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THE WINNER TAKES IT ALL

BY MARIA DEIJFEN1 AND REMCO VAN DER HOFSTAD2

Stockholm University and Eindhoven University of Technology

We study competing first passage percolation on graphs generated by the
configuration model. At time 0, vertex 1 and vertex 2 are infected with the
type 1 and the type 2 infection, respectively, and an uninfected vertex then
becomes type 1 (2) infected at rate λ1 (λ2) times the number of edges con-
necting it to a type 1 (2) infected neighbor. Our main result is that, if the
degree distribution is a power-law with exponent τ ∈ (2,3), then as the num-
ber of vertices tends to infinity and with high probability, one of the infection
types will occupy all but a finite number of vertices. Furthermore, which one
of the infections wins is random and both infections have a positive proba-
bility of winning regardless of the values of λ1 and λ2. The picture is similar
with multiple starting points for the infections.

1. Introduction. Consider a graph generated by the configuration model with
random independent and identically distributed (i.i.d.) degrees, that is, given a fi-
nite number n of vertices, each vertex is independently assigned a random number
of half-edges according to a given probability distribution and the half-edges are
then paired randomly to form edges (see below for more details). Independently
assign two exponentially distributed passage times X1(e) and X2(e) to each edge
e in the graph, where X1(e) has parameter λ1 and X2(e) parameter λ2, and let two
infections controlled by these passage times compete for space on the graph. More
precisely, at time 0, vertex 1 is infected with the type 1 infection, vertex 2 is in-
fected with the type 2 infection and all other vertices are uninfected. The infections
then spread via nearest neighbors in the graph in that the time that it takes for the
type 1 (2) infection to traverse an edge e and invade the vertex at the other end is
given by X1(e) (X2(e)). Furthermore, once a vertex becomes type 1 (2) infected,
it stays type 1 (2) infected forever and it also becomes immune to the type 2 (1) in-
fection. Note that, since the vertices are exchangeable in the configuration model,
the process is equivalent in distribution to the process obtained by infecting two
randomly chosen vertices at time 0.
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We shall impose a condition on the degree distribution that guarantees that the
underlying graph has a giant component that comprises almost all vertices. Ac-
cording to the above dynamics, almost all vertices will then eventually be infected.
We are interested in asymptotic properties of the process as n → ∞. Specifically,
we are interested in comparing the fraction of vertices occupied by the type 1 and
the type 2 infections, respectively, when the degree distribution is a power law
with exponent τ ∈ (2,3), that is, when the degree distribution has finite mean but
infinite variance. Our main result is roughly that the probability that both infection
types occupy positive fractions of the vertex set is 0 for all choices of λ1 and λ2.
Moreover, the winning type will in fact conquer all but a finite number of ver-
tices. A natural guess is that asymptotic coexistence is possible if and only if the
infections have the same intensity—which for instance is the case for first pas-
sage percolation on Z

d and on random regular graphs; see Section 1.3—but this is
hence not the case in our setting.

1.1. The configuration model. Let [n] ≡ {1,2, . . . , n} denote the vertex set of
the graph and D1, . . . ,Dn the degrees of the vertices. The degrees are i.i.d. random
variables, and we shall throughout assume that:

(A1) P(D ≥ 2) = 1;
(A2) there exists a τ ∈ (2,3) and constants c2 ≥ c1 > 0 such that, for all x > 0,

c1x
−(τ−1) ≤ P(D > x) ≤ c2x

−(τ−1).(1)

For some results, the assumption (A2) will be strengthened to:
(A2′) there exist τ ∈ (2,3) and cD ∈ (0,∞) such that

P(D > x) = cDx−(τ−1)(1 + o(1)
)
.

As described above, the graph is constructed in that each vertex i is assigned Di

half-edges, and the half-edges are then paired randomly: first, we pick two half-
edges at random and create an edge out of them, then we pick two half-edges at
random from the set of remaining half-edges and pair them into an edge, etc. If the
total degree happens to be odd, then we add one half-edge at vertex n (clearly this
will not affect the asymptotic properties of the model). The construction can give
rise to self-loops and multiple edges between vertices, but these imperfections will
be relatively rare when n is large; see [15, 24].

It is well known that the critical point for the occurrence of a giant component—
that is, a component comprising a positive fraction of the vertices as n → ∞—in
the configuration model is given by ν := E[D(D − 1)]/E[D] = 1; see, for exam-
ple, [16, 19, 20]. The quantity ν is the reproduction mean in a branching process
with offspring distribution D� − 1 where D� is a size-biased version of the de-
gree variable. More precisely, with (pd)d≥1 denoting the degree distribution, the
offspring distribution is given by

p�
d = (d + 1)pd+1

E[D] .(2)
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Such a branching process approximates the initial stages of the exploration of the
components in the configuration model, and the asymptotic relative size of the
largest component in the graph is given by the survival probability of the branching
process [16, 19, 20]. When the degree distribution is a power-law with exponent
τ ∈ (2,3), as stipulated in (A2), it is easy to see that ν = ∞ so that the graph
is always supercritical. Moreover, the assumption (A1) implies that the survival
probability of the branching process is 1 so that the asymptotic fraction of vertices
in the giant component converges to 1.

1.2. Main result. Consider two infections spreading on a realization of the
configuration model according to the dynamics described in the beginning of the
section, that is, an uninfected vertex becomes type 1 (2) infected at rate λ1 (λ2)
times the number of edges connecting it to type 1 (2) infected neighbors. Note that,
by time-scaling, we may assume that λ1 = 1 and write λ2 = λ. Let Ni(n) denote
the final number of type i infected vertices, and write N̄i(n) = Ni(n)/n for the final
fraction of type i infected vertices. As mentioned, the assumption (A2) guarantees
that almost all vertices in the graph form a single giant component. Hence, N̄1(n)+
N̄2(n)

P−→ 1 and it is therefore sufficient to consider N̄1(n). Define Nlos(n) =
min{N1(n),N2(n)} so that Nlos(n) is the total number of vertices captured by the
losing type, that is, the type that occupies the smallest number of vertices. The
following is our main result.

THEOREM 1.1 (The winner takes it all). Fix λ and write μ = 1/λ.

(a) The fraction N̄1(n) of type 1 infected vertices converges in distribution to
the indicator variable 1{V1<μV2} as n → ∞, where V1 and V2 are i.i.d. proper
random variables with support on R

+.
(b) Assume (A2′). The total number Nlos(n) of vertices occupied by the losing

type converges in distribution to a proper random variable Nlos.

REMARK 1.1 (Explosion times). The variables Vi (i = 1,2) are distributed as
explosion times of a certain continuous-time branching process with infinite mean.
The process is started from Di individuals, representing the edges of vertex i, and
will be characterized in more detail in Section 2. In part (b), the limiting random
variable Nlos has an explicit characterization involving the (almost surely finite)
extinction time of a certain Markov process; see Section 4. In fact, the proof reveals
that the limiting number of vertices that is captured by the losing type is equal to 1
with strictly positive probability, which is the smallest possible value. Thus, the
ABBA lyrics “The winner takes it all. The loser’s standing small. . .” could not be
more appropriate.

Roughly stated, the theorem implies that coexistence between the infection
types is never possible. Instead, one of the infection types will invade all but a
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finite number of vertices and, regardless of the relation between the intensities,
both infections have a positive probability of winning. The proof is mainly based
on ingredients from [4], where standard first passage percolation (that is, first pas-
sage percolation with one infection type and exponential passage times) on the
configuration model is analyzed.

Let us first give a short heuristic explanation. Here and throughout the paper,
a sequence of events is said to occur with high probability (w.h.p.) when their
probabilities tend to 1 as n → ∞. W.h.p. the initially infected vertex 1 and vertex 2
will not be located very close to each other in the graph, and hence the infection
types will initially evolve without interfering with each other. This means that the
initial stages of the spread of each one of the infections can be approximated by
a continuous-time branching process, which has infinite mean when the degree
distribution has infinite variance (because of size biasing). These two processes
will both explode in finite time, and the type that explodes first is random and
asymptotically equal to 1 precisely when V1 < μV2. Theorem 1.1 follows from the
fact that the type with the smallest explosion time will get a lead that is impossible
to catch up with for the other type. More specifically, the type that explodes first
will w.h.p. occupy all vertices of high degree—often referred to as hubs—in the
graph shortly after the time of explosion, while the other type occupies only a finite
number of vertices. From the hubs, the exploding type will then rapidly invade the
rest of the graph before the other type makes any substantial progress at all.

We next investigate the setting where we start the competition from several
vertices chosen uniformly at random.

THEOREM 1.2 (Multiple starting points). Fix λ and write μ = 1/λ. Also fix
integers k1, k2 ≥ 1, and start with k1 type 1 infected vertices and k2 type 2 infected
vertices chosen uniformly at random from the vertex set.

(a) The fraction N̄1(n) of type 1 infected vertices converges in distribution to
the indicator variable 1{V1,k1<μV2,k2 } as n → ∞, where V1,k1 and V2,k2 are two
independent proper random variables with support on R

+.
(b) Assume (A2′). The total number Nlos(n) of vertices occupied by the losing

type converges in distribution to a proper random variable Nlos.
(c) Assume (A2′). For every k1, k2 ≥ 1, it holds that P(V1,k1 < μV2,k2) ∈ (0,1).

Moreover, for fixed α ∈ (0,∞), as k → ∞,

P(V1,k < μV2,αk) → P
(
Y1 < μα3−τ Y2

) ∈ (0,1),(3)

where Y1, Y2 are two i.i.d. random variables with distribution

Y =
∫ ∞

0

1

1 + Qt

dt,

for a stable subordinator (Qt)t≥0 with E[e−sQt ] = e−σsτ−2t for some σ = σ(cD).
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REMARK 1.2 (Explosion times revisited). The variable Vi,ki
has the distribu-

tion of the explosion time of a continuous-time branching process with the same
reproduction rules as in the case with a single initial type i vertex, but now the num-
ber of individuals that the process is started from is distributed as D1 + · · · + Dki

and represents the total degree of the ki initial type i vertices. The scaling of the
explosion time of the branching process started from k individuals for large k is
investigated in more detail in Lemma 4.5.

In Theorem 1.2, we see that the fastest species does not necessarily win even
when it has twice as many starting points, but it does when α → ∞, that is, when
starting from a much larger number of vertices than the slower species. We only
prove Theorem 1.2 in the case where k1 = k2 = 1, in which case it reduces to
Theorem 1.1. The case where (k1, k2) 	= (1,1) is similar. Hence, only the proof
of (3) in Theorem 1.2(c) is provided in detail; see Section 4.

