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Abstract

We consider the decreasing and the increasing r-excessive functions ϕr and ψr

that are associated with a one-dimensional conservative regular continuous strong
Markov process X with values in an interval with endpoints α < β. We prove that the
r-excessive local martingale

(
e−r(t∧Tα)ϕr(Xt∧Tα)

) (
resp.,

(
e−r(t∧Tβ)ψr(Xt∧Tβ )

))
is a

strict local martingale if the boundary point α (resp., β) is inaccessible and entrance,
and a martingale otherwise.

Keywords: one-dimensional strong Markov processes; r-excessive functions; local martingales.
AMS MSC 2010: 60G44; 60G48; 60J60.
Submitted to ECP on March 31, 2016, final version accepted on January 12, 2017.

1 Introduction

We consider a one-dimensional conservative regular continuous strong Markov pro-
cess X = (Ω,F ,Ft,Px, Xt; t ≥ 0, x ∈ I) with values in an interval I ⊆ [−∞,∞] with
endpoints α < β that is open, closed or semi-open. We recall that a Markov process is
called conservative if there is no killing and a one-dimensional continuous strong Markov
process with state space I is called regular if

Px(Ty <∞) > 0 for all x ∈ I̊ and y ∈ I,

where I̊ = ]α, β[ and

Ty = inf{t ≥ 0 | Xt = y}, for y ∈ [α, β],

with the usual convention that inf ∅ =∞. We also recall that the boundary point α (resp.,
β) is called inaccessible if

Px(Tα <∞) = 0
(

resp., Px(Tβ <∞) = 0
)

for all x ∈ I̊, (1.1)

and accessible otherwise. We denote by p and m the scale function and the speed
measure of X (see Definitions VII.3.3 and VII.3.7 in Revuz and Yor [8]). It is worth noting
that, although the scale function is defined consistently, different normalisations of the
speed measure appear in standard stochastic analysis textbooks. For instance, the speed
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r-excessive martingales

measure in Revuz and Yor [8, Section VII.3] is consistent with the one in Borodin and
Salminen [1, Section II.1], but is twice as large as the speed measure in Rogers and
Williams [9, Section V.47]. Although our main result, Theorem 2.2, does not depend on
such a normalisation, some of the formulas we use for its proof do.

Given any r > 0, there exist a continuous decreasing function ϕr : I̊ → ]0,∞[ and a
continuous increasing function ψr : I̊ → ]0,∞[ function that are determined uniquely, up
to multiplicative constants, by the expressions

ϕr(y) = ϕr(x)Ey
[
e−rTx

]
and ψr(x) = ψr(y)Ex

[
e−rTy

]
for all x < y in I̊. (1.2)

These functions are often called r-excessive. Since they are monotone, they can be
extended to [α, β] by defining

ϕr(α) = lim
x↓α

ϕr(x), ψ(α) = lim
x↓α

ψr(x), ϕr(β) = lim
x↑β

ϕr(x) and ψr(β) = lim
x↑β

ψ(x).

Furthermore,

α
(

resp., β
)

is inaccessible if and only if ϕr(α) =∞
(

resp., ψr(β) =∞
)
. (1.3)

An important property of ψr and ϕr is that

the processes
(
e−r(t∧Tα)ϕr(Xt∧Tα)

)
and

(
e−r(t∧Tβ)ψr(Xt∧Tβ )

)
are Px-local martingales

(1.4)
for all x ∈ I. Despite their widespread use, these processes still do not have a standard
name. In this paper, we refer to them as r-excessive Px-local martingales.

Beyond the central role that they play in the theory of one-dimensional diffusions, the
r-excessive functions ψr, ϕr and their associated r-excessive Px-local martingales have
been used extensively in the analysis and the solution of numerous optimal stopping and
stochastic control problems involving one-dimensional diffusions. This most widespread
use has motivated this paper. We refrain from trying to provide any relevant represen-
tative references because the use of the r-excessive functions and local martingales in
applications of stochastic analysis has become folklore.

