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GAUSSIAN APPROXIMATION OF SUPREMA OF
EMPIRICAL PROCESSES

BY VICTOR CHERNOZHUKOV1, DENIS CHETVERIKOV1 AND KENGO KATO2

MIT, UCLA and University of Tokyo

This paper develops a new direct approach to approximating suprema of
general empirical processes by a sequence of suprema of Gaussian processes,
without taking the route of approximating whole empirical processes in the
sup-norm. We prove an abstract approximation theorem applicable to a wide
variety of statistical problems, such as construction of uniform confidence
bands for functions. Notably, the bound in the main approximation theorem
is nonasymptotic and the theorem allows for functions that index the empiri-
cal process to be unbounded and have entropy divergent with the sample size.
The proof of the approximation theorem builds on a new coupling inequal-
ity for maxima of sums of random vectors, the proof of which depends on
an effective use of Stein’s method for normal approximation, and some new
empirical process techniques. We study applications of this approximation
theorem to local and series empirical processes arising in nonparametric esti-
mation via kernel and series methods, where the classes of functions change
with the sample size and are non-Donsker. Importantly, our new technique
is able to prove the Gaussian approximation for the supremum type statistics
under weak regularity conditions, especially concerning the bandwidth and
the number of series functions, in those examples.

1. Introduction. This paper is concerned with the problem of approximating
suprema of empirical processes by a sequence of suprema of Gaussian processes.
To formulate the problem, let X1, . . . ,Xn be i.i.d. random variables taking values
in a measurable space (S,S) with common distribution P . Suppose that there is a
sequence Fn of classes of measurable functions S →R, and consider the empirical
process indexed by Fn:

Gnf = 1√
n

n∑
i=1

(
f (Xi) −E

[
f (X1)

])
, f ∈Fn.

For a moment, we implicitly assume that each Fn is “nice” enough and post-
pone the measurability issue. This paper tackles the problem of approximating
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Zn = supf ∈Fn
Gnf by a sequence of random variables Z̃n equal in distribution

to supf ∈Fn
Bnf , where each Bn is a centered Gaussian process indexed by Fn

with covariance function E[Bn(f )Bn(g)] = Cov(f (X1), g(X1)) for all f,g ∈ Fn.
We look for conditions under which there exists a sequence of such random vari-
ables Z̃n with

|Zn − Z̃n| = OP(rn),(1)

where rn → 0 as n → ∞ is a sequence of constants. These results have immediate
statistical implications; see Remark 2.5 and Section 3.

The study of asymptotic and nonasymptotic behaviors of the supremum of the
empirical process is one of the central issues in probability theory, and dates back
to the classical work of [33]. The (tractable) distributional approximation of the
supremum of the empirical process is of particular importance in mathematical
statistics. A leading example is uniform inference in nonparametric estimation,
such as construction of uniform confidence bands and specification testing in non-
parametric density and regression estimation where critical values are given by
quantiles of supremum type statistics (see, e.g., [2, 13, 25, 29, 36, 51]). Another
interesting example appears in econometrics where there is an interest in estimat-
ing a parameter that is given as the extremum of an unknown function such as a
conditional mean function. [14] proposed a precision-corrected estimate for such a
parameter. In construction of their estimate, approximation of quantiles of a supre-
mum type statistic is needed, to which the Gaussian approximation plays a crucial
role.

A related but different problem is that of approximating whole empirical pro-
cesses by a sequence of Gaussian processes in the sup-norm. This problem is more
difficult than (1). Indeed, (1) is implied if there exists a sequence of versions of Bn

(which we denote by the same symbol Bn) such that

‖Gn − Bn‖Fn := sup
f ∈Fn

∣∣(Gn − Bn)f
∣∣ = OP(rn).(2)

There is a large literature on the latter problem (2). Notably, Komlós, Major
and Tusnády [35] (henceforth, abbreviated as KMT) proved that ‖Gn − Bn‖F =
Oa.s.(n

−1/2 logn) for S = [0,1], P = uniform distribution on [0,1], and F =
{1[0,t] : t ∈ [0,1]}. See [41] and [5] for refinements of KMT’s result. [34, 42]
and [51] developed extensions of the KMT construction to more general classes of
functions.

The KMT construction is a powerful tool in addressing the problem (2), but
when applied to general empirical processes, it typically requires strong condi-
tions on classes of functions and distributions. For example, Rio [51] required that
Fn are uniformly bounded classes of functions having uniformly bounded vari-
ations on S = [0,1]d , and P has a continuous and positive Lebesgue density on
[0,1]d . Such conditions are essential to the KMT construction since it depends cru-
cially on the Haar approximation and binomial coupling inequalities of Tusnády.
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Note that [34] directly made an assumption on the accuracy of the Haar approx-
imation of the class of functions, but still required similar side conditions to [51]
in concrete applications; see Section 11 in [34]. [20], [1] and [53] considered the
problem of Gaussian approximation of general empirical processes with different
approaches and thereby without such side conditions. Dudley and Philipp used
a finite approximation of a (possibly uncountably) infinite class of functions and
apply a coupling inequality of [60] to the discretized empirical process (more pre-
cisely, [20] used a version of Yurinskii’s inequality proved by [18]). [1] and [53],
on the other hand, used a coupling inequality of [61] instead of Yurinskii’s and
some recent empirical process techniques such as Talagrand’s [56] concentration
inequality, which leads to refinements of Dudley and Philipp’s results in some
cases. However, the rates that [1, 18] and [53] established do not lead to tight
conditions for the Gaussian approximation in non-Donsker cases, with important
examples being the suprema of empirical processes arising in nonparametric esti-
mation, namely the suprema of local and series empirical processes (see Section 3
for detailed treatment).

We develop here a new direct approach to the problem (1), without taking the
route of approximating the whole empirical process in the sup-norm and with dif-
ferent technical tools than those used in the aforementioned papers (especially the
approach taken does not rely on the Haar expansion and hence differs from the
KMT type approximation). We prove an abstract approximation theorem (Theo-
rem 2.1) that leads to results of type (1) in several situations. The proof of the
approximation theorem builds on a number of technical tools that are of interest
in their own rights: notably, (i) a new coupling inequality for maxima of sums of
random vectors (Theorem 4.1), where Stein’s method for normal approximation
(building here on [7] and originally due to [54, 55]) plays an important role (see
also [9, 43, 50]); (ii) a deviation inequality for suprema of empirical processes that
only requires finite moments of envelope functions (Theorem 5.1), due essentially
to the recent work of [3], complemented with a new “local” maximal inequality
for the expected supremum of the empirical process that extends the work of [58]
(Theorem 5.2). We study applications of this approximation theorem to local and
series empirical processes arising in nonparametric estimation via kernel and series
methods, and demonstrate that our new technique is able to provide the Gaussian
approximation for the supremum type statistics under weak regularity conditions,
especially concerning the bandwidth and the number of series functions, in those
examples. A companion work [13] provides multiplier bootstrap methods for (ap-
proximate and valid) computation of Gaussian approximations Z̃n in applications
(see also Remark 3.3 below).

It is instructive to briefly summarize here the key features of the main approxi-
mation theorem. First, the theorem establishes a nonasymptotic bound between Zn

and its Gaussian analogue Z̃n. The theorem requires each Fn to be pre-Gaussian
[i.e., assuming the existence of a version of Bn that is a tight Gaussian random
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variable in �∞(Fn); see below for the notation], but allows for the case where the
“complexity” of Fn increases with n, which places the function classes outside any
fixed Donsker class; moreover, neither the process Gn nor the supremum statistic
Zn need to be weakly convergent as n → ∞ (even after suitable normalization).
Second, the bound in Theorem 2.1 is able to exploit the “local” properties of the
class of functions, thereby, when applied to, say, the supremum deviation of kernel
type statistics, it leads to tight conditions on the bandwidth for the Gaussian ap-
proximation (see the discussion after Theorem 2.1 for details about these features).
Note that our bound does not rely on “smoothness” of Fn—in contrast, in [51], the
bound on the Gaussian approximation for empirical processes depends on the total
variation norm of functions. This feature is helpful in deriving good conditions on
the number of series functions for the Gaussian approximation of the supremum
deviation of projection type statistics treated in Section 3.2 since, for example, the
total variation norm is typically large or difficult to control well for such examples.
Finally, the theorem only requires finite moments of the envelope function, which
should be contrasted with [1, 34, 51, 53] where the classes of functions studied
are assumed to be uniformly bounded. Hence, the theorem is readily applicable to
a wide class of statistical problems to which the previous results are not, at least
immediately. We note here that although the bounds we derive are not the sharpest
possible in some examples, they are better than previously available bounds in
other examples, and are also of interest because of their wide applicability. In fact,
the results of this paper are already applied in our companion paper [11] and the
paper [8] by other authors.

To the best of our knowledge, [47] is the only previous work that considered
the problem of directly approximating the distribution of the supremum of the
empirical process by that of the corresponding Gaussian process. However, they
only cover the case where the class of functions is independent of n and Donsker
as the constant C in their master Theorem 2.1 is dependent on F (and how C

depends on F is not specified), and their condition (1.4) essentially excludes the
case where the “complexity” of F grows with n, which means that their results are
not applicable to the statistical problems considered in this paper (see Remark 2.5
or Lemma A.1 ahead). Moreover, their approach is significantly different from
ours.

In this paper, we substantially rely on modern empirical process theory. For gen-
eral references on empirical process theory, we refer to [4, 19, 37, 59]. Section 9.5
of [19] has excellent historical remarks on the Gaussian approximation of empir-
ical processes. For textbook treatments of Yurinskii’s and KMT’s couplings, we
refer to [16] and Chapter 10 in [49].

1.1. Organization. In Section 2, we present the main approximation theorem
(Theorem 2.1). We give a proof of Theorem 2.1 in Section 6. In Section 3, we
study applications of Theorem 2.1 to local and series empirical processes arising
in nonparametric estimation. Sections 4 and 5 are devoted to developing some
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technical tools needed to prove Theorem 2.1 and its supporting Lemma 2.2. In
Section 4, we prove a new coupling inequality for maxima of sums of random
vectors, and in Section 5, we present some inequalities for empirical processes.
We put some additional technical proofs, some examples and additional results in
the appendices. Due to the page limitation, all the appendices are placed in the
supplemental material [12].

