ON QUALITATIVE PROBABILITY +-ALGEBRAS

By C. VILLEGAS
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1. Introduction and summary. The first clear and precise statement of the
axioms of qualitative probability was given by de Finetti ([1], Section 13). A more
detailed treatment, based however on more complex axioms for conditional
qualitative probability, was given later by Koopman [5]. De Finetti and Koop-
man derived a probability measure from a qualitative probability under the
assumption that, for any integer n, there are n mutually exclusive, equally
probable events. L. J. Savage [6] has shown that this strong assumption is un-
necessary. More precisely, he proves that if a qualitative probability is only fine
and tight, then there is one and only one probability measure compatible with it.

No property equivalent to countable additivity has been used as yet in the
development of qualitative probability theory. However, since the concept of
countable additivity is of such fundamental importance in measure theory, it is
to be expected that an equivalent property would be of interest in qualitative
probability theory, and that in particular it would simplify the proof of the
existence of compatible probability measures.

Such a property is introduced in this paper, under the name of monotone
continuity. It is shown that, if a qualitative probability is atomless and mono-
tonely continuous, then there is one and only one probability measure compati-
ble with it, and this probability measure is countably additive. It is also proved
that any fine and tight qualitative probability can be extended to a monotonely
continuous qualitative probability, and therefore, contrary to what might be
expected, there is no loss in generality if we consider only qualitative probabili-
ties which are monotonely continuous.

At the present time there is still a controversy over the interpretation which
should be given to the word probability in the scientific and technical literature.
Although the present writer subscribes to the opinion that this interpretation
may be different in different contexts, in this paper we do not enter into this
controversy. We simply remark that a qualitative probability, as a numerical
one, may be interpreted either as an objective or as a subjective probability, and
therefore the following axiomatic theory is compatible with both interpretations
of probability.

2. Events. In this section we shall review the basic concepts and results con-
cerning events. Following Glivenko [2], Koopman [5] and Halmos [3] we shall
consider the events as undefined terms, which may be subject to the usual oper-
ations of wnion, intersection and complementation, satisfying the axioms of a
Boolean algebra [7]. The union and intersection of two events A and B will be
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denoted respectively by A U B and A N B, and the complement of 4 by A°.
If, intuitively speaking, A implies B, we shall write A < B (or B D A), and
we shall say also that A is contained in B (or that B contains 4 ). More formally,
A C Bis defined by A N B = A (or, equivalently, by A U B = B). In this
paper the identity of events will be always denoted by the sign =, leaving the
sign = for the relation ‘‘equally probable’” to be introduced later. The relation
C is a partial order with a first element O, which is called the impossible event,
and a last element, which is called the sure event. Two events will be called
incompatible, or mutually exclusive, if their intersection is the impossible event.
A fundamental result in the theory of Boolean algebras is that every Boolean
algebra is isomorph to an algebra of sets of a space Q. This result is due to Stone
[8] and his construction of Q has the following simple interpretation. A possible
state w of the algebra of events @ is a classification of the events into two classes:
the events which “occur’’ and the events which “‘do not occur”. This classification
is such that,

(i) if A occurs, then A° does not occur;

(ii) if A < B and A occurs, then B occurs;

(iii) if A < B and B does not occur, then A does not occur either.
Such classifications always exist; but all known proofs of this fact are based on
the axiom of choice or its equivalents. Among all possible states » there is one
which is the real state; it is the classification into the sets which really occur and
the sets which do not really occur. The set @ of all possible states w is the Stone
space of the algebra @. Given an event 4, let A be the set of all states w for which
A occurs. Since the sure event always occurs, the corresponding set is the Stone
space itself. Let & = {A: A £ @} be the family of all such sets of possible states.
(The words set, family and collection will be used as synonyms in this paper.)
Note that every A is a set of Q, but not necessarily every set of @ belongs to @.
However, @ is closed with respect to the usual set-theoretical operations of
union, intersection and complementation, so that, with respect to them, @ is a
Boolean algebra of sets. It can be proved that the natural correspondence
A — A is an isomorphism between the two Boolean algebras @ and @. We may
identify therefore the elements of @ with the corresponding elements of @, that
is, we can think of the events as sets of states. In particular, the sure event
can be considered as the Stone space Q itself. It can be shown that the algebra
of events @, considered as an algebra of sets of the Stone space ©, is not a s-algebra
of sets; more precisely, the union of any denumerable collection of disjoint sets
of @ does not belong to @ [7]. However, there is no loss of generality in assuming
that the algebra of events @ is a o-algebra of sets of some space 2, because it
can always be extended to one. Consider, in effect, the case in which we are given
a Boolean algebra of events G, . Let as before @ be the corresponding algebra of
sets in the Stone space Q. Consider the o-algebra of sets @ generated by Go;
i.e., the smallest o-algebra of sets of @ which contains & . This is an extension
of @, and, since the elements of this o-algebra are also sets of states, they have
also the same simple interpretation.
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3. Qualitative probability. If, intuitively speaking, A and B are equally
probable events, we shall write A = B. If A is strictly less probable (strictly
more probable) than B, then we shall write A < B (resp. A > B). In both
cases we shall write A < B (resp. A = B) and we shall say that A is less probable
(resp. more probable) than B. More formally, a relation < between events will
be called a qualitative probability, if it satisfies the following axioms (in which
A < Bisdefined by A < Bbutnot B = A4):

