 ¥
(5) + 20 8B Piin Pijow + 22 T T + 2 87 T8 (ST) i

Tjm
+ 2 SUBL T (BT )i + 2 SUBE PR T (PT)isome
Tjw i jmw

In order to relate the considerations given so far to a more general framework
which has been found useful in the treatment of many randomized designs a
brief digression on experimental structures follows.

Identities like the one for the conceptual response Y;jm, above can in general
be arrived at by the following considerations. Partial population means can be
obtained by averaging over the entire range of values of particular sets of sub-
scripts. Partial means are here denoted by the usual symbol for a response but
with omission of subscripts over which the average has been taken. An admis-
sible mean is defined as one in which whenever a nested index appears then all
the indices which nest it appear also. Our considerations are restricted to ad-
missible means only. The indices of an admissible partial mean which nest no
other indices of that mean are said to constitute the set of indices belonging to
the rightmost bracket. It is convenient to indicate the grouping of the indices
of the rightmost bracket by using parentheses, ( ), and also to group in this
way other sets of indices when we wish to emphasize that for some structural
reason they belong to the same category. In the present case the admissible par-
tial means are eight in number and may be denoted by Y, Y,, Y., Yiitm ,
Yo, Y, Yigw , Yiiomw -

From every partial mean linear combinations of means can be formed which
are of special physical and formal significance. These linear combinations,
henceforth called components, are obtained by selecting all those partial means
which are yielded by the mean in question when some, all, or none of its right-
most bracket subscripts are omitted in all possible ways. Whenever an odd
number of indices is omitted the mean is to be preceded by a negative sign,
whenever an even number is omitted the mean is to be preceded by a positive
sign. The number zero is considered even. For example, in the present case the
partial mean Y, leads to the component (Y, — Y;), the mean Y, ., to
(Yiiwy — Yi) — Yw + Y5), and the mean Y to (Y). The components thus
constructed have a correspondence with the effects and interactions of the usual
assumed linear models. It has been shown, Zyskind (1962), that for any given
population structure the typical response can be expressed identically as a sum
of all its corresponding components. The above relation is called the population
identity.
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The component of variation corresponding to a given type of population
component is defined to be the sum of squares of all the different values of the
type divided by the number of linearly independent values of the component.
Thus, some examples in the present case are

8 2
2 2 e 2_Zi=1S£
o =p =Y, 0 =T 1

o = >owa (Y, —Y)° .2 _ D iimw (PT) i
’ T =1 SBED T SBK — (T — 1)

The introduction of quantities called cap sigmas and denoted by Z’s with
appropriate sets of subscripts, has been found very useful in obtaining general
expressions for the expected values of mean squares in a large class of experi-
mental situations. Included in this class are the cases of complex pure sampling
schemes, and also those of multifactor completely randomized, randomized block,
generalizations of the split-plot, and the Latin square designs—as well as various
modifications of these standard designs when in addition the applications of
intended treatment amounts are subject to error. The use of =’s will also prove
to be of value in the present paper. The 2’s are defined for the general situation
as follows. :

Definition: Consider a particular type of component and all ¢*’s of the follow-
ing form:

(i) the set of subscripts of o” includes the set of subscripts corresponding to
the leading term of the component as a subset,

(ii) the excess subscripts belong exclusively to the rightmost bracket of o°.

The linear combination of all such ¢”s, where the coefficient of a particular
o’ with ¢ excess subscripts is (—1)°/(Product of population ranges of the ex-
cess indices), is defined as the 2 corresponding to the type of component under
consideration. The subscript notation for the Z is to be the same as for the type
of component.