1.2. Notation. Let (�,A,P) denote the underlying probability space. We as-
sume that the probability space (�,A,P) is rich enough, in the sense that there
exists a uniform random variable on (0,1) defined on (�,A,P) independent of the
sample. For a real-valued random variable ξ , let ‖ξ‖q = (E[|ξ |q])1/q,1 ≤ q < ∞.

For two random variables ξ and η, we write ξ
d= η if they have the same distribu-

tion.
For any probability measure Q on a measurable space (S,S), we use the nota-

tion Qf := ∫
f dQ. Let Lp(Q),p ∈ [1,∞], denote the space of all measurable

functions f :S → R such that ‖f ‖Q,p := (Q|f |p)1/p < ∞ where (Q|f |p)1/p

stands for the essential supremum when p = ∞. We also use the notation ‖f ‖∞ :=
supx∈S |f (x)|. Denote by eQ the L2(Q)-semimetric: eQ(f, g) = ‖f − g‖Q,2,
f,g ∈ L2(Q).

For an arbitrary set T , let �∞(T ) denote the space of all bounded functions
T → R, equipped with the uniform norm ‖f ‖T := supt∈T |f (t)|. We endow
�∞(T ) with the Borel σ -field induced from the norm topology. A random vari-
able in �∞(T ) refers to a Borel measurable map from � to �∞(T ). For ε > 0,
an ε-net of a semimetric space (T , d) is a subset Tε of T such that for ev-
ery t ∈ T there exists a point tε ∈ Tε with d(t, tε) < ε. The ε-covering num-
ber N(T ,d, ε) of T is the infimum of the cardinality of ε-nets of T , that is,
N(T ,d, ε) := inf{Card(Tε) :Tε is an ε-net of T } [formally define N(T ,d,0) :=
limε↓0 N(T ,d, ε), where the right limit, possibly being infinite, exists as the map
ε 	→ N(T ,d, ε) is nonincreasing]. For a subset A of a semimetric space (T , d),
let Aδ denote the δ-enlargement of A, that is, Aδ = {x ∈ T :d(x,A) ≤ δ} where
d(x,A) = infy∈A d(x, y).

The standard Euclidean norm is denoted by | · |. The transpose of a vector x is
denoted by xT . We write a � b if there exists a universal constant C > 0 such that
a ≤ Cb. Unless otherwise stated, c,C > 0 denote universal constants of which
the values may change from place to place. For a, b ∈ R, we use the notation
a ∨ b = max{a, b} and a+ = a ∨ 0.

Finally, for a sequence {zi}ni=1, we write En[zi] = n−1 ∑n
i=1 zi , that is, En ab-

breviates the symbol n−1 ∑n
i=1. For example, En[f (Xi)] = n−1 ∑n

i=1 f (Xi).

2. Abstract approximation theorem. Let X1, . . . ,Xn be i.i.d. random vari-
ables taking values in a measurable space (S,S) with common distribution P .
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In all what follows, we assume n ≥ 3. Let F be a class of measurable func-
tions S → R. Here, we assume that the class F is P -centered, that is, Pf = 0,
∀f ∈ F . This does not lose generality since otherwise we may replace F by
{f − Pf :f ∈ F}. Denote by F a measurable envelope of F , that is, F is a non-
negative measurable function S →R such that F(x) ≥ supf ∈F |f (x)|, ∀x ∈ S.

In this section, the sample size n is fixed, and hence the possible dependence of
F and F (and other quantities) on n is dropped.

We make the following assumptions.

(A1) The class F is pointwise measurable, that is, it contains a countable subset
G such that for every f ∈ F there exists a sequence gm ∈ G with gm(x) → f (x)

for every x ∈ S.
(A2) For some q ≥ 2,F ∈ Lq(P ).
(A3) The class F is P -pre-Gaussian, that is, there exists a tight Gaussian ran-

dom variable GP in �∞(F) with mean zero and covariance function

E
[
GP (f )GP (g)

] = P(fg) = E
[
f (X1)g(X1)

] ∀f,g ∈ F .

Assumption (A1) is made to avoid measurability complications. See Sec-
tion 2.3.1 of [59] for further discussion. This assumption ensures that, for example,
supf ∈F Gnf = supf ∈G Gnf , and hence the former supremum is a measurable map
from � to R. Note that by Example 1.5.10 in [59], assumption (A3) implies that
F is totally bounded for eP , and GP has sample paths almost surely uniformly
eP -continuous.

To state the main result, we prepare some notation. For ε > 0, define Fε =
{f −g :f,g ∈F, eP (f, g) < ε‖F‖P,2}. Note that by Theorem 3.1.1 in [19], under
assumption (A3), one can extend GP to the linear hull of F in such a way that GP

has linear sample paths (recall that the linear hull of F is defined as the collection
of functions of the form

∑m
j=1 αjfj where αj ∈ R, fj ∈ F, j = 1, . . . ,m). With

this in mind, let

φn(ε) = E
[‖Gn‖Fε

]∨E
[‖GP ‖Fε

]
.(3)

For notational convenience, let us write

Hn(ε) = log
(
N
(
F, eP , ε‖F‖P,2

)∨ n
)
.(4)

Note that since F is totally bounded for eP [because of assumption (A3)], Hn(ε)

is finite for every 0 < ε ≤ 1. Moreover, write M = max1≤i≤n F (Xi) and F · F =
{fg :f ∈ F, g ∈ F}. The following is the main theorem of this paper. The proof
will be given in Section 6.

THEOREM 2.1 (Gaussian approximation to suprema of empirical processes).
Suppose that assumptions (A1), (A2) with q ≥ 3, and (A3) are satisfied.
Let Z = supf ∈F Gnf . Let κ > 0 be any positive constant such that κ3 ≥
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E[‖En[|f (Xi)|3]‖F ]. Then for every ε ∈ (0,1] and γ ∈ (0,1), there exists a ran-

dom variable Z̃
d= supf ∈F GP f such that

P
{|Z − Z̃| > K(q)
n(ε, γ )

} ≤ γ
{
1 + δn(ε, γ )

}+ C logn

n
,

where K(q) > 0 is a constant that depends only on q , and


n(ε, γ ) := φn(ε) + γ −1/qε‖F‖P,2 + n−1/2γ −1/q‖M‖q + n−1/2γ −2/q‖M‖2

+ n−1/4γ −1/2(
E
[‖Gn‖F ·F

])1/2
H 1/2

n (ε) + n−1/6γ −1/3κH 2/3
n (ε),

δn(ε, γ ) := 1
4P

{
(F/κ)31

(
F/κ > cγ −1/3n1/3Hn(ε)

−1/3)}.
At this point, Theorem 2.1 might seem abstract but in fact it has wide appli-

cability. We provide a general discussion of key features of the theorem in Re-
mark 2.3 below after we present bounds on the main terms in the theorem. See
also Corollary 2.2 where we apply Theorem 2.1 to VC type classes where many
simplifications of the abstract result are possible.

Recall that we have extended GP to the linear hull of F in such a way that GP

has linear sample paths. Hence,

‖Gn‖F = sup
f ∈F∪(−F)

Gnf, ‖GP ‖F = sup
f ∈F∪(−F)

GP f,

where −F := {−f :f ∈ F}, from which one can readily deduce the following
corollary. Henceforth, we only deal with supf ∈F Gnf .

COROLLARY 2.1. The conclusion of Theorem 2.1 continues to hold with Z

replaced by Z = ‖Gn‖F , Z̃ replaced by Z̃
d= ‖GP ‖F , and with different constants

K(q), c, C where K(q) depends only on q , and c, C are universal.

Theorem 2.1 is useful only if there are suitable bounds on the following triple
of terms, appearing in its statement:

φn(ε),E
[∥∥En

[∣∣f (Xi)
∣∣3]∥∥

F
]

and E
[‖Gn‖F ·F

]
.(5)

To bound these terms, the entropy method or the more general generic chaining
method [57] are useful. We will derive bounds on these terms using the entropy
method since typically it leads to readily computable bounds. However, we leave
the option of bounding the terms in (5) by other means, for example, the generic
chaining method (in some applications the latter is known to give sharper bounds
than the entropy approach).

Consider, as in [59], page 239, the (uniform) entropy integral

J (δ) = J (δ,F,F ) =
∫ δ

0
sup
Q

√
1 + logN

(
F, eQ, ε‖F‖Q,2

)
dε,



GAUSSIAN APPROXIMATION OF SUPREMA 1571

where the supremum is taken over all finitely discrete probability measures on
(S,S); see [59], Sections 2.6 and 2.10.3, and [19], Chapter 4, for examples where
the uniform entropy integral can be suitably bounded. We assume the integral is
finite:

(A4) J (1,F,F ) < ∞.

REMARK 2.1. In applications F and F (and even S) may change with n,
that is, F = Fn and F = Fn. In that case, assumption (A4) is interpreted as
J (1,Fn,Fn) < ∞ for each n, but it does allow for the case where J (1,Fn,Fn) →
∞ as n → ∞.

We first note the following (standard) fact.

LEMMA 2.1. Assumptions (A2) and (A4) imply assumption (A3).

For the sake of completeness, we verify this lemma in the supplemental mate-
rial [12]. The following lemma provides bounds on the quantities in (5). Its proof
is given in the supplemental material [12].

LEMMA 2.2 [Entropy-based bounds on the triple (5)]. Suppose that assump-
tions (A1), (A2) and (A4) are satisfied. Then for ε ∈ (0,1],

φn(ε) � J (ε)‖F‖P,2 + n−1/2ε−2J 2(ε)‖M‖2.

Moreover, suppose that assumption (A2) is satisfied with q ≥ 4, and for k = 3,4,
let δk ∈ (0,1] be any positive constant such that δk ≥ supf ∈F ‖f ‖P,k/‖F‖P,k .
Then

E
[∥∥En

[∣∣f (Xi)
∣∣3]∥∥

F
]− sup

f ∈F
P |f |3

� n−1/2‖M‖3/2
3

[
J
(
δ

3/2
3 ,F,F

)‖F‖3/2
P,3 + ‖M‖3/2

3 J 2(δ
3/2
3 ,F,F )√

nδ3
3

]
,

E
[‖Gn‖F ·F

]
� J

(
δ2

4,F,F
)‖F‖2

P,4 + ‖M‖2
4J

2(δ2
4,F,F )√

nδ4
4

.

