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The General Projected Normal Distribution of
Arbitrary Dimension: Modeling and Bayesian

Inference

Daniel Hernandez-Stumpfhauser∗, F. Jay Breidt†, and Mark J. van der Woerd‡

Abstract. The general projected normal distribution is a simple and intuitive

model for directional data in any dimension: a multivariate normal random vector

divided by its length is the projection of that vector onto the surface of the unit hy-

persphere. Observed data consist of the projections, but not the lengths. Inference

for this model has been restricted to the two-dimensional (circular) case, using

Bayesian methods with data augmentation to generate the latent lengths and a

Metropolis-within-Gibbs algorithm to sample from the posterior. We describe a

new parameterization of the general projected normal distribution that makes

inference in any dimension tractable, including the important three-dimensional

(spherical) case, which has not previously been considered. Under this new pa-

rameterization, the full conditionals of the unknown parameters have closed forms,

and we propose a new slice sampler to draw the latent lengths without the need

for rejection. Gibbs sampling with this new scheme is fast and easy, leading to

improved Bayesian inference; for example, it is now feasible to conduct model

selection among complex mixture and regression models for large data sets. Our

parameterization also allows straightforward incorporation of covariates into the

covariance matrix of the multivariate normal, increasing the ability of the model

to explain directional data as a function of independent regressors. Circular and

spherical cases are considered in detail and illustrated with scientific applications.

For the circular case, seasonal variation in time-of-day departures of anglers from

recreational fishing sites is modeled using covariates in both the mean vector and

covariance matrix. For the spherical case, we consider paired angles that describe

the relative positions of carbon atoms along the backbone chain of a protein.

We fit mixtures of general projected normals to these data, with the best-fitting

mixture accurately describing biologically meaningful structures including helices,

β-sheets, and coils and turns. Finally, we show via simulation that our method-

ology has satisfactory performance in some 10-dimensional and 50-dimensional

problems.
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Carlo, protein structure analysis, spherical data.
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1 Introduction

1.1 Directional data

Directional data arise in many scientific disciplines. Circular data are encountered in
studies of wind directions (Breckling, 1989; Nuñez-Antonio et al., 2015), geological lay-
ering (Oliveira et al., 2012) and animal navigation (Schmidt-Koenig, 1965; Batschelet,
1981; Ferreira et al., 2008; Oliveira et al., 2012). Temporal series with seasonality, such
as monthly cases of acute lymphoblastic leukemia (Gao et al., 2007), may also be treated
as circular data. Spherical data arise in applications such as earthquake epicenters, tec-
tonic plate rotations (Chang, 1993), and high-energy cosmic ray sources on the celestial
sphere (Mardia and Edwards, 1982; Ferreira et al., 2008), as well as in modeling of pro-
tein structures (Levitt, 1976; Oldfield and Hubbard, 1994). In information retrieval, each
text document is represented by a vector of frequencies of word occurrences and “co-
sine similarity” between two documents is measured as the cosine of the angle between
their respective vectors (the normalized inner product of the vectors). In “collaborative
filtering”, the similarities among users of an information database are computed as the
cosine similarity of their preference vectors. Further, in microarray experiments, each
gene is represented by a vector of expression values, with similarities between genes
measured as the cosine similarity between their expression vectors. Treating the angles
between such vectors as data leads to directional data of arbitrary dimension. See, for
example, (Sarwar et al., 2001; Banerjee et al., 2005) and the references therein.

A circular observation can be regarded as a point on the unit circle or a unit vector
in the plane. A spherical observation can be regarded as a point on the unit sphere or
as a unit vector in space, and higher-dimensional directional data as points on the unit
hypersphere or unit vectors in that space.

Many statistical models and methods exist for circular data; see the monographs
(Fisher, 1995; Mardia and Jupp, 2000; Jammalamadaka and Sengupta, 2001; Pewsey
et al., 2013), and (Wang and Gelfand, 2014) for recent spatio-temporal extensions. The
options for spherical data are more sparse, but include the von Mises–Fisher family;
see, for example, (Watson, 1983; Mardia and Jupp, 2000). Recent developments for
directional data are often focused on flexible distributional modeling, including finite
mixtures of von Mises distributions for hyperspheres of any dimension (Ferreira et al.,
2008), Dirichlet process mixtures of von Mises distributions for circular data (Ghosh
et al., 2003), Dirichlet process mixtures of triangular distributions for circular data
(McVinish and Mengersen, 2008), log-spline distributions for hyperspheres of any di-
mension (Ferreira et al., 2008), Dirichlet process mixtures of normal distributions for
circular data (Nuñez-Antonio et al., 2015), and projected normal distributions (Pres-
nell et al., 1998; Nuñez-Antonio and Gutiérrez-Peña, 2005; Nuñez-Antonio et al., 2011;
Hernandez-Stumpfhauser, 2012; Wang and Gelfand, 2013; Nuñez-Antonio et al., 2015)
and their mixtures (Wang and Gelfand, 2014), the focus of this paper.