1.3. Related work and open problems. First passage percolation on various
types of discrete probabilistic structures has been extensively studied; see, for ex-
ample, [5, 6, 10, 13, 18, 23]. The classical example is when the underlying structure
is taken to be the Z

d -lattice. The case with exponential passage times is then often
referred to as the Richardson model and the main focus of study is the growth and
shape of the infected region [7, 17, 21, 22]. The Richardson model has also been
extended to a two-type version that describes a competition between two infec-
tion types; see [11]. Infinite coexistence then refers to the event that both infection
types occupy infinite parts of the lattice, and it is conjectured that this has positive
probability if and only if the infections have the same intensity. The if-direction
was proved for d = 2 in [11] and for general d independently in [8] and [14]. The
only-if-direction remains unproved, but convincing partial results can be found in
[12]. On Z

d , the starting points of the competing species are typically taken to
be two neighboring vertices. Doing this in our setup on the configuration model
would in principle not change our main results. Specifically, letting the species
start at either end of a randomly chosen edge would change the limiting probabili-
ties of winning for the species, but the fact that one wins and the other occupies a
bounded number of vertices would remain unchanged.

As for the configuration model, the area of network modeling has been very
active the last decade and the configuration model is one of the most studied mod-
els. One of its main advantages is that it gives control over the degree distribution,
which is an important quantity in a network with great impact on global proper-
ties. As mentioned, first passage percolation with exponential edge weights on the
configuration model has been analyzed in [4]. The results there revolve around
the length of the time-minimizing path between two vertices and the time that it
takes to travel along such a path. In [6], these results are extended to all continuous
edge-weight distributions under the assumption of finite variance degrees.
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Recently, in [1], competing first passage percolation has been studied on so-
called random regular graphs, which can be generated by the configuration model
with constant degree, that is, with P(D = d) = 1 for some d . The setup in [1] al-
lows for a number of different types of starting configurations, and the main result
relates the asymptotic fractions occupied by the respective infection types to the
sizes of the initial sets and the intensities. When the infections are started from two
randomly chosen vertices, coexistence occurs with probability 1 if the infections
have the same intensity, while when one infection is stronger than the other, the
stronger type wins, as one might expect. The somewhat counterintuitive result in
the present paper is hence a consequence of large variability in the degrees. We
conjecture that the result formulated here remains valid precisely when the explo-
sion time of the corresponding continuous-time branching process is finite. See [9]
for a discussion of explosion times for age-dependent branching processes.

A natural continuation of the present work is to study the case when τ > 3,
that is, when the degree distribution has finite variance. We conjecture that the
result is then the same as for constant degrees as described above. Another natural
extension is to investigate other types of distributions for the passage times. The
results may then well differ from the exponential case. For instance, ongoing work
on the case with constant passage times (possibly different for the two species)
and τ ∈ (2,3) indicates that the fastest species always wins, but that there can be
coexistence when the passage times are equal [3, 26].

Finally, we mention the possibility of investigating whether the results gener-
alize to other graph structures with similar degree distribution, for example, inho-
mogeneous random graphs and graphs generated by preferential attachment mech-
anisms; see [2] for results on preferential attachment networks.

2. Preliminaries. In this section, we summarize the results on one-type first
passage percolation from [4] that we shall need. Theorem 1.1(a) and (b) are then
proved in Sections 3 and 4, respectively. Also, the proof of the asymptotic charac-
terization (3) is given in Section 4.

Let each edge in a realization of the configuration model independently be
equipped with one exponential passage time with mean 1. In summary, it is shown
in [4] that when the degree distribution satisfies (A1) and (A2), the asymptotic
minimal time between vertex 1 and vertex 2 is given by V1 + V2, where V1 and
V2 are i.i.d. random variables indicating the explosion time of an infinite mean
continuous-time branching process that approximates the initial stages of the flow
through the graph starting from vertices 1 and 2, respectively; see below. The result
follows roughly by showing that the sets of vertices that can be reached from ver-
tices 1 and 2, respectively, within time t are w.h.p. disjoint up until the time when
the associated branching processes explode, and that they then hook up, creating a
path between 1 and 2.
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Exploration of first passage percolation on the configuration model. To be
a bit more precise, we first describe a natural stepwise procedure for exploring
the graph and the flow of infection through it starting from a given vertex v. Let
SWG(v)

m denote the graph consisting of the set of explored vertices and edges after
m steps, where SWG stands for Smallest-Weight Graph. Write U (v)

m for the set
of unexplored half-edges emanating from vertices in SWG(v)

m and define S
(v)
m :=

|U (v)
m |. Finally, let F (v)

m denote the set of half-edges belonging to vertices in the
complement of SWG(v)

m . When there is no risk of confusion, we will often omit
the superscript v in the notation. Set SWG1 = {v}, so that S1 = Dv . Given SWGm,
the graph SWGm+1 is constructed as follows:

1. Pick a half-edge at random from the set Um. Write x for the vertex that this
half-edge is attached to, and note that x ∈ SWGm.

2. Pick another half-edge at random from Um ∪ Fm and write y for the vertex
that this half-edge is attached to.

3. If y /∈ SWGm—that is, if the second half-edge is in Fm—then SWGm+1
consists of SWGm along with the vertex y and the edge (x, y). If n is large and m

is much smaller than n, then this is the most likely scenario.
4. If y ∈ SWGm—that is, if the second half-edge is in Um—then SWGm+1 =

SWGm and the two selected half-edges are removed from the exploration process.
This means that we have detected a cycle in the graph, and that the corresponding
edge will not be used to transfer the infection.

The above procedure can be seen as a discrete-time representation of the flow
through the graph observed at the times when the infection traverses a new edge:
Each unexplored half-edge emanating from a vertex that has already been reached
by the flow has an exponential passage time with mean 1 attached to it. In step 1,
we pick such a half-edge at random, which is equivalent to picking the one with
the smallest passage time. In step 2, we check where the chosen half-edge is con-
nected. When this vertex has not yet been reached by the flow, it is added to the
explored graph along with the connecting edge in step 3. When the vertex has al-
ready been reached by the flow, only the edges is added in step 4, thus creating a
cycle.

As for the number of unexplored half-edges emanating from explored vertices,
this is increased by the forward degree of the added vertex minus 1 in case a vertex
is added, and decreased by 2 in case a cycle is detected. Hence, defining

Bi =
{ the forward degree of the added vertex if a vertex is added in step i;

−1 if a cycle is created in step i,

we have for m ≥ 2 that

Sm = Dv +
m∑

i=2

(Bi − 1).
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Denote the total time of the first m steps by Tm and let (Ei)
∞
i=1 be a sequence of

i.i.d. Exp(1)-variables. The time for traversing the edge that is explored in the ith
step is the minimum of Si i.i.d. exponential variables with mean 1, and thus it has
the same distribution as Ei/Si . Hence,

Tm
d=

m∑
i=1

Ei

Si

.(4)

Write V(G) for the vertex set of a graph G, let |V(G)| denote its size, and define

Rm = inf
{
j :

∣∣V(SWGj )
∣∣ ≥ m

}
,(5)

that is, Rm is the step when the mth vertex is added to the explored graph. Since no
vertex is added in a step where a cycle is created, we have that Rm ≥ m. However,
if n is large and m is small in relation to n, it is unlikely to encounter cycles in the
early stages of the exploration process and thus Rm ≈ m for small m. Hence, we
should be able to replace m by Rm above and still obtain quantities with similar
behavior. Indeed, Proposition 2.1 below states that TRm (the time until the flow has
reached m vertices) and Tm have the same limiting distribution as n → ∞ as long
as m = mn is not too large.

Passage times for smallest-weight paths. To identify the limiting distribution
of Tm, note that, as long as no cycles are encountered, the exploration graph is a
tree and its evolution can therefore be approximated by a continuous-time branch-
ing process. The root is the starting vertex v, which dies immediately and leaves
behind Dv children, corresponding to the Dv half-edges incident to v. All indi-
viduals (= unexplored half-edges) then live for an Exp(1)-distributed amount of
time, independently of each other, and when the ith individual dies it leaves be-
hind B̃i children, where (B̃i)i≥1 is an i.i.d. sequence with distribution (2). Indeed,
as long as no cycles are created, the offspring of a given individual is the forward
degree of the corresponding vertex, and the forward degrees of explored vertices
are asymptotically independent with the size-biased distribution specified in (2).
The number of alive individuals after m ≥ 2 steps in the approximating branch-
ing process, corresponding to the number of unexplored half-edges incident to the
graph at that time, is given by

S̃m = Dv +
m∑

i=2

(B̃i − 1)

and hence the time when the total offspring reaches size m is equal in distribu-
tion to

∑m
i=1 Ei/S̃i . In [4], it is shown that the branching process approximation

remains valid for m = mn → ∞ as long as mn does not grow too fast with n.
Define

an = n(τ−2)/(τ−1).(6)
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It turns out that “does not grow too fast” means roughly that mn = o(an). The in-
tuition behind the choice of an is that for τ ∈ (2,3), there is a large discrepancy
between the number of alive and the number of dead individuals. In particular,
an in (6) equals the asymptotic number of dead individuals in each of two SWGs
emanating from vertices 1 and 2, respectively, at the moment when the two SWGs
collide. This is explained in more detail in [4], (4.21)–(4.25). To summarize, in
the above comparison of the SWG to a branching process, we see that we grow
the graph (in terms of the pairing of the half-edges) simultaneously with the ex-
ploration of the neighborhood structure in the graph, which is approximated by a
(continuous-time) branching process.

Write X(u ↔ v) for the passage time between the vertices u and v, that is,
X(u ↔ v) = Tm(u,v) with m(u,v) = inf{m : v ∈ SWG(u)

m }. The relevant results
from [4] are summarized in the following proposition. Here, part (a) is essential
in proving part (b), part (d) follows by combining parts (b) and (c) and part (e) by
combining parts (b)–(d). For details, we refer to [4]: Part (a) is Proposition 4.7,
part (b) is Proposition 4.6(b), where the characterization of V is made explicit
in (6.14) in the proof, part (c) is Proposition 4.9, and finally, part (e) is Theo-
rem 3.2(b).

PROPOSITION 2.1 (Bhamidi, van der Hofstad and Hooghiemstra [4]). Con-
sider first passage percolation on a graph generated by the configuration model
with a degree distribution that satisfies (A1) and (A2).

(a) There exists a ρ > 0 such that the sequence (Bi)i≥1 can be coupled to the
i.i.d. sequence (B̃i)i≥1 with law (2) in such a way that (Bi)

nρ

i=2 = (B̃i)
nρ

i=2 w.h.p.
(b) Let m̄n be such that log(m̄n/an) = o(

√
logn) and assume that m = mn →

∞ is such that mn ≤ m̄n. As n → ∞, the times Tm and TRm both converge in
distribution to a proper random variable V , where

V
d=

∞∑
i=1

Ei

S̃i

.(7)

The law of V has the interpretation of the explosion time of the approximating
branching process.

(c) For m = mn = o(an) and any two fixed vertices u and v, the two exploration
graphs SWG(u)

an
and SWG(v)

m are w.h.p. disjoint. Furthermore, at time m = Cn, the

graph SWG(u)
m ∪ SWG(v)

m becomes connected, where Cn/an converges in distribu-
tion to an a.s. finite random variable.