REMARK 2.2 (On the usefulness of the above bounds). The bounds above are
designed to handle cases when the suprema of weak moments, P |f |3 and Pf 4, are
much smaller than the moments of the envelope function, which is the case for all
the examples studied in Section 3 where all the proofs for the results in that section
follow from application of Corollary 2.2 below, which is a direct consequence of
Theorem 2.1 and Lemma 2.2.
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REMARK 2.3 (Key features of Theorem 2.1). Before going to the applica-
tions, we discuss the key features of Theorem 2.1. First, Theorem 2.1 does not re-
quire uniform boundedness of F , and requires only finite moments of the envelope
function. This should be contrasted with the fact that many papers working on the
Gaussian approximation of empirical processes in the sup-norm, such as [1, 34, 51,
53], required that classes of functions are uniformly bounded. There are, however,
many statistical applications where uniform boundedness of the class of functions
is too restrictive, and the generality of Theorem 2.1 in this direction will turn out to
be useful—a typical example of such an application is the problem of performing
inference on a nonparametric regression function with unbounded noise using ker-
nel and series estimation methods. One drawback is that γ , which in applications
we take as γ = γn → 0, is typically at most O(n−1/2), and hence Theorem 2.1 gen-
erally gives only “in probability bounds” rather than “almost sure bounds” (though
in some cases, it is possible to derive “almost sure bounds” from this theorem;
see, in particular, Appendix C of the supplemental material [12]). The second fea-
ture of Theorem 2.1 is that it is able to exploit the “local” properties of the class
of functions F . By Lemma 2.2, typically, we may take κ3 ≈ supf ∈F P |f |3 and

E[‖Gn‖F ·F ] ≈ supf ∈F
√

Pf 4 (up to logarithmic in n factors). In some applica-
tions, for example, nonparametric kernel and series estimations considered in the
next section, the class F = Fn changes with n and supf ∈Fn

‖f ‖P,k/‖Fn‖P,k with
k = 3,4 decrease to 0 where Fn is an envelope function of Fn. The bound in The-
orem 2.1 (with the help of Lemma 2.2) effectively exploits this information and
leads to tight conditions on, say, the bandwidth and the number of series func-
tions for the Gaussian approximation; roughly the theorem gives bounds on the
approximation error of the form (nhd

n)−1/6 for kernel estimation and (Kn/n)−1/6

for series estimation (up to logarithmic in n factors), where hn → 0 is the band-
width and Kn → ∞ is the number of series functions. This feature will be clear
from the proofs for the applications in the following section.

REMARK 2.4 (An application to VC type classes). Although applications of
the general results in this section are not restricted to VC type classes, combination
of Theorem 2.1 and Lemma 2.2 will lead to a simple bound for these classes. Recall
the definition of VC type classes.

DEFINITION 2.1 (VC type class). Let F be a class of measurable functions
on a measurable space (S,S), to which a measurable envelope F is attached.
We say that F is VC type with envelope F if there are constants A,v > 0 such
that supQ N(F, eQ, ε‖F‖Q,2) ≤ (A/ε)v for all 0 < ε ≤ 1, where the supremum is
taken over all finitely discrete probability measures on (S,S).

Note that the definition of VC type classes allows for unbounded envelops F .
The VC type class is a wider concept than VC subgraph class ([59], Chapter 2.6).
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The VC type property is “stable” under summation, product, or more generally
Lipschitz-type transformations, making it much easier to check whether a function
class is VC type; see Lemma A.6 in the supplemental material [12].

We have the following corollary of Theorem 2.1, whose proof is given in the
supplemental material [12].

COROLLARY 2.2 (Gaussian approximation to suprema of empirical processes
indexed by VC type classes). Suppose that assumption (A1) is satisfied. In ad-
dition, suppose that the class F is VC type with an envelope F and constants
A ≥ e and v ≥ 1. Suppose also that for some b ≥ σ > 0, and q ∈ [4,∞], we
have supf ∈F P |f |k ≤ σ 2bk−2 for k = 2,3 and ‖F‖P,q ≤ b. Let Z = supf ∈F Gnf .

Then for every γ ∈ (0,1), there exist a random variable Z̃
d= supf ∈F GP f such

that

P

{
|Z − Z̃| > bKn

γ 1/2n1/2−1/q
+ (bσ )1/2K

3/4
n

γ 1/2n1/4 + (bσ 2K2
n)1/3

γ 1/3n1/6

}

≤ C

(
γ + logn

n

)
,

where Kn = cv(logn ∨ log(Ab/σ)), and c, C > 0 are constants that depend only
on q (“1/q” is interpreted as “0” when q = ∞).

REMARK 2.5 (Gaussian approximation in the Kolmogorov distance). Theo-
rem 2.1 combined with Lemma 2.2 can be used to show that the result (1) holds
for some sequence of constants rn → 0 (subject to some conditions; possible rates
of rn are problem-specific). In statistical applications, however, one is typically
interested in the result of the form (here we follow the notation used in Section 1)

sup
t∈R

∣∣P(Zn ≤ t) − P(Z̃n ≤ t)
∣∣ = o(1), n → ∞.(6)

That is, the approximation of the distribution of Zn by that of Z̃n in the Kol-
mogorov distance is required. To derive (6) from (1), we invoke the following
lemma.

LEMMA 2.3 (Gaussian approximation in Kolmogorov distance: Nonasymp-
totic result). Consider the setting described in the beginning of this section.
Suppose that assumptions (A1)–(A3) are satisfied, and that there exist constants
σ , σ̄ > 0 such that σ 2 ≤ Pf 2 ≤ σ̄ 2 for all f ∈ F . Moreover, suppose that there

exist constants r1, r2 > 0 and a random variable Z̃
d= supf ∈F GP f such that

P{|Z − Z̃| > r1} ≤ r2. Then

sup
t∈R

∣∣P(Z ≤ t) − P(Z̃ ≤ t)
∣∣ ≤ Cσ r1

{
E[Z̃] +

√
1 ∨ log(σ/r1)

}+ r2,

where Cσ is a constant depending only on σ and σ̄ .
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It is now not difficult to give conditions to deduce (6) from (1). Formally, we
state the following lemma.

LEMMA 2.4 (Gaussian approximation in Kolmogorov distance: Asymptotic re-
sult). Suppose that there exists a sequence of (P -centered) classes Fn of mea-
surable functions S → R satisfying assumptions (A1)–(A3) with F = Fn for
each n, and that there exist constants σ , σ̄ > 0 (independent of n) such that
σ 2 ≤ Pf 2 ≤ σ̄ 2 for all f ∈ Fn. Let Zn = supf ∈Fn

Gnf , and denote by Bn a tight
Gaussian random variable in �∞(Fn) with mean zero and covariance function
E[Bn(f )Bn(g)] = P(fg) for all f,g ∈ Fn. Moreover, suppose that there exist a

sequence of random variables Z̃n
d= supf ∈Fn

Bnf and a sequence of constants
rn → 0 such that |Zn − Z̃n| = OP(rn) and rnE[Z̃n] = o(1) as n → ∞. Then as
n → ∞, supt∈R |P(Zn ≤ t) − P(Z̃n ≤ t)| = o(1).

Note here that we allow the case where E[Z̃n] → ∞. In the examples handled
in the following section, typically, we have E[Z̃n] = O(

√
logn). We note that the

companion work [13] provides multiplier bootstrap methods for uniformly con-
sistent estimation of the map t 	→ P(Z̃n ≤ t) in applications (see also Remark 3.3
below).

3. Applications. This section studies applications of Theorem 2.1 and its sup-
porting Lemma 2.2 (via Corollary 2.2) to local and series empirical processes aris-
ing in nonparametric estimation via kernel and series methods. In both examples,
the classes of functions change with the sample size n and the corresponding pro-
cesses Gn do not have tight limits. Hence, regularity conditions for the Gaussian
approximation for the suprema will be of interest. All the proofs in this section,
and motivating examples for series empirical processes treated in Section 3.2, are
gathered in the supplemental material [12].

3.1. Local empirical processes. This section applies Theorem 2.1 to the supre-
mum deviation of kernel type statistics. Let (Y1,X1), . . . , (Yn,Xn) be i.i.d. random
variables taking values in the product space Y ×R

d , where (Y,AY) is an arbitrary
measurable space. Suppose that there is a class G of measurable functions Y →R.
Let k(·) be a kernel function on R

d . By “kernel function,” we simply mean that k(·)
is integrable with respect to the Lebesgue measure on R

d and its integral on R
d is

normalized to be 1, but we do not assume k(·) to be nonnegative, that is, higher
order kernels are allowed. Let hn be a sequence of positive constants such that
hn → 0 as n → ∞, and let I be an arbitrary Borel subset of R

d . Consider the
kernel-type statistics

Sn(x, g) = 1

nhd
n

n∑
i=1

g(Yi)k
(
h−1

n (Xi − x)
)
, (x, g) ∈ I × G.(7)
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Typically, under suitable regularity conditions, Sn(x, g) will be a consistent es-
timator of E[g(Y1)|X1 = x]p(x), where p(·) denotes a Lebesgue density of the
distribution of X1 (assuming its existence). For example, when g ≡ 1, Sn(x, g)

will be a consistent estimator of p(x); when Y = R and g(y) = y, Sn(x, g) will
be a consistent estimator of E[Y1|X1 = x]p(x); and when Y =R and g(·) = 1(· ≤
y), y ∈ R, Sn(x, g) will be a consistent estimator of P(Y1 ≤ y|X1 = x)p(x). In
statistical applications, it is often of interest to approximate the distribution of the
following quantity:

Wn = sup
(x,g)∈I×G

cn(x, g)

√
nhd

n

(
Sn(x, g) −E

[
Sn(x, g)

])
,(8)

where cn(x, g) is a suitable normalizing constant. A typical choice of cn(x, g)

would be such that Var(
√

nhd
nSn(x, g)) = cn(x, g)−2 + o(1). Limit theorems

for Wn are developed in [2, 17, 21, 36, 40, 51], among others.

[21] called the process g 	→
√

nhd
n(Sn(x, g) − E[Sn(x, g)]) a “local” empirical

process at x (the original definition of the local empirical process in [21] is slightly
more general in that hn is replaced by a sequence of bi-measurable functions). With

a slight abuse of terminology, we also call the process (x, g) 	→
√

nhd
n(Sn(x, g) −

E[Sn(x, g)]) a local empirical process.
We consider the problem of approximating Wn by a sequence of suprema of

Gaussian processes. For each n ≥ 1, let Bn be a centered Gaussian process indexed
by I × G with covariance function

E
[
Bn(x, g)Bn(x̌, ǧ)

]
= h−d

n cn(x, g)cn(x̌, ǧ)(9)

× Cov
[
g(Y1)k

(
h−1

n (X1 − x)
)
, ǧ(Y1)k

(
h−1

n (X1 − x̌)
)]

.

