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Condensation phenomenon is often observed in social networks such as
Twitter where one “superstar” vertex gains a positive fraction of the edges,
while the remaining empirical degree distribution still exhibits a power law
tail. We formulate a mathematically tractable model for this phenomenon that
provides a better fit to empirical data than the standard preferential attachment
model across an array of networks observed in Twitter. Using embeddings in
an equivalent continuous time version of the process, and adapting techniques
from the stable age-distribution theory of branching processes, we prove limit
results for the proportion of edges that condense around the superstar, the
degree distribution of the remaining vertices, maximal nonsuperstar degree
asymptotics and height of these random trees in the large network limit.

1. Retweet graphs and a mathematically tractable model. Our goal here is
to provide a simple model that captures the most salient features of a natural graph
that is determined by the Twitter traffic generated by public events. In the Twitter
world (or Twitterverse), each user has a set of followers; these are people who have
signed-up to receive the tweets of the user. Here, our focus is on retweets; these
are tweets by a user who forwards a tweet that was received from another user.
A retweet is sometimes accompanied with comments by the retweeter.

Let us first start with an empirical example that contains all the characteristics
observed in a wide array of such retweet networks. Data was collected during the
Black Entertainment Television (BET) Awards of 2010. We first considered all
tweets in the Twitterverse that were posted between 10 AM and 4 PM (GMT) on
the day of the ceremony, and we then restricted attention to all the tweets in the
Twitterverse that contained the term “BET Awards.” We view the posters of these
tweets as the vertices of an undirected simple graph where there is an edge between
vertices v and w if w retweets a tweet received from v, or vice-versa. We call this
graph the retweet graph.

In the retweet graph for the 2010 BET Awards, one finds a single giant com-
ponent (see Figure 1). There are also many small components (with five or fewer
vertices) and a large number of isolated vertices. The giant component is also ap-
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FIG. 1. Giant component of the 2010 BET Awards retweet graph.

proximately a tree in the sense that if we remove 91 edges from the graph of 1724
vertices and 1814 edges we obtain an honest tree. Finally, the most compelling
feature of this empirical tree is that it has one vertex of exceptionally large degree.
This “superstar” vertex has degree 992, so it is connected to more than 57% of the
vertices. As it happens, this “superstar” vertex corresponds to the pop-celebrity
Lady Gaga who received an award at the ceremony.

1.1. Superstar model for the giant component. Our main observation is that
the qualitative and quantitative features of the giant component in a wide array of
retweet graphs may be captured rather well by a simple one-parameter model. The
construction of the model only makes an obvious modification of the now classic
preferential attachment model, but this modification turns out to have richer conse-
quences than its simplicity would suggest. Naturally, the model has the “superstar”
property baked into the cake, but a surprising consequence is that the distribution
of the degrees of the nonsuperstar vertices is quite different from what one finds in
the preferential attachment model.

Our model is a graph evolution process that we denote by {Gn, n = 1,2, . . .}.
The graph G1 consists of the single vertex v0, that we call the superstar. The graph
G2 then consists of the superstar v0, a nonsuperstar v1, and an edge between the
two vertices. For n ≥ 2, we construct Gn+1 from Gn by attaching the vertex vn
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to the superstar v0 with probability 0 < p < 1 while with probability q = 1 − p

we attach vn to a nonsuperstar according to the classical preferential attachment
rule. That is, with probability q the nonsuperstar vn is attached to one of the non-
superstars {v1, v2, . . . , vn−1} with probability that is proportional to the degree of
vi in Gn.

1.2. Organization of the paper. In the next section, we state the main results
for the Superstar model. In Section 3, we consider previous work on Twitter net-
works and explore the connection between our model and existing models. In this
section, we also describe two variants of the basic Superstar model (linear attach-
ment and uniform attachment) that can be rigorously analyzed using the same
mathematical methodology developed in this paper. In Section 4, we study the
performance of this model on various real networks constructed from the Twitter-
verse and we compare our model to the standard preferential attachment model.
Section 5 is the heart of the paper. Here, we construct a special two-type continu-
ous time branching process that turns out to be equivalent to the Superstar model
and analyze various structural properties of this continuous time model. In Sec-
tion 5.2, we prove the equivalence between the continuous time model and the
Superstar model through a surgery operation. In Section 6, we complete the proofs
of all the main results.

2. Mathematical results for the Superstar model. Let {Gn, n = 1,2, . . .}
denote the graph process that evolves according to the Superstar model with pa-
rameter 0 < p < 1. We shall think about all the processes constructed on a single
probability space through the obvious sequential growth mechanism so that one
can make almost sure statements. The degree of the vertex v in the graph G is
denoted by deg(v,G). The first result describes asymptotics of the condensation
phenomenon around the superstar. The result is an immediate consequence of the
definition of the model and the strong law of large numbers. Since it is a defining
element of our model, we set the result out as a theorem.

THEOREM 2.1 (Superstar strong law). With probability one, we have

lim
n→∞

1

n
deg(v0,Gn) = p.(2.1)

The next result describes the asymptotic degree distribution.

THEOREM 2.2 (Degree distribution strong law). With probability one, we have

lim
n→∞

1

n
card

{
1 ≤ j ≤ n : deg(vj ,Gn) = k

} = νSM(k,p),

where νSM(·,p) is the probability mass function defined on {1,2, . . .} by

νSM(k,p) = 2 − p

1 − p
(k − 1)!

k∏
i=1

(
i + 2 − p

1 − p

)−1

.
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REMARK 2.3. One should note that the above theorem implies that the degree
distribution of the nonsuperstar vertices has a power law tail. Specifically,

2 − p

1 − p
(k − 1)!

k∏
i=1

(
i + 2 − p

1 − p

)−1

∼ Cpk−β as k → ∞,

for the constants

β = 3 + p/(1 − p), Cp =
(

2 − p

1 − p

)2

�

(
2 − p

1 − p

)
,

where �(x) is the gamma function. This should be contrasted with the standard
preferential attachment model (with no superstar attachment) whose degree dis-
tribution scales like k−3 as k → ∞. Thus, although one might expect that this
variation in the attachment scheme implies that a fraction 1 − p of the vertices
still continue to perform preferential attachment, and thus the degree distribution
should still have a power law exponent of 3; in reality, this attachment scheme has
a major effect on the degree distribution. One requires a careful analysis of the
different time-scales of the associated continuous time branching process to tease
out asymptotic properties of the model.

The next theorem concerns the largest degree amongst all the nonsuperstar ver-
tices {vi : 1 ≤ i ≤ n}. Let

ϒn := max
1≤i≤n

deg(vi,Gn).

THEOREM 2.4 (Maximal nonsuperstar degree). Let γ = (1 − p)/(2 − p).
There exists a random variable �∗ with P(0 < �∗ < ∞) = 1 such that

lim
n→∞

1

nγ
ϒn

P−→ �∗.

The almost sure linear growth of the degree of the superstar (Theorem 2.1) is
endemic to our construction. For standard preferential attachment (with no super-
star attachment mechanism), the maximal degree grows like �P (n1/2) (cf. [19]).
Thus, the superstar attachment affects the scaling of the maximal degree as well.