Axrtom oF PRE-ORDER Q1. The relation < is a total pre-order between events,
with O as the first element and @ as the last one. That is,

(a) if A and B are events, then either A < Bor B < A4;

(b) for any event A, A < A;

(c)ifA < Band B £ C,then A < C;

(d) 0 < Q,and for any event 4,0 < A < Q.

Axrtom oF Monotony Q2. If B; N B, = O, then from A; £ By, A; £ By it
follows that 4; U A, < B, U B; and if, in one of the first two inequalities, the
sign < is replaced by <, then the last one holds with the sign < replaced by <.

These axioms are equivalent to those proposed by de Finetti [1]. For the
proof, see [6], p. 32, Exercise 5a. Formally, the relation A = B, meaning that
A and B are equally probable, is defined by 4 < Band B < A.If A = 0, we
shall say that A is a null or an almost tmpossible event, and if A = Q, we shall
say that A is an almost sure event. Two events will be called almost tncompatible,
if they have a null intersection. If @ is an algebra of events and =< is a qualitative
probability defined on @, the pair (@, <) will be called a qualitative probability
algebra. The following propositions are easy consequences of the Axioms ([6],
p. 32):

(1) Strengthened transitivity. If A < Band B < C, then A < C.

(2) Compatibility with the inclusion. If A C B, then A < B.

(8) If A, € A, and B, C B, then from A; < B, A2 = B it follows that
A, — Ay £ B, — B,.

(4) Duality. If A < B, then B° < A°.

DzerintrioN. We shall say that a qualitative probability, defined on a ¢-algebra
of sets of a space Q, is monotonely continuous, if, given a monotone increasing
sequence of events A, T A (that is, a sequence A; C 4, C --- converging to
A), and an event B such that, for every n, A, < B, then A < B.If @ is a o-algebra
of sets of a space 2, and < is a monotonely continuous qualitative probability
defined on @, then the pair (@, <) will be called a qualitative probability o-algebra.

TuEOREM 1. A necessary and sufficient condition in order that < be monotonely
continuous, 1s that given a monotone increasing sequence of events A, T A, and an
event B < A, there exists an integer N > 0 such that, forn = N, we have B < 4, .

(The proof is left to the reader.)

In a qualitative probability o-algebra the following propositions are true.

ProrosiTion 1. If A, T A and B, T B (or, alternatively, 4, T 4 and B, | B),
then from A, < B,,n = 1, 2, - -- it follows that A = B.
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Proposition 2. If A, T A and B, T B (or, alternatively, 4, T A and B, | B),
then from A, = B,,n = 1,2, --- it follows that A = B.

ProrosiTioN 3. If B, N B,, = O for all m s n, then from 4, < B,, n =
1,2, - .. it follows that

U4, = UB,.

Lemma 1. If (@, =) s a qualitative probability o-algebra, and if {A;: A; e @,
1 ¢ I} 1is an infinite collection of almost incompatible events, then, given an event
A > O, there is only a finite number of A’s which are more probable than A.

Proor. Assume, on the contrary, that there is a sequence of almost incom-
patible events {4, :n = 1,2, - - -} such that for all n we have 4, = A. Consider
the sequence S, = Un—nd.,. Obviously S, | S = 0, S, = A, and therefore,
by the dual of the definition of monotone continuity, O = A, contrary to the
hypothesis.