It is expected that under suitable regularity conditions, there is a sequence W̃n of

random variables such that W̃n
d= sup(x,g)∈I×G Bn(x, g) and as n → ∞, |Wn −

W̃n| P→ 0. We shall argue the validity of this approximation with explicit rates.
We make the following assumptions.

(B1) G is a pointwise measurable class of functions Y →R uniformly bounded
by a constant b > 0, and is VC type with envelope ≡ b.

(B2) k(·) is a bounded and continuous kernel function on R
d , and such that

the class of functions K = {t 	→ k(ht + x) :h > 0, x ∈ R
d} is VC type with

envelope ≡ ‖k‖∞.
(B3) The distribution of X1 has a bounded Lebesgue density p(·) on R

d .
(B4) hn → 0 and log(1/hn) = O(logn) as n → ∞.
(B5) CI×G := supn≥1 sup(x,g)∈I×G |cn(x, g)| < ∞. Moreover, for every fixed

n ≥ 1 and for every (xm,gm) ∈ I×G with xm → x ∈ I and gm → g ∈ G pointwise,
cn(xm,gm) → cn(x, g).
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We note that [46] and especially [27, 28] give general sufficient conditions under
which K is VC type.

We first assume that G is uniformly bounded, which will be relaxed later.

PROPOSITION 3.1 (Gaussian approximation to suprema of local empirical pro-
cesses: Bounded case). Suppose that assumptions (B1)–(B5) are satisfied. Then
for every n ≥ 1, there is a tight Gaussian random variable Bn in �∞(I × G) with
mean zero and covariance function (9), and there is a sequence W̃n of random

variables such that W̃n
d= sup(x,g)∈I×G Bn(x, g) and as n → ∞,

|Wn − W̃n| = OP

{(
nhd

n

)−1/6 logn + (
nhd

n

)−1/4 log5/4 n + (
nhd

n

)−1/2 log3/2 n
}
.

Even when G is not uniformly bounded, a version of Proposition 3.1 continues
to hold provided that suitable restrictions on the moments of the envelope of G are
assumed. Instead of assumption (B1), we make the following assumption.

(B1)′ G is a pointwise measurable class of functions Y → R with measurable
envelope G such that E[Gq(Y1)] < ∞ for some q ≥ 4 and supx∈Rd E[G4(Y1)|X1 =
x] < ∞. Moreover, G is VC type with envelope G.

Then we have the following proposition.

PROPOSITION 3.2 (Gaussian approximation to suprema of local empirical pro-
cesses: Unbounded case). Suppose that assumptions (B1)′ and (B2)–(B5) are
satisfied. Then the conclusion of Proposition 3.1 continues to hold, except for that
the speed of approximation is

OP

{(
nhd

n

)−1/6 logn + (
nhd

n

)−1/4 log5/4 n + (
n1−2/qhd

n

)−1/2 log3/2 n
}
.

REMARK 3.1 (Discussion and comparison to other results). It is instructive to
compare Propositions 3.1 and 3.2 with implications of Theorem 1.1 of Rio [51],
which is a very sharp result on the Gaussian approximation (in the sup-norm) of
general empirical processes indexed by uniformly bounded VC type classes of
functions having locally uniformly bounded variation.

(i) Rio’s [51], Theorem 1.1 is not applicable to the case where the envelope
function G is not bounded. Hence, Proposition 3.2 is not covered by [51]. Indeed,
we are not aware of any previous result that leads to the conclusion of Propo-
sition 3.2, at least in this generality. For example, [36] considered the Gaussian
approximation of Wn in the case where Y = R and g(y) = y, but also assumed
that the support of Y1 is bounded. [21] proved in their Theorem 1.1 a weak con-
vergence result for local empirical processes, which, combined with the Skorohod
representation and Lemma 4.1 ahead, implies a Gaussian approximation result for
Wn even when G is not uniformly bounded (but without explicit rates); however,
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their Theorem 1.1 (and also Theorem 1.2) is tied with the single value of x, that
is, x is fixed, since both theorems assume that the “localized” probability measure,
localized at a given x, converges (in a suitable sense) to a fixed probability mea-
sure (see assumption (F.ii) in [21]). The same comment applies to [22]. In contrast,
our results apply to the case where the supremum is taken over an uncountable set
of values of x, which is relevant to statistical applications such as construction of
uniform confidence bands.

(ii) In the special case of kernel density estimation (i.e., g ≡ 1), Rio’s The-
orem 1.1 implies (subject to some regularity conditions) that |Wn − W̃n| =
Oa.s.{(nhd

n)−1/(2d)
√

logn + (nhd
n)−1/2 logn} for d ≥ 2 (the d = 1 case is formally

excluded from [51]) but Giné and Nickl showed that the same bound can be ob-
tained for d = 1 case (the proof of Proposition 5 in [29]). Hence, Rio–Giné–Nickl’s
error rates are better than ours when d = 1,2,3, but ours are better when d ≥ 4
(aside from the difference between “in probability” and almost sure bounds). An-
other approach to couplings of kernel density estimators is proposed in Neumann
[44] where the distribution of Wn is coupled to the distribution of the smoothed
bootstrap, which is then coupled to the distribution of the empirical bootstrap.
Neumann’s Theorem 3.2 implies that one can construct a sequence X1, . . . ,Xn, its
copy X1, . . . ,Xn, and empirical bootstrap sample X∗

1, . . . ,X∗
n from X1, . . . ,Xn

so that if we define W ∗
n by (7) and (8) with X1, . . . ,Xn replaced by X∗

1, . . . ,X∗
n,

then |Wn − W ∗
n | = OP((nhd)−1/(2+d)(logn)(4+d)/(2(2+d))). Thus, Neumann’s er-

ror rates of (empirical bootstrap) approximation are better than our error rates of
(Gaussian) approximation when d ≤ 4 but ours are better when d ≥ 5. Also we
note that Neumann’s approach requires similar side conditions as those of Rio’s
approach, is tied with kernel density estimation and not as general as ours.

(iii) Consider, as a second example, kernel regression estimation [i.e., Y = R

and g(y) = y]. In order to formally apply Rio’s Theorem 1.1 to this exam-
ple, we need to assume that, for example, (Y1,X1) is generated in such a way
that (Y1,X1) = (h(U,X1),X1) where the joint distribution of (U,X1) has sup-
port [0,1]d+1 with continuous and positive Lebesgue density on [0,1]d+1, and
h is a function [0,1]d+1 → R which is bounded and of bounded variation (e.g.,
let F−1

Y1|X1
(·|x) denote the quantile function of the conditional distribution of Y1

given X1 = x and take U uniformly distributed on (0,1) independent of X1; then

(Y1,X1)
d= (F−1

Y1|X1
(U |X1),X1), but for the above condition to be met, we need

to assume that F−1
Y1|X1

(u|x) is (bounded and) of bounded variation as a function
of u and x, which is not a typical assumption in estimation of the conditional
mean). Subject to such side conditions, Rio’s Theorem 1.1 leads to the following
error rate: |Wn − W̃n| = Oa.s.{(nd/(d+1)hd

n)−1/(2d)
√

logn + (nhd
n)−1/2 logn}. See,

for example, [14], Theorem 8. In contrast, Propositions 3.1 and 3.2 do not require
such side conditions. Moreover, aside from the difference between “in probabil-
ity” and almost sure bounds, as long as hn = O(n−a) for some a > 0, our error
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rates are always better when d ≥ 2. When d = 1, our rate is better as long as
nh4

n/ logc n → 0 (and vice versa) where c > 0 is some constant.

REMARK 3.2 (Converting coupling to convergence in Kolmogorov distance).
By Remark 2.5, we can convert the results in Propositions 3.1 and 3.2 into conver-
gence of the Kolmogorov distance between the distributions of Wn and its Gaus-
sian analogue W̃n. In fact, under either the assumptions of Proposition 3.1 or 3.2,
by Dudley’s inequality for Gaussian processes [59], Corollary 2.2.8, it is not dif-
ficult to deduce that E[W̃n] = O(

√
logn). Hence, if moreover there exists a con-

stant σ > 0 (independent of n) such that Var(cn(x, g)
√

nhd
nSn(x, g)) ≥ σ 2 for all

(x, g) ∈ I ×G [giving primitive regularity conditions for this assumption is a stan-
dard task; note also that under either the assumptions of Proposition 3.1 or 3.2,

Var(cn(x, g)
√

nhd
nSn(x, g)) is bounded from above uniformly in (x, g) ∈ I × G],

we have

|Wn − W̃n| = oP
(
log−1/2 n

) �⇒ sup
t∈R

∣∣P(Wn ≤ t) − P(W̃n ≤ t)
∣∣ = o(1).

Note that |Wn − W̃n| = oP(log−1/2 n) (i) if nhd
n/ logc n → ∞ under the assump-

tions of Proposition 3.1, and (ii) if n(1−2/q)hd
n/ logc n → ∞ under the assumptions

of Proposition 3.2, where c > 0 is some constant. These conditions on the band-
width hn are mild, and interestingly they essentially coincide with the conditions
on the bandwidth used in establishing exact rates of uniform strong consistency of
kernel type estimators in [23, 24].