(d) Let m = mn → ∞, with mn ≤ m̄n, and fix two vertices u and v. Then

(T
(u)
mn , T

(v)
mn )

d−→ (Vu,Vv) as n → ∞, where (Vu,Vv) are independent copies of
the random variable in (7).

(e) The passage time X(u ↔ v) converges in distribution to a random variable
distributed as Vu + Vv .
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Coupling of competition to first passage percolation. We now return to the
setting with two infection types that are imposed at time 0 at the vertices 1 and 2
and then spread at rate 1 and λ, respectively. Recall that μ = 1/λ. The following
coupling of the two infection types will be used in the rest of the paper: Each edge
e = (u, v) is equipped with one single exponentially distributed random variable
X(e) with mean 1. The infections then evolve in that, if u is type 1 (2) infected,
then the time until the infection reaches v via the edge (u, v) is given by X(u, v)

(μX(u, v)) and, if vertex v is uninfected at that point, it becomes type 1 (2) in-
fected.

Under competition, the above exploration of the flow of infection is adjusted
as follows. Let SWG(1,2)

m denote the graph consisting of the set of explored ver-

tices and edges after m steps. We split SWG(1,2)
m = SWG(1,2)

m ∪ SWG(1,2)
m , where

SWG(1,2)
m and SWG(1,2)

m denote the part that is occupied by type 1 and type 2,
respectively. Also write U (1,2)

m for the set of unexplored half-edges emanating
from vertices in SWG(1,2)

m and split it as U (1,2)
m = U (1,2)

m ∪ U (1,2)
m , where U (1,2)

m

and U (1,2)
m denote half-edges attached to vertices infected by type 1 and type 2,

respectively. Write S
(1,2)
m := |U (1,2)

m | and S
(1,2)
m := |U (1,2)

m |. Finally, the set of half-
edges belonging to vertices in the complement of SWG(1,2)

m is denoted F (1,2)
m . Set

SWG(1,2)
1 = {1} and SWG(1,2)

1 = {2}. Given SWG(1,2)
m and SWG(1,2)

m , the graphs

SWG(1,2)
m+1 and SWG(1,2)

m+1 are constructed as follows:

1. With probability S
(1,2)
m /(S

(1,2)
m + λS

(1,2)
m ), pick a half-edge at random from

the set U (1,2)
m , and with the complementary probability, pick a half-edge at random

from U (1,2)
m . Write x for the vertex that this half-edge is incident to.

2. Pick another half-edge at random from U (1,2)
m ∪ F (1,2)

m and write y for the
vertex that this half-edge is incident to.

3. If y /∈ SWG(1,2)
m and x ∈ SWG(1,2)

m —that is, if y is not yet explored and x

is type 1 infected—then SWG(1,2)
m+1 consists of SWG(1,2)

m along with the vertex y

and the edge (x, y) while SWG(1,2)
m+1 = SWG(1,2)

m . Similarly, if y /∈ SWG(1,2)
m and

x ∈ SWG(1,2)
m , then SWG(1,2)

m+1 consists of SWG(1,2)
m along with the vertex y and the

edge (x, y) while SWG(1,2)
m+1 = SWG(1,2)

m .

4. If y ∈ SWG(1,2)
m —that is, if y is already explored—then SWG(1,2)

m+1 =
SWG(1,2)

m and the selected half-edges are removed from the exploration process.
Indeed, since both x and y are already infected, the edge will not be used to transfer
the infection.

Note that, by Proposition 2.1, for m = o(an), the graph SWG(1,2)
m consists w.h.p.

of two disjoint components given by the SWGs obtained with one-type exploration
from vertex 1 and vertex 2, respectively. In what follows, we will work both with
quantities based on one-type exploration and on exploration under competition.
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Quantities based on a one-type process are equipped with a single superscript (e.g.,
T

(1)
m ), while quantities based on competition are equipped with double superscripts

(e.g., T
(1,2)
m ) (but will often be simplified).

3. Proof of Theorem 1.1(a). In this section, we prove Theorem 1.1(a). Recall
that the randomness in the process is represented by one single Exp(1)-variable
per edge, as described above. All random times based on the one-type exploration
that appear in the sequel are based on these variables and are then multiplied by
μ = 1/λ to obtain the corresponding quantities for Exp(λ)-variables. Following
the notation in the previous section, we write T

(i)
an for Tan when the growth is

started from vertex i. Furthermore, for i = 1,2, we write Vi for the distributional
limit as n → ∞ of T

(i)
an , where Vi are characterized in Proposition 2.1(b). The main

technical result is stated in the following proposition.

PROPOSITION 3.1. Fix μ ≤ 1 and let U be a vertex chosen uniformly at ran-
dom from the vertex set. As n → ∞,

P
(
U is type 1 infected|T (1)

an
< μT (2)

an

) → 1

and

P
(
U is type 2 infected|T (1)

an
> μT (2)

an

) → 1.

With this proposition at hand, Theorem 1.1(a) follows easily.

PROOF OF THEOREM 1.1(a). It follows from Proposition 3.1 that

E
[
N̄1(n)|T (1)

an
< μT (2)

an

] = P
(
U is type 1 infected|T (1)

an
< μT (2)

an

) → 1,

and, similarly,

E
[
N̄1(n)|T (1)

an
> μT (2)

an

] = P
(
U is type 1 infected|T (1)

an
> μT (2)

an

) → 0.

By the Markov inequality, this implies that

P
(
N̄1(n) < 1 − ε|T (1)

an
< μT (2)

an

) = P
(
N̄2(n) > ε|T (1)

an
< μT (2)

an

)
(8)

≤ 1

ε
E

[
N̄2(n)|T (1)

an
< μT (2)

an

] → 0,

so that P(N̄1(n) > 1 − ε|T (1)
an < μT

(2)
an ) → 1 for any ε > 0. Similarly, P(N̄1(n) <

ε|T (1)
an > μT

(2)
an ) → 1 for any ε > 0. Since N̄1(n) ∈ [0,1] and P(T

(1)
an < μT

(2)
an ) →

P(V1 < μV2), Theorem 1.1(a) follows from this. �

Let εn ↘ 0, with εn ≥ c/ log logn for some constant c, and define An = {T (1)
an +

εn < μ(T
(2)
an − εn)}. We remark that εn = c/ log logn suffices for Lemma 3.4, but
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that we may have to take εn larger when applying Lemma 3.5. In order to prove
Proposition 3.1, we will show that

P(U is type 1 infected|An) → 1.(9)

With Bn = {T (1)
an − εn > μ(T

(2)
an + εn)}, analogous arguments can be applied to

show that P(U is type 2 infected|Bn) → 1. Since εn ↘ 0, Proposition 3.1 follows
from this.

PROOF OF PROPOSITION 3.1. Indeed, using that An ⊂ {T (1)
an < μT

(2)
an }, we

write

P
(
U is type 1 infected|T (1)

an
< μT (2)

an

)
= P(U is type 1 infected|An)P

(
An|T (1)

an
< μT (2)

an

)
(10)

+ P
({U is type 1 infected} ∩ Ac

n|T (1)
an

< μT (2)
an

)
.

Since (T
(1)
an , T

(2)
an )

d−→ (V1,V2), where (V1,V2) are independent with continuous
distributions,

lim
n→∞P(An) = lim

n→∞P
(
T (1)

an
< μT (2)

an

)
,(11)

so that also P(Ac
n|T (1)

an < μT
(2)
an ) → 0. We conclude that P(U is type 1 infected|

T
(1)
an < μT

(2)
an ) → 1, as required. �

The proof of (9) is divided into four parts, specified in Lemmas 3.2–3.5 below.
Recall that X(u ↔ v) denotes the passage time between the vertices u and v in a
one-type process with rate 1. We first observe that the one-type passage time from
vertex 1 to a uniformly chosen vertex U is tight.

LEMMA 3.2 (Tight infection times). For a uniformly chosen vertex U ,
P(X(1 ↔ U) < bn) → 1 for all bn → ∞.

PROOF. Just note that, by Proposition 2.1(d), the passage time between ver-
tices 1 and U converges to a proper random variable. �

The second lemma states roughly that, if a certain subset Goodn of the vertices
is blocked, then the (one-type) passage time from vertex 2 to a randomly chosen
vertex U is large. To formulate this in more detail, let γ,σ > 0 be fixed such
that γ < 1/(3 − τ) < σ . Below we will require that they are both sufficiently
close to 1/(3 − τ). We say that a vertex v of degree Dv ≥ (logn)γ is Good if
either Dv ≥ (logn)σ or if v is connected to a vertex w with Dw ≥ (logn)σ by an
edge having passage time X(e) at most εn/2. We let Goodn be the set of Good
vertices. Furthermore, with CMn(D) denoting the underlying graph obtained from
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the configuration model and � ⊂ [n] a vertex subset, we write CMn(D) \� for the
same graph but where vertices in � do not take part in the spread of the infection,
that is, the vertices are still present in the network but are declared immune to the
infection.

LEMMA 3.3 (Avoiding the good set is expensive). Let the vertex U be chosen
uniformly at random from the vertex set. For γ and σ sufficiently close to 1/(3−τ),
there exists b′

n → ∞ such that

P
(
μX(2 ↔ U) ≥ b′

n in CMn(D) \ Goodn

) → 1.

Combining Lemmas 3.2 and 3.3 will allow us to prove that the randomly chosen
vertex U is w.h.p. type 1 infected if all vertices in Goodn are occupied by type 1. In
order to show that, conditionally on An, the latter is indeed the case, we need two
lemmas. The first one states roughly that there is a fast path from any vertex u ∈
Goodn to the exploration graph SWG(1)

an
, consisting only of vertices with degree

at least (logn)γ . Here, for a subgraph G of CMn(D), we define X(u ↔ G) =
min{X(u ↔ v) : v is a vertex of G}.

LEMMA 3.4 (Good vertices are found fast). We have that

P
(∃u ∈ Goodn with X

(
u ↔ SWG(1)

an

)
> εn in CMn(D) \ {

v:Dv < (logn)γ
}) → 0.

Write SWG(v)(t) for the exploration graph at real time t with one-type explo-
ration starting from vertex v, that is, SWG(v)(t) = SWG(v)

kt
, where kt = inf{k :

T
(v)
k ≤ t}. The second lemma states that the one-type exploration graph emanating

from vertex 2 is still small (in terms of total degree) shortly before its explosion.

LEMMA 3.5 (The losing type only finds low-degree vertices). For any kn →
∞, there exist εn ↘ 0, such that, w.h.p.∑

v∈SWG(2)(T
(2)
an −εn)

Dv ≤ kn.

PROOF. First recall the exploration process and the corresponding approxi-
mating continuous-time branching process from Section 2. For any fixed ε > 0, at
time T

(2)
an − ε only an a.s. finite number M = M(ε) of vertices have been explored.