1.2 Projected normal distributions

Projected distributions are obtained by radial projection of distributions on the plane
or space; most commonly, a multivariate normal random vector is divided by its length



D. Hernandez-Stumpfhauser, F. J. Breidt, and M. J. van der Woerd 115

to give the projection of that vector onto the surface of the unit hypersphere. For
k ≥ 2, the random unit vector U = X/‖X‖ is distributed as PN k(μ,Σ), a general
projected normal distribution with parameters μ and Σ, ifX ∼ Nk(μ,Σ), a multivariate
normal distribution. The unit vector U is interpreted as the directional random vector
Θ through appropriate choice of coordinate system; in the circular case, for example,
the random direction Θ is obtained from U = (cosΘ, sinΘ)T in polar coordinates.
Projected normal distributions have been called off-set normal distributions by Mardia
(1972), displaced normal by Kendall (1974) and angular normal by Watson (1983).

The distribution PN k(μ,Σ) generalizes the projected normal distribution with iden-
tity covariance matrix, Σ = I. The density PN k(μ, I) is unimodal and symmetric
about the direction of μ. It was used by Presnell et al. (1998) to introduce the Spher-
ically Projected Multivariate Linear Model (SPMLM) for directional data, in which μ
is specified with a linear model. An EM algorithm was used to find maximum likeli-
hood estimates. Bayesian inference for PN k(μ, I) was considered by Nuñez-Antonio
and Gutiérrez-Peña (2005), Nuñez-Antonio et al. (2011), Nuñez-Antonio et al. (2015),
and Hernandez-Stumpfhauser (2012), showing in particular how to analyze various re-
gression structures in μ. A key idea used in these papers is to augment the observed
directional data (u1,u2, . . . ,un) with the latent length variables (r1, r2, . . . , rn). The
joint density of (ri,θi) can then be obtained using the Jacobian method and the mul-
tivariate normal density for xi = riui.

Recently, Wang and Gelfand (2013) and Wang and Gelfand (2014) demonstrated
how to handle the general projected normal, PN 2(μ,Σ) with Σ �= I, for the special
case of circular data (k = 2). The density of Θ in U = (cosΘ, sinΘ)T can be written
explicitly as

p (θ | μ,Σ) =
(

1

2πA (θ)

)
|Σ|−

1
2 exp (C)

⎧⎪⎪⎨
⎪⎪⎩1 +

B (θ)√
A (θ)

Φ

(
B(θ)√
A(θ)

)

ϕ

(
B(θ)√
A(θ)

)
⎫⎪⎪⎬
⎪⎪⎭ I[0,2π) (θ) (1)

where uT = (cos θ, sin θ), A(θ) = uTΣ−1u, B(θ) = uTΣ−1μ and C = −1
2μ

TΣ−1μ;
I(0,2π](·) is an indicator function; and Φ(·), ϕ(·) are the standard normal distribution
and density functions, respectively. Equation (1) is similar to an expression found in
Pukkila and Rao (1988). It readily generalizes to higher dimensions.

The general projected density PN k(μ,Σ) can be asymmetric or bimodal. If μ is
orthogonal to any of the eigenvectors of Σ then the distribution is symmetric. See the
supplementary materials (Hernandez-Stumpfhauser et al., 2016) for details where we
also provide, for the circular case, an analytic method to distinguish between symmetric
unimodal and symmetric bimodal.

The distribution of U = X/‖X‖ does not change if the random variable X is scaled
by any a > 0, and so further constraints on the parameters are needed for identifiability.
Without loss of generality Wang and Gelfand (2013) set

Σ =

(
τ2 ρτ
ρτ 1

)
(2)
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and μ = (μ1, μ2). They place a bivariate normal prior N2(0, λ0I) on μ, a uniform
prior U(−1, 1) on ρ and an inverse Gamma prior IG(aτ , bτ ) on τ2. Under this param-
eterization, no closed forms for the full conditional posteriors of τ2 and ρ are avail-
able. Therefore, they draw τ2 and ρ and the latent lengths r1, . . . , rn iteratively via
Metropolis-Hastings within Gibbs.

2 General projected normal distribution PN k(μ,Σ)

We turn now to the general projected normal PN k(μ,Σ) with arbitrary dimension k,
which has not previously been considered. By using an alternative parameterization for
the constrained covariance matrix, Σ �= I, we are able to obtain closed forms for all of
the full conditionals of the parameters in the model. The new parameterization works
in any dimension, including the important spherical case k = 3, and has the added
benefit of allowing the incorporation of covariates into the covariance matrix. Further,
we propose a new slice sampler to handle the drawing of the latent lengths.