Recall that Gn is a tree. View this tree as rooted at the superstar vertex v0.
Write H(Gn) for the graph distance of the vertex furthest from the root. Thus,
H(Gn) is the height of the random tree Gn. Theorem 2.1 implies that a fraction p

of the vertices in the network are directly connected to the superstar. One might
wonder if this reflects a general property of the network, namely does H(Gn) =
Op(1) as n → ∞? The next theorem shows that in fact the height of the tree
increases logarithmically in the size of the network. Let Lam(·) be the Lambert
special function (cf. [9]) and recall that Lam(1/e) ≈ 0.2784.
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THEOREM 2.5 (Logarithmic height scaling). With probability one, we have

lim
n→∞

1

logn
H(Gn) = 1 − p

Lam(1/e)(2 − p)
.

3. Related results and questions. In this section, we briefly discuss the con-
nections between this model and some of the more standard models in the literature
as well as extensions of the results in the paper. We also discuss previous empirical
research done on the structure of Twitter networks.

3.1. Preferential attachment. This has become one of the standard workhorses
in the complex networks community. It is well nigh impossible to compile even a
representative list of references; see [27] where it was introduced in the combi-
natorics community, [4] for bringing this model to the attention of the networks
community, [12, 21] for survey level treatments of a wide array of models, [5]
for the first rigorous results on the asymptotic degree distribution and [6, 8, 24]
and [13] and the references therein for more general models and results. Let us
briefly describe the simplest model in this class of models. One starts with two
vertices connected by a single edge as in the Superstar model. Then each new ver-
tex joins the system by connecting to a single vertex in the current tree by choosing
this extant vertex with probability proportional to its current degree. In this case,
one can show [5] that there exists a limiting asymptotic degree distribution, namely
with probability one

lim
n→∞

1

n
card

{
1 ≤ j ≤ n : deg(vj ,Gn) = k

} = 4

k(k + 1)(k + 2)
.

Thus, the asymptotic degree distribution exhibits a degree exponent of three. The
Superstar model changes the degree exponent of the nonsuperstar vertices from
three to (3 − 2p)/(1 − p) (see Theorem 2.4). Further, for the preferential attach-
ment model, the maximal degree scales like n1/2 [19], while for the Superstar
model, the maximal nonsuperstar degree scales like nγ with γ = (1 −p)/(2 − p).

3.2. Statistical estimation. We use real data on various Twitter streams to ana-
lyze the empirical performance of the Superstar model and compare this with typ-
ical preferential attachment models in Section 4. Estimating the parameters from
the data raises a host of new interesting statistical questions. See [29] where such
questions were first raised and likelihood based schemes were proposed in the con-
text of usual preferential attachment models. Considering how often such models
are used to draw quantitative conclusions about real networks, proving consistency
of such procedures as well as developing methodology to compare different esti-
mators in the context of models of evolving networks would be of great interest to
a number of different fields.
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3.3. Stable age distribution. The proofs for the degree distribution build heav-
ily on the analysis of the stable age distribution for a single type continuous time
branching process in [20]. We extend this analysis to the context of a two-type vari-
ant whose evolution mirrors the discrete type model. Using Perron–Frobenius the-
ory, a wide array of structural properties are known about such models (see [16]).
The models used in our proof technique are relatively simpler and we can give
complete proofs using special properties of the continuous time embeddings, in-
cluding special martingales that play an integral role in the treatment (see, e.g.,
Proposition 5.4). There have been a number of recent studies on various prefer-
ential attachment models using continuous time branching processes; see, for ex-
ample, [2, 11, 25]. For the usual preferential attachment model (p = 0), [23] uses
embeddings in continuous time and results on the first birth time in such branching
processes (see [17]) to show that the height satisfies

H(Gn)

logn

a.s.−→ 1

2 Lam(1/e)
.

Here, we use a similar technique, but we first need to extend [17] to the setting of
multitype branching processes.

3.4. Previous analysis of Twitter networks. The majority of work analyzing
Twitter networks has been empirical in nature. In one of the earliest studies of
Twitter networks [18], the authors looked at the degree distribution of the different
networks in Twitter, including retweet networks associated with individual topics.
Power-laws were observed, but no model was proposed to describe the network
evolution. In [1], the link between maximum degree and the range of time for
which a topic was popular or “trending” was investigated. Correlations between
the degree in retweet graphs and the Twitter follower graph for different users
was studied in [7]. These empirical analyses provided many important insights
into the structure of networks in Twitter. However, the lack of a model to describe
the evolution of these networks is one of the important unanswered questions in
this field, and the rigorous analysis of such a model has not yet been considered.
Our work here presents one of the first such models that produces predictions that
match Twitter data and also provides a rigorous theoretical analysis of the proposed
model.

3.5. Related models. One of the main aims of this work is to develop mathe-
matical techniques that extend in a straightforward fashion to variants of the Su-
perstar model. We state results for two such models in this section. We will de-
scribe how to extend the proofs for the Superstar model to these variants in Sec-
tion 6.4. We first start with the superstar linear preferential attachment. Fix a pa-
rameter a > −1. The linear preferential attachment model is described as follows:
As before new vertices attach to vertex v0 with probability p. With probability
q := 1 − p the new vertex attaches to one of the extant vertices v, with probability
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proportional to the d(v) + a where d(v) is the present degree of the vertex. As
before, by construction the degree of the superstar v0 scales like ∼ pn as n → ∞.
The techniques in the paper extend with simple modifications to prove the follow-
ing.

THEOREM 3.1 (Linear superstar preferential attachment). Fix a > −1 and
p ∈ (0,1). In the linear Superstar model, one has for all k ≥ 1, with probability
one

lim
n→∞

1

n
card

{
1 ≤ j ≤ n : deg(vj ,Gn) = k

}
= 2 − p + a

1 − p

∏k−1
j=1(j + a)∏k

i=1(i + ((2 − p)/(1 − p))(1 + a))
.

Further, for γ (a) = (1 − p)/(2 − p + a), there exists a random variable 0 <

�∗(a) < ∞ a.s. such that the largest degree other than the superstar satisfies

n−γ (a) max{1≤i≤n} deg(vi)
P−→ �∗(a) as n → ∞.

Similarly, one can show that the height of the linear Superstar model scales like
κ(a) logn for a limit constant 0 < κ(a) < ∞.

We next consider the case of the less realistic Superstar model with uniform
attachment. Here, each new vertex attaches to the superstar v0 with probability p or
to one of the remaining vertices uniformly at random (irrespective of the degree).
Although less realistic in the context of social networks, this is the superstar variant
of the random recursive tree a model of a growing tree where each new vertex
attaches to a uniformly chosen extant vertex. The random recursive tree has been a
model of great interest in the combinatorics and computer science community (see
the survey [26]). This model differs from the previous models with the limiting
degree distribution possessing exponential tails while the maximal degree only
growing logarithmically in the size of the network.