CoROLLARY. If =< s monotonely continuous, and if {A;: i ¢ I} is an infinite
collection of almost incompaiible, equally probable events, then all the A’s are null
events.

Lemuma 2. If (@, <) ©s a qualitative probability o-algebra, and {A,} is a monotone
decreasing sequence of events, such that Anp1 < An — Ania, then A, converges to a
null event.

ProoF. Since the events A, — A, are incompatible, from n=14, < Ant1 <
A, — Ay, the conclusion (}»=14, = O follows immediately by Lemma 1.

We shall say that an event A > O is an atom if it contains no other event B
such that O < B < A. A qualitative probability algebra (and the corresponding
qualitative probability) is atomless if it has no atoms.

LemMmA 3. If a qualitative probability o-algebra is atomless, then given an event
A > O, there is a monotone decreasing sequence of non-null events {An}, whose
first element 1s A1 = A, and which converges to a null event.

Proor. Since A; = A > O and there are no atoms, there is an event B; C A,
such that O < B; < A,.If B, £ A, — B, then we define A; = B;. Inthe
contrary case, we define A, = A; — B; and in both cases we have A, < 4; — 4..
Proceeding indefinitely in this way, we can define a sequence of events such that
A=A4, D 4,0 --- and Appu < A, — Asn, and therefore, by the previous
lemma, this sequence converges to a null event.

TureorEM 2. If a qualitative probability o-algebra is atomless, then every family
F of almost incompatible, non-null events is at most denumerable.

Proor. Let {C,, :n = 1,2, - - -} be a monotone decreasing sequence of non-null
events whose intersection is null. Such sequences exist by the Lemma 3. If an
event is less probable than any C,, then by monotone continuity it is a null
event. Hence, if ¥ is a collection of almost incompatible, non-null events, all
events of & are more probable than some C, . But, by Lemma 1, given an integer
n, there can be only a finite number of events in & which are more probable than
C, and consequently the family F is at most a denumerable family.
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The following lemma, and the theorem which follows it were communicated
to the author by J. J. Schéffer. Although they are not an essential link in our
arguments, they are included here for the sake of completeness.

LemMaA 4. In a qualitative probability o-algebra there is at most a denumerable

number of atoms, and they can be ordered in a sequence {A;:¢ = 1,2, ---} such
that for any integer n, Ap = Apy1 .
Proor. Assume that we have already selected the atoms 4,, ---, 4, in such

a way that they are more probable than any of the remaining ones. Let A be
one of the remaining atoms. By the Lemma 1, there is only a finite number
of remaining atoms which are more probable than A, and therefore, we can
select as the element A,.; of our sequence one atom which is more probable
than any of the remaining ones. Assume that, following this procedure, we have
selected an infinite sequence of atoms. Then, there can be no other atoms left,
because if an atom is not in the sequence, all the atoms of the sequence would
be more probable than it, which is impossible by the Lemma, 1.

THEOREM 3. Every family § of almost incompatible, non-null events of a quali-
tative probability o-algebra is at most a denumerable family.

Proov. Let Q, be the union of all the atoms and let @, = Q@ — Q. By partitioning
every event in & in one part contalned in © and one part contained in @, we
have a new family §'. Let Fo , 51 be the collections of all non-null events m g
which are contained in Qo and in ©; respectively. By the previous lemma Fo is
at most a denumerable family, and by Theorem 2 the same holds for %; . Hence,
¥ and a fortiori & is at most a denumerable family.

DErINTTION. A partition of an event A is a collection of almost incompatible,
non-null events whose union is A. An incomplete partition of an event A is a
collection of almost incompatible, non-null events contained in A. Note that,
by the previous theorem, the partitions and incomplete partitions of an event
are at most denumerable collections of events. If the union B of all the elements
of an incomplete partition of A is less probable than A — B, then the incomplete
partition will be called a minor incomplete partition.

TurorEM 4. If a qualitative probability o-algebra is atomless, then every event
can be partitioned into two equally probable events.