REMARK 3.3 (Constructing under-smoothed uniform bands). The results in
Propositions 3.1 and 3.2 are useful for constructing one- and two-sided uniform
confidence bands for various nonparametric functions, such as density and con-
ditional mean, estimated via kernel methods. For concreteness, consider a ker-
nel density estimator Ŝn(x) = Sn(x, g) defined in (7) with g ≡ 1. Let σn(x) =√

Var(Ŝn(x)), and define Wn as in (8) with cn(x, g) = 1/(σn(x)
√

nhd
n). Also de-

fine Cn(x) = [Ŝn(x) − c(α)σn(x),∞) where c(α) is a constant specified later with
α ∈ (0,1) a confidence level. Assume that the bandwidth hn is chosen in such a
way that

sup
x∈I

|E[Ŝn(x)] − p(x)|
σn(x)

= o
(
log−1/2 n

)
.(10)

Conditions like (10) are typically referred to as under-smoothing (see [29],
page 1130 for related discussion). Then

P
(
p(x) ∈ Cn(x),∀x ∈ I

) ≤ P
(
Wn ≤ c(α) + o

(
log−1/2 n

))
= P

(
W̃n ≤ c(α) + o

(
log−1/2 n

))+ o(1)(11)

= P
(
W̃n ≤ c(α)

)+ o(1),
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and likewise P(p(x) ∈ Cn(x), ∀x ∈ I) ≥ P(W̃n ≤ c(α)) − o(1), under the condi-
tions specified in Remark 3.2 where W̃n is defined in Proposition 3.1. Here, the last
equality in (11) follows from the anticoncentration inequality for Gaussian pro-
cesses (see Lemma A.1 in the supplemental material [12]) together with the fact
that E[W̃n] = O(

√
logn). Hence, Cn(·) is a one-sided uniform confidence band of

level α if we set c(α) to be the (1 − α)-quantile of the distribution of W̃n, which
in turn can be estimated via a bootstrap procedure; see our companion paper [13].
Another way is to use a bound on the (1 −α)-quantile of W̃n using sharp deviation
inequalities available to Gaussian processes, which leads to analytic construction
of confidence bands; see, for example, [14] for this approach. In some applica-
tions, the distribution of the approximating Gaussian process is completely known,
and in that case the distribution of W̃n can be simulated via a direct Monte Carlo
method; see [52] for such examples. Finally, we mention that there are alternative,
yet more conservative, approaches on construction of confidence bands based on
nonasymptotic concentration inequalities (and not on Gaussian approximation);
see [39] and [32].

3.2. Series empirical processes. Here, we consider the following problem. Let
(η1,X1), . . . , (ηn,Xn) be i.i.d. random variables taking values in the product space
E ×R

d , where (E,AE) is an arbitrary measurable space. Suppose that the support
of X1 is normalized to be [0,1]d , and for each K ≥ 1, there are K basis functions
ψK,1, . . . ,ψK,K defined on [0,1]d . Let ψK(x) = (ψK,1(x), . . . ,ψK,K(x))T . Ex-
amples of such basis functions are Fourier series, splines, Cohen–Daubechies–Vial
(CDV) wavelet bases [15], Hermite polynomials and so on. Let Kn be a sequence
of positive constants such that Kn → ∞ as n → ∞. Let G be a class of measurable
functions E →R such that E[g2(η1)] < ∞ and E[g(η1)|X1] = 0 a.s. for all g ∈ G,
and let I be an arbitrary Borel measurable subset of [0,1]d . Suppose that there are
sequences of Kn × Kn matrices A1n(g) and A2n(g) indexed by g ∈ G. We assume
that smin(A2n(g)) > 0 for all g ∈ G. In what follows, we let smin(A) and smax(A)

denote the minimum and maximum singular values of a matrix A, respectively.
Consider the following empirical process:

Sn(x, g) = ψKn(x)T A1n(g)T

|A2n(g)ψKn(x)|
[

1√
n

n∑
i=1

g(ηi)ψ
Kn(Xi)

]
, x ∈ I, g ∈ G,

which we shall call the “series empirical process” (we shall formally follow the
convention 0/0 = 0). The problem here is the Gaussian approximation of the
supremum of this series empirical process:

Wn := sup
(x,g)∈I×G

Sn(x, g).

We address this problem in what follows. The study of distributional approxima-
tion of this statistic is motivated by inference problems for functions using series
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(or sieve) estimation. See Examples B.1 and B.2 in the supplemental material [12]
for concrete examples, coming from nonparametric conditional mean and quantile
estimation using the series method. These examples explain and motivate various
forms of Sn arising in mathematical statistics.

Returning to the general setting, let Bn be a centered Gaussian process indexed
by I × G with covariance function

E
[
Bn(x, g)Bn(x̌, ǧ)

]
(12)

= αn(x, g)T E
[
g(η1)ǧ(η1)ψ

Kn(X1)ψ
Kn(X1)

T ]αn(x̌, ǧ),

where αn(x, g) = A1n(g)ψKn(x)/|A2n(g)ψKn(x)|. It is expected that under suit-
able regularity conditions, there is a sequence W̃n of random variables such that

W̃n
d= sup(x,g)∈I×G Bn(x, g) and as n → ∞, |Wn − W̃n| P→ 0. We shall establish

the validity of this approximation with explicit rates.
We make the following assumptions.

(C1) G is a pointwise measurable VC type class of functions E →R with mea-
surable envelope G such that E[g2(η1)] < ∞ and E[g(η1)|X1] = 0 a.s. for all
g ∈ G.

(C2) There exist some constants c1,C1 > 0 such that smax(A2n(g)) ≤ C1 and
smin(A2n(g)) ≥ c1 for all g ∈ G and n ≥ 1.

(C3) ξn := supx∈[0,1]d |ψKn(x)| ∨ 1 < ∞ and there exists a constant C2 > 0

such that smax(E[ψKn(X1)ψ
Kn(X1)

T ]) ≤ C2 for all n ≥ 1. The map (x, g) 	→
A1n(g)ψKn(x)/|A2n(g)ψKn(x)| =: αn(x, g) is Lipschitz continuous with Lips-
chitz constant ≤ Ln(≥ 1) in the following sense:∣∣αn(x, g) − αn(x̌, ǧ)

∣∣ ≤ Ln

{|x − x̌| + (
E
[(

g(η1) − ǧ(η1)
)2])1/2}

,
(13)

∀x, x̌ ∈ [0,1]d, ∀g, ǧ ∈ G.

Here, ξn and Ln are allowed to diverge as n → ∞.
(C4) log ξn = O(logn) and logLn = O(logn) as n → ∞.

For many commonly used basis functions such as Fourier series, splines and
CDV wavelet bases, ξn = O(

√
Kn) as n → ∞; see, for example, [30] and [45].

The Lipschitz condition (13) is satisfied if infx∈[0,1]d |ψKn(x)| ≥ c2 > 0, |ψKn(x)−
ψKn(x̌)| ≤ L1n|x − x̌|, and ‖A1n(g) − A1n(ǧ)‖op ∨ ‖A2n(g) − A2n(ǧ)‖op ≤
L2n(E[(g(η1) − ǧ(η1))

2])1/2, where c2 > 0 is a fixed constant and L1n,L2n are
sequences of constants possibly divergent as n → ∞ (‖A‖op denotes the operator
norm of a matrix A). Then (13) is satisfied with Ln = O(L1n ∨ L2n). Assump-
tion (C4) states mild growth restrictions on Kn and Ln, and is usually satisfied.

PROPOSITION 3.3 (Gaussian approximation to suprema of series empirical
processes). Suppose that assumptions (C1)–(C4) are satisfied. Moreover, sup-
pose either (i) G is bounded (i.e., ‖G‖∞ < ∞), or (ii) E[Gq(η1)] < ∞ for some
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q ≥ 4 and supx∈[0,1]d E[G4(η1)|X1 = x] < ∞. Then for every n ≥ 1, there is a
tight Gaussian random variable Bn in �∞(I × G) with mean zero and covari-
ance function (12), and there exists a sequence W̃n of random variables such that

W̃n
d= sup(x,g)∈I×G Bn(x, g) and as n → ∞,

|Wn − W̃n| =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

OP

{
n−1/6ξ1/3

n logn

+ n−1/4ξ
1/2
n log5/4 n + n−1/2ξn log3/2 n

}
, (i),

OP

{
n−1/6ξ1/3

n logn

+ n−1/4ξ
1/2
n log5/4 n + n−1/2+1/qξn log3/2 n

}
, (ii).

REMARK 3.4 (Discussion and comparisons with other approximations). Pro-
position 3.3 is a new result, and its principal attractive feature is the weak require-
ment on the number of series functions Kn [recall that, e.g., for Fourier series,
splines, and CDV wavelet bases, we have ξn = O(

√
Kn)]. Another approach to

deduce a result similar to Proposition 3.3 is to apply Yurinskii’s coupling (see
Theorem 4.2 ahead) to random vectors g(ηi)ψ

Kn(Xi), which, however, requires a

rather stringent restriction on Kn, namely K5
n/n → 0, for ensuring |Wn −W̃n| P→ 0

even in the simplest case where E = R and g(η) = η. See, for example, [14], The-
orem 7. Moreover, the use of Rio’s [51], Theorem 1.1 here is not effective since
the total variation bound is large or difficult to control well in this example, which
results in restrictive conditions on Kn (also Rio’s [51], Theorem 1.1 does not cover
case (ii) where G may not be bounded).

REMARK 3.5 (Converting coupling to convergence in Kolmogorov distance).
As before, we can convert the results in Proposition 3.3 into convergence of
the Kolmogorov distance between the distributions of Wn and its Gaussian ana-
logue W̃n. Suppose that ξn = O(

√
Kn). By Dudley’s inequality for Gaussian pro-

cesses ([59], Corollary 2.2.8), it is not difficult to deduce that E[W̃n] = O(
√

logn)

under the assumptions of Proposition 3.3. Hence, if moreover there exists a con-
stant σ > 0 (independent of n) such that Var(Sn(x, g)) ≥ σ 2 for all (x, g) ∈ I ×G,
by Lemma 2.4, we have

|Wn − W̃n| = oP
(
log−1/2 n

) �⇒ sup
t∈R

∣∣P(Wn ≤ t) − P(W̃n ≤ t)
∣∣ = o(1).

Note that |Wn − W̃n| = oP(log−1/2 n) if Kn(logn)c/n → 0 in case (i) and if
Kn(logn)c/n1−2/q → 0 in case (ii), where c > 0 is some constant. These require-
ments on Kn are mild, in view of the fact that at least Kn/n → 0 is needed for
consistency (in the L2-norm) of the series estimator (see [31]).

REMARK 3.6 (Constructing under-smoothed uniform confidence bands). Re-
sults in Proposition 3.3 can be used for constructing one- and two-sided uniform
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confidence bands for various nonparametric functions, such as density, conditional
mean and conditional quantile, estimated via series methods following the same
arguments as those described in Remark 3.3 above.

4. A coupling inequality for maxima of sums of random vectors. The main
ingredient in the proof of Theorem 2.1 is a new coupling inequality for maxima of
sums of random vectors, which is stated below.