THEOREM 3.2 (Superstar uniform attachment). Let q := 1 − p. For the uni-
form attachment model, one has for all k ≥ 1 that with probability one

lim
n→∞

1

n
card

{
1 ≤ j ≤ n : deg(vj ,Gn) = k

} = 1

1 + q

(
q

1 + q

)k−1

,

and the maximal nonsuperstar degree satisfies

lim
n→∞

max1≤i≤n deg(vi)

logn

P−→ 1

log (1 + q)/q
.
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TABLE 1
For each event E, we list the number of vertices [|V (G0

E)|], number of edges [|E(G0
E)|] and

maximal degree [dmax(G0
E)] in the giant component G0

E , along with the Twitter name of the
superstar corresponding to the maximal degree

E |V (G0
E)| |E(G0

E)| dmax(G0
E) Superstar

1 7365 7620 512 warrenellis
2 3995 4176 362 anison
3 2847 2918 566 FIFAWorldCupTM
4 2354 2414 657 taytorswift13
5 1897 1929 256 FIFAcom
6 1724 1814 992 ladygaga
7 1659 2059 56 MMFlint
8 1408 1459 269 FIFAWorldCupTM
9 1025 1045 247 FIFAWorldCupTM

10 1024 1050 229 SkyNewsBreak
11 705 710 113 realmadrid
12 505 521 186 Wimbledon
13 239 247 38 cnnbrk

4. Retweet graphs for different public events. We collected tweets from the
Twitter firehose for thirteen different public events, such as sports matches and mu-
sical performances [10]. The Twitter firehose is the full feed of all public tweets
that is accessed via Twitter’s Streaming Application Programming Interface [28].
By using the Twitter firehose, we were able to access all public tweets in the Twit-
terverse.

For each public event E ∈ {1,2, . . . ,13}, we kept only tweets that have an event
specific term and used those tweets to construct the corresponding retweet graph,
denoted by GE . Our analysis focuses on the giant component of the retweet graph,
denoted by G0

E . In Table 1 we present important properties of each retweet graph’s
giant component including the number of vertices, number of edges, maximal de-
gree, and the Twitter name of the superstar corresponding to the maximal degree.
A more detailed description of each event, including the event specific term, can
be found in the Appendix.

The sizes of the giant components range from 239 to 7365 vertices. The giant
components of the retweet graphs corresponding to these events are not trees, but
they are very tree-like in that they have only a few small cycles. In Table 1, one
sees that for each giant component, the deletion of a small number of edges will
result in an honest tree.

4.1. Maximal degree. The maximal degree in the retweet graphs is larger than
would be expected under preferential attachment. Write n = |V (G0

E)| for the num-
ber of vertices in the giant component. For a preferential attachment graph with n
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FIG. 2. Plot of dmax(G0
E) versus n = |V (G0

E)| for the retweet graphs of each event. The events are

labeled with the same numbers as in Table 1. Also shown is a plot of n1/2.

vertices, it is known that the maximal degree scales as n1/2. Figure 2 shows a plot
of the maximal degree in the giant component dmax(G

0
E) and a plot of n1/2 versus

n for the retweet graphs. It can be seen from the figure that the sublinear growth
predicted by preferential attachment does not capture the superstar effect in these
retweet graphs.

4.2. Estimating p and the degree distribution. The asymptotic degree distri-
bution of the Superstar model is known (via Theorem 2.2) once the superstar pa-
rameter p is specified. We were interested in seeing, for each event E, how well
this model predicted the observed degree distribution in G0

E . For an event E and
degree k ∈ {1,2, . . .}, we define the empirical degree distribution of the giant com-
ponent as

ν̂E(k) = 1

|V (G0
E)| card

{
vj ∈ V

(
G0

E

)
: deg

(
vj ,G

0
E

) = k
}
.

To predict the degree distribution using the Superstar model, we need a value for p.
We estimate p for each event E as p̂(E) = dmax(G

0
E)/|V (G0

E)|. Using p = p̂(E)

we obtain the Superstar model degree distribution prediction for each event E and
degree k, νSM(k, p̂) from Theorem 2.2. For comparison, we also compare ν̂E(k) to
the preferential attachment degree distribution νPA(k) = 4(k(k + 1)(k + 2))−1 [5].
Figure 3 shows the empirical degree distribution for the retweet graphs of four
of the events, along with the predictions for the two models. As can be seen, the
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FIG. 3. Plots of the empirical degree distribution for the giant component of the retweet graphs
[νE(k)], and the estimates of the Superstar model [νSM(k, p̂(E))] and preferential attachment
[νPA(k)] for four different events. Each plot is labeled with the event specific term and p̂(E).

Superstar model predictions seem to qualitatively match the empirical degree dis-
tribution better than preferential attachment. To obtain a more quantitative com-
parison of the degree distribution, we calculate the relative error of these models
for each value of degree k. The relative error for event E and degree k is defined
as relerrorSM(k,E) = |νSM(k, p̂) − ν̂E(k)|(νSM(k, p̂))−1 for the Superstar model
and relerrorPA(k,E) = |νPA(k) − ν̂E(k)|(νPA(k))−1 for preferential attachment. In
Figure 4, we show the relative errors for different values of k. As can be seen, the
relative error of the Superstar model is lower than preferential attachment for de-
grees k = 1,2,3,4 and for all of the events with the exception of k = 4 and E = 7.
There is a clear connection between the superstar degree and the degree distribu-
tion in the giant component of these retweet graphs that is captured well by the
Superstar model.

5. Analysis of a special two-type branching process. Let us now start the
proofs of the main theorems of Section 2. The core of the proof is a special two-
type continuous time branching processes together with a surgery operation that
establishes the equivalence between this continuous time construction and the orig-
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FIG. 4. Plots of the relative errors of the degree distribution predictions of preferential attachment
and the Superstar model for 13 retweet graphs. The errors are plotted for degree k = 1,2,3,4.

inal Superstar model. We start by describing this construction and then prove the
equivalence between the two models.

5.1. A two-type continuous branching process. We now consider a two-type
continuous time branching process BP(t) whose types we call red and blue. For
each fixed t ≥ 0, we shall view BP(t) as a random tree representing the genealog-
ical structure of the population till time t . This includes parent child relationships
of vertices as well as the color of each vertex. We use |BP(t)| for the total number
of individuals in the population by time t . Every individual survives forever. We
shall also let {BP(t)}t≥0 be the associated filtration of the process. Let us now de-
scribe the construction. At time t = 0, we begin with a single red vertex that we
call v1. For any fixed time 0 < t < ∞, let Vt denote the vertex set of BP(t). Each
vertex v ∈ Vt in the branching process gives birth according to a Poisson process
with rate

λ(v, t) = cB(v, t) + 1,

where cB(v, t) is equal to the number of blue children of vertex v at time t . Also
let cR(v, t) denote the number of red children of vertex v by time t . At the moment
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of a new birth, this new vertex is colored red with probability p and colored blue
with probability q = 1 − p. Finally, for n ≥ 1, define the stopping times

τn = inf
{
t :

∣∣BP(t)
∣∣ = n

}
.(5.1)

Since the counting process |BP(t)| is a nonhomogenous Poisson process with a
rate that is always greater than or equal to one, the stopping times τn are almost
surely finite. This completes the construction of the branching process.

5.2. Equivalence between the branching process and the Superstar model.
Before diving into properties of our two-type branching process constructed as
above, let us show how the Superstar model can be obtained from the above
branching process via a surgery operation. We start with an informal description of
the connection between the Superstar model and the branching process BP(·). To
describe this connection, we introduce a new vertex v0 namely the superstar vertex
to the system. Recall that v1 was the root (the initial progenitor) of the branch-
ing process BP(·). We connect vertex v1, to the superstar v0 [v0 played no role in
the evolution of BP(·)]. This forms the Superstar model G2 on 2 vertices. All the
red vertices in the process BP(·) correspond to the neighbors of the superstar v0.
The true degree of a (nonsuperstar) vertex in Gn+1 is one plus the number of its
blue children in BP(τn), where the additional factor of one comes from the edge
connecting this vertex to its parent. By elementary properties of the exponential
distribution, the dynamics of BP(·) imply that each new vertex that is born is red
(connected to the superstar v0) with probability p, else with probability q = 1 − p

is blue and connected to one of the remaining extant (nonsuperstar) vertices with
probability proportional to the current degree of that vertex, thus increasing the
degree of this chosen vertex by one. These dynamics are the same as the Superstar
model.