Proor. Given an event 4 > 0O, consider the set S of all minor incomplete
partitions of A. Let S be partially ordered by inclusion. That is, if ®, € are two
minor incomplete partitions, we say that ® < € if every event of ® is also an
event of €. The family AU of all the elements in a chain of minor incomplete
partitions of A is itself a minor incomplete partition of A, and is therefore an
upper bound in 8 for the chain. Then, by Zorn’s lemma, there is a maximal par-
tition in S, that is, a minor incomplete partition ® which is not properly contained
in any other minor incomplete partition. Hence, if B is the union of all the ele-
ments of ®, and {C,} is a monotone decreasing sequence of non-null events con-
tained in ¢ = A — B, and converging to a null event, we have for every n,
BUC, > A — B UC(,, and therefore, by monotone continuity, B = C. Since
® is a minor incomplete partition B < C and therefore B = C. Consider a se-
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quence of random variables X;, X5, - - - defined on the same space @ and with
values on the same space E. If E is a finite space, we shall say that the sequence
{X.} is a sequence of finitely-valued random variables. If x, , - - - , x, are points in
E, then we shall denote by {z1 , - - - , 2,) theevent {w: X;(w) = 2;,7=1, -+ ,n}.
A sequence of finitely-valued random variables {X,} will be called a uniform
sequence if, for any given m, all the events (z;, - -, T») are equally probable.
Given an infinite sequence z; , Z2, - -+ of points of the finite space E, we shall
denote by (x;, 22, - - -) the event {w: X;(w) = x;,¢ = 1,2, ---}. This event is
obviously the intersection of all the events X, (2.) = {w: Xa(w) = x,}. If
{X,} is a uniform sequence, then by monotone continuity all the events (z;,
Z2, ---) are equally probable, and therefore, by the corollary to Lemma 1, all
of them are null events.

Consider a real random variable X with values in the real closed interval
[0, 1]. Let I, J be two intervals (not necessarily closed) contained in [0, 1] and
let ||, |J| be their lengths. The random variable X will be called a uniform random
variable if X '(I) < X '(J) is equivalent to |I| < |J|. From the corollary to
Lemma 1 it follows that for any 0 < ¢ < 1, X *(a) is a null event. It follows also
thatif0 = ao < a1 < -+ < a = 1, thentheevents X [ao, a1, -+ , X [Gn_1 , @]
constitute a finite partition of Q.

TuarorEM 5. In a qualitative probability o-algebra the followmg propositions are
equivalent:

(1) there are no atoms;

(ii) every event can be partitioned into two equally probable events; .

(iii) there is a uniform sequence of two-valued random variables;

(iv) there is a uniform random variable.

Proor. By Theorem 4, (ii) follows from (i). We shall prove now that (iii)
follows from (ii). Divide Q into two equally probable events and define X;(w) = 0
on one of them and X;(w) = 1 on the other. The two events considered are, there-
fore, (0) and (1). Dividing each of them into two equally probable events, and
defining X, in an obvious manner, we obtain the events (0, 0), (0, 1), (1, 0),
and (1, 1). If this procedure is continued, a uniform sequence of two-valued
random variables is defined.

We shall prove now that (iv) follows from (iii). Let {X,} be a uniform se-
quence of two-valued random variables. For each « define X(w) as the number
which in the binary system has the expression O0.zy2s -, where z, = Xa.(v).
For a given integer n, the family of all events (z,, - - - , z.) constitute a uniform
partition of Q, that is, a partition all the elements of which are equally probable.
If a, b are numbers which belong to [0, 1] and have finite binary expressions
0.01 - - Gn, 0.y - - - by, then X '[a, b] is an event equally probable than the union
of all the events (z, - - - , ) corresponding to numbers 0.z, - - - &, which belong
to the semi-closed interval [a, b). It follows then that |I| < |J| is equivalent to
X Y(I) £ X '(J) for two intervals I, J whose extreme points are numbers with
finite binary expressions, and by monotone continuity the same holds for any
intervals I, J.
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We shall prove now that (i) follows from (iv), or, equivalently, that, if there
is an atom, then there is no uniform random variable. Let A > O be an atom,
and let X be a real random variable, whose values lie on [0, 1]. For any =z,
0 <z < 1,either 4 N X0, 2) or A N X '(x, 1] is a null event, where [0, z)
denotes the interval closed at 0 and open at x, and similarly, (z, 1] denotes the
interval open at « and closed at 1. By a continuity argument, there is a number
¢, 0 = ¢ £ 1, such that, if @ < ¢, then 4 N X7[0, a) is a null event, and, if
¢ < b, then A N X (b, 1]is a null event. Hence A N X '[a, b] is equally probable
to A, and therefore, X '[a, b] = A, for all a, b such that ¢ < ¢ < b. By monotone
continuity X '(¢) = 4 > O, and therefore X is not uniform, since, for any
uniform random variable, X *(¢) = O.