THEOREM 4.1 (A coupling inequality for maxima of sums of random vectors).
Let X1, . . . ,Xn be independent random vectors in R

p with mean zero and finite
absolute third moments, that is, E[Xij ] = 0 and E[|Xij |3] < ∞ for all 1 ≤ i ≤ n

and 1 ≤ j ≤ p. Consider the statistic Z = max1≤j≤p

∑n
i=1 Xij . Let Y1, . . . , Yn be

independent random vectors in R
p with Yi ∼ N(0,E[XiX

T
i ]), 1 ≤ i ≤ n. Then for

every β > 0 and δ > 1/β , there exists a random variable Z̃
d= max1≤j≤p

∑n
i=1 Yij

such that

P
(|Z − Z̃| > 2β−1 logp + 3δ

) ≤ ε + Cβδ−1{B1 + β(B2 + B3)}
1 − ε

,

where ε = εβ,δ is given by

ε =
√

e−α(1 + α) < 1, α = β2δ2 − 1 > 0,(14)

and

B1 = E

[
max

1≤j,k≤p

∣∣∣∣∣
n∑

i=1

(
XijXik −E[XijXik])

∣∣∣∣∣
]
,

B2 = E

[
max

1≤j≤p

n∑
i=1

|Xij |3
]
,

B3 =
n∑

i=1

E

[
max

1≤j≤p
|Xij |3 · 1

(
max

1≤j≤p
|Xij | > β−1/2

)]
.

A different, though related, Gaussian approximation inequality was obtained in
Theorem 2.1 of [10] with different techniques. We have chosen to present a new
theorem here because (1) it is based on the Stein’s exchangeable pairs technique,
which is well understood in the literature, and our theorem might be helpful for
deriving further results in the future; (2) applying Theorem 2.1 of [10] here would
require solving a complicated optimization problem to find the best bound for the
coupling problem; and (3) our new theorem does not require truncating normal
random vectors, allowing us to avoid an additional layer of complication in the
final application to empirical processes.

The following corollary is useful for many applications. Recall n ≥ 3.
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COROLLARY 4.1 (An applied coupling inequality for maxima of sums of ran-
dom vectors). Consider the same setup as in Theorem 4.1. Then for every δ > 0,

there exists a random variable Z̃
d= max1≤j≤p

∑n
i=1 Yij such that

P
(|Z − Z̃| > 16δ

)
(15)

� δ−2{B1 + δ−1(B2 + B4) log(p ∨ n)
}

log(p ∨ n) + logn

n
,

where B1 and B2 are as in Theorem 4.1, and

B4 =
n∑

i=1

E

[
max

1≤j≤p
|Xij |3 · 1

(
max

1≤j≤p
|Xij | > δ/ log(p ∨ n)

)]
.

PROOF. In Theorem 4.1, take β = 2δ−1 log(p ∨ n). Then α = β2δ2 − 1 =
4 log2(p ∨ n) − 1 ≥ 2 log(p ∨ n) (recall n ≥ 3 > e), so that ε ≤ 2 log(p ∨ n)/(p ∨
n) ≤ 2n−1 logn. This completes the proof. �

Theorem 4.1 is a coupling inequality similar in nature to Yurinskii’s [60] cou-
pling for sums of random vectors (as opposed to the maxima of such vectors as
in the current theorem). Before proving Theorem 4.1, let us first recall Yurinskii’s
coupling inequality.

THEOREM 4.2 (Yurinskii’s coupling for sums of random vectors; [60]; see
also [38]). Consider the same setup as in Theorem 4.1. Let Sn = ∑n

i=1 Xi . Then

for every δ > 0, there exists a random vector Tn
d= ∑n

i=1 Yi such that

P
(|Sn − Tn| > 3δ

)
� B0

(
1 + | log(1/B0)|

p

)
,

where B0 = pδ−3 ∑n
i=1 E[|Xi |3].

For the proof, see [49], Section 10.4. Because of the general fact that
max1≤j≤n |xj | ≤ |x| for x ∈ R

p , one has∣∣∣ max
1≤j≤p

(Sn)j − max
1≤j≤n

(Tn)j

∣∣∣ ≤ max
1≤j≤p

∣∣(Sn − Tn)j
∣∣ ≤ |Sn − Tn|.

Hence, if we take Z̃ = max1≤j≤p(Tn)j ,

P
(|Z − Z̃| > 3δ

)
� B0

(
1 + | log(1/B0)|

p

)
.(16)

Unfortunately, when p is large, the right-hand side needs not be small. This is
because B0 is proportional to

∑n
i=1 E[|Xi |3] and this quantity may be larger than

what we want.
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To better understand the difference between (15) and (16), consider the situa-
tion where p is indexed by n and p = pn → ∞ as n → ∞. Moreover, consider
the simple case where Xij = xij /

√
n and |xij | ≤ b (xij are random; b is a fixed

constant). Then B1 = O(n−1/2 log1/2 pn),B2 + B4 = O(n−1/2). The former es-
timate is deduced from the fact that, using the symmetrization and the maximal
inequality for Rademacher averages conditional on X1, . . . ,Xn (use [59], Lem-
mas 2.2.2 and 2.2.7), one has B1 �

√
log(1 + p)E[max1≤j≤p(

∑n
i=1 X4

ij )
1/2]. On

the other hand, pn

∑n
i=1 |Xi |3 = O(n−1/2p

5/2
n ). Therefore, to make |Z − Z̃| P→ 0,

the former (15) allows pn to be of an exponential order [pn can be as large as
logpn = o(n1/4); hence, for example, pn can be of order enα

for 0 < α < 1/4],
while the latter (16) restricts pn to be pn = o(n1/5). Note that, under the expo-
nential moment condition, instead of Yurinskii’s coupling, we can use Zaitsev’s
coupling inequality ([61], Theorem 1.1) but it still requires pn = o(n1/5) to de-

duce that |Z − Z̃| P→ 0 (although by using Zaitsev’s coupling, we indeed have an
exponential type inequality for |Z − Z̃|).

REMARK 4.1 (Connection to Theorem 2.1). The importance of Theorem 4.1
in the context of the proof of Theorem 2.1 is described as follows. In the proof
of Theorem 2.1, we make a finite approximation of F by a minimal ε‖F‖P,2-net
of (F, eP ) and apply Theorem 4.1 to the “discretized” empirical process; hence
in this application, p = N(F, eP , ε‖F‖P,2). The fact that Theorem 4.1 allows for
“large” p means that a “finer” discretization is possible, and as a result, the bound
in Theorem 2.1 depends on the covering number N(F, eP , ε‖F‖P,2) only through
its logarithm: logN(F, eP , ε‖F‖P,2).

We will use a version of Strassen’s theorem to prove Theorem 4.1. We state it for
the reader’s convenience. The proof of this result can be found in the supplemental
material [12].

LEMMA 4.1 (An implication of Strassen’s theorem). Let μ and ν be Borel
probability measures on R, and let V be a random variable defined on a prob-
ability space (�,A,P) with distribution μ. Suppose that the probability space
(�,A,P) admits a uniform random variable on (0,1) independent of V . Let ε > 0
and δ > 0 be two positive constants. Then there exists a random variable W , de-
fined on (�,A,P), with distribution ν such that P(|V −W | > δ) ≤ ε if and only if
μ(A) ≤ ν(Aδ) + ε for every Borel subset A of R.

PROOF OF THEOREM 4.1. For notational convenience, write eβ = β−1 logp.
Construct Y1, . . . , Yn independent of X1, . . . ,Xn. By Lemma 4.1, the conclusion
follows if we can prove that for every Borel subset A of R,

P(Z ∈ A) ≤ P
(
Z̃∗ ∈ A2eβ+3δ)+ ε + Cβδ−1{B1 + β(B2 + B3)}

1 − ε
,
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where Z̃∗ := max1≤j≤p

∑n
i=1 Yij . Let Sn = ∑n

i=1 Xi and Tn = ∑n
i=1 Yi . Fix any

Borel subset A of R. We divide the proof into several steps.

Step 1. We approximate the nonsmooth map x 	→ 1A(max1≤j≤p xj ) by a
smooth function. The first step is to approximate the map x 	→ max1≤j≤p xj

by a smooth function. Consider the function Fβ :Rp → R defined by Fβ(x) =
β−1 log(

∑p
j=1 eβxj ), which gives a smooth approximation of max1≤j≤p xj ; this

function arises in definition of free energy in spin glasses [48]. Indeed, an elemen-
tary calculation gives the following inequality: for every x = (x1, . . . , xp)T ∈R

p ,

max
1≤j≤p

xj ≤ Fβ(x) ≤ max
1≤j≤p

xj + β−1 logp.(17)

See [6]. Hence, we have

P(Z ∈ A) ≤ P
(
Fβ(Sn) ∈ Aeβ

) = E
[
1A

eβ

(
Fβ(Sn)

)]
.

Step 2. The next step is to approximate the indicator function t 	→ 1A(t) by a
smooth function. This step is rather standard.

LEMMA 4.2. Let β > 0 and δ > 1/β . For every Borel subset A of R,
there exists a smooth function g :R → R such that ‖g′‖∞ ≤ δ−1,‖g′′‖∞ ≤
Cβδ−1,‖g′′′‖∞ ≤ Cβ2δ−1, and

(1 − ε)1A(t) ≤ g(t) ≤ ε + (1 − ε)1A3δ (t) ∀t ∈ R,

where ε = εβ,δ is given by (14).

PROOF. The proof is due to [49], Lemma 10.18 (page 248). Let ρ(·, ·) denote
the Euclidean distance on R. Then consider the function h(t) = (1−ρ(t,Aδ)/δ)+.
Note that h is Lipschitz continuous with Lipschitz constant ≤ δ−1. Construct a
smooth approximation of h(t) by

g(t) = β√
2π

∫
R

h(s)e−(1/2)β2(s−t)2
ds = 1√

2π

∫
R

h
(
t + β−1z

)
e−(1/2)z2

dz.

Then the map t 	→ g(t) is infinitely differentiable, and∥∥g′∥∥∞ ≤ δ−1,
∥∥g′′∥∥∞ ≤ Cβδ−1,

∥∥g′′′∥∥∞ ≤ Cβ2δ−1.

The rest of the proof is the same as [49], Lemma 10.18 and is omitted. �

Apply Lemma 4.2 to A = Aeβ to construct a suitable function g. Then

E
[
1A

eβ

(
Fβ(Sn)

)] ≤ (1 − ε)−1
E
[
g ◦ Fβ(Sn)

]
.