Hence, for any kn → ∞, it is clear that we can take εn ↘ 0 so slowly that the total
degree of the explored vertices at time T

(2)
an − εn is at most kn. �

Combining Lemmas 3.4 and 3.5, we can now conclude that, conditionally on
An, all vertices in Goodn are w.h.p. occupied by type 1 in the competition model:
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COROLLARY 3.6 (The good vertices are all found by the winning type). As
n → ∞,

P(Goodn is type 1 infected |An) → 1.

PROOF. First, take kn = (logn)γ in Lemma 3.5, and pick εn ↘ 0 such that∑
v∈SWG(2)(T

(2)
an −εn)

Dv ≤ (logn)γ ,

where we recall that the SWG is defined based on edge weights with mean 1 and
without competition. We now explore the evolution of the infection under competi-
tion, starting from vertices 1 and 2, respectively, using the coupling of the passage
time variables described at the end of Section 2. We extend the notation for the
exploration graph to real time in the same way as for one-type exploration, that is,
SWG(1,2)(t) and SWG(1,2)(t) denote the type 1 and the type 2 part, respectively, of
the exploration graph under competition at real time t . Note that both these graphs
are increasing in t and that, for a fixed t , we have that SWG(1,2)(μt) ⊂ SWG(2)(t),
since the type 2 infection in competition is stochastically dominated by a time-
scaled one-type process (recall that the type 2 passage times under competition are
multiplied by μ). Combining this, we conclude that, on An,

SWG(1,2)(T (1)
an

+ εn

) ⊂ SWG(2)(T (2)
an

− εn

)
and hence ∑

v∈SWG(1,2)(T
(1)
an +εn)

Dv ≤ (logn)γ .(12)

Since all vertices have at least degree 2, this means in particular that the number of
type 2 infected vertices at time T

(1)
an + εn under competition is at most (logn)γ /2.

It follows from Proposition 2.1(c), that SWG(1)
an

is w.h.p. occupied by type 1 at

time T
(1)
an also in the competition model.

Now assume that there is a vertex u ∈ Goodn that is type 2 infected. By
Lemma 3.4, w.h.p. there exists a path connecting u to SWG(1)

an
, consisting only

of vertices of degree at least (logn)γ , such that the total passage time of the path
is at most εn. Since SWG(1)

an
is w.h.p. occupied by type 1 at time T

(1)
an (i.e., this

remains true in the presence of competition), this means that, for u to be type 2
infected, one of the vertices along this path has to be type 2 infected before time
T

(1)
an + εn. However, since all vertices on the path have degree at least (logn)γ , this

contradicts (12). �

Next, we combine Lemmas 3.2 and 3.3 with Corollary 3.6 into a proof of (9).

PROOF OF (9). By Lemma 3.2, w.h.p. there exists a path � from vertex 1
to U with X(1 ↔ U) ≤ bn, where bn → ∞ will be further specified below. If
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U is type 2 infected in the competition model, then the type 2 infection has to
interfere with this path, that is, some vertex on the path has to be type 2 infected.
This implies that μX(2 ↔ U) ≤ bn(1 + μ). Indeed, the type 2 infection has to
reach the path � in at most time bn (otherwise the whole path will be occupied by
type 1), and once it has done so, the passage time to vertex 2 is at most μbn (recall
the coupling of the passage time variables). We obtain that

P(U is type 2 infected|An)

≤ P
(
μX(2 ↔ U) ≤ bn(1 + μ)|An

)
≤ P

(
μX(2 ↔ U) ≤ bn(1 + μ) in CMn(D) \ Goodn|An

)
+ P(∃v ∈ Goodn : v is type 2 infected|An).

With bn = b′
n/(1 +μ), where b′

n is chosen to ensure the conclusion of Lemma 3.3,
the first term converges to 0 by Lemma 3.3. The last term converges to 0 by Corol-
lary 3.6. �

It remains to prove Lemmas 3.3 and 3.4. We begin with Lemma 3.3.

PROOF OF LEMMA 3.3. We first prove a version of the lemma where Goodn

is replaced by the whole set {v:Dv ≥ (logn)γ }. According to Proposition 2.1(b)
and (d), the passage time X(2 ↔ U) is w.h.p. at most T

(2)
nρ + T

(U)
nρ + εn for some

εn ↘ 0, where ρ is the exponent of the exact coupling in Proposition 2.1(a). If only
vertices with degree smaller than (logn)γ are active, then w.h.p.

T
(U)
nρ

d=
nρ∑

k=1

Ek

S̃
(trun)
k

,(13)

where

S̃
(trun)
k = DU · 1{DU≤(logn)γ } +

k∑
i=2

(B̃i − 1) · 1{B̃i≤(logn)γ }

for an i.i.d. sequence (B̃i)
nρ

i=2 with distribution (2), that is, a power law with expo-
nent τ −1. Let f (n) ∼ g(n) denote that c ≤ f (n)/g(n) ≤ c′ in the limit as n → ∞
[w.h.p. when f (n) is random], where c ≤ c′ are strictly positive constants. Often,
we will be able to take c = c′, meaning that f (n)/g(n) converges to c [in proba-
bility when f (n) is random], but the more general definition is needed to handle
the assumption (A2) on the degree distribution. We calculate that

E
[
(B̃i − 1) · 1{B̃i≤(logn)γ }

] ∼
(logn)γ∑

j=1

j−(τ−2) ∼ (logn)γ (3−τ),
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and that

Var
(
(B̃i − 1) · 1{B̃i≤(logn)γ }

) ≤ E
[
(B̃i)

2 · 1{B̃i≤(logn)γ }
]

∼
(logn)γ∑

j=1

j (3−τ) ∼ (logn)γ (4−τ),

so that E[S̃(trun)
k ] ∼ k(logn)γ (3−τ) and Var(S̃(trun)

k ) ∼ k(logn)γ (4−τ). Furthermore,
trivially, for any a > 0,

T
(U)
nρ ≥

nρ∑
k=(logn)a

Ek

k
· k

S̃
(trun)
k

.

We now claim that w.h.p. S̃
(trun)
k ≤ Ck(logn)γ (3−τ) for all k ∈ [(logn)a, nρ] and

some constant C. To see this, note that S̃
(trun)
k+1 ≥ S̃

(trun)
k so that it suffices to show

that

P
(∃l: S̃(trun)

kl
> Ckl(logn)γ (3−τ)) → 0,

where kl = 2l(logn)a and l is such that 2l(logn)a ∈ [(logn)a, nρ]. We fix l and
k = 2l(logn)a . With C chosen such that Ck(logn)γ (3−τ) ≥ 2E[S̃(trun)

k ], by the
Chebyshev inequality,

P
(
S̃

(trun)
k > Ck(logn)γ (3−τ)) ≤ P

(
S̃

(trun)
k > 2E

[
S̃

(trun)
k

])
≤ Var(S̃(trun)

k )

E[S̃(trun)
k ]2

∼ (logn)γ (τ−2)

k
.

We substitute k = 2l(logn)a and use the union bound to obtain that

P
(∃l: S̃(trun)

kl
> Ckl(logn)γ (3−τ)) ≤ ∑

l≥0

(logn)γ (τ−2)

kl

,

which clearly converges to 0 when kl = 2l(logn)a > (logn)a and a > 0 is suffi-
ciently large. It follows that, w.h.p.,

T
(U)
nρ ≥ 1

C(logn)γ (3−τ)

nρ∑
k=(logn)a

Ek/k,

where
∑nρ

k=(logn)a Ek/k ∼ logn. If γ < 1/(3 − τ), then κ := 1 − γ (3 − τ) > 0 and
the desired conclusion follows with b′

n = c(logn)κ .
We now describe how to adapt the above arguments to obtain the statement

of the lemma. Recall that a vertex v of degree Dv ≥ (logn)γ is called Good if
either Dv ≥ (logn)σ or if v is connected to a vertex w with Dw ≥ (logn)σ by
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an edge having passage time X(e) at most εn/2, and Goodn is the set of Good
vertices. When only the vertices in Goodn are inactive—instead of the whole set
{v : Dv ≥ (logn)γ }—the denominator in (13) becomes

S̃
(trun)
k = DU · 1{U /∈Goodn} +

k∑
i=2

(B̃i − 1) · 1{Wi /∈Goodn},

with Wi denoting the vertex that corresponds to the forward degree B̃i . Since k ≤
nρ , the probability that a vertex v of degree Dv ≥ (logn)γ found in the exploration
is Good is, irrespective of all randomness up to that point, at least

P
(
Bin(mn,pn) ≥ 1

)
,

with mn = (logn)γ −1 and pn = P(E ≤ εn/2)E[Jn/Ln], where Jn = ∑
i∈[n] Di ×

1{Di≥(logn)σ } − nρ(logn)σ and Ln is the total degree of all vertices. Here,
nρ(logn)σ is an upper bound on the number of half-edges attached to vertices that
have already been explored. Note that the knowledge that a vertex Wi /∈ Goodn

gives information on the edge weights of edges connecting it to neighbors of de-
gree at least (logn)σ , but does not affect the distribution of edge weights on its
other edges. Hence,

S̃
(trun)
k � S̄

(trun)
k ≡ DUI1 +

k∑
i=2

(B̃i − 1) · (1{B̃i≤(logn)γ } + 1{B̃i>(logn)γ }Ii),

where (Ii)i≥1 are i.i.d. Bernoulli’s with success probability P(Bin(mn,pn) = 0)

that are independent from the exponential variables (Ei)i≥1 in (13). Since ρ < 1,
we can bound that

pn ≥ εnE[Jn/Ln] ∼ εn(logn)−σ(τ−2).(14)

Now we can repeat the steps in the proof of Lemma 3.2, instead using that

E
[
(B̃i − 1)Ii

] ∼
(logn)γ∑

j=1

j−(τ−2) +
(logn)σ∑

j=(logn)γ

j−(τ−2)
P

(
Bin(mn,pn) = 0

)
∼ (logn)γ (3−τ) + (logn)σ(3−τ)

P
(
Bin(mn,pn) = 0

)
,

and, using (14),

P
(
Bin(mn,pn) = 0

) = (1 − pn)
mn ≤ e−cεn(logn)γ−σ(τ−2)

.

Since γ < 1/(3 − τ) and σ > 1/(3 − τ) can each be chosen as close to 1/(3 − τ)

as we wish, we have that P(Bin(mn,pn) = 0) ≤ e−cεn(logn)α for some α > 0. As
a result, if εn ≥ c(log logn)−1, then E[(B̃i − 1)Ii] obeys almost the same upper
bound as E[(B̃i − 1) · 1{B̃i≤(logn)γ }] in the proof of Lemma 3.3. It is not hard to
see that also Var((B̃i −1)Ii) obeys a similar bound as Var((B̃i −1) ·1{B̃i≤(logn)γ }).
The steps in the proof of Lemma 3.3 can then be followed verbatim. �
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In order to prove Lemma 3.4, we will need the following bound, derived in [25],
(4.36).