4. Probability measures. A probability measure is a function which to every
event A assigns a number P(A4), called its (numerical) probability, and which
satisfies the following axioms:

P1. P(0) = 0,P(2) = 1, and for any event 4,0 < P(4) < 1.

P2. If AN B = 0, then P(A UB) = P(4) + P(B).

~If P is a probability measure defined on the algebra of events @, the pair
(@, P) is called a probability algebra. If @ is.a o-algebra of sets of a space Q, we
shall say that the probability measure P is countably additive if, in addition to
P1 and P2 it satisfies also the axiom

P3.If {A;: 72 = 1, 2, ---} is a sequence of events such that, for ¢ > j,
Ai n Aj = 0, then P( U?=1 A,) = Z?=1 P(A,)

The Axioms P1, P2 and P3 are essentially equal to those proposed by Kol-
mogorov (1933), and they provide the basis for the modern theory of probability.
It follows easily that, if a probability measure is countably additive, and {4}’
is a monotone sequence of events, then lim P(4;) = P(lim A;). The pair
(@, P) in which @ is a o-algebra of sets and P is a countably additive probability
measure, is called a probability o-algebra. A probability space is a triple (2, @, P)
in which Q is a set, @ is a o-algebra of sets of @, and P is a countably additive
probability measure defined on @. We shall say that a probability algebra
(@, P) is an extension of a probability algebra (@, Po) if @ is isomorph to a
subalgebra @ of @, and P, and P take the same values on corresponding ele-
ments of @ and @',

TaEOREM 1. Any probability algebra can be extended to a probability o-algebra.

Proor. For the proof of this theorem see ([7] Section 46).

ReEmARK. Note that, since the countably additive probability measure P
whose existence is assured by this theorem can be defined by writing

P(A4) = sup {Po(Ao): Ao C A, Ao & G}

for any A ¢ @, it follows that, if the given probability measure P, is atomless, then
P is also atomless.

We shall say that a probability measure P is compatible with a qualitative
probability <, if and only if A < B is equivalent to P(4) =< P(B), for any pair
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of events 4, B. It can be easily seen that, given a probability measure P defined
on an algebra G, the relation defined by 4 < B if P(4) < P(B) is a qualitative
probability compatible with the given probability measure P.

THEOREM 2. A necessary and sufficient condition in order that a probability
measure P which is compatible with a qualitative probability <, be countably addi-
tive, is that the qualitative probability be monotonely continuous.

Proor. Assume that P is countably additive. Consider a sequence of events
A, T A, and assume that for alln, A, < B. Since this is equivalent to P(4,) <
P(B), by countable additivity P(4) < P(B), which is equivalent to A < B.

Conversely, assume that < is monotonely continuous. It is well known that,
in order to prove that P is countably additive, it is sufficient to prove that P
is continuous from above at O, i.e., that, if 4, | O, then lim P(4,) = 0. Con-
sider the sequence B, = A, — A,41. If there is an integer N > 0 such that for
alln = N, B, is a null event, then, for alln = N, we have 4, = O and therefore
P(4,) = 0. Assume that, on the contrary, there is an infinite number of non-
null events B, . Then, since they are disjoint events, given a number ¢ > 0,
there is an integer m > 0 such that 0 < P(B,) < ¢ and by compatibility,
B,, > 0. Then, by the dual of the Theorem 1 in the previous section, there is an
integer N > O such that, forn > N, A, < B,, and therefore P(4,) < e.

TrEOREM 3. If a qualitative probability o-algebra is atomless, then there is one
and only one compatible probability measure, and it is countably additive.