2.1 Reparameterizing the general projected normal

As in the two-dimensional case in Wang and Gelfand (2013), we restrict one of the
diagonal terms of the k × k covariance matrix Σ to be equal to one, without loss of
generality, writing

Σ =

(
Γ γ
γT 1

)
where γ is a k−1 vector of regression coefficients. Now Σ is non-negative definite (nnd)
and hence a covariance matrix if and only if

Σ =

(
Σ∗ + γγT γ

γT 1

)
(3)

where Σ∗ is a k − 1 by k − 1 nnd covariance matrix. To see this, first assume that Σ
is nnd and define the random vector Z = (I,−γ)Y , where Y is a random vector with
mean 0 and covariance matrix Σ. Then var(Z) = Γ− γγT = Σ∗ is nnd. Conversely, if
Σ∗ is nnd, let (cT , d)T ∈ IRk be any non-zero vector with c ∈ IRk−1. Then

(
cT d

)(Σ∗ + γγT γ
γT 1

)(
c
d

)
= cTΣ∗c+

(
γT c+ d

)2 ≥ 0,

hence Σ is nnd.

Write μ = (μ1, μ2, . . . , μk)
T , μ−k = (μ1, μ2, . . . , μk−1)

T and (x1,i, x2,i, . . . , xk,i)
T =

riui, where ‖ui‖ = 1. Making use of spherical coordinates we have that associated with
each ui are k−1 angles (θ1,i, θ2,i, . . . , θk−1,i) = θi where θk−1,i ∈ [0, 2π) and θs,i ∈ [0, π]
for s = 1, . . . , k − 2. Hence we can write the joint density of (ri,θi) as

p (ri,θi | μ,Σ) =
(

1

2π

) k
2

|Σ|− 1
2 rk−1

i exp

{
−1

2
(riui − μ)

T
Σ−1 (riui − μ)

}
= rk−1

i p (x1,i, . . . , xk−1,i | xk,i,μ,Σ) p (xk,i | μ,Σ) (4)
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where p(x1,i, . . . , xk−1,i | xk,i,μ,Σ) is a normal density with mean μ−k + γ(xk,i − μk)
and variance Σ∗. The density function p(xk,i | μ,Σ) is a normal density with mean μk

and variance equal to 1. Closed forms for the full conditionals are obtained by placing
normal priors on μ and γ and an inverse Wishart prior on Σ∗. From (4) we can obtain
the projected normal density p(θi | μ,Σ) =

∫
p(ri,θi | μ,Σ)dr. The area element on

the unit sphere is dθk−1,i

∏k−2
s=1 [sin(θs,i)]

k−1−sdθs,i.

Remark. It is also possible to reparameterize Σ to obtain closed forms for the full con-
ditionals without the use of an inverse Wishart prior, by using the Cholesky decomposi-
tion approach to unconstrained parameterization of a covariance matrix (Pourahmadi,
1999) with a constraint on the variance of xk equal to one. We omit the details.

2.2 Incorporating covariates in the general projected normal

When covariates are available for the ith case, they can be incorporated into μ, and
they can also be incorporated into γ, increasing the flexibility of the model. We use this
flexibility in the model specification of Section 3.2.

Let zμ,i denote a p-dimensional vector of known covariates and zγ,i denote a q-
dimensional vector of known covariates. Then the general projected normal with covari-
ates is Θi ∼ PN k(μi,Σi), where

μT
i = zT

μ,i

(
β1 β2 · · · βk

)
, (5)

with each βj a p-vector of unknown regression coefficients, and

Σi =

(
Σ∗ + γiγ

T
i γi

γT
i 1

)
, γT

i = zT
γ,i

(
α1 α2 · · · αk−1

)
, (6)

with each αj a q-vector of unknown regression coefficients. Closed forms for the full
conditionals are then obtained by placing an inverse Wishart prior on Σ∗ and normal
priors on the vectors βj and αj instead of on μ and γ.

2.3 Slice sampling for latent lengths

To draw from the latent lengths r1, . . . , rn within the Gibbs sampler we make use of
slice sampling (Neal, 2003). From (4) the full conditional distribution for each of the
latent lengths is p(ri | ·) ∝ rk−1

i exp{−1
2Ai(ri − Bi

Ai
)2} where Ai = uT

i Σ
−1ui and

Bi = uT
i Σ

−1μ. To sample from the latent length distribution we introduce a latent
variable υi which has joint density with ri given by

p (ri, υi | μ,Σ, θi) ∝ rk−1
i I(

0,exp

{
− 1

2Ai

(
ri−Bi

Ai

)2
}) (υi) I(0,∞) (ri) .