Formally, our surgery will take the tree BP(τn) and modify it to get an (n + 1)-
vertex tree Sn that has the same distribution as the Superstar model Gn+1. From
this, we will be able to read off the probabilistic properties of the superstar tree
Gn+1.

We label the vertices of BP(τn) as {v1, v2, . . . , vn} in order of their birth. Now
add a new vertex v0 to this set to give us the vertex set of the tree Sn. One can
anticipate that v0 will be our superstar. Next, we define the edge set for Sn. To
do this, we take each red vertex v in BP(τn), remove the edge connecting v to
its parent (if it has one) and then we create a new edge between v and v0. To
complete the construction of Sn, it only remains to ignore the color of the vertices.
An illustration of this surgery for n = 6 is given in Figure 5.

PROPOSITION 5.1 (Equivalence from surgery operation). The sequence of
trees {Sn :n ≥ 1} has the same distribution as the Superstar model {Gn+1 :n ≥ 1}.
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FIG. 5. The surgery passing from BP(τn) to Sn+1 and Gn+1 for n = 6.

PROOF. Think of Sn as being rooted at v0 so that every vertex except v0 in Sn

has a unique parent. The parent of all the red individuals is the superstar v0 while
the parents of all of the other blue individuals are unchanged from BP(τn).

The induction hypothesis will be that Sn has the same distribution as Gn+1 and
the degree of each nonsuperstar vertex in Sn is the number of blue children it
possesses plus one for the edge connecting the vertex to its parent in Sn. Condition
on BP(τn) and fix v ∈ BP(τn). By the property of the exponential distribution, the
probability that the next vertex born into the system is born to vertex v is given

λ(v, τn)∑
u∈BP(τn) λ(u, τn)

= cB(v, τn) + 1∑
u∈BP(τn) cB(u, τn) + 1

.

Thus a new vertex vn+1 attaches to vertex v with probability proportional to the
present degree of v in Sn. Further, with probability p, this vertex is colored red,
whence by the surgery operation, the edge to vn+1 is deleted and this new vertex is
connected to the superstar v0. In this case the degree of v in Sn is unchanged. With
probability 1 − p this new vertex is colored blue, whence the surgery operation
does not disturb this vertex so that the degree of vertex v is increased by one.
These are exactly the dynamics of Gn+2 conditional on Gn+1. By induction the
result follows. �

For the rest of the paper, we shall assume Gn+1 is constructed through this
surgery process from BP(τn) and suppress Sn.

5.3. Elementary properties of the branching process. The previous section set
up an equivalence between the Superstar model and the two type continuous time
branching process. The aim of this section is to prove properties of this two type
branching process. Section 6 uses these results to complete the proof of the main
results for the Superstar model.

For t ≥ 0, write R(t) and B(t) for the total number of red and blue vertices,
respectively, in BP(t). By construction of the process {BP(t) : t ≥ 0}, every new
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vertex is independently colored red with probability p and blue with probability
1 − p. In particular, the number of blue vertices B(t) is just a time change of a
random walk with Bernoulli(1 − p) increments. Thus, by the strong law of large
numbers

B(t)

|BP(t)|
a.s.−→ 1 − p as t → ∞.(5.2)

Before moving onto an analysis of the branching process, we introduce the Yule
process.

DEFINITION 5.2 (Rate a Yule process). Fix a > 0. A rate a Yule process is
defined as a pure birth process Yua(·) that starts with a single individual Yua(0) = 1
and with the rate of creating new individuals proportional to the number of present
individuals in the population, namely

P
(
Yua(t + dt) − Yua(t) = 1|{Yua(s) : 0 ≤ s ≤ t

}) = aYua(t) dt.

The Yule process is a well-studied probabilistic object. The next lemma col-
lects some of its standard properties. In particular, part (a) follows from [22], Sec-
tion 2.5, while (b) follows from [3], Theorem 1, III.7.

LEMMA 5.3 (Yule process). (a) For each t > 0, the random variable Yua(t)

has a geometric distribution with parameter e−at , that is,

P
(
Yua(t) = k

) = e−at (1 − e−at )k−1
, k ≥ 1.

(b) The process (e−atYua(t) : 0 ≤ t < ∞) is an L
2 bounded martingale with respect

to the natural filtration and e−atYua(t)
a.s.−→ W ′, where W ′ has an exponential

distribution with mean one.

Now define the process

M(t) = e−(2−p)t (∣∣BP(t)
∣∣ + B(t)

)
, t ≥ 0.

Note that M(0) = 1.

PROPOSITION 5.4 [Asymptotics for BP(t)]. The process (M(t) : t ≥ 0)

is a positive L
2 bounded martingale with respect to the natural filtration

{BP(t) : t ≥ 0}, and thus converges almost surely and in L
2 to a random variable

W ∗ with E(W ∗) = 1. The random variable W ∗ is positive with probability one.
Further, one has

lim
t→∞ e−(2−p)t

∣∣BP(t)
∣∣ = W ∗

2 − p
with probability one.(5.3)
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PROOF. We write Z(t) = |BP(t)| and Y(t) = Z(t) + B(t) so that M(t) =
e−(2−p)tY (t) and we let dM(t) = M(t + dt) − M(t). We then have

dM(t) = e−(2−p)t dY (t) − (2 − p)e−(2−p)tY (t) dt.(5.4)

The processes Z(t),B(t) are all counting processes. For such processes, we shall
use the infinitesimal shorthand E(dZ(t)|BP(t)) = a(t) dt to denote the fact that
Z(t) − ∫ t

0 a(s) ds is a local martingale.
Now the counting process Z(t) = |BP(t)| evolves by jumps of size one with

P
(
dZ(t) = 1|BP(t)

) =
( ∑

v∈BP(t)

(
cB(v, t) + 1

))
dt,(5.5)

where cB(v, t) always denotes the number of blue children of vertex v at time t .
The number of blue vertices can be written as B(t) = ∑

v∈BP(t) cB(v, t) since every
blue vertex is an offspring of a unique vertex in BP(t). Using (5.5) results in

E
(
dZ(t)|BP(t)

) = (
Z(t) + B(t)

)
dt.

Since B(t) ≤ Z(t), we see that the rate of producing new individuals is bounded
by 2|BP(t)|. Thus, the process |BP(t)| can be stochastically bounded by a Yule
process with a = 2. This implies by Lemma 5.3 that for all t ≥ 0 we have
E(|BP(t)|2) < ∞.

Let us now analyze the process B(t). This process increases by one when the
new vertex born into BP(·) is colored blue that happens with probability 1 − p.
Thus, we get

E
(
dB(t)|BP(t)

) = (1 − p)
(
Z(t) + B(t)

)
dt.

Combining the last two equation gives us

E
(
dY (t)|BP(t)

) = (2 − p)Y (t) dt.