We derive necessary and sufficient conditions for the r-excessive Px-local martingales
to be Px-martingales. If β is accessible, then

(
e−r(t∧Tβ)ψr(Xt∧Tβ )

)
is a Px-martingale

for all x ∈ I because it is a bounded Px-local martingale. On the other hand, we prove
that, if β is inaccessible, then (i )

(
e−rtψr(Xt)

)
is a Px-martingale for all x ∈ I if β is a

natural boundary point, and (ii )
(
e−rtψr(Xt)

)
is a strict Px-local martingale for all x ∈ I

if β is an entrance boundary point, unless α is absorbing and x = α, in which case the
process

(
e−rtψr(Xt)

)
under Pα is identically equal to 0. We emphasise that we do not

impose any restrictions on the boundary behaviour of α if this is accessible: it can be
instantaneously or slowly reflecting as well as absorbing. Symmetric statements hold
true for the Px-local martingale

(
e−r(t∧Tα)ϕr(Xt∧Tα)

)
. We expand on these statements

in Theorem 2.2, our main result.

A result of a closely related nature has been established by Kotani [7]: the Px-local
martingale

(
p(Xt∧Tα∧Tβ )

)
is a Px-martingale if and only if neither α nor β is an entrance

boundary point. In fact, Delbaen and Shirakawa [2] had earlier established this result in
a special case. The further analysis in Hulley [4, Chapter 3] is also worth mentioning.
Furthermore, Gushchin, Urusov and Zervos [3] complemented this result by showing that
the Px-local martingale

(
p(Xt∧Tα∧Tβ )

)
is a Px-supermaringale (resp., Px-submartingale)

if and only if α (resp., β) is not an entrance boundary point.
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2 The main result

Before addressing our main result, we recall that the boundary point β is inaccessible
if and only if ∫ β

x

m
(
[x, y[

)
p(dy) =∞, (2.1)

where x ∈ I̊ and p(dy) is the atomless measure on (I̊,B(I̊)) satisfying p
(
]a, b]

)
= p(b)−p(a)

for α < a < b < β (see also the definition in (1.1) as well as (1.3)). We note that this
characterisation does not depend on the choice of x ∈ I̊ because m is a Radon measure.
Also, if β is inaccessible, then it is called natural if

lim
x↓α

Px(Ty < t) = 0 for all y ∈ I̊ and t > 0 (2.2)

and entrance otherwise, namely, if

lim
x↓α

Px(Ty < t) > 0 for some y ∈ I̊ and t > 0. (2.3)

In terms of an analytic characterisation, if β is inaccessible then it is

natural if

∫ β

x

m
(
[y, β[

)
p(dy) =∞ (2.4)

and entrance if

∫ β

x

m
(
[y, β[

)
p(dy) <∞, (2.5)

where the choice of x ∈ I̊ is again arbitrary. Furthermore, we recall that the r-excessive
functions ϕr and ψr satisfy the second order differential equation

d

dm

d+f

dp
(x) = rf(x)

in the sense that the limits

d+f

dp
(x) = lim

ε↓0

f(x+ ε)− f(x)

p(x+ ε)− p(x)

exist for all x ∈ I̊ and

d+f

dp
(x2)− d+f

dp
(x1) = r

∫
]x1,x2]

f(y)m(dy) for all α < x1 < x2 < β. (2.6)

Remark 2.1. All of the claims that we have made about the diffusion X, its boundary
classification and its r-excessive functions are standard, and can be found in Itô and
McKean [5, Chapter 4], Rogers and Williams [9, Section V.7], Karlin and Taylor [6,
Chapter 15], Revuz and Yor [8, Section VII.3], and Borodin and Salminen [1, Chapter II].
In terms of boundary classification, the terminology that we have adopted is the same
as the one in Karlin and Taylor [6, Table 15.6.2] and is consistent with the one in
Revuz and Yor [8, Section VII.3] and Rogers and Williams [9, Section V.51]. On the
other hand, Itô and McKean [5] use the terminology “not exit”, “not entrance, not exit”
and “entrance, not exit” in place of “inaccessible”, “natural” and “entrance”, while
Borodin and Salminen [1, Section II.1] use the terminology “not exit”, “natural” and
“entrance-not-exit” in place of “inaccessible”, “natural” and “entrance”. 2