It should be pointed out that the component of variation corresponding to
the null set is ¥ = o}y, and that the corresponding = is uniquely defined.
The introduction of 2 is of importance to the development of the present ap-
proach. In the case of the balanced to incomplete block the experimental units
are nested in blocks which in turn are nested in sources. This structure leads to
the following expressions for the =’s:

2 12 12 -1
2 =04 — 8 s — T or + (8T) osr,
2 —1 2 12 -1 2 2 12
2,3 = 0s — B g8(B) — i asT 'l‘ (BT) O3(BT) » 2r = or — S—Usr,
2 -1 2 2 -1 2
Zsr = osr — B osen , Zsm = osi) — T osam

1 2 -1 2
— K~ O3SB(P) + (TK) O8B(PT) »

(6)

2 —1 2
ES(BT) = 0O8(BT) — K OSB(PT) »

2 12 2
Zgop) = 0spp) — 1 0sB(PT) ZsB(PT) = OSB(PT) -
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By making use of the properties of the sampling and design random variables
various quantities of interest in the balanced incomplete block situation can now
be calculated. In particular the expected value of the square of the overall ex-
perimental mean, E(X?), is found to have in terms of =’s the very simple form

e E(X") = E(Z Xisuo/sbk)? = 2y + 87 25 + (sb) ™ Zsm) + (sbk) " Znea)
+ 2+ (st) s + (sbh) S + (sbk) sy -

The coeflicient of each =; in the above expansion is unity divided by the num-
ber of possibly different values of the component of type ¢ entering into the
formation of the overall experimental mean.

Since X« is the observed mean for the observations in the 7*th chosen source
it should be clear that the moments of X , E(X%), * =1,2,---, s, are all
equal for the different values of +*. E(X}-) can therefore be regarded as the ex-
pected value of the square of the overall experimental mean when the number of
sources in the sample is unity. Hence the form for E(X3) is identical with the
form for E(X*) when the substitution s = 1 is made in it. Thus

E(X3) = Z4 + 25 + b Zam + (b5) " Zencry

(8) —1 -1 4 -1
+ 2+t 250 + (bk) Zs@wn + (bk) Zsseem -

The relevance of the above expressions to the computation of expected value
of mean squares in the analysis of variance table becomes clear when one notes
that many analysis of variance quantities of interest are exemplified by the ex-
pected value of the between sources mean square, which can be written in two
forms

(9) E{(s — 1) D ioin (Xio — X)% = sbh(s —1)E(X: — XP).

Thus, in many cases the expected value of a mean square of a line in the analy-
sis of variance table is expressible as a constant times a known linear combination
of expected values of squares of partial experimental means.

If X v, denotes the observed mean of the treatment group u in the ¢*th chosen
source, then

E(Xiw) = 24 + 25 + Zsew + k' Zsnay

(10) —1 1 1 1
+ k2 +k 250+ kb Zsen + K Zspeen -

It will be noted that here again the coefficient of each Z; quantity is unity
divided by the number of different values of component 7 entering into the forma-
tion of Xy, . A similar expression applies also to E(Xue+), where X, is the ob-
served mean of the treatment to which w*, one of the numbers 1, 2, --- , ¢,
has been randomly assigned. We define analogously the symbols X+ and
X vuns , Where for example X w,+; stands for the fth observed value on the w*th
chosen treatment in the :*th chosen replicate.

Because blocks and treatments are not orthogonal some of the values of mean
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squares, as for example that for treatments eliminating blocks, cannot be ex-
pressed as simple known linear functions of values of squares of partial observa-
tional sample means. Fortunately however, a few other simple and useful results
can be derived and used for such cases. These are

E(XwuwXivw) = Z¢ + 25 4+ 25 v =0

E(XiwwrXiswryr) = 24 + 25 + Zor + 21, F=f;

E(XrposXivrwny) = 2 + 21, i =

and E(X e X o) = 24, i =

By making use of expressions like the above we can obtain, for instance, the
expected value of the mean square for treatments eliminating blocks. The ex-
pected value of the error mean square can then be obtained by subtraction. After
some computations, then, we obtain the analysis of variance exhibited in Table 1.