Using (5.4) now gives that E(dM(t)|BP(t)) = 0. This completes the proof that
M(·) is a martingale.

Next, we check that M(·) is an L
2 bounded martingale. Since Y 2(t + dt) can

take values (Y (t)+ 1)2 or (Y (t)+ 2)2 at rate pY(t) and (1 −p)Y (t), respectively,
we have

E
(
d
(
M2(t)

)|BP(t)
) = (4 − 3p)e−(2−p)tM(t) dt.

Thus, the process U(t) defined by

U(t) = M2(t) − (4 − 3p)

∫ t

0
e−(2−p)sM(s) ds,

is a martingale. Taking expectations and noting that since M(·) is a martingale,
with M(0) = 1 thus E(M(s)) = 1 for all s, we get

E
(
M2(t)

) = 1 + (4 − 3p)

∫ t

0
e−(2−p)s ds ≤ 1 + 4 − 3p

2 − p
.
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This L2 boundedness implies that there exists a random variable W ∗ such that

e−(2−p)t (∣∣BP(t)
∣∣ + B(t)

) a.s.,L2−→ W ∗.
Using (5.2) shows that e−(2−p)t |BP(t)| → W ∗/(2 − p). To ease notation, write

W := W ∗

(2 − p)
.

To complete the proof of the proposition we need to show that W is strictly posi-
tive. First, note that by L

2 convergence, E(W ∗) = 1. So in particular P(W = 0) =
r < 1. Let ζ1 < ζ2 < · · · be the times of birth of children (blue or red) of the root
vertex v1 and write BPi (·) for the subtree consisting of the ith child and its descen-
dants. Then

e−(2−p)t
∣∣BP(t)

∣∣ =
∞∑
i=1

e−(2−p)ζi
[
e−(2−p)(t−ζi)

∣∣BPi (t − ζi)
∣∣]1{ζi ≤ t} + e−(2−p)t .

Thus, as t → ∞, for any fixed K ≥ 1, we have

W ≥st

K∑
i=1

e−(2−p)ζiWi,

where {Wi}i≥1 are independent and identically distributed with the same distribu-
tion as W (independent of {ζi}i≥1) and ≥st denotes stochastic domination. This
independence gives us

P(W = 0) ≤ P(Wi = 0 ∀1 ≤ i ≤ K) = rK.

Letting K → ∞ that P(W = 0) = 0. �

Before ending this section, we derive some elementary properties of the off-
spring of an individual in BP(·). Let σv be the time of birth of vertex v in BP(·).
Recall that cB(v, σv + s) and cR(v, σv + s) denote the number of blue and red
children, respectively, of this vertex s units of time after the birth of v. Since the
distribution of the point process representing offspring of each vertex is the same,
these random variables have the same distribution irrespective of the choice of the
vertex v. Define the process

M∗(t) := cR(v, σv + t) − p

∫ t

0

(
cB(v, σv + s) + 1

)
ds, t ≥ 0.

LEMMA 5.5 (Offspring point process: distributional properties).

(a) Conditional on BP(σv) we have(
cB(v, σv + t) : t ≥ 0

) d= (
Yu1−p(t) − 1 : t ≥ 0

)
,

and thus one has

E
(
cB(v, σv + t)

) = e(1−p)t − 1, t ≥ 0.
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(b) The process (M∗(t) : t ≥ 0) is a martingale with respect to the filtration
{BP(σv + t) : t ≥ 0} and one has

E
(
cR(v, σv + t)

) = p

1 − p

(
e(1−p)t − 1

)
, t ≥ 0.

PROOF. Part (a) is obvious from construction. To prove (b), note that

E
(
dcR(v, σv + t)|BP(t + σv)

) = p
(
cB(v, σv + t) + 1

)
dt,

since vertex v creates a new child at rate cB(v, σv + t) + 1 which is then marked
red with probability p. �

5.4. Convergence for blue children proportions. The equivalence between
BP(·) and the Superstar model described in Section 5.2 will imply that the number
of vertices with degree k + 1 in Gn+1 is the same as the number of vertices in
BP(τn) with exactly k blue children. We will need general results on the asymp-
totics of such counts for the process BP(t) as t → ∞. Using the equivalence cre-
ated by the surgery operation, one can then transfer these results to asymptotics
for the degree distribution of the original Superstar model. Now recall the random
variable W ∗ obtained as the martingale limit obtained in Proposition 5.4. Define
p≥k(∞) as

p≥k(∞) = k!
k∏

i=1

(
i + 2 − p

1 − p

)−1

.(5.6)

THEOREM 5.6. Fix k ≥ 1 and let Z≥k(t) denote the number of vertices in
BP(t) that have at least k blue children. Then

e−(2−p)tZ≥k(t)
a.s.−→ p≥k(∞)

W ∗

2 − p

as t → ∞.

PROOF. The proof uses a variant of the reproduction martingale technique
developed in [20] and it is framed in two steps:

(a) Proving convergence of expectations of the desired quantities to the expec-
tations of the asserted limits. This is proved in Section 5.4.1.

(b) Bootstrapping this convergence to almost sure convergence using laws of
large numbers. This is proved in Section 5.4.2.

We start with some notation required to carry out this program. For a vertex v,
write

ζ v = ((
ξv
i ,Cv

i

)
: i ≥ 1

)
,
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for the point process representing offspring (times of birth and types) of this ver-
tex v. More precisely here ξv

i denotes the time of birth of the ith offspring of vertex
v after the birth of vertex v into the branching process {BP(t) : t ≥ 0} while Cv

i de-
notes the color of this child (red or blue). Thus, the ith offspring of vertex v is
born into BP at time σv + ξv

i . Write ξv = (ξv
i : i ≥ 1) for the process that just keeps

track of times of birth of these offspring for vertex v. Note that the point processes
ζ v and ξv have the same distribution across vertices v. We shall use ζ := ζ v1 and
ξ := ξv1 to denote a generic point process with the above distributions. We shall
view ξ as a counting measure on (R+,B(R+)). For A ∈ B(R+), write ξ(A) for the
number of points in the set A. Define the corresponding intensity measure μ by

μ(A) := E
(
ξ(A)

)
, A ∈ B(R+).

We start with a simple lemma that has notable consequences.

LEMMA 5.7 (Renewal measure). For α = 2 − p, we have∫ ∞
0

e−αtμ(dt) = 1.

The measure defined by setting μα := e−αtμ(dt) is a probability measure and this
measure has expectation

∫ ∞
0 tμα(dt) = 1.

PROOF. As in Lemma 5.5, let cB(v1, t) and cR(v1, t) denote the number of red
and blue children, respectively, of vertex v1 by time t (note that σv1 = 0 ). Then by
definition, the intensity measure μ satisfies μ([0, t]) = E(cR(v1, t) + cB(v1, t)).
Further by Fubini’s theorem,∫ ∞

0
e−αtμ(dt) = α

∫ ∞
0

e−αtμ[0, t]dt.

Using the expressions for E(cB(v1, t)) and E(cR(v1, t)) from Lemma 5.5 com-
pletes the proof. The second assertion regarding the expectation follows similarly.