Step 3. The next step uses Stein’s method to compare E[g ◦ Fβ(Sn)] and E[g ◦
Fβ(Tn)]. The following argument is inspired by [7], Theorem 7. We first make
some complimentary computations. Here, for a smooth function f :Rp → R, we
use the notation ∂jf (x) = ∂f (x)/∂xj , ∂j ∂kf (x) = ∂2f (x)/∂xj ∂xk , and so on.
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LEMMA 4.3. Let β > 0. For every g ∈ C3(R),

p∑
j,k=1

∣∣∂j ∂k(g ◦ Fβ)(x)
∣∣ ≤ ∥∥g′′∥∥∞ + 2

∥∥g′∥∥∞β,(18)

p∑
j,k,l=1

∣∣∂j ∂k ∂l(g ◦ Fβ)(x)
∣∣ ≤ ∥∥g′′′∥∥∞ + 6

∥∥g′′∥∥∞β + 6
∥∥g′∥∥∞β2.(19)

Moreover, let Ujkl(x) := sup{|∂j ∂k ∂l(g ◦ Fβ)(x + y)| :y ∈ R
p, |yj | ≤ β−1,1 ≤

∀j ≤ p}. Then

p∑
j,k,l=1

Ujkl(x) ≤ C
(∥∥g′′′∥∥∞ + ∥∥g′′∥∥∞β + ∥∥g′∥∥∞β2).(20)

PROOF. Let δjk = 1 (j = k). A direct calculation gives

∂jFβ(x) = πj (z), ∂j ∂kFβ(x) = βwjk(x), ∂j ∂k ∂lFβ(x) = β2qjkl(x),

where

πj (x) = eβxj /

p∑
k=1

eβxk , wjk(x) = (πj δjk − πjπk)(x),

qjkl(x) = (
πjδjlδjk − πjπlδjk − πjπk(δjl + δkl) + 2πjπkπl

)
(x).

By these expressions, we have

πj (x) ≥ 0,

p∑
j=1

πj (x) = 1,

p∑
j,k=1

∣∣wjk(x)
∣∣ ≤ 2,

p∑
j,k,l=1

∣∣qjkl(x)
∣∣ ≤ 6.

Inequalities (18) and (19) follow from these relations and the following computa-
tion:

∂j (g ◦ Fβ)(x) = (
g′ ◦ Fβ

)
(x)πj (x),

∂j ∂k(g ◦ Fβ)(x) = (
g′′ ◦ Fβ

)
(x)πj (x)πk(x) + (

g′ ◦ Fβ

)
(x)βwjk(x),

∂j ∂k ∂l(g ◦ Fβ)(x) = (
g′′′ ◦ Fβ

)
(x)πj (x)πk(x)πl(x)

+ (
g′′ ◦ Fβ

)
(x)β

(
wjk(x)πl(x) + wjl(x)πk(x)

+ wkl(x)πj (x)
)

+ (
g′ ◦ Fβ

)
(x)β2qjkl(x).

For the last inequality (20), it is standard to see that whenever |yj | ≤ β−1,1 ≤
∀j ≤ p, we have πj (x + y) ≤ e2πj (x), from which the desired inequality follows.

�
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For i = 1, . . . , n, let X′
i be an independent copy of Xi . Let I be a uniform

random variable on {1, . . . , n} independent of all the other variables. Define S′
n :=

Sn − XI + X′
I . For λ ∈ R

p ,

E
[
e
√−1λT S′

n
] = 1

n

n∑
i=1

E
[
e
√−1λT (Sn−Xi)

]
E
[
e
√−1λT X′

i
]

= 1

n

n∑
i=1

∏
j �=i

E
[
e
√−1λT Xj

]
E
[
e
√−1λT Xi

]

=
n∏

i=1

E
[
e
√−1λT Xi

]
= E

[
e
√−1λT Sn

]
.

Hence, S′
n

d= Sn. Also with Xn
1 = {X1, . . . ,Xn},

E
[
S′

n − Sn|Xn
1
] = E

[
X′

I − XI |Xn
1
] = −n−1Sn,(21)

and

E
[(

S′
n − Sn

)(
S′

n − Sn

)T |Xn
1
] = E

[(
X′

I − XI

)(
X′

I − XI

)T |Xn
1
]

= 1

n

n∑
i=1

E
[(

X′
i − Xi

)(
X′

i − Xi

)T |Xn
1
]

= 1

n

n∑
i=1

(
E
[
XiX

T
i

]+ XiX
T
i

)
(22)

= 2

n

n∑
i=1

E
[
XiX

T
i

]+ 1

n

n∑
i=1

(
XiX

T
i −E

[
XiX

T
i

])

= 2

n

n∑
i=1

E
[
XiX

T
i

]+ n−1V,

where V is the p × p matrix defined by V = (Vjk)1≤j,k≤p = ∑n
i=1(XiX

T
i −

E[XiX
T
i ]).

For notational convenience, write f = g ◦ Fβ . Consider

h(x) =
∫ 1

0

1

2t
E
[
f (

√
tx + √

1 − tTn) − f (Tn)
]
dt.

Then Lemma 1 of [43] implies
p∑

j=1

xj ∂jh(x) −
p∑

j,k=1

n∑
i=1

E[XijXik] ∂j ∂kh(x) = f (x) −E
[
f (Tn)

]
,
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and especially

E
[
f (Sn)

]−E
[
f (Tn)

] = E

[ p∑
j=1

n∑
i=1

Xij ∂jh(Sn)

]
(23)

−E

[ p∑
j,k=1

n∑
i=1

E[XijXik] ∂j ∂kh(Sn)

]
.

Denote by ∇h(x) and Hessh(x) the gradient vector and the Hessian matrix of
h(x), respectively. Let

R = h
(
S′

n

)− h(Sn) − (
S′

n − Sn

)T ∇h(Sn)

− 2−1(S′
n − Sn

)T (Hessh(Sn)
)(

S′
n − Sn

)
.

Then one has

0 = nE
[
h
(
S′

n

)− h(Sn)
] (

as S′
n

d= Sn

)
= nE

[(
S′

n − Sn

)T ∇h(Sn) + 2−1(S′
n − Sn

)T (Hessh(Sn)
)(

S′
n − Sn

)+ R
]

= nE
[
E
[(

S′
n − Sn

)T |Xn
1
]∇h(Sn)

+ 2−1 Tr
((

Hessh(Sn)
)
E
[(

S′
n − Sn

)(
S′

n − Sn

)T |Xn
1
])+ R

]
= E

[
−

p∑
j=1

n∑
i=1

Xij ∂jh(Sn) +
p∑

j,k=1

n∑
i=1

E[XijXik] ∂j ∂kh(Sn)

]

+E

[
1

2

p∑
j,k=1

Vjk ∂j ∂kh(Sn) + nR

] (
by (21) and (22)

)

= −E
[
f (Sn)

]+E
[
f (Tn)

]+E

[
1

2

p∑
j,k=1

Vjk ∂j ∂kh(Sn) + nR

] (
by (23)

)
that is,

E
[
f (Sn)

]−E
[
f (Tn)

] = E

[
1

2

p∑
j,k=1

Vjk ∂j ∂kh(Sn) + nR

]
.

Using Lemma 4.3, one has∣∣∣∣∣
p∑

j,k=1

Vjk ∂j ∂kh(Sn)

∣∣∣∣∣ ≤ max
1≤j,k≤p

|Vjk|
p∑

j,k=1

∣∣∂j ∂kh(Sn)
∣∣

≤ Cβδ−1 max
1≤j,k≤p

|Vjk|,
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and with 
i := (
i1, . . . ,
ip)T := X′
i − Xi ,

∣∣E[nR]∣∣ = ∣∣∣∣∣E
[

1

2

n∑
i=1

p∑
j,k,l=1


ij
ik
il(1 − θ)2 ∂j ∂k ∂lh(Sn + θ
i)

]∣∣∣∣∣(
θ ∼ U(0,1) independent of all the other variables

)
(24)

≤ 1

2
E

[
n∑

i=1

p∑
j,k,l=1

|
ij
ik
il| ·
∣∣ ∂j ∂k ∂lh(Sn + θ
i)

∣∣].

Let χi = 1(max1≤j≤p |
ij | ≤ β−1) and χc
i := 1 − χi . Then

(24) = 1

2
E

[
n∑

i=1

χi∗
]

+ 1

2
E

[
n∑

i=1

χc
i ∗

]
=: 1

2

[
(A) + (B)

]
.

Observe that

(A) ≤ E

[ p∑
j,k,l=1

max
1≤i≤n

(
χi · ∣∣∂j ∂k ∂lh(Sn + θ
i)

∣∣)× max
1≤j,k,l≤p

n∑
i=1

|
ij
ik
il|
]

≤ Cβ2δ−1
E

[
max

1≤j,k,l≤p

n∑
i=1

|
ij
ik
il|
] (

by (20)
)

≤ Cβ2δ−1
E

[
max

1≤j≤p

n∑
i=1

|
ij |3
]

≤ Cβ2δ−1
E

[
max

1≤j≤p

n∑
i=1

|Xij |3
]

= Cβ2δ−1B2,

and

(B) ≤ Cβ2δ−1
n∑

i=1

E

[
χc

i max
1≤j≤p

|
ij |3
] (

by (19)
)

≤ Cβ2δ−1
n∑

i=1

E

[
χc

i max
1≤j≤p

|Xij |3
]

(by symmetry).

As χc
i ≤ 1(max1≤j≤p |Xij | > β−1/2) + 1(max1≤j≤p |X′

ij | > β−1/2), we have

E

[
χc

i max
1≤j≤p

|Xij |3
]
≤ E

[
max

1≤j≤p
|Xij |3 · 1

(
max

1≤j≤p
|Xij | > β−1/2

)]
(25)

+E

[
max

1≤j≤p
|Xij |3

]
· P

(
max

1≤j≤p
|Xij | > β−1/2

)
.

We here recall Chebyshev’s association inequalities stated in the following lemma.
For a proof, see, for example, Theorem 2.14 in [4].
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LEMMA 4.4 (Chebyshev’s association inequalities). Let ϕ and ψ be functions
defined on an interval I in R, and let ξ be a random variable such that P(ξ ∈
I) = 1. Suppose that E[|ϕ(ξ)|] < ∞,E[|ψ(ξ)|] < ∞ and E[|ϕ(ξ)ψ(ξ)|] < ∞.
Then Cov(ϕ(ξ),ψ(ξ)) ≥ 0 if ϕ and ψ are monotone in the same direction, and
Cov(ϕ(ξ),ψ(ξ)) ≤ 0 if ϕ and ψ are monotone in the opposite direction.