Then the full conditionals are

p (υi | ri,μ,Σ, θi) = U
(
0, exp

{
−1

2
Ai

(
ri −

Bi

Ai

)2
})
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p (ri | υi,μ,Σ, θi) ∝ rk−1
i I( Bi

Ai
+max

{
−Bi

Ai
,−
√

−2 ln υi
Ai

}
,
Bi
Ai

+
√

−2 ln υi
Ai

) (ri)
where it is easy to sample from the latter using the inverse cumulative distribution
function technique. Thus we draw υi ∼ U(0, exp{−1

2Ai(ri − Bi

Ai
)2}) and independently

ui ∼ U(0, 1). Finally ri = {(	k2i − 	k1i)ui + 	k1i}1/k, where for i = 1, 2, . . . , n,

	1i =
Bi

Ai
+max

{
−Bi

Ai
,−
√

−2 ln υi
Ai

}
, 	2i =

Bi

Ai
+

√
−2 ln υi

Ai
.

The combination of closed forms for the full conditionals of the model parameters
and slice sampling without rejection for the latent lengths makes Gibbs sampling fast
and easy for the general projected normal. In Section 3, we describe the details for the
circular case, illustrated by modeling time-of-day departures of anglers from recreational
fishing sites using covariates in both the mean vector and covariance matrix. In Section 4,
we describe analysis of spherical data, illustrated with an application to protein structure
analysis.

3 Circular case

For the circular case, x1,i = ri cos θi, x2,i = ri sin θi, μ = (μ1, μ2)
T and (3) becomes

Σ =

(
σ2 + γ2 γ

γ 1

)
.

From (4), the joint density of (ri, θi) is

p (ri, θi | μ,Σ)

=

(
1

2πσ

)
ri exp

{
− 1

2σ2
(riui − μ)

T

(
1 −γ
−γ σ2 + γ2

)
(riui − μ)

}
= rip (x1,i | x2,i,μ,Σ) p (x2,i | μ,Σ)

where p(x1,i | x2,i,μ,Σ) is a normal density with mean μ1 + γ(x2,i − μ2) and variance
σ2, and p(x2,i | μ,Σ) is a normal density with mean μ2 and variance 1. Closed forms for
the full conditionals are then obtained by placing normal priors on μ and γ (or on βj ’s
and αj ’s in the regression case), and an inverse gamma prior on σ2. Full conditional
distributions for μ (or β1,α1 in the regression case) are the same as in Wang and
Gelfand (2013). The full conditional distributions for γ and σ2 are

(γ | ·) ∼

N
(
σ−2

∑n
i=1 (x1,i − μ1) (x2,i − μ2) + μγσ

−2
γ

σ−2
∑n

i=1 (x2,i − μ2)
2
+ σ−2

γ

,
1

σ−2
∑n

i=1 (x2,i − μ2)
2
+ σ−2

γ

)

(
σ2 | ·

)
∼ IG

(
n

2
+ a,

1

2

n∑
i=1

(x1,i − {μ1 + γ (x2,i − μ2)})2 + b

)

where σ2
γ , μγ are the prior variance and mean parameters of γ and a, b are the prior

shape and rate parameters of σ2.
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Figure 1: Histogram for a sample of n = 500 circular observations generated from a
general projected normal distribution with parameters μ = (−0.19, 2.09)T , σ1 = 1.58,
σ2 = 1.4, and ρ = −0.84. The true probability density function for this model is
computed from (1) and shown as a solid curve. The posterior predictive density estimate
(projected normal density at each angle, averaged over posterior draws) is shown as the
dashed curve.

3.1 Simulated circular data

Figure 1 shows a histogram for n = 500 circular observations simulated from a general

projected normal distribution, along with the true density from (1). Parameters of

the general projected normal distribution are μ = (−0.19, 2.09)T and σ1 = 1.58, σ2 =

1.4, ρ = −0.84 in Σ as in Wang and Gelfand (2013) (Section 4.1 of that paper incorrectly

states that μ = (−0.19, 1.25)T ; we thank the authors for clarifying). We specified priors

as μ ∼ N2(0, 10
5I) and σ2 ∼ IG(0.01, 0.01), then ran the Gibbs sampler for 10,000

iterations and kept the last 5,000. Figure 1 shows the estimated posterior predictive
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density G−1
∑G

g=1 p(θ | μ(g),Σ(g)) with p(θ | μ(g),Σ(g)) as in (1) and with μ(g),Σ(g)

the gth posterior draws.

3.2 Daily departure times of recreational saltwater anglers

We illustrate the general projected normal regression model for the circular case, in-
cluding the novel use of covariates within Σ, using observations of the departure times
of saltwater recreational anglers from shoreline fishing sites in the 14 states along the
Atlantic coast of the United States, with Maine the northernmost state and Florida the
southernmost state. The N = 176, 523 time-of-day observations come from the Coastal
Household Telephone Survey (CHTS), conducted by the National Marine Fisheries Ser-
vice to measure recreational angling activity in saltwater. The CHTS sample is selected
via random digit dialing of households, stratified by county within each of six two-month
waves (January–February through November–December). Data are collected during the
two weeks following completion of each wave, and each active angler is asked to recall
all saltwater fishing trips during the two-month wave. We combine data for each wave
across years 1990–2008 in the following analysis.