�

5.4.1. Convergence of expectations. The first step in the proof of Theorem 5.6
is convergence of expectations. This follows using standard renewal theory. We
setup notation that allows us to use the linearity of expectations to derive a renewal
equation. We start with the definition of a characteristic [14, 15] that we use to
count the number of vertices in the branching process with some fixed property.
For each vertex v ∈ BP(∞), let {φv(s) : s ≥ 0} be an independent and identically
distributed nonnegative stochastic process, with φv(s) measurable with respect to
{(ξv

i ,Cv
i ) : ξv

i ≤ s}. Thus, the value of the stochastic process at time s namely φv(s)

is determined by the set offspring of vertex v born before the age s of this vertex v.
The value φv(s) is referred to as the score of vertex v at age s [14], Section 6.9.

We write φ := φv1 to denote the process corresponding to the root when we would
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like to refer to a generic such process. Throughout we shall assume that φ(·) is
bounded and nonnegative, namely for some constant C < ∞,

φ(s) ≥ 0, φ(s) < C for all s ≥ 0.

Define

Zφ(t) = ∑
v∈BP(t)

φv(t − σv), t ≥ 0

for the branching process BP(·) counted according to characteristic φ. The main
examples of interest are:

(a) Total size: φ(s) = 1 for all s ≥ 0. This results in Zφ(t) = |BP(t)|, the total
size of the branching process by time t .

(b) Degree: φ(s) = 1{k or more blue children at age s} gives Zφ(t) = Z≥k(t),
the number of vertices in BP(t) with k or more blue children.

Now fix an arbitrary bounded characteristic φ. For fixed time t > 0, condition-
ing on the offspring process ζ := ζ v1 of vertex v1, the branching process counted
according to this characteristic satisfies the recursion

Zφ(t) = φv1(t) + ∑
ξ

v1
i ≤t

Z
(i)
φ

(
t − ξ

v1
i

)
,(5.7)

where Z
(i)
φ (·) d= Zφ(·) and are independent for i ≥ 1 and correspond to the con-

tribution of the descendants of the ith child of vertex v1. Taking expectations and
defining the function mφ(·) by mφ(t) := E(Zφ(t)), this function satisfies the re-
newal equation

mφ(t) = E
(
φ(t)

) +
∫ t

0
mφ(t − s)μ(ds).

Define

m̃φ(t) := e−αtmφ(t), t ≥ 0.

Lemma 5.7 and standard renewal theory ([14], Theorem 5.2.8) now imply the next
result.

PROPOSITION 5.8. For arbitrary bounded characteristics, writing α = (2 −
p) we have

lim
t→∞ m̃φ(t)=

∫ ∞
0

e−αs
E

(
φ(s)

)
ds := m̃φ(∞).

Applying this to the two examples which count the size of the branching process
and number of vertices with at least k blue children, we get the following result.
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COROLLARY 5.9. Taking the two characteristics of interest one gets for
φ(t) = 1

e−αt
E

(∣∣BP(t)
∣∣) → 1

α
as t → ∞

and for φ(t) = 1{k or more blue children at time t}
e−αt

E
(
Z≥k(t)

) → p≥k(∞)

α
as t → ∞,

with p≥k(∞) as in (5.6).

PROOF. The first assertion in the corollary is obvious [corresponding to the
case φ(·) ≡ 1]. To prove the second assertion regarding the number of blue ver-
tices, observe that the limit constant in Proposition 5.8 can be written as

1

α

∫ ∞
0

αe−αs
E

(
1{root v1 has k or more blue children at age s})ds

= 1

α
P

(
cB(v1, T ) ≥ k

)
,

where T is an exponential random variable with mean α−1 that is indepen-
dent of the counting process of the number blue offspring cB(v1, ·). Further, by
Lemma 5.5(a),

cB(v1, ·) d= Yu1−p(·) − 1,

where Yu1−p(·) is rate 1 − p Yule process. The interarrival times Xi between blue
children i and i + 1 are independent exponential random variables with mean
(1 − p)−1(i + 1)−1, independent of T . In particular P(cB(v1, T ) ≥ k) = P(T >∑k−1

j=0 Xj). Conditioning on the value of
∑k−1

j=0 Xj and using tail probabilities for
the exponential distribution shows that

P

(
T >

k−1∑
j=0

Xj

)
= E

(
exp

(
−α

k−1∑
j=0

Xj

))
=

k−1∏
j=0

E
(
exp(−αXj)

)
.

Using the Laplace transform of the exponential distribution, one can check that the
last expression equals p≥k(∞). �

5.4.2. Almost sure convergence. The aim of this section is to strengthen the
convergence of expectations to almost sure convergence. A key role is played by a
reproduction martingale, a close relative of the martingale used in [20] to analyze
single type branching processes as well as in [17] to analyze times of first birth
in generations. Let v1, v2, v3, . . . denote the vertices of BP(·) listed in the order
of their birth times and let σvi

denote the time at which vertex vi is born into
the branching process BP(·). Note that σv1 = 0. Recall that ξvi = (ξ

vi

1 , ξ
vi

2 , . . .)
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denotes the offspring point process of vi , namely the first offspring of vi is born at
time σvi

+ ξ
vi

1 , the second offspring of vi is born at time σvi
+ ξ

vi

2 and so on. To
ease notation, we shall write ζ (i) := ζ vi and ξ (i) := ξvi . Viewing ξ (i) as a random
counting measure on R+ and writing α = 2 − p, we have

ξ (i)
α :=

∞∑
j=1

exp
(−αξ

vi

j

) =
∫ ∞

0
e−αtξ (i)(dt).

For m ≥ 1, let F̃m be the sigma-algebra generated by vertices {v1, . . . , vm} and
their offspring processes, namely

F̃m := σ
({

ζ (i) : 1 ≤ i ≤ m
})

.

For m = 0, let F̃0 be the trivial sigma-field. Now define R̃0 = 1 and for m ≥ 0
define

R̃m+1 := R̃m + e
−ασvm+1

(
ξ (m+1)
α − 1

)
.

Let �m be the set of the first m individuals born and all of their offspring. One can
check that

R̃m = ∑
v∈�m

e−ασv −
m∑

j=1

e
−ασvj .(5.8)

Thus, R̃m is a weighted sum of children of the first m individuals with weight
e−ασx for vertex x, the individuals v1, v2, . . . , vm being excluded. In particular,
R̃m > 0 for all m. The next lemma shows that the sequence (R̃m :m ≥ 0) is much
more.

PROPOSITION 5.10 (Reproduction martingale). The sequence (R̃m :m ≥ 0) is
a nonnegative L

2 bounded martingale with respect to the filtration {F̃m :m ≥ 0}.
Thus, there exists a random variable R∞ with E(R∞) = 1 such that R̃m → R∞
almost surely and in L

2.

PROOF. By the choice of α = 2−p in Lemma 5.7 for i ≥ 1, we have E(ξ
(i)
α ) =∫ ∞

0 e−αtμ(dt) = 1. Further, σvm+1 is F̃m measurable while ξ
(m+1)
α is independent

of F̃m. This implies

E(R̃m+1 − R̃m|F̃m) = e
−ασvm+1E

(
ξ (m+1)
α − 1

) = 0.

By the orthogonality of the increments of the martingale Rm, we see that

E
(
(R̃m − 1)2) ≤ E

([
ξ (i)
α

]2)
E

(
m∑

i=1

e−2ασvi

)
.

Thus, to check L
2 boundedness it is enough to check that the right-hand side is

bounded. The following lemma bounds the right-hand side of the above equation
in two steps and completes the proof. �
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LEMMA 5.11. (a) Let ξα := ξv1
α and assume 0 < p < 1. Then E([ξα]2) < ∞.