The proof of our main result, which is captured by (A) in the following table, involves
establishing first (B)–(D) using (E). We state explicitly all of these cases as well as (F)
due to their independent interest as well as for completeness.
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Theorem 2.2. The following statements hold true:

(I) If β is accessible, namely, if the conditions in (1.1) and (2.1) fail, then the process(
e−r(t∧Tβ)ψr(Xt∧Tβ )

)
is a Px-martingale for all x ∈ I.

(II) Suppose that β is inaccessible, namely, the conditions in (1.1) and (2.1) hold true.
If β is natural, namely, if the conditions in (2.2) and (2.4) hold true, then the process(
e−rtψr(Xt)

)
is a Px-martingale for all x ∈ I. On the other hand, if β is entrance, namely,

if the conditions in (2.3) and (2.5) hold true, then the process
(
e−rtψr(Xt)

)
is a strict

Px-local martingale for all x ∈ I, unless α is absorbing and x = α. Furthermore, the
equivalences suggested by the following table hold true (note that all limits appearing
here indeed exist).

β is natural β is entrance

(A) ∀r > 0, ∀x ∈ I,
(
e−rtψr(Xt)

)
∀r > 0, ∀x ∈ I̊,

(
e−rtψr(Xt)

)
is a Px-martingale is a strict Px-local martingale

(B) ∀s > r > 0, lim
x↑β

ψs(x)

ψr(x)
=∞ ∀s > r > 0, lim

x↑β

ψs(x)

ψr(x)
∈ ]0,∞[

(C) ∀r > 0, lim
x↑β

ψr(x)

p(x)
=∞ ∀r > 0, lim

x↑β

ψr(x)

p(x)
∈ ]0,∞[

(D) ∀s > r > 0, lim
x↑β

d+ψs
dp (x)

d+ψr
dp (x)

=∞ ∀s > r > 0, lim
x↑β

d+ψs
dp (x)

d+ψr
dp (x)

∈ ]0,∞[

(E) ∀r > 0, lim
x↑β

d+ψr
dp

(x) =∞ ∀r > 0, lim
x↑β

d+ψr
dp

(x) ∈ ]0,∞[

(F) ∀r > 0, ∀x ∈ I̊,
∫

[x,β[

ψr(y)m(dy) =∞ ∀r > 0, ∀x ∈ I̊,
∫

[x,β[

ψr(y)m(dy) <∞

(III) Symmetric results hold true for the process
(
e−r(t∧Tα)ϕr(Xt∧Tα)

)
.

Proof. Statement (I) follows immediately because
(
e−r(t∧Tβ)ψr(Xt∧Tβ )

)
is a bounded

Px-local martingale (see also (1.3)). To prove (II), we assume in what follows that β is
inaccessible, which implies that

lim
x→β

ψr(x) =∞ for all r > 0. (2.7)

The results in (E) and (F) appear in the fourth and the sixth row of Table 1 in Itô and
McKean [5, Section 4.6] (see the third and fourth columns of that table; also, note that
(F) follows immediately from (E) and (2.6)). Also, (C) follows from (E) and the calculation

lim
x↑β

ψr(x)

p(x)
= lim
y↑p(β)

ψr
(
p−1(y)

)
y

= lim
y↑p(β)

d+ψr ◦ p−1

dy
(y) = lim

x↑β

d+ψr
dp

(x),

in which we have used L’Hôpital’s rule.