LEMMA 3.7 (van der Hofstad, Hooghiemstra and Znamenski [25]). Let � and
� be two disjoint vertex sets and write � 	←→ � for the event that no vertex in �

is connected to a vertex in �. Write D� and D� for the total degree of the vertices
in � and �, respectively, and Ln for the total degree of all vertices. Furthermore,
let Pn be the conditional probability of the configuration model given the degree
sequence (Di)

n
i=1. Then

Pn(� 	←→ �) ≤ e−D�D�/(2Ln).(15)

PROOF OF LEMMA 3.4. By definition of Goodn, any vertex u ∈ Goodn is
connected to a vertex w with Dw ≥ (logn)σ by an edge with weight at most εn/2.
Write Dmax = maxi∈[n] Di for the maximal degree, and denote Vmax = {v:Dv =
Dmax}. We will show that, for each vertex vmax ∈ Vmax,

P
(
Dw ≥ (logn)σ ,X(w ↔ vmax) > εn/4 in CMn(D) \ {

v:Dv < (logn)γ
})

(16)
= o(1/n),

and

P
(
X(1 ↔ vmax) > T (1)

an
+ εn/4 in CMn(D) \ {

v:Dv < (logn)γ
}) = o(1).(17)

Lemma 3.4 follows from this by noting that

P
(∃w:Dw ≥ (logn)σ ,X

(
w ↔ SWG(1)

an

)
> εn/2 in CMn(D) \ {

v:Dv < (logn)γ
})

≤ nP
(
Dw ≥ (logn)σ ,X(w ↔ vmax)

> εn/4 in CMn(D) \ {
v : Dv < (logn)γ

})
+ P

(
X(1 ↔ vmax) > T (1)

an
+ εn/4 in CMn(D) \ {

v : Dv < (logn)γ
})

= o(1).

To prove (16), we will construct a path v0, . . . , vm with v0 = w and vm = vmax
and with the property that the passage time for the edge (vi, vi+1) is at most
(logDvi

)−1, while Dvi
≥ (logn)αi where αi grows exponentially in i. The total

passage time along the path is hence smaller than
m∑

i=1

1

logDvi

≤
m∑

i=1

1

log((logn)αi )
≤ 1

log logn

m∑
i=1

1

αi

= O

(
1

log logn

)
,(18)

which is smaller than εn/4 since εn ≥ c(log logn)−1 where c > 0 can be chosen
appropriately.
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Say that an edge emanating from a vertex u is fast if its passage time is at most
1/(logDu) and write Dfast

u for the number of such edges. Note that

E
[
Dfast

u |Du

] = Du

[
1 − e−1/ logDu

] = Du

logDu

[
1 + O

(
1

logDu

)]
and that, by standard concentration inequalities,

P
(
Dfast

u ≤ Du/[2 logDu]|Du

) ≤ e−cDu/ logDu.

Indeed, conditionally on Du = d , we have that Dfast
u

d= Bin(d,1 − e−1/ logd) and,
for any p, it follows from standard large deviation techniques that

P
(
Bin(d,p) ≤ pd/2

) ≤ e−pd(1−log 2)/2;(19)

see, for example, [24], Corollary 2.18. In particular, if Du ≥ (logn)σ with σ > 1,
we obtain that

P
(∃u:Du ≥ (logn)σ ,Dfast

u ≤ Du/[2 logDu])
(20)

≤ ne−c(logn)σ / log((logn)σ ) = o(1).

Thus, we may assume that Dfast
u > Du/[2 log(Du)] for any u with Du ≥ (logn)σ .

Write �i = {u:Du ≥ ηi}, where ηi will be defined below and shown to equal
(logn)αi for an exponentially growing sequence (αi)i≥1. Furthermore, let �(u)

denote the set of fast half-edges from a vertex u. We now construct the aforemen-
tioned path connecting w and Vmax

n iteratively, by setting v0 := w and then, given
vi , defining vi+1 ∈ �i+1 to be the vertex with smallest index such that a half-edge
in �(vi) is paired to a half-edge incident to vi+1. We need to show that, with suf-
ficiently high probability, such vertices exist all the way up until we have reached
Vmax

n . This will follow basically by observing that, for any vertex ui ∈ �i , we have
by Lemma 3.7 that

Pn

(
�(ui)� �i+1

) ≤ En

[
e−Dfast

ui
D�i+1/(2Ln)]

,(21)

where the expectation is over the randomness in the edge weights used for defining
Dfast

ui
, and then combining this with suitable estimates of the exponent.

First, we define the sequence (ηi)i≥1. To this end, let η1 = (logn)σ and define
ηi for i ≥ 2 recursively as

ηi+1 =
(

ηi

logn

)(1−δ)/(τ−2)

,(22)

where δ ∈ (0,1) will be determined below. To identify (ηi)i≥1, write ηi = (logn)αi

and check that (αi)i≥1 satisfy α1 = σ and the recursion

αi+1 = 1 − δ

τ − 2
αi − 1 − δ

τ − 2
.
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As a result, when δ < 3 − τ so that (1 − δ) > (τ − 2), we can bound

αi = α1

(
1 − δ

τ − 2

)i−1

−
i−1∑
j=1

(
1 − δ

τ − 2

)j

= α1

(
1 − δ

τ − 2

)i−1

− ((1 − δ)/(τ − 2))i−1 − 1

1 − (τ − 2)/(1 − δ)

=
[
α1 − 1

1 − (τ − 2)/(1 − δ)

](
1 − δ

τ − 2

)i

+ 1

1 − (τ − 2)/(1 − δ)
,

which is strictly increasing and grows exponentially as long as α1 = σ > (1 −
δ)/[3 − τ − δ], that is, δ < [σ(3 − τ) − 1]/(σ − 1). Since σ > 1/(3 − τ) > 1,
this is indeed possible. With σ > 1/(3 − τ), we then see that i �→ αi is strictly
increasing and grows exponentially for large i.

We next proceed to estimate the exponent in (21). We first recall some facts
proved in [25]. First, under the assumption of our paper, it is shown in [25],
(A.1.23), that there exist a > 1/2 and χ > 0 such that

P
(∣∣Ln − nE[D]∣∣ > na) ≤ n−χ .

Further, in [25], Lemma A.1.3, it is shown that for every b < 1/(τ −1), there exists
a ξ > 0 such that

P
(∃x ≤ nb:

∣∣Gn(x) − G(x)
∣∣ ≥ n−ξ [

1 − G(x)
]) ≤ n−ξ ,(23)

where

Gn(x) = 1

Ln

∑
i∈[n]

Di1{Di≤x} and G(x) = E[D1{D≤x}]
E[D] .

We will work with Pn, and condition the degrees to be such that the event Fn

occurs, where

Fn = {∣∣Ln − nE[D]∣∣ ≤ na} ∩ {∀x ≤ nb:
∣∣Gn(x) − G(x)

∣∣ ≤ n−ξ [
1 − G(x)

]}
∩ {

Dfast
u ≥ Du/

[
2 log(Du)

] ∀u with Du ≥ (logn)σ
}
,

so that in particular P(F c
n ) ≤ n−ξ + n−χ + o(1) = o(1).

On the event Fn, as long as ηi+1 ≤ n(1−δ/2)/(τ−1) [this is to ensure that (23) is
valid with b = ηi+1]

D�i+1

Ln

= 1

Ln

∑
v∈[n]

Dv1{Dv>ηi+1} ≥ cE[D1{D>ηi+1}] ≥ cη
−(τ−2)
i+1 .

Furthermore, for every vertex ui ∈ �i , we obtain as in (20) that

Dfast
ui

≥ Dui

2 logDui

≥ ηi

2 logηi

,
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where the first inequality holds with probability 1 − o(1/n). Combining these two
estimates and applying Lemma 3.7 gives that

Pn

(
�(ui) 	←→ �i+1

) ≤ exp
{−c

(
ηi/ log(ηi)

)
η

−(τ−2)
i+1

}
.

Using (22) and the fact that ηi = (logn)αi , it follows that

Pn

(
�(ui) 	←→ �i+1

) ≤ exp
{−c

(
ηδ

i / log(ηi)
) · (logn)(1−δ)}

≤ exp
{−c

(
(logn)1+δ(αi−1)/ log(ηi)

)}
,

which is o(n−a) for any a > 0. Taking a > 3, this implies that, as long as ηi ≤
n(1−δ/2)/(τ−1),

Pn

(∃i and ui ∈ �i :�(ui) 	←→ �i+1
) = o(1/n).

Hence, as long as ηi ≤ n(1−δ/2)/(τ−1), the probability that the construction of the
path (vi)i≥1 fails in some step is o(1/n).

Let i∗ = max{i:ηi ≤ n(1−δ/2)/(τ−1)} be the largest i for which ηi is small
enough to guarantee that the failure probability is suitably small. The path
v0, . . . , vi∗ then has the property that Dvi

≥ (logn)αi and the passage time on the
edge (vi, vi+1) is at most (logDvi

)−1, as required. To complete the proof of (16),
it remains to show that, with probability 1 − o(1/n), the vertex vi∗ has an edge
with vanishing weight connecting to the vertex vmax ∈ Vmax.

To this end, note that, using (22) and the definition of i∗, we can bound

Dvi∗ ≥ ηi∗ ≥ η
(τ−2)/(1−δ)
i∗+1 logn ≥ n(1−δ/2)(τ−2)/(1−δ)(τ−1).

Furthermore, Dmax ≥ n(1−hδ)/(τ−1) with probability 1 − o(1/n) for any h > 0,
since

P(Dmax ≥ x) ≤ 1 − (
1 − cx−(τ−1))n,(24)

which decays stretched exponentially for x = n(1−hδ)/(τ−1). Define ψ = [(1 −
δ/2)(τ − 2)]/[(1 − δ)(τ − 1)] and φ = (1 − hδ)/(τ − 1), where h will be speci-
fied below. Assuming that Dvi∗ = nψ and Dmax = nφ , the number H of (multiple)
edges between vi∗ and vmax is hypergeometrically distributed with

E[H ] = nψ · nφ

n − nψ
∼ nψ+φ−1,

where

ψ + φ − 1 = δ

2(1 − δ)(τ − 1)

[
τ + 2hδ − 2(1 + h)

]
,

which is positive as soon as h < (τ −2)/(1−δ). It is not hard to see—for example,
by coupling H to a binomial variable and using (19)—that P(H ≤ E[H ]/2) ≤
e−cnψ+φ−1

. Hence, with probability 1 − o(1/n), the vertex vi∗ is connected to vmax
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by at least E[H ]/2 ∼ nψ+φ−1 edges. Let (Ei)i≥1 be an i.i.d. sequence of Exp(1)-
variables. The probability that all edges connecting vi∗ and vmax have passage time
larger than 1/ logn is then bounded from above by

P(Ei > 1/ logn)n
ψ+φ−1 = e−nψ+φ−1/ logn = o(1/n).