Proor. Since the qualitative probability o-algebra is atomless, by Theorem 5
of the previous section, there is a uniform random variable X. Given a number
2,0 < z < 1, consider the event F(z) = X [0, z]. Obviously F(0) = 0, F(1) = @
and F(z) is a monotone function of . It is also a continuous function, in the
sense that, if {2,} is a monotone sequence converging to z, then lim F(z,) and
F(z) are equally probable events, or, in symbols, F(z) = lim F(x,). Then, by a
continuity argument, it can be easily shown that, given an arbitrary event 4,
there is one and only one number ¢, 0 < @ < 1, such that A = X7'[0, a]. Then,
for any event 4, we define P(4) by the equality A = X0, P(4)]. It follows
immediately from this definition that the Axiom P1 is satisfied and that P is
compatible with the qualitative probability. From the compatibility it follows
immediately that P is monotone, i.e., that, if A < B, then P(4) < P(B).

We shall prove now that the function P just defined satisfies also the Axiom
P2, and is, therefore, a probability measure. Let A, B be two events such that
A N B = 0. By the definition of P,

A =X70,P4), AUB=X7"0, P UB).
Note that, since P is monotone, P(4) < P(A U B) and therefore, by subtrac-
tion we get
B = X'[P(4), P(4 U B)].

But by the definition of P(B), B = X [0, P(B)], and since X is a uniform
variable,
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P(B) = P(4 UB) — P(A),

that is, P is finitely additive.

To prove that P is the only probability measure compatible with the given
qualitative probability, it is enough to note that, since X is a uniform random
variable, the events

{w: (1 — 1)/n £ X(w) £ i/n}

i =1, -+, n constitute a uniform partition of 2, and therefore, for any rational
a,0 = a £ 1, and any probability measure compatible with the given qualitative
probability, P{w: 0 < X(w) =< a} = a. Finally, by the previous theorem, the
probability measure P is countably additive.

A qualitative probability algebra (and the corresponding qualitative prob-
ability) is fine, if given an event A > O there is a finite partition of @ all elements
of which are less probable than A. Two events A, B are almost equivalent, if
and only if, for all non-null A’ and B such that A N 4’ = BN B’ = 0, we have
AUA4" =z Band BU B’ = A. A qualitative probability algebra (and the cor-
responding qualitative probability) is #ight, if and only if every pair of almost
equivalent events are equally probable. We shall say that a qualitative proba-
bility algebra (@, <) is an extension of a qualitative probability algebra (@, <,),
if @, is isomorph to a subalgebra @ of @, and A <, B is equivalent to A’ < B’,
where A, B and A’, B’ are corresponding pairs of events in G and @'.

THEOREM 4. If a qualitative probability algebra is fine and tight, then it can be
extended to a qualitative probability o-algebra.

Proor. Let (G, <o) be the given qualitative probability algebra. Since by
hypothesis it is fine and tight, by L. J. Savage’s theorem [6] there is one and only
one probability measure P, defined on @ and compatible with <, . By Theorem 1,
(@9, Py) can be extended to a probability o-algebra (@, P). Define now a qualita-
tive probability < on @ by writing A < B if and only if P(A) < P(B). Since
P is countably additive, from Theorem 2 it follows that < is monotonely con-
tinuous.

ReMArk. If, in addition, (@, =<,), and consequently, also (@, Py), are
atomless, then by the remark to Theorem 1 the probability o-algebra (@, P)
and consequently also (@, <) are atomless. Note that, on the other hand, if a
qualitative probability algebra is fine and it has an atom, then there is a finite
uniform partition all elements of which are atoms, and therefore the same quali-
tative probability algebra is also a qualitative probability o-algebra.

THEOREM 5. If a qualitative probability o-algebra is atomless, then it is fine and
tight.

Proor. Let A and B be two almost equivalent events. Let 4’, B’ be events
such that A N 4" = B N B’ = 0. Then, by Lemma 3 of the previous section,
there are monotone sequences of non-null events, {A,}, { B.}, whose first elements
are A’, B’ and which converge to null events. Hence we have, foralln, 4 N 4, =
B N B, = 0, and, since A and B are almost equivalent events, we have



1796 C. VILLEGAS

AUA4, = B,BUB, = A, and letting n — o, the conclusiond = B follows
immediately by the dual of the definition of monotone continuity, and therefore
the qualitative probability is tight.

We shall prove now that it is also fine. Consider an event A > 0. Then, if P
is the probability measure compatible with the qualitative probability, P(4) > 0.
Choose then an integer n such that 1/2" < P(A), and let & be a uniform parti-
tion of @ with 2" elements. If E, is any element of &, we have clearly P(E;) <
P(A) and by compatibility, E; < A.
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