We now show that

the limits lim
x↑β

ψr(x)

ψs(x)
exist in [0,∞[ for all s > r > 0 (2.8)
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as well as that (A) and (B) are equivalent. To this end, we consider an initial condition
x ∈ I̊, a point β̄ ∈ ]x, β[ and constant s > r > 0, and we use the integration by parts
formula to calculate

e−(s−r)tMt∧Tβ̄ = ψr(x)− (s− r)
∫ t∧Tβ̄

0

e−(s−r)uMu du+

∫ t∧Tβ̄

0

e−(s−r)u dMu,

where Mt = e−rtψr(Xt). The process (Mt∧Tβ̄ , t ≥ 0) is a Px-square integrable martingale
because it is a bounded Px-local martingale. Therefore, the stochastic integral in this
identity has zero expectation. In view of this observation and the dominated and
monotone convergence theorems, we can see that

ψr(β̄)Ex
[
e−sTβ̄

]
= lim
t→∞

Ex

[
e−s(t∧Tβ̄)ψr(Xt∧Tβ̄ )

]
= lim
t→∞

Ex

[
e−(s−r)(t∧Tβ̄)Mt∧Tβ̄

]
= ψr(x)− (s− r)Ex

[∫ Tβ̄

0

e−(s−r)uMu du

]

= ψr(x)− (s− r)Ex

[∫ Tβ̄

0

e−suψr(Xu) du

]
.

Combining this calculation with the definition of ψs as in (1.2), we obtain

ψr(β̄)
ψs(x)

ψs(β̄)
= ψr(x)− (s− r)Ex

[∫ Tβ̄

0

e−suψr(Xu) du

]
.

In view of the monotone convergence theorem and the assumption that β is inaccessible,
it follows that

lim
β̄↑β

ψr(β̄)

ψs(β̄)
=
ψr(x)

ψs(x)
− s− r
ψs(x)

∫ ∞
0

e−(s−r)uEx
[
e−ruψr(Xu)

]
du. (2.9)

This identity and the positivity of ψr imply that (2.8) is indeed true. Furthermore,
since the process

(
e−rtψr(Xt), t ≥ 0

)
is a positive Px-local martingale, it is a Px-

supermartingale. Therefore,

Ex
[
e−rtψr(Xt)

]
≤ ψr(x) for all t ≥ 0,

with equality holding if and only if
(
e−rtψr(Xt), t ≥ 0

)
is a Px-martingale. In view of

this observation, we can see that (2.9) implies that limβ̄↑β ψr(β̄)/ψs(β̄) = 0 if and only if
(e−rtψr(Xt), t ≥ 0) is a Px-martingale, and the equivalence of (A) and (B) follows.

To complete the proof, we need to establish (B) and (D). To this end, we note that
(2.7), (2.8) and L’Hôpital’s rule imply that

lim
x↑β

ψr(x)

ψs(x)
= lim
y↑p(β)

ψr
(
p−1(y)

)
ψs
(
p−1(y)

) = lim
y↑p(β)

d+ψr◦p−1

dy (y)

d+ψs◦p−1

dy (y)
= lim

x↑β

d+ψr
dp (x)

d+ψs
dp (x)

whenever the last limit exists. If β is an entrance boundary point, then this calculation
and the corresponding statement in (E) imply that the corresponding claims in (B) and
(D) are indeed true.

On the other hand, if β is a natural boundary point, then we can use (2.6), (2.7) and
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(2.8) to see that, given any x1 ∈ I̊,

lim
x↑β

ψr(x)

ψs(x)
= lim

x↑β

d+ψr
dp (x)

d+ψs
dp (x)

= lim
x↑β

d+ψr
dp (x1) + r

∫
]x1,x]

ψr(y)m(dy)

d+ψs
dp (x1) + s

∫
]x1,x]

ψs(y)m(dy)

=
r

s
lim
x↑β

∫
]x1,x]

ψr(y)m(dy)∫
]x1,x]

ψs(y)m(dy)
=
r

s
lim
x↑β

ψr(x)

ψs(x)
.

In view of (2.8), all these limits are equal to 0, and the corresponding claims in (B) and
(D) follow.
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