(b) For any m, E(
∑m

i=1 e−2ασvi ) ≤ 1 + α−1.

PROOF. To prove (a), we observe that ξα = ∫ ∞
0 αe−αtξ [0, t]dt where ξ is

the point process encoding times of birth of offspring of v1. Thus, by Jensen’s
inequality with the probability measure αe−αt dt we have

[ξα]2 ≤
∫ ∞

0
αe−αt [ξ [0, t]]2

dt.

Let T be an exponential random variable with mean α−1 independent of ξ . Thus, it
is enough to show E([ξ [0, T ]]2) < ∞. Note that ξ [0, T ] = cR(v1, T )+ cB(v1, T ),
that is, the number of red and blue vertices born to v1 by the random time T .
Thus, it is enough to show E(c2

R(v1, T )) and E(c2
B(v1, T )) < ∞. Conditioning on

T = t first note by using Lemma 5.3 that for fixed t , E(c2
B(v1, t)) ≤ Ce2(1−p)t

where C < ∞ is a constant independent of t . Further again using Lemma 5.3, for
any fixed t , conditional on cB(v1, t), cR(v1, t) is stochastically dominated by a
Poisson random variable with rate tcB(v1, t). Noting that α = 2 − p, we get

E
([

ξ [0, T ]]2) ≤ C′
∫ ∞

0
e−(2−p)t (e2(1−p)t + t2e2(1−p)t )dt < ∞,

for some constant C′ < ∞. This completes the proof of (a).
To prove (b), let S(t) = ∑

v∈BP(t) e
−2ασv . Then

∑m
i=1 e−2ασvi = S(τm). Further,

by (5.5) the rate of creation of new vertices at time t is |BP(t)| + B(t). Thus, one
has

E
(
dS(t)|BP(t)

) = e−2αt (∣∣BP(t)
∣∣ + B(t)

)
dt.

Taking expectations and noting that e−αt (|BP(t)| + B(t)) is a martingale gives

E
(
S(t)

) = 1 +
∫ t

0
e−αs ds.

This completes the proof of part (b), and thus completes the proof of the lemma.
�

The next theorem completes the proof of Theorem 5.6. Before stating the main
result, we define some new constructs which will be used in the proof. For a
bounded characteristic φ, recall the limit constant m̃φ(∞) in Proposition 5.8. In
the following theorem, a key role will be played by the martingale (R̃m :m ≥ 0).
Recall that this was a martingale with respect to the filtration {F̃m :m ≥ 0}. We
shall switch gears and now think about the process in continuous time. Define I (t)

as the set of individuals born after time t whose parents were born before time t

and note that

R̃|BP(t)|=
∑

x∈I (t)

e−ασx .(5.9)
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To ease notation, set

Rt := R̃|BP(t)|, Ft := F̃|BP(t)|.(5.10)

THEOREM 5.12 (Convergence of characteristics). For any bounded charac-
teristic that satisfies the recursive decomposition in (5.7), one has

e−αtZφ(t)
a.s.−→ m̃φ(∞)R∞.

Taking φ = 1 and using Proposition 5.4 implies that R∞ = W ∗, the a.s. limit of
the martingale (e−αt (|BP(t)| + B(t)) : t ≥ 0).

PROOF. First note that Proposition 5.10 implies that {Rt : t ≥ 0} is an L
2

bounded martingale with respect to the filtration {Ft : t ≥ 0} and thus Rt
a.s.−→ R∞.

For a fixed c > 0, define I (t, c) as the set of vertices born after time (t + c) whose
parents are born before time t and let

Rt,c := ∑
x∈I (t,c)

e−ασx .(5.11)

Obviously, Rt,c ≤ Rt . Intuitively, one should expect Rt,c to be small for large c.
The next lemma makes this intuition precise. Recall the random variable ξα =∫ ∞

0 e−αtξ(dt) where ξ = ξv1 denoted the point process corresponding to births
of offspring of vertex v1. For fixed c ≥ 0, write ξα(c) := ∫ ∞

c e−αtξ(dt). Finally,
define

U := sup
c≥0

ec/2ξα(c), A = E(U), K(c) = Aeα e−c/2

1 − √
e
.(5.12)

The proof below will show that A < ∞. Also note that K(c) → 0 as c → ∞. Fi-
nally, recall from the proof of Proposition 5.4 that we defined limt→∞ exp(−αt)×
|BP(t)| = W . �

THEOREM 5.13. For any fixed c > 1, we have

lim sup
t→∞

Rt,c ≤ K(c)W a.s.,

where K(c) is as in (5.12).

PROOF. The proof uses a variant of the proof used in [20]. Let us start by
showing that E(U) < ∞. First, note that for any fixed c ≥ 0,

ec/2ξα(c) ≤
∫ ∞
c

et/2e−αtξ(dt) ≤
∫ ∞

0
et/2e−αtξ(dt).

Thus, it is enough to show that E(
∫ ∞

0 et/2e−αtξ(dt)) < ∞. By Fubini and integra-
tion by parts, E(

∫ ∞
0 et/2e−αtξ(dt)) = (α − 1/2)

∫ ∞
0 et/2e−αtμ[0, t]dt where μ is
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the intensity measure of the point process ξ . Using Lemma 5.5 shows that for some
constant C < ∞, we have∫ ∞

0
et/2e−αtμ[0, t]dt ≤ C

∫ ∞
0

et/2e−αte(1−p)t dt

= C

∫ ∞
0

e−t/2 dt < ∞,

by using α = 2 − p. This completes the proof of finiteness.
Now note that by definition for any c > 1

Rt,c =
�t�∑
i=1

∑
v : σv∈[i−1,i)

j : ξv
j +σv>t+c

exp
(−α

(
ξv
j + σv

)) + ∑
v : σv∈[�t�,t)

j : ξv
j +σv>t+c

exp
(−α

(
ξv
j + σv

))
(5.13)

≤
�t�∑
i=1

∑
v : σv∈[i−1,i)

j : ξv
j +σv>t+c

exp
(−α

(
ξv
j + σv

))
.

Here, as usual, �t� is the largest integer ≤ t and �t� is the smallest integer ≥ t .
Analogous to the definition of ξα(·), define for each vertex v, ξv

α (·) using the off-
spring point process ξv of v, namely

ξv
α (t) :=

∫ ∞
t

exp(−αt)ξv(dt) = ∑
j : ξv

j ≥t

exp
(−αξv

j

)
.

Further analagous to (5.12), for each vertex v define

Uv(t) := et/2ξv
α (t), Uv := sup

t≥0
et/2ξv

α (t).

Note that

Uv
d= U, Uv(t) ≤st U,(5.14)

where U is as in (5.12) and ≤st represents stochastic domination. Now for a fixed
i ≥ 1 and vertex v with σv ∈ [i − 1, i),∑

j : ξv
j >t+c−σv

e
−α(ξv

j +σv) = e−ασvξv
α (t + c − σv)

≤ e−α(i−1)e−(t+c−i)/2Uv(t + c − σv).