Figure 2 shows posterior predictive densities, to be described below, for departure
times at twelve time points in a year, and for every state in the sample. We are specif-
ically interested in modeling the seasonal pattern over the course of the year and the
variation in the seasonal pattern across states. The analysis is part of an overall effort
to improve recreational fisheries statistics, motivated by the critique in Sullivan et al.
(2006).

We treat time-of-year as a circular covariate by transforming it to an angle δ =
2π(day within year)/(number of days in year) (e.g., Mardia and Jupp 2000, p. 257).
We model the ith departure time Θi as a circular variable with a general projected
normal distribution Θi ∼ PN 2(μi,Σi), where

μT
i = zT

μ,i

(
β1 β2

)
, Σi =

(
σ2 + γ2

i γi
γi 1

)
, γi = zT

γ,iα (7)

following (5) and (6). In our full model, each state has its own intercept, coefficient of
cos δi, and coefficient of sin δi in zT

μ,i, so β1 and β2 each have 42 parameters. Further,
zμ,i = zγ,i, so α has an additional 42 parameters in the covariance matrix model. In
our reduced model, there are no covariates in the covariance matrix, so γi = α.

We placed independent normal priors on β1,β2,α
ind∼ N42(0, 10

5I) and inverse
Gamma on σ2 ∼ IG(0.01, 0.01). All full conditionals are available in closed form. To
compare the full model with covariates in Σi against the reduced model with constant
covariance matrix, we set aside roughly 10% of the observations from each state, leav-
ing a total of m = 17, 657 observations to be used for out-of-sample model comparison
based on the Predictive Log Scoring Loss (PLSL) (Gneiting and Raftery, 2007). Making
use of posterior draws, the PLSL can be computed as

PLSL = − 2

G

G∑
g=1

m∑
j=1

log p
(
θ�j | μ(g)

j ,Σ
(g)
j

)
, (8)
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Figure 2: Estimated posterior predictive densities for time-of-day departure times at
twelve time points in a year, and for every state in the sample. The darkest curves
are the estimated posterior predictive densities at the lowest latitude (Florida) and the
lightest curves are the ones at the highest latitude (Maine).

with p(θ�j | μ(g)
j ,Σ

(g)
j ) as in (1), θ�j , z

�
μ,j , z

�
γ,j the jth holdout values and μ

(g)
j ,Σ

(g)
j as in

7 with zμ,j , zγ,j replaced by z�
μ,j , z

�
γ,j and β1,β2,α replaced by the gth posterior draw

β
(g)
1 ,β

(g)
2 ,α(g). The remaining n = 158, 866 observations were used to fit the model. For

both models, we ran the Gibbs sampler for 20,000 iterations and kept the last 10,000.
The Gibbs sampler runs fast since no rejection methods are used within it.

The difference in PLSL between the full and reduced model was 134.81, favoring the
full model with covariates in Σ. We also computed DIC (Spiegelhalter et al., 2002) and
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Figure 3: Posterior means and 95% credible intervals by state for the full model of
departure time distributions, with 42 parameters in each of the two mean parameter
vectors β1 and β2, and an additional 42 parameters in the covariance matrix parameter
vector α. Parameters for each state in each of the three vectors are intercept (“I”),
coefficient of cos δi (“C”), and coefficient of sin δi (“S”). States are ordered by latitude
with Maine (ME) the northernmost state and Florida (FL) the southernmost.

found a difference of 1654.3, again favoring the full model. Several forms of DIC are
available in the literature (Celeux et al., 2006). Here we used DIC = 2D(β1,β2,α) −
D(β̄1, β̄2,ᾱ) where β̄1, β̄2, ᾱ are the posterior means and the deviance D(β1,β2,α) =
−2 log p(θ|μ(β1,β2),Σ(α)) is minus twice the log-likelihood.
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Figure 2 shows estimated posterior predictive densities for each one of the states
at twelve time points in the year. The mode shifts gradually from around 4 PM in
winter, to 6 PM in spring, to almost 8 PM in late summer, and back to 6 PM in the
fall. The darkest curve in each plot corresponds to the lowest latitude (Florida) and
the lightest curve corresponds to the highest latitude (Maine). There is a clear latitude
effect in most months other than autumn, with a more sharply peaked departure time
for the northernmost states, sharpest in mid-winter. This changing latitude effect over
the year is captured in the interaction of the categorical covariates for states with the
trigonometric terms, again appearing in both the mean and the covariance matrix.
Figure 3 gives 95% posterior credible intervals for all parameters in the full model,
showing support in the data for the model that varies across states and includes time-
of-year not only in the mean but in the covariance. We investigated replacing categorical
state effects by a continuous latitude variable, but the state effects were too complex,
as suggested by the estimates in Figure 3.