Inspection of the table reveals the following facts. If the treatments are all
identical then oy = iz = os@en = oeserr = 0, and the expectation of the
adjusted treatment mean square equals the expectation of the error mean square.
Thus, for the test of Fisher’s hypothesis that the effects of all treatments are
identical the design is an unbiased one in the sense of Yates (1936b). Further,
in the absence of interactions of treatments with experimental material the ex-
pectations of the two mean squares in question are equal when o7 = 0. It is
informative to note that the presence of interactions of experimental units
within block with treatments does not introduce any comparative bias into the
two mean squares under consideration, no matter what the relation between &
and K, and also between ¢ and 7. Other interactions however do introduce biases
as follows. When S = s = 1 then the entire bias is due to the block-treatment
interaction and is of the amount —[b(k — 1)/B(¢ — 1)]oszn . Further when
b = B then the above expression becomes —(k — 1)(¢ — 1) "oswr , which
after comparison of terms can be checked to be also the value of the negative bias
obtained by Rao (1959). On the other hand when the chosen blocks form a
sample from an infinite population of blocks, i.e. when blocks are random, then
the bias due to o5 r becomes zero. This fact is worth observing because when,
for example, the blocks are litters of mice then under many circumstances it
would be appropriate to treat the sample of chosen blocks as drawn from a
large population of litters.

If the number of chosen sources, s exceeds unity and if also treatments interact
with sources then one of the following cases obtains. If the sources are fixed, i.e.
if s = 8, then the contribution of o5 to the expected value of the adjusted treat-
ment mean square is zero and its contribution to the expected value of the error
mean square is a positive quantity. Thus, in this case o357 introduces a negative
bias. If however the number of sources is “large,” i.e. if the sources are random,
then the bias introduced by iz is
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i — 1 sk — sb — ¢t + 175

which is a positive quantity.

As an example consider the case where k = 3, r = 5,t = 6, b = 10, s = 5.
Then the coefficient of ¢5r in the expected value of the mean square for treat-
ments eliminating blocks is 4 while it is 80/95 in the expected value of the mean
square for error.

Thus, the bias introduced by o&r is positive when the sources are “random”
while it is negative when they are “fixed.” This fact should be taken into account
because the interaction of treatments with sources is likely to be larger than
that of treatments with blocks.

It should be noted that the analysis of variance exhibited in Table 1 is the
customary one and would normally be recommended if treatments and the
experimental material were expected to be additive. When s > 1 the bias in the
test for treatments, computed in terms of =’s, can be removed by partitioning
the error sum of squares into the sum of two parts: the interaction of treatments
eliminating blocks with sources, which involves (¢t — 1)(s — 1) degrees of
freedom, and the pooled error within sources sum of squares with s(bk — b —
t + 1) degrees of freedom. The expected values of the mean squares appropriate
to the quantities are respectively:

bk —1) (s — Dbk —1)7 »
[ J

—1 —
2:SBU’) + bé—tk_—l)) EST + 2:.‘3(131') + ESB(PT) = IBETIC:—T:;—) 0%7-
bk —1 1 1
+ I:l o _B((t—_li—:l sy + osse) + (1 e T) osaeer)

and

1 1
ESB(P) + ES(BT) + ESB(PT) = a'gB(P) + 0’2(37’) + (1 - K - ‘T‘) a'gB(PT)~

It is evident that for S “large’’ the mean square for the interaction of sources
with treatments eliminating blocks provides a ‘“proper” error mean for the test
that o7 = 0. Under all other circumstances the numerator mean square has a
bias of the amount — (s/S)[b(k — 1)/(t — 1)]osr . The test has no bias origi-
nating from the interaction of treatments with blocks within groups.

On occasion one may desire to partition the total of the sum of squares for
blocks ignoring treatments and for treatments eliminating blocks into the sum
of squares for treatments ignoring blocks plus the sum of squares for blocks
eliminating treatments. Now the sum of squares for treatments ignoring blocks
is expressible as a linear function of squares of partial observational means so
that the 2 form of its expected value can be obtained at once. The X form of
the expected value for blocks eliminating treatments is obtained as a difference
and yields for the expected value of the mean square
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—k
(70 - 8—(%—;—1—)> 2si) + 2spey + 0 2p
(s =1)(b—1)

+ s(b—1)

Zsr + Zsem + ZsePT)

If uncorrelated measurement errors are also operative, then their presence
does not complicate the discussion in any essential way for their contribution
adds the variance of measurement errors with coefficient one to each line of ex-
pected mean squares of the analysis of variance table.