This completes the proof of (16).
To prove (17), first note that it follows from [4], Lemma A.1, that the num-

ber of infected vertices at time T
(1)
an is w.h.p. larger than mn for any mn with

mn/an → 0, and that, by Proposition 2.1(a), there exist ρ > 0 such that the de-
grees (Bi)

nρ

i=2 of the nρ first vertices that were infected are w.h.p. equal to an i.i.d.

collection (B̃i)
nρ

i=2 with distribution (2). A calculation analogous to (24) yields that
max{B2, . . . ,Bnρ } ≥ nρ(1−δ)/(τ−2) w.h.p. for any δ ∈ (0,1). The vertex with maxi-
mal degree at time T

(1)
an can now be connected to vmax by a path constructed in the

same way as in the proof of (16). Note that in this case we have η1 = nρ(1−δ)/(τ−2),
which gives ηi = nρζ i

/(logn)ζ
i−1

with ζ = (1 − δ)/(τ − 2). This means that the
bound on the passage time for the path is of order 1/ logn, which is even smaller
than the required 1/ log logn. �

4. Proof of Theorem 1.1(b). In this section, we prove Theorem 1.1(b).
Throughout this section, we deal with the competition process, and explore the
competition from the two vertices 1 and 2 simultaneously. Let T

(1,2)
Rm

denote the
time when the SWG from these two vertices consists of m vertices [recall the def-
inition (5) of Rm]. Furthermore, write Wn for the type that occupies the largest
number of vertices at time T

(1,2)
Ran

and Ln for the type that occupies the smallest
number of vertices. We will show that Wn wins with probability 1 as n → ∞
and that Ln is hence asymptotically the losing type. Our first result is that T

(1,2)
Ran

converges to the minimum of the explosion times V1 and μV2 of the one-type ex-
ploration processes, and that the asymptotic number N∗

los of vertices that are then
occupied by type Ln is finite. In the rest of the section, we then prove that the
asymptotic number N∗∗

los of vertices occupied by type Ln after time T
(1,2)
Ran

is also
almost surely finite.

We start by introducing some notation. Let W and L denote the winning and
the losing type, respectively, in the limit as n → ∞. Also let μ(W) = μ when the
winning type is type 2, and μ(W) = 1 otherwise, and similarly μ(L) = μ when
the losing type is type 2, and μ(L) = 1 otherwise. According to Theorem 1.1(a),
asymptotically type 1 wins with probability P(V1 < μV2) and type 2 with prob-
ability P(V1 > μV2). Hence, μ(W) is equal to 1 with probability P(V1 < μV2)

and equal to μ with probability P(V1 > μV2). Finally, let (E
(1)
j )j≥1, (E

(2)
j )j≥1

denote two sequences of i.i.d. exponential random variables with mean 1, and
(S̃

(1)
j )j≥1, (S̃

(2)
j )j≥1 two i.i.d. sequences of the random walk describing the asymp-
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totic number of unexplored half-edges attached to the SWG in a one-type explo-
ration process; cf. Section 2. Then

Vi =
∞∑

j=1

E
(i)
j /S

(i)
j

denote the explosion times of the corresponding continuous time branching pro-
cess (CTBP). Let

V (W) = μ(W)
∞∑

j=1

E
(W)
j /S

(W)
j , V (L) = μ(L)

∞∑
j=1

E
(L)
j /S

(L)
j .

Then V1 ∧ (μV2) = V (W) is close to the time when the winning type finds ver-
tices of very high degree. The random variable V (L) does not have such a simple
interpretation in terms of the competition process, since the winning type starts
interfering with the exploration of the losing type before time V (L). The main aim
of this section is to describe the exploration of the winning and losing types af-
ter time V (W), where the CTBP approximation breaks down and the species start
interfering. The relation between the number of vertices found by the losing kind
and V (W) is described in the following lemma.

LEMMA 4.1 (Status at completion of the CTBP phase). Let N∗
Ln

= max{m:

T
(Ln)
Rm

≤ T
(1,2)
Ran

}. Then, as n → ∞,

(
T

(1,2)
Ran

,N∗
Ln

) d−→ (
V (W),N∗

los
)
,

where

N∗
los

d= max

{
m:μ(L)

m∑
j=1

E
(L)
j /S

(L)
j ≤ V (W)

}
.(25)

PROOF. By definition, the number of vertices occupied by type Wn at time
T

(1,2)
Ran

is in the range (an/2, an]. Furthermore, by Proposition 2.1(c), the set of
type 1 and type 2 infected vertices, respectively, are w.h.p. disjoint at this time,
that is, none of the infection types has then tried to occupy a vertex that was al-
ready taken by the other type. Up to that time, the exploration processes started
from vertices 1 and 2, respectively, hence behave like in the corresponding one-
type processes. The asymptotic distributions of T

(1,2)
Ran

and N∗
Ln

follow from the
characterization (4) of the time Tm in a one-type process and the convergence re-
sult in Proposition 2.1(c). �

The next result describes how vertices are being found by type Wn after time
T

(1,2)
Ran

. We will see that at time T
(1,2)
Ran

+ t , a positive proportion of the vertices will
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be found by the winning type. To describe how the winning type sweeps through
the graph, we need some notation. Write N̄

(t,k)
Wn

for the fraction of vertices that

have degree k and that have been captured by type Wn at time T
(1,2)
Ran

+ t , that is,

N̄
(t,k)
Wn

= #
{
v:Dv = k and v is infected by type Wn at time T

(1,2)
Ran

+ t
}
/n.

Further, for an edge e = xy consisting of two half-edges x and y that are incident
to vertices Ux and Uy , we say that e spreads the winning infection at time s when
Ux (or Uy ) is type Wn infected at time s, and Uy (or Ux ) is then Wn infected at

time s through the edge e. Then we let L
(t)
Wn

denote the number of edges that have
spread the type Wn infection by time s, that is,

L
(t)
Wn

= #
{
e: e has spread the winning infection at time T

(1,2)
Ran

+ t
}
,

and L̄
(t)
Wn

= L
(t)
Wn

/[Ln/2] is the proportion of edges that have spread the winning
infection.

The essence of our results is that N̄
(t,k)
Wn

and L̄
(t)
Wn

develop in the same way as

in a one-type process with type Wn without competition. Indeed, T
(1,2)
Ran

can be
interpreted as the time when the super-vertices have been found by type Wn and,
after this time, type Wn will start finding vertices very quickly, which will make
it hard for type Ln to spread. Recall that μ(W) denotes the mean passage time per
edge for the winning type in the limit as n → ∞. Also define

V (k) =
∞∑

j=0

Ej/Sj (k), where Sj (k) = k +
j∑

i=1

(B̃i − 1),

and (B̃i)i≥1 is an i.i.d. sequence with law (2). Recall that D� denotes a size-biased
version of a degree variable.

PROPOSITION 4.2 (Fraction of fixed degree winning type vertices and edges at
fixed time). As n → ∞,

N̄
(t,k)
Wn

P−→ P
(
μ(W)V (k) ≤ t

)
P(D = k),(26)

and

L̄
(t)
Wn

P−→ P
(
μ(W)(E + Ṽa ∧ Ṽb) ≤ t

)
,(27)

where (Ṽa, Ṽb) are two independent copies of V (D� − 1) and E is an exponential
random variable with mean 1.

The proof of Proposition 4.2 is deferred to the end of this section. We first
complete the proof of Theorem 1.1(b) subject to it. To this end, we grow the SWG
of type Ln from size N∗

Ln
onward. At this moment, w.h.p. the type Ln has not yet
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tried to occupy a vertex that was already taken by type Wn. However, when we
grow the SWG further, then type Wn will grow very quickly due to its explosion.
We will show that the growth of type Ln is thus delayed to the extent that it will
only conquer finitely many vertices. An important tool in proving this rigorously
is a stochastic process (S′

m)m≥0 keeping track of the number of unexplored half-
edges incident to the SWG of the losing type.

Recall that, by the construction of the two-type exploration process described in

Section 2, the quantity S
(Wn,Ln)

Rj
represents the number of half-edges incident to the

SWG of type Ln when the SWG contains precisely j vertices. Write RN∗
Ln

= R∗
n

and define S′
0(n) = S

(Wn,Ln)

R∗
n

and T ′
0(n) = 0. We then grow the SWG of type Ln

one edge at a time by pairing the half-edge with minimal remaining edge weight
to a uniform half-edge that has not yet been paired. Denote the half-edge of min-
imal weight in the mth step by xm and the half-edge to which it is paired by Pxm ,
and recall that Uy denotes the vertex incident to the half-edge y. Of course, it is
possible that UPxm

is already infected, and then the SWG of the losing type does
not grow.

The sequences (T ′
m(n))m≥0 and (S′

m(n))m≥0 are constructed recursively in that
T ′

m(n)−T ′
m−1(n) = μ(L)E′

m/S′
m−1(n) for an i.i.d. sequence (E′

m)m≥0 of exponen-
tial variables with parameter 1 that is independent of all previous randomness, and

S′
m(n) − S′

m−1(n) = B ′
m(n) − 1,(28)

where B ′
m(n) denotes DUPxm

− 1 when UPxm
is not already infected, while

B ′
m(n) = 0 otherwise. Our aim is to identify the scaling limit of (T ′

m(n),

S′
m(n))m≥0.

To this end, we define S′
0 = S

(W,L)

N∗
los

and T ′
0 = 0, where N∗

los is given by (25). Fur-

ther, for m ≥ 1, again define (T ′
m,S′

m)m≥0 recursively by T ′
m − T ′

m−1 = E′
m/S′

m−1
for an i.i.d. sequence (E′

m)m≥0 of exponential variables with parameter 1 in-
dependent of all previous randomness, and (S′

m)m≥0 is defined recursively by
S′

m − S′
m−1 = B ′

m − 1, where, conditionally on T ′
m−1 and for all k ≥ 1

P
(
B ′

m = k|T ′
m = t

) = P
(
D� = k + 1

) P(μ(W)V (k + 1) > t)

P(μ(W)(E + Ṽa ∧ Ṽb) > t)
,(29)

while P(B ′
m = 0|T ′

m = t) = 1 − ∑
k≥1 P(B ′

m = k|T ′
m = t).

REMARK 4.1 (Edge-weight distribution vs. weights on half-edges). In the
above construction, we explore from vertices 1 and 2 simultaneously, and search
for the minimal weight among unexplored half-edges of the loosing type. This
half-edge is then paired to a randomly chosen second half-edge, and the passage
time of the resulting edge should then be given by the minimal weight, that is,
the second half-edge should not be assigned any weight at all. The careful reader
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may note that this is not the case in the above construction when the second half-
edge belongs to a vertex that is already infected. In that case, however, the edge
will never be used to transmit infection (indeed, such edges are not included in
the SWG defined in Section 2) and its assigned passage time is hence unimportant
for the competition process. We remark that, when first exploring one type up to a
fixed time or size, the above problem does not apply; see [4] for details.