4 Spherical case

For the spherical case, Θ = (Θ1,Θ2)
T is obtained from the expression of the random

unit vector U in spherical coordinates,

U = (cosΘ1 sinΘ2, sinΘ1 sinΘ2, cosΘ2)
T
.

Equation (4) with k = 3 then gives the joint density in terms of (θ1, θ2) and the aug-
mented length, r. Integrating r out of this expression (see the supplementary materials
(Hernandez-Stumpfhauser et al., 2016) for details), we obtain the joint density for Θ,

p (θ | μ,Σ) = |Σ|−
1
2 exp (C)×(

1

2πA(θ)

) 3
2
([

1 +D(θ)
Φ {D(θ)}
ϕ {D(θ)}

]
D(θ) +

Φ {D(θ)}
ϕ {D(θ)}

)
I[0,2π) (θ1) I[0,π] (θ2)(9)

where D(θ) = B(θ)A− 1
2 (θ), A(θ) = uTΣ−1u, B(θ) = uTΣ−1μ and C = −1

2μ
TΣ−1μ.

The area element on the sphere is equal to sin(θ2)dθ1dθ2.

4.1 Simulated spherical data

Figure 4 shows a sample of n = 500 spherical observations simulated from a general
projected normal distribution with parameters μ = (1.26,−0.62, 0.23)T , and

Σ = diag(2.11, 2.46, 2.38)

⎛
⎝ 1 0.32 −0.03

0.32 1 −0.12
−0.03 −0.12 1

⎞
⎠ diag(2.11, 2.46, 2.38).

We ran the Gibbs sampler with priors μ ∼ N3(0, 10
5I), γ ∼ N2(0, 10

5I), Σ� ∼ IW(I, 4).
Contours of the true probability density function from (9) are shown as solid curves in
Figure 4, and contours of the posterior predictive density estimate, based on 5000 values
retained from a Gibbs sampler with 10,000 total iterations, are shown as dashed curves.
Both densities are multiplied by sin(θ2).
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Figure 4: Scatterplot for a sample of n = 500 spherical observations generated from
the general projected normal distribution of Section 4.1. Contours of the true proba-
bility density function from (9) are shown as solid curves and contours of the posterior
predictive density estimate (projected normal density at each angle pair, averaged over
posterior draws) are shown as dashed curves.

4.2 α-Carbon representation of protein backbone structure

Structural biology studies the structure of biologically active molecules, which are the

building blocks of cellular organelles, cells, tissues, and organs. Investigating the re-

lationship between structure and function of such molecules can ultimately lead to a

better understanding of health and disease. Although molecules are too small to see

under an ordinary light microscope, well-known methods to determine molecular struc-
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tures are available; for example, X-ray crystallography and nuclear magnetic resonance
(NMR) spectroscopy.

Here we are concerned with protein structure. Proteins consist of sequences of the
21 natural amino acids, all of which have the same backbone and different side chains.
There can be tens to hundreds of amino acids in the protein, and hundreds to hundreds
of thousands of atoms. A complete model for the protein consists of coordinates for every
atom, as shown in the top left panel of Figure 5 for halophilic malate dehydrogenase
(hMDH) from the archaebacterium Haloarcula marismortui (Dym et al. 1995, Protein
Data Bank entry 1HLP). The top right panel of the figure shows the same structure, but
in a simplified representation that color-codes three main types of structure: helices,
β-sheets, and coils and turns.

Further simplifications are often useful. One class of simplified models is obtained
by focusing only on the α-carbon sequence, consisting of the primary carbon atom in
the backbone of each amino acid. The bottom panel of Figure 5 shows the α-carbon
atoms as spheres, connected by pseudo-bonds to depict the protein backbone. The three-
dimensional structure of the resulting α-carbon backbone can be described as a sequence
of angle pairs, {(τi, θi)}ni=1 (Levitt, 1976; Oldfield and Hubbard, 1994), as shown in the
inset to the bottom panel of Figure 5. The bond angle θ has a range [0, π) and τ is a
dihedral angle with range [−π, π). These two angles lie naturally on a sphere. Hamelryck
et al. (2006) used the distributions of these two angles to randomly generate plausible
models for protein structures.

A related but different simplified description leads to the Ramachandran plot, which
uses different pairs of angles to describe the backbone structure (Ramachandran et al.,
1963). The Ramachandran angle pairs lie naturally on a torus rather than a sphere.
Methods described in this paper can be adapted to the toroidal case, which is beyond
the scope of the present work. Both the Ramachandran plot and our analysis summarize
the protein structure in terms of the marginal joint density of the angle pairs, ignoring
any dependence in the sequence. Time series methods for the angle-pair sequence are a
natural extension of the work presented here, a point we return to briefly in Section 6.