If in addition, the realizations of intended treatment amounts are also non-
reproducible, i.e. treatments are subject to error, then the tables of expected
mean squares have to be expanded to include contributions due to the treatment
errors and to their interactions with the experimental material. The expectations
differ according as the ways of performing the experiment with respect to the
application of these treatment errors are varied. The expectations can be ob-
tained and their consequences assessed along the lines developed in Zyskind and
Kempthorne (1960).

4. Considerations under usual conditions of design and under additivity
assumptions. In this section we take S = s =1, B=0b, K =k, and T = ¢,
which corresponds to the common use of the balanced incomplete block design.
Further, we assume that the interactions of treatments with experimental
material are all zero.

If the treatment w, w = 1, 2, - -+ , t, occurs in the treatment set 4 we denote
its observed value by X, . Using Equation (2) under the present assumptions,
and denoting the variance of quantities by the symbol V, we obtain easily

V(Xuw) = V(B) + V(P);
(12) Cov (Xuw, Xuw) = V(B) — (k — 1)7'V(P), wEw;
Cov (Xuw , Xunw) = —(b — 1)'V(B), uw# .

Denote the variance and covariances on the left-hand sides above by «, 8, and
v respectively.

Thus, the variance of any observation is the sum of the block and plot vari-
ances, the covariance of any two different observations in the same block is
equal to the block variance minus (k¥ — 1) times the plot variance, and the
covariance of any two observations in different blocks is — (b — 1)~ times the
block variance.

If we consider the unbiased estimation of a treatment contrast » ., ufy,
where Y., 8, = 0, by a linear function of the observations > o CuwXuw , then
> dube = (Douw Cuw)tt + D (Du Cuw)tw , Whatever the values of u and
t»’s. Hence ZW Cuw = C.. =0, > i = Cp = 8,. Denote also D, Cyw
by C... The variance of Y., CuwXuw, is then given by
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V(§ cwwXw) = (o — 6)§ Cuw + (B— v><; (6

(13)
+ Cly = (a = B) X clw + (B = (X CL).
Nowa — 8= V(P) + (k — 1)7'V(P) = O'B(P) . 23<p) ,and B — v = V(B)
+ (b =1DTV(B) — (k—1)7'V(P) = 0% — k0% = Z5.
The mathematical problem of finding the minimum variance unbiased linear
estimator of ), 8,t, amounts therefore to finding the minimum with respect to

the c..’s of
(14) (EB(P))Zuw ciw + (EB) Zu Ci. ’

subject t0 Dy Cuw = Cp = 84, C.. = 0.

Under the usual infinite model, i.e. where V(Xuw) = o + o3; Cov (Xuw,
Xuw( = ot, w# w'; Cov (Xuw, Xuw) = 0, u 5 u’; the analogous problem
of estimation leads to finding the minimum with respect to the c.,’s of the
expression

(15) Y Cow + ar O3,

subject 10 Dy Cuw = Copp = 8y, C.. = 0.

The two minimization problems are therefore identical in form. The forms of
the best linear estimator and its variance in the case of the finite randomization
model can therefore be obtained from those holding in the infinite case, which
are known and are given for example in Kempthorne (1952) on page 535, by
replacing o with =z and op with =z . In actual applications estimators of =z
and Iz Will have to be used. Now, the relevant lines for the estimation of the
o”’s and 2’s, of the analysis of variance tables in the infinite and finite cases are:

EM.S
Finite Model Infinite Model
Blocks bk — ¢ bk —t
eliminating Zp(p) + 1 Zp o2 —|— — o
treatments
Error Zpep) o

It follows that the A.O.V. estimators of o° and o} from the infinite model are
identical with those of Zz(») and Zz respectively obtained with the finite model,
and hence that the actually employed estimators of treatment contrasts will
be the same regardless of which model is taken as the basis for the analysis.
Considerations along the lines of the present section indicate that when treat-
ments interact with experimental material then unless strong additional as-
sumptions hold, the usual estimators of treatment contrasts are no longer best.
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