The following lemma shows that (T ′
m,S′

m)m≥0 is indeed the limit in distribution
of the process (T ′

m(n), S′
m(n))m≥0. In its statement, we use F

T
(1,2)
Ran

for the σ -field

of the exploration of the two competing species up to time T
(1,2)
Ran

.

LEMMA 4.3 (Exploration of the losing type beyond explosion of the winning
type). Conditionally on F

T
(1,2)
Ran

, and for all m ≥ 1, as n → ∞,

(
T ′

l (n), S′
l (n)

)m
l=0

d−→ (
T ′

l , S
′
l

)m
l=0.

PROOF. We prove the claim by induction on m. The statement for m = 0

follows from Lemma 4.1, since T ′
0(n) = T ′

0 = 0, and S′
0(n) = S

(Wn,Ln)

R∗
n

with
R∗

n = N∗
Ln

. The latter converges in distribution by Lemma 4.1.
To advance the induction claim, we introduce some further notation. Let F ′

t be
the σ -field generated by F

T
(1,2)
Ran

together with (T ′
l (n), S′

l (n))ml=0 for all l such that

T ′
l (n) ≤ t . Then, conditionally on F ′

t ,

T ′
m(n) − T ′

m−1(n) ∼ μ(L)E′
m/S′

m−1(n),

where E′
m is an exponential random variable independent of all other randomness.

Since, by the induction hypothesis, S′
m−1(n)

d−→ S′
m−1, conditionally on F ′

T ′
m−1(n)

we also have that T ′
m(n) − T ′

m−1(n)
d−→ μ(L)E′

m/S′
m−1. This advances the claim

for T ′
m(n). For S′

m(n), we note that B ′
m(n) = k precisely when the half-edge that is

found is paired to a half-edge of a vertex of degree k + 1 that is not yet infected.
The number of vertices that is type Ln infected is bounded by R∗

n + m − 1, so this
is negligible. Therefore, writing N

(k+1)
n for the total number of vertices of degree

k + 1,

P
(
B ′

m(n) = k|F ′
T ′

m−1(n)
, T ′

m(n) = t
) = (k + 1)[N(k+1)

n − N
(k+1,t)
Wn

]
Ln − L

(t)
Wn

(
1 + oP(1)

)
.

We rewrite this as

P
(
B ′

m(n) = k|F ′
T ′

m−1(n)
, T ′

m(n) = t
) = (k + 1)

(Ln/n)

N̄
(k+1)
n − N̄

(k+1,t)
Wn

1 − L̄
(t)
Wn

(
1 + oP(1)

)
,
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where N̄
(k+1)
n = N

(k+1)
n /n denotes the proportion of vertices with degree k + 1.

By Proposition 4.2, this is equal to

P
(
B ′

m(n) = k|F ′
T ′

m−1(n)
, T ′

m(n) = t
)

= (k + 1)

E[D]
P(D = k + 1) − P(μ(W)V (k + 1) ≤ t)P(D = k + 1)

1 − P(μ(W)(E + Ṽa ∧ Ṽb) ≤ t)

(
1 + oP(1)

)
P−→ P

(
D� = k + 1

) P(μ(W)V (k + 1) > t)

P(μ(W)(E + Ṽa ∧ Ṽb) > t)
= P

(
B ′

m = k|T ′
m = t

)
,

as required. This shows that, conditionally on F ′
T ′

m−1(n)
, the law of (T ′

m(n) −
T ′

m−1(n),B ′
m(n)) converges to (29). Hence, this advances the induction, and thus

proves the claim. �

Denote H ′(n) = max{m:S′
m(n) ≥ 1} and H ′ = max{m:S′

m ≥ 1}. In the follow-

ing corollary, we show that H ′(n)
d−→ H ′.

COROLLARY 4.4 (Convergence of hitting of zero). For all m ≥ 1, as n → ∞,

P
(
H ′(n) ≤ m|F

T
(1,2)
Ran

) → P
(
H ′ ≤ m|FV (W)

)
.

Therefore, H ′(n)
d−→ H ′, where H ′ is possibly defected.

PROOF. It suffices to realize that the event {H ′(n) ≤ m} is measurable with
respect to (T ′

l (n), S′
l (n))ml=0. Then the claim follows from Lemma 4.3. �

Note that B ′
m in (29) has infinite mean when we condition on T ′

m = t = 0, which
implies that initially many of its values are large. This is the problem that we need
to overcome in showing that the number of vertices found by the losing type is
finite. As it turns out, conditionally on T ′

m = t , the mean of B ′
m decreases as t

increases, and becomes smaller than 1 for large t , so this saves our day. In order
to prove this, we first need some results on the process V (k); see part (a) of the
below lemma. In part (b), we also include an asymptotic characterization that will
imply (3) in Theorem 1.2(c).

LEMMA 4.5 [Bounds and asymptotics for V (k)].

(a) The law of V (k) is related to that of V (1) by

P
(
V (k) > t

) = P
(
V (1) > t

)k
, k ≥ 1, t ≥ 0.(30)

Further, for all t ≥ 0,

P(E + Ṽa ∧ Ṽb > t) ≥ P
(
V (1) > t

)2
.(31)
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(b) Assume that (A2′) holds. As k → ∞,

k3−τV (k)
d−→ Y ≡

∫ ∞
0

1/(1 + Qt)dt,(32)

where (Qt)t≥0 is a (τ − 2)-stable motion. Further, E[Y ] < ∞.

PROOF. Starting with (a), the relation (30) follows since V (k) is the explosion
time starting from k individuals, which is the minimum of the explosion times of
k i.i.d. explosion times starting from 1 individual, that is,

V (k)
d= k

min
i=1

Vi,

where (Vi)i≥1 are i.i.d. with law V (1) and E is exponential with parameter 1.
From this, (30) follows immediately. For (31), write G(t) = P(V (1) > t) and note

that V (1)
d= E + minD�−1

i=1 Vi , where again (Vi)i≥1 are i.i.d. with law V (1). Thus,
conditioning on E and D�, and using (30), leads to

G(t) = e−t +
∫ t

0
e−s

E
[
G(t − s)D

�−1]
ds.(33)

Furthermore, since Ṽa and Ṽb are i.i.d. with the same distribution as V (D� − 1)
d=

minD�−1
i=1 Vi , we similarly obtain that

P(E + Ṽa ∧ Ṽb > t) = e−t +
∫ t

0
e−s

E
[
G(t − s)D

�−1]2
ds.(34)

By the Cauchy–Schwarz inequality (where we split e−s = e−s/2e−s/2 on the left-
hand side), we have that(∫ t

0
e−s

E
[
G(t − s)D

�−1]
ds

)2

≤ (
1 − e−t ) ∫ t

0
e−s

E
[
G(t − s)D

�−1]2
ds.(35)

Combining (33), (34) and (35) yields that

P(E + Ṽa ∧ Ṽb > t) ≥ e−t + (G(t) − e−t )2

1 − e−t
= G(t)2 + e−t (G(t) − 1)2

1 − e−t
≥ G(t)2,

as desired.
Moving on to (b), recall that V (k) = ∑∞

j=1 Ej/Sj (k), where Sj (k) = k +∑j
i=1(B̃i − 1). Since B̃i is in the domain of attraction of a stable law with ex-

ponent τ − 2, we have that (Stkτ−2(k)/k)t≥0
d−→ (1 + Qt)t≥0, where (Qt)t≥0 is a

stable subordinator with exponent τ − 2. Thus,

k3−τV (k)
d−→

∫ ∞
0

1/(1 + Qt)dt =: Y.
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As for the expectation of the integral random variable Y , we use Fubini to write

E

[∫ ∞
0

1/(1 + Qt)dt

]
=

∫ ∞
0

E
[
1/(1 + Qt)

]
dt =

∫ ∞
0

∫ ∞
0

E
[
e−s(1+Qt)

]
ds dt

=
∫ ∞

0

∫ ∞
0

e−se−σ tsτ−2
ds dt

= 1

σ

∫ ∞
0

e−ss−(τ−2) ds < ∞,

where we have used that E[e−sQt ] = e−σ tsτ−2
for some σ > 0 and that τ − 2 ∈

(0,1). �

Lemma 4.5 allows us to prove (3) in Theorem 1.2(c).

PROOF OF (3) IN THEOREM 1.2(c). We note that Vi,k
d= Vi(Ai,k), where

Ai,k = ∑k
j=1 Di,j and (Di,j )i,j≥1 are i.i.d. random variables with the same dis-

tribution as D. When k → ∞, we have that Ai,k/k
P−→ E[D]. As a result,

(E[D]k)3−τV1,k
d−→ Y1, while (E[D]k)3−τV2,αk

d−→ ατ−3Y2, where Y1, Y2 are
i.i.d. copies of Y in (32). Hence,

P(Vi,k < μV2,αk) = P
((
E[D]k)3−τ

V1,k < μ
(
E[D]k)3−τ

V2,αk

)
→ P

(
Y1 < ματ−3Y2

)
. �

Let B ′
m(t)

d= B ′
m|T ′

m = t . The next lemma shows that (B ′
m(t))m≥1 is stochas-

tically dominated by an i.i.d. sequence whose mean is strictly smaller than 1 for
large t . It also shows that T ′

m → ∞ almost surely. It is the key ingredient in the
proof of Theorem 1.1.

LEMMA 4.6 [Asymptotic behavior of B ′
m(t) and T ′

m].

(a) For each fixed t > 0, the sequence (B ′
m(t))m≥1 is stochastically dominated

by an i.i.d. sequence (B̄m(t))m≥1. Furthermore, E[B̄m(t)] is finite for each fixed
t > 0 and E[B̄m(t)] → P(D� = 2) as t → ∞.

(b) Almost surely T ′
m → ∞ as m → ∞.

PROOF. Recalling the definition of B ′
m|T ′

m = t and using Lemma 4.5(a), we
obtain for k ≥ 1 that

P
(
B ′

m(t) = k
) ≤ P

(
D� = k + 1

)
P

(
μ(W)V (1) > t

)k−1
.(36)

Denote p̄k(t) = P(D� = k + 1)P(μ(W)V (1) > t)k−1, and let B̄m(t) be defined
by

P
(
B̄m(t) = k

) =
⎧⎨⎩

p̄k(t), for k ≥ 1;

1 − ∑
k≥1

p̄k(t), for k = 0.
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For any fixed t > 0, we have that p̄k(t) → 0 exponentially in k. It follows that
B̄m(t) has all moments so that, in particular, its mean is finite. Furthermore,
p̄1(t) = P(D� = 2) for any t > 0, while p̄k(t) → 0 as t → ∞ for each k ≥ 2.
Hence, E[B̄m(t)] → P(D� = 2).