Here we estimate the joint density of (τ, θ) for 1295 proteins by making use of mix-
tures of general projected normal distributions PN 3(μ,Σ). While mixtures of projected
normals have been used in (Wang and Gelfand, 2014; Nuñez-Antonio et al., 2015), this is
to the best of our knowledge the first mixture of general projected normals in the spher-
ical case. The flexibility of the general projected normal distribution, which includes the
possibility of two modes and asymmetry, can potentially describe two separate regions
with a single mixture component making it more attractive for the use of mixture mod-
els than say von Mises-Fisher distributions (Banerjee et al., 2005) or Kent distributions
(Peel et al., 2001), which are both unimodal distributions.

Mixtures of projected normal densities inherit excellent approximation properties
from mixtures of normal densities. To see this, let p(θ) denote any density on the k-
dimensional hypersphere, and let p(r) denote an arbitrary one-dimensional density on
IR+. Then p(θ, r) = p(θ)p(r) is a density in IRk; if it is well-approximated by a mixture of
k-variate normal densities, then p(θ) is well-approximated by the corresponding mixture
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Figure 5: Representations of the molecular structure of malate dehydrogenase. In the
top left view all atoms (coordinates derived from Protein Data Bank entry 1HLP Dym
et al. 1995, hydrogen atoms omitted) are depicted as spheres, with carbon, nitrogen, and
oxygen in cyan, blue, and red, respectively. The top right panel shows the same struc-
ture, but in a simplified representation that color-codes three main types of secondary
structure: helices in dark blue, β-sheets in yellow, and coils and turns in gray. The bot-
tom panel shows a different simplified view of the structure (Levitt, 1976), in which the
α-carbon atom for each amino acid is shown as a sphere, connected by pseudo-bonds to
depict the protein backbone. The three-dimensional structure of the resulting α-carbon
backbone can be described as a sequence of angle pairs, {(τi, θi)}ni=1. where the angles
are defined in the inset to the bottom panel. (Images made with VMD Humphrey et al.
1996.)



D. Hernandez-Stumpfhauser, F. J. Breidt, and M. J. van der Woerd 127

of projected normal densities. Theorem 1 of Wang and Gelfand (2014) makes these
statements precise for the circular case, showing that mixtures of circular projected
normal densities PN 2(μj ,Σj) can approximate arbitrarily well in L1 norm a large class
of densities on the circle. Their results extend immediately to k dimensions.

The 1295 proteins used in this example are a (non-random) subset of the 1424
proteins used in Hamelryck et al. (2006). We randomly sampled 15 angle pairs (τj , θj)
from each of the 1295 proteins. We also randomly selected 295 proteins to set aside,
so that n = 15, 000 angle pairs from 1000 proteins were used to fit the mixture model,
and m = (15)(295) = 4425 from 295 proteins were set aside for out-of-sample model
comparison based on the PLSL.

We model the data as a mixture of J general projected normal distributions

J∑
j=1

wjPN 3

(
μj ,Σj

)
, Σj =

(
Σ∗

j + γjγ
T
j γj

γT
j 1

)
.

For each j = 1, . . . , J , we placed normal priors on μj ∼ N3(μμ, σ
2
μI) and γj ∼

N2(μγ , σ
2
γ I) and inverse Wishart priors on Σ∗

j ∼ IW(I, 4). We placed normal priors

μμ ∼ N3(0, 10
2I) and μγ ∼ N2(0, 10

2I). Finally, we placed a Dirichlet prior on the
weights w = (w1, . . . , wJ)

T ∼ D(1, . . . , 1).

We ran the Gibbs sampler for 70,000 iterations and kept the last 10,000 to estimate
all parameters in the model. We tried numbers of mixtures J = 3, 4, 5, 6, 7, 8 and chose
the model with J = 7 mixtures using PLSL, which was 57.4 less than that for J = 6 and
69.1 less than that for J = 8. The mixture model with J = 3 had the worst predictions
with a PLSL 734.2 greater than that of J = 7.

Figure 6 shows a perspective plot of the estimated posterior predictive density
and a contour plot of the log estimated posterior predictive density. The first most
probable region, with mode (τ, θ) = (0.86, 1.58), contains angle pairs primarily from
helix structures; the second most probable region, with mode (τ, θ) = (−2.81, 2.17),
corresponds primarily to β-sheets; and the third most probable region, with mode
(τ, θ) = (−2.38, 1.60), corresponds typically to coils and turns.

In a related application to dihedral angles {τi}ni=1, DeWitte and Shakhnovich (1994)
developed an analysis of the probability density function for τi as a function of a cate-
gorical covariate, determined by the central pair of amino acids for angle i. Each amino
acid was classified into one of three groups (Helix, Sheet and Turn formers), so that the
pair of amino acids led to nine possible values of the categorical covariate. It is straight-
forward to conduct this analysis for circular data τi or to extend to spherical data (τi, θi)
using the methods of this paper. A complete analysis of this model is beyond the scope
of the present paper, but involves no new ideas.