Since the maps t 	→ t3 and t 	→ 1(t > β−1/2) are nondecreasing on [0,∞), the
second term on the right-hand side of (25) is not larger than the first term. Hence,

(B) ≤ Cβ2δ−1
n∑

i=1

E

[
max

1≤j≤p
|Xij |3 · 1

(
max

1≤j≤p
|Xij | > β−1/2

)]
= Cβ2δ−1B3.

Therefore, we conclude that∣∣E[f (Sn)
]−E

[
f (Tn)

]∣∣ ≤ Cβδ−1{B1 + β(B2 + B3)
}
.

Step 4. Combining steps 1–3, one has

P(Z ∈ A) ≤ (1 − ε)−1
E
[
g ◦ Fβ(Tn)

]+ Cβδ−1{B1 + β(B2 + B3)}
1 − ε

≤ P
(
Fβ(Tn) ∈ Aeβ+3δ)+ ε + Cβδ−1{B1 + β(B2 + B3)}

1 − ε

(by construction of g)

≤ P
(
Z̃∗ ∈ A2eβ+3δ)+ ε + Cβδ−1{B1 + β(B2 + B3)}

1 − ε

(
by (17)

)
.

This completes the proof. �

5. Inequalities for empirical processes. In this section, we shall present
some inequalities for empirical processes that will be used in the proofs of The-
orem 2.1 and Lemma 2.2. These inequalities are of interest in their own rights.
Consider the same setup as in Section 2, that is, let X1, . . . ,Xn be i.i.d. random
variables taking values in a measurable space (S,S) with common distribution P .
Let F be a pointwise measurable class of functions S → R, to which a measur-
able envelope F is attached. In this section, however, we do not assume that F
is P -centered. Consider the empirical process Gnf = n−1/2 ∑n

i=1(f (Xi) − Pf ).
Let σ 2 > 0 be any positive constant such that supf ∈F Pf 2 ≤ σ 2 ≤ ‖F‖2

P,2. Let
M = max1≤i≤n F (Xi).

THEOREM 5.1 (A useful deviation inequality for suprema of empirical pro-
cesses). Suppose that F ∈ Lq(P ) for some q ≥ 2. Then for every t ≥ 1, with
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probability > 1 − t−q/2,

‖Gn‖F ≤ (1 + α)E
[‖Gn‖F ]

+ K(q)
[(

σ + n−1/2‖M‖q

)√
t + α−1n−1/2‖M‖2t

] ∀α > 0,

where K(q) > 0 is a constant depending only on q .

PROOF. The theorem essentially follows from [3], Theorem 12, which states
that ∥∥(‖Gn‖F −E

[‖Gn‖F ])+∥∥q � √
q(� + σ) + qn−1/2(‖M‖q + σ

)
,

where �2 = E[‖n−1 ∑n
i=1(f (Xi) − Pf )2‖F ]. By Lemma 7 of the same paper,

�2 ≤ σ 2 + 64n−1/2‖M‖2E
[‖Gn‖F ]+ 32n−1‖M‖2

2.

Hence, using the simple inequality 2
√

ab ≤ βa + β−1b, ∀β > 0, one has∥∥(‖Gn‖F −E
[‖Gn‖F ])+∥∥q � √

qβE
[‖Gn‖F ]+ √

q
(
1 + β−1)n−1/2‖M‖2

+ √
qσ + qn−1/2(‖M‖q + σ

)
.

Therefore, by Markov’s inequality, for every t ≥ 1, with probability > 1 − t−q ,

‖Gn‖F ≤ E
[‖Gn‖F ]+ (‖Gn‖F −E

[‖Gn‖F ])+
≤ (1 + C

√
qβt)E

[‖Gn‖F ]+ C
√

q
(
1 + β−1)n−1/2‖M‖2t

+ C
√

qσ t + Cqn−1/2(‖M‖q + σ
)
t ∀β > 0.

The final conclusion follows from taking β = C−1q−1/2t−1α. �

The proof of Lemma 2.2 relies on the following moment inequality for suprema
of empirical processes, which is an extension of [58], Theorem 2.1, to possibly
unbounded classes of functions (Theorem 3.1 of [58] derives a moment inequality
applicable to the case where the envelope F has q > 4 moments, but the form of
the inequality in Theorem 5.2 is more convenient in our applications; note that
Theorem 5.2 only requires F ∈ L2(P ), as opposed to F ∈ Lq(P ) with q > 4 in
Theorem 3.1 of [58], and Theorem 5.2 is not covered by [58]). Recall the uniform
entropy integral J (δ,F,F ).

THEOREM 5.2 (A useful maximal inequality). Suppose that F ∈ L2(P ). Let
δ = σ/‖F‖P,2. Then

E
[‖Gn‖F ] � J (δ,F,F )‖F‖P,2 + ‖M‖2J

2(δ,F,F )

δ2
√

n
.
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In the supplemental material [12], we give a full proof of Theorem 5.2 for the
sake of completeness, although the proof is essentially similar to the proof of The-
orem 2.1 in [58].

The bound in Theorem 5.2 will be explicit as soon as a suitable bound on the
covering number is available. For example, the following corollary is an exten-
sion of [26], Proposition 2.1. For its proof, see Appendix A.5 (supplemental mate-
rial [12]).

COROLLARY 5.1 (Maximal inequality specialized to VC type classes). Con-
sider the same setup as in Theorem 5.2. Suppose that there exist constants A ≥ e

and v ≥ 1 such that supQ N(F, eQ, ε‖F‖Q,2) ≤ (A/ε)v,0 < ∀ε ≤ 1. Then

E
[‖Gn‖F ] �

√
vσ 2 log

(
A‖F‖P,2

σ

)
+ v‖M‖2√

n
log

(
A‖F‖P,2

σ

)
.

6. Proof of Theorem 2.1. We make use of Lemma 4.1 to prove the the-
orem. Construct a tight Gaussian random variable GP in �∞(F) given in as-
sumption (A3), independent of X1, . . . ,Xn. We note that one can extend GP to
the linear hull of F in such a way that GP has linear sample paths (see [19],
Theorem 3.1.1). Let {f1, . . . , fN } be a minimal ε‖F‖P,2-net of (F, eP ) with
N = N(F, eP , ε‖F‖P,2). Then for every f ∈ F , there exists a function fj ,1 ≤
j ≤ N such that eP (f,fj ) < ε‖F‖P,2. Recall Fε = {f − g :f,g ∈ F, eP (f, g) <

ε‖F‖P,2} and define

Zε = max
1≤j≤N

Gnfj , Z̃∗ = sup
f ∈F

GP f, Z̃∗ε = max
1≤j≤N

GP fj .

Observe that |Z − Zε| ≤ ‖Gn‖Fε and |Z̃∗ε − Z̃∗| ≤ ‖GP ‖Fε .
We shall apply Corollary 4.1 to Zε . Recall that log(N ∨ n) = Hn(ε). Then for

every Borel subset A of R and δ > 0,

P
(
Zε ∈ A

)− P
(
Z̃∗ε ∈ A16δ)

� δ−2{B1 + δ−1(B2 + B4)Hn(ε)
}
Hn(ε) + n−1 logn,

where

B1 = n−1
E

[
max

1≤j,k≤N

∣∣∣∣∣
n∑

i=1

(
fj (Xi)fk(Xi) − P(fjfk)

)∣∣∣∣∣
]
,

B2 = n−3/2
E

[
max

1≤j≤N

n∑
i=1

∣∣fj (Xi)
∣∣3],

B4 = n−1/2
E

[
max

1≤j≤N

∣∣fj (X1)
∣∣3 · 1

(
max

1≤j≤N

∣∣fj (X1)
∣∣ > δ

√
nHn(ε)

−1
)]

.
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Clearly, B1 ≤ n−1/2
E[‖Gn‖F ·F ],B2 ≤ n−1/2κ3, and B4 ≤ n−1/2P [F 31(F >

δ
√

nHn(ε)
−1)]. Hence, choosing δ > 0 in such a way that

Cδ−2n−1/2
E
[‖Gn‖F ·F

]
Hn(ε) ≤ γ

4
,

Cδ−3n−1/2κ3H 2
n (ε) ≤ γ

4
,

that is,

δ ≥ C max
{
γ −1/2n−1/4(

E
[‖Gn‖F ·F

])1/2
H 1/2

n (ε), γ −1/3n−1/6κH 2/3
n (ε)

}
,

we have

P
(
Zε ∈ A

) ≤ P
(
Z̃∗ε ∈ A16δ)

+ γ

2
+ γ

4
κ−3P

[
F 31

(
F > δ

√
nHn(ε)

−1)]+ C logn

n
.

Note that δ ≥ cγ −1/3n−1/6κH
2/3
n (ε), so that

P
[
F 31

(
F > δ

√
nHn(ε)

−1)] ≤ P
[
F 31

(
F/κ > cγ −1/3n1/3Hn(ε)

−1/3)].
Hence,

P
(
Zε ∈ A

) ≤ P
(
Z̃∗ε ∈ A16δ)+ γ

2

+ γ

4
P
[
(F/κ)31

(
F/κ > cγ −1/3n1/3Hn(ε)

−1/3)]+ C logn

n
(26)

=: P(Z̃∗ε ∈ A16δ)+ γ

2
+ error.

By Theorem 5.1, with probability > 1 − γ /4,

‖Gn‖Fε ≤ K(q)
{
φn(ε) + (

ε‖F‖P,2 + n−1/2‖M‖q

)
γ −1/q

(27)
+ n−1/2‖M‖2γ

−2/q} =: a,

where K(q) is a constant that depends only on q . Moreover, by the Borell–
Sudakov–Tsirel’son inequality ([59], Proposition A.1), with probability > 1−γ /4,
we have

‖GP ‖Fε ≤ φn(ε) + ε‖F‖P,2

√
2 log(4/γ ) =: b.(28)

Therefore, for every Borel subset A of R,

P(Z ∈ A) ≤ P
(
Zε ∈ Aa)+ γ

4

(
by (27)

)
≤ P

(
Z̃∗ε ∈ Aa+16δ)+ 3

4
γ + error

(
by (26)

)
≤ P

(
Z̃∗ ∈ Aa+b+16δ)+ γ + error

(
by (28)

)
.

The conclusion follows from Lemma 4.1.
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