As for (b), recall the construction of the processes (S′
m)m≥0 and (T ′

m)m≥0, with
S′

m = S′
0 + ∑m

i=1 B ′
i and T ′

m = ∑m
i=1 E′

i/S
′
i−1 for m ≥ 1, where B ′

m = Bm(T ′
m).

Note that B ′
i (t) is stochastically bounded by an i.i.d. sequence that is decreasing

in t having finite mean for all t > 0, and that t = T ′
m ≥ T ′

1 > 0 a.s. This implies
that, conditionally on T ′

1 = t ′1 > 0, S′
m grows at most linearly in m and, as a conse-

quence, T ′
m → ∞ a.s. �

With this result at hand, we are finally ready to prove Theorem 1.1(b).

PROOF OF THEOREM 1.1(b). Recall the construction of the process (S′
m)m≥0

in the recursion (28), and recall that N∗
Ln

denotes the number of vertices infected

by the losing type at time T
(1,2)
Ran

. Denote the total number of vertices infected by

type Ln after time T
(1,2)
Ran

by N∗∗
Ln

. We can identify this as

N∗∗
Ln

= #
{
m:B ′

m(n) ≥ 1
}
.

Indeed, each time when a new vertex is found that is not infected by type Wn, by
assumption (A1), the degree of the vertex is at least 2, so that B ′

m(n) ≥ 1. Thus,
the number of vertices found is equal to the number of m for which B ′

m(n) ≥ 1.
Recall that the total asymptotic number of losing type vertices is denoted by

Nlos. This number can now be expressed as

Nlos = N∗
los + N∗∗

los,(37)

where N∗
los is defined in Lemma 4.1 and N∗∗

Ln

d−→ N∗∗
los := #{m:B ′

m ≥ 1}, where
the weak convergence follows from Lemma 4.3. Further, since the convergence in
Lemma 4.3 is conditional on F

T
(1,2)
Ran

, we also obtain the joint convergence

(
N∗

Ln
,N∗∗

Ln

) d−→ (
N∗

los,N
∗∗
los

)
,

which implies (25). To prove Theorem 1.1, it hence suffices to show that the
random variable N∗∗

los is finite almost surely. This certainly follows when H ′ =
max{m:S′

m ≥ 1} is almost surely finite, which is what we shall prove below.
We argue by contradiction. Assume that H ′ = ∞. Then, T ′

m−1 < ∞ for every m.
Furthermore, S′

m − S′
m−1 = B ′

m − 1 where, by Lemma 4.6(a), the contribution B ′
m

is stochastically dominated by B̄m(T ′
m), with E[B̄m(t)] → P(D� = 2) as t → ∞.

Pick k large so that E[B̄m(T ′
k)|T ′

k] < 1, which is possible since P(D� = 2) < 1
and T ′

k → ∞ a.s. by Lemma 4.6(b). Then, conditionally on T ′
k and for m > k, we

have that S′
m − S′

k is stochastically dominated by
∑m

i=k+1(B̄i(T
′
k) − 1)—a sum of
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i.i.d. variables with negative mean. It follows that S′
m hits 0 in finite time, so that

H ′ < ∞, which is a contradiction. �

We finish by proving Proposition 4.2.

PROOF OF PROPOSITION 4.2. We start with the proof of (26). Let U be a
randomly chosen vertex and write 1(t,k)

U for the indicator taking the value 1 when

vertex U has degree k and is occupied by type Wn at time T
(1,2)
Ran

+ t . Note that,
with Gn denoting the realization of the configuration model including its edge
weights,

N̄
(t,k)
Wn

= E
[
1(t,k)

U |Gn

]
.(38)

We will show that E[1(t,k)
U |Gn] P−→ P(μ(W)V (k) ≤ t)P(D = k) by aid of a con-

ditional second moment method. Write SWG(1,2)(s) for the SWG at real time
s with exploration under competition. We perform the analysis conditionally on
SWG(1,2)(T

(Wn)
Ran

) := �n, that is, the exploration graph under competition observed
at the time when type Wn reaches size an with one-type exploration; see below for
further details on the structure of this graph. To apply the conditional second mo-
ment method, first note that

E
[
N̄

(t,k)
Wn

|�n

] = P
(
1(t,k)

U = 1|�n

)
= P

(
U is type Wn infected at time T

(1,2)
Ran

+ t |�n,DU = k
)

× P(DU = k),

and

E
[(

N̄
(t,k)
Wn

)2|�n

]
= P

(
1(t,k)

U1
= 1(t,k)

U2
= 1|�n

)
= P

(
U1,U2 are type Wn infected at time T

(1,2)
Ran

+ t |�n,DU1 = DU2 = k
)

× P(DU1 = k)P(DU2 = k),

where we use that the event {DUi
= k} is independent of �n. Therefore, it suf-

fices to show that the first factors in the above two right-hand sides converge to
P(μ(W)V (k) ≤ t) and P(μ(W)V (k) ≤ t)2, respectively. Indeed, in this case,

E
[
N̄

(t,k)
Wn

|�n

] P−→ P
(
μ(W)V (k) ≤ t

)
P(D = k),

while Var(N̄ (t,k)
Wn

|�n) = oP(1), so that N̄
(t,k)
Wn

P−→ P(μ(W)V (k) ≤ t)P(D = k), as
required.
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Assume that Wn = 1, so that type 1 wins w.h.p. We can then construct �n by
first growing the one-type SWG from vertex 1 to size an. The time when this

occurs is T
(1)
an , which converges in distribution to V1. Then, we grow the one-type

SWG from vertex 2 up to size mn = sup{m : μT
(2)
m ≤ T

(1)
an }. When Wn = 1, by

Lemma 4.1, the number mn of type 2 infected vertices at time T
(1)
an converges to an

almost surely finite random variable. Furthermore, by Proposition 2.1(c), w.h.p.,
SWG(1)

an
and SWG(2)

mn
are disjoint. Hence, w.h.p., �n = SWG(1)

an
∪ SWG(2)

mn
.

Now recall that X(1 ↔ U) denotes the passage time between vertices 1 and
U in a one-type process with only type 1 infection. It follows from the analysis
in [4], summarized in Proposition 2.1, that X(1 ↔ U) converges in distribution to
V1 +V (k): As described above, we first grow SWG(1)

an
and SWG(2)

mn
. Then we grow

the SWG from U until it hits SWG(1)
an

∪ SWG(2)
mn

. This occurs when the SWG from
vertex U has size Cn such that Cn/an converges in distribution to a proper random
variable. Further, the time it takes to reach this size converges in distribution to
V (k)—indeed, V (k) describes the asymptotic explosion time for an exploration
process started at a vertex with degree k. Hence,

P
(
X(1 ↔ U) ≤ T (1)

an
+ t |�n,DU = k

) P−→ P
(
V (k) ≤ t

)
.(39)

In a similar way, we conclude that P(X(1 ↔ U1),X(1 ↔ U2) ≤ T
(1)
an + t |�n,

DU1 = DU2 = k)
P−→ P(V (k) ≤ t)2. We need to show that the presence of type 2

infection started from vertex 2 does not affect this convergence result when
Wn = 1.

Recall that SWG(u)(s) denotes the one-type SWG from vertex u at time s. Also,
let εn ↘ 0 be as in Lemmas 3.4–3.5. As pointed out above, the number mn of type 2
infected vertices at time T

(1)
an converges to an almost surely finite random variable.

Furthermore, the probability that any additional vertices become type 2 infected
in the time interval (T

(1)
an , T

(1)
an + εn) converges to 0, since εn ↘ 0. Hence, w.h.p.

SWG(1)(T
(1)
an ) ∩ μSWG(2)(T

(1)
an + εn) = ∅, where the multiplication by μ indi-

cates that the edge passage times are multiplied by μ when constructing the SWG
from vertex 2. Finally, by Lemma 3.4, the type 1 infection has w.h.p. occupied all
vertices with degree larger than (logn)σ by time T

(1)
an + εn.

Now consider the SWG from vertex U of degree k, where w.h.p. U /∈
μSWG(2)(T

(1)
an + εn). Without the presence of the type 2 infection, this will hit

SWG(1)(T
(1)
an ) when it has reached size Cn, where Cn/an converges in distribu-

tion to a proper random variable, and the time for this converges in distribution
to V (k). We claim that w.h.p. it does not hit the type 2 infection before this hap-
pens. This follows from Lemma 3.3. Indeed, the passage time from any vertex
in μSWG(2)(T

(1)
an + εn) to U , not using the vertices in Goodn—these are already

occupied by the type 1 infection at time T
(1)
an + εn, and hence not available for the

spread of type 2—is w.h.p. larger than bn, where bn → ∞. Hence, the passage
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time from any type 2 vertex to U is w.h.p. larger than 2V (k) + b for any b > 0.
This means that w.h.p. the type 2 infection does not reach any of the vertices along
the minimal weight path between SWG(1)(T

(1)
an + εn) and U before time V (k)+ ε.

Indeed, if it would, then there would be a path between vertex 2 and U that avoids
Goodn and that has passage time less than 2V (k) + ε.

It follows that when Wn = 1, the passage time between vertex 1 and U be-
haves asymptotically the same as in a one-type process with only type 1 infection.
Similarly, when Wn = 2, the passage time between vertex 2 and U behaves asymp-
totically the same as in a one-type process with only type 2 infection, which yields
an analog of (39) where V (k) is replaced by μV (k). Furthermore, by the argu-
ments in the proof of Lemma 4.1, P(Wn = 1) → P(V1 < μV2). Equation (26) in
the proposition is hence proved.

The proof of (27) is similar. Indeed, instead of (38), we now start from L̄
(t)
Wn

=
E[1(t)

e |Gn], where e is a uniform edge in the graph and 1(t)
e denotes the probability

that e spreads the infection before time t . We then again use a conditional second
moment, and note that

E
[
L̄

(t)
Wn

|SWG(1,2)
an

]
= P

(
e has spread the Wn infection by time T

(1,2)
Ran

+ t |SWG(1,2)
an

)
.

In this expectation, a uniform edge can be obtained by drawing a half-edge uni-
formly at random, and pairing it to a uniform other half-edge. Let a and b be
the vertices at the two ends of e, and let Ṽa and Ṽb be the explosion times of
the vertices a and b, respectively, when the type 1 infection is not allowed to use
the edge e. Then e has spread the infection by time T

(1,2)
Ran

+ t precisely when

either the explosion time Ṽa plus the edge weight Ee are at most t (in which
case, a is first type 1 infected and then spreads the infection to vertex b), or the
explosion time Ṽb plus the edge weight Ee are at most t (in which case, b is
first type 1 infected and then spreads the infection to vertex a). We conclude that

E[L̄(t)
Wn

|SWG(1,2)
an

] P−→ P(μ(W)(E + Ṽa ∧ Ṽb) ≤ t). The extensions to the second
moment computations as well as the fact that the competition does not interfere
with the spread of the winning type are the same as for N̄

(t,k)
Wn

. �
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