5 Higher-dimensional cases

As a further test of our methods, we explored estimation of PN k(μk,Σk) for k = 10
and k = 50. For each dimension, we placed a simple structure on
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Figure 6: Bottom figure is a scatterplot of n = 15, 000 angle pairs chosen as 15 angle
pairs selected at random from each of 1000 proteins. The contour lines show the log
of the estimated posterior predictive density from modeling the data as a mixture of
seven general projected normal distributions PN 3(μj ,Σj). The top figure shows the
posterior predictive density in three dimensions. The dominant peak with mode (τ, θ) =
(0.86, 1.58) corresponds to angle pairs primarily from helical structures; the second
most probable region, with mode (τ, θ) = (−2.81, 2.17) (τ = −π wraps around to
π), corresponds to β-sheets; and the third most probable region, with mode (τ, θ) =
(−2.38, 1.60), corresponds to coil and turn structures.
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Figure 7: Assessment of estimation performance for k = 10 dimensional problem (top
row) and k = 50 dimensional problem (bottom row). Left column: posterior means
versus true values for 3k−2 parameters in each of 300 different simulated k-dimensional
cases, with k×300 μ values in blue, (k−1)×300 γ values in black, and (k−1)×300 σ2

values in magenta. Right column: theoretical quantiles of asymptotic χ2
3k−2 distribution

versus 300 empirical quantiles of the quadratic form (β − β̄)TS−1

β (β − β̄), where β is

one draw per case from the (3k− 2)-dimensional posterior, β̄ is the sample mean of the
posterior draws, and Sβ is their sample covariance matrix.

Σk =

(
Σ∗

k−1 + γk−1γ
T
k−1 γk−1

γT
k−1 1

)

by assuming Σ∗
k−1 = diag(σ2

1 , . . . , σ
2
k−1), with the diagonal elements strictly positive.

This structure yields 3k−2 model parameters, 28 for k = 10 and 148 for k = 50. We gen-



130 Bayesian Inference for General Projected Normal

erated the true parameters at random, drawing σ2
j iid U(0.5, 1.5), γk−1 ∼ N (0k−1, Ik−1),

u from a uniform on the k-dimensional hypersphere, ‖μ‖ ∼ U(0, 4), and setting μk =
‖μ‖u. For each random parameter draw, we then generated n10 = 500 or n50 = 2500
iid PN k(μk,Σk) observations. The ratio of number of observations to number of pa-
rameters is roughly equal in each case, 148/28 	 2500/500.

We then conducted inference by placing normal priors on μk ∼ N (0, 105Ik) and
γk−1 ∼ N (0, 105Ik−1), and independent inverse gamma priors on the diagonal elements
of Σ∗

k−1, σ
2
j ∼ IG(0.1, 0.1). This prior specification is not the same as the actual data

generating mechanism. For each simulated data set, we ran the Gibbs sampler for 30,000
iterations, retaining the last 10,000. Trace plots indicated no problems with convergence
of the chains and posterior means track true values well; see the plots in the left column
of Figure 7. Further, let β = (μT

k ,γ
T
k−1, σ

2
1 , . . . , σ

2
k−1)

T denote one random draw of the
3k − 2 vector of parameters from the approximate posterior distribution and let β̄,Sβ
denote the sample mean and sample covariance matrix of the posterior draws. Then, for
sufficiently large sample size, the quadratic form (β−β̄)TS−1

β (β−β̄) is asymptotically χ2

with 3k−2 degrees of freedom. The right column of Figure 7 shows empirical quantiles of
the 300 quadratic forms versus theoretical quantiles of the χ2

3k−2 distribution. The plots
suggest that these quadratic forms, which summarize vector-valued posterior draws, are
at least reasonably consistent with their asymptotic χ2 distributions.

6 Discussion

The empirical examples of Section 3.2 and Section 4.2 and the simulated examples of Sec-
tion 5 illustrate the fact that our new parameterization of the general projected normal
yields a fast sampler, allowing for the efficient exploration of high-dimensional param-
eter spaces. Our method makes it feasible to conduct model selection among complex
mixture and regression models. In addition, our parameterization makes possible inter-
esting extensions, such as building in mixture/regression or time series structures for
spherical data. As noted above, the example of Section 4.2 estimates only the marginal
density of (τ, θ), ignoring any dependence in the sequence of successive angle pairs along
the α-carbon backbone. Using extensions of the methods described in this paper, we
are currently developing vector autoregressive models for such time series of spherical
data, including autoregressive models that switch parameterizations according to local
structure in the protein (such as helices, beta-sheets, and coils).

Supplementary Material
Supplementary Material of “The General Projected Normal Distribution of Arbitrary
Dimension: Modeling and Bayesian Inference” (DOI: 10.1214/15-BA989SUPP; .pdf).
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