Using this in (5.13) gives

Rt,c ≤
�t�∑
i=1

e−α(i−1)e−(t+c−i)/2
∑

v : σv∈[i−1,i)

Uv(t + c − σv).(5.15)

To proceed, we will need the following generalization of the strong law. We para-
phrase the following from [20], Proposition 4.1.
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PROPOSITION 5.14 (Extension of the strong law). Let {ni : i ≥ 1} be a se-
quence of integers and let (Uij : 1 ≤ j ≤ ni) be a collection of independent random
variables for each fixed i ≥ 1. Suppose that there exists a random variable U > 0
with E(U) < ∞ such that

|Uij | ≤st U, 1 ≤ j ≤ ni.(5.16)

Further assume

lim inf
i→∞

ni+1

n1 + · · · + ni

> 0.(5.17)

Then

Si :=
∑ni

j=1(Uij −E(Uij ))

ni

a.s.−→ 0 as i → ∞,(5.18)

and in fact for any ε > 0

∞∑
i=1

P
(|Si | > ε

)
< ∞.(5.19)

Proceeding with the proof, for any interval I ⊆ R+, write BP(I) for the col-
lection of vertices born in the interval I so that BP(t) ≡ BP[0, t]. We will use the
above proposition with ni = |BP[i − 1, i)| and for each fixed i, the collection of
random variables {Uv(t + c−σv) :v ∈ BP[i − 1, i)}. This is a little subtle since the
above proposition is stated for deterministic sequences but this justified exactly as
in the proof of [20], equation (5.29). First, note that Uv(t + c − σv) ≤st U for each
fixed v. Note that by Proposition 5.4,

ni+1

n1 + · · · + ni

:= |BP[i, i + 1)|
BP[0, i)

a.s.−→ eα − 1 > 0,

as i → ∞, thus (5.17) is satisfied (almost surely). Using Proposition 5.14 in (5.15)
[in particular (5.19)] now shows that for any fixed ε > 0

lim sup
t→∞

Rt,c ≤ lim sup
t→∞

�t�∑
i=1

e−α(i−1)e−(t+c−i)/2(
E(U) + ε

)∣∣BP[i − 1, i)
∣∣.

Using the fact that e−αi |BP[i − 1, i)| ≤ e−αi |BP[0, i)| a.s.−→ W , simplifying the
above bound and recalling that we used A = E(U), shows that for every fixed
ε > 0

lim sup
t→∞

Rt,c ≤ W(A + ε)eα e−(c−1)/2

1 − √
e

.

Since ε was arbitrary, this completes the proof. �
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COMPLETING THE PROOF OF THEOREM 5.12. Recall that we are dealing
with bounded characteristics, that is, ‖φ‖∞ < C for some constant C. Without
loss of generality, let C = 1. We shall show that there exists a constant κ such that
for all ε > 0,

lim sup
t→∞

∣∣e−αtZφ(t) − m̃φ(∞)R∞
∣∣ ≤ ε(W + 2κR∞).(5.20)

Since this is true for any arbitrary ε, this completes the proof. Fix ε > 0. First,
choose c large such that the bound in Theorem 5.13 satisfies K(c) < ε. Next, for
fixed s > 0, define the truncated characteristic φs as

φs(u) =
{

φ(u), u ≤ s,

0, u > s.
(5.21)

When the branching process is counted by this characteristic, the contribution of
all vertices whose age is more than s is zero. One can view this as a character-
istic used to count “young” vertices. The limit constant for this characteristic by
Proposition 5.8 is

m̃φs (∞) =
∫ s

0
e−αu

E
(
φ(u)

)
du,

where φ is the original characteristic. Note that m̃φs (∞) → m̃φ(∞) as the trunca-
tion level s → ∞. Further, writing φ′ = φ − φs , we can view φ′ as the character-
istic counting scores for “old” vertices (vertices of age greater than s). With this
notation, we have Zφ(u) = Zφs (u) + Zφ′(u).

Define

m̃φs (u) = e−αu
E

(
Zφs (u)

)
, u ≥ 0.

Now choose s > c large enough with e−αs < ε such that for all u > s − c one has
e−αs < ε, |m̃φs (∞) − m̃φ(∞)| < ε, and |m̃φs (u) − m̃φs (∞)| < ε. The constructs s

and c shall remain fixed for the rest of the argument.
Let us understand Zφs (·), the branching process counted according to the trun-

cated characteristic. We first observe that since φs(u) = 0 when u > s, this implies
that for any time t > s, vertices born before time t − s (old vertices) do not con-
tribute to Zφs (t). Define I (t − s) as the collection of individuals born after time
t − s whose parents were born before time t . Then Zφs (t) decomposes as

Zφs (t) = ∑
v∈I (t−s)

Zv
φs

(t − σv),

where Zv
φs

(t − σv) are the contributions to Zφs (t) by the descendants of a vertex v

born in the interval [t − s, t]. Note that by construction, the parent of such a vertex
v belongs to BP(t − s). Further, recall that in the definition of Rt,c in (5.11) we
used I (t − s, c) for the set of vertices born after time (t − s + c) whose parents are
born before time t − s. Then we can further decompose the above sum as

Zφs (t) = ∑
x∈I (t−s)\I (t−s,c)

Zx
φs

(t − σx) + ∑
x∈I (t−s,c)

Zx
φs

(t − σx).
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To simplify notation, write N (t − s, c) = I (t − s) \ I (t − s, c), that is, the set of
individuals born in the interval [t − s, t − s + c] to parents who were born before
time t − s. Then we can decompose the difference as a telescoping sum:

e−αtZφ(t) − m̃φ(∞)R∞ :=
7∑

j=1

Ej(t).(5.22)

The definition of these seven terms {Ei(t) : 1 ≤ i ≤ 7} are as follows:

(a) E1(t) is defined by setting

E1(t) = e−αtZφ′(t), t ≥ 0.

Observe that for E1(t), the only vertices that contribute are those with age
greater than s (since φ′(u) = 0 for u < s). In particular, E1(t) = e−αtZφ′(t) ≤
e−αt |BP(t − s)|. Thus, by Proposition 5.4, one has lim supt→∞ E1(t) ≤ e−αsW ≤
εW a.s. by choice of s.

(b) E2(t) is defined by setting

E2(t) := ∑
x∈N (t−s,c)

e−ασx
[
e−α(t−σx)Zx

φs
(t − σx) − m̃φs (t − σx)

]
.

Note that since in the above sum x ∈N (t − s, c), thus σx > t − s. Thus,

∣∣E2(t)
∣∣ ≤ e−α(t−s)

∣∣N (t − s, c)
∣∣∑x∈N (t−s,c) e

−α(t−σx)Zx
φs

(t − σx) − m̃φs (t − σx)

|N (t − s, c)| .

For E2(t), N (t − s, c) consists of all children of parents in BP(t − s) that are
born in the interval [t − s, t − s + c]. Thus, |N (t − s, c)| ≤ BP(t − s + c). In
particular, lim supt→∞ e−α(t−s)|N (t − s, c)| ≤ Weαc. Further, each of the individ-
uals in BP(t − s) reproduce at rate at least 1. One can check by the strong law of
large numbers that lim inft→∞ |N (t − s, c)|/|BP(t − s)| ≥ c almost surely. Finally,
the terms in the summand (conditional on BP(t − s)) are independent random vari-
ables and each such term in the sum looks like X−E(X), where X is stochastically
bounded by the random variable Zφs (c). A strong law of large numbers argument
shows that lim supt→∞ |E2(t)| = 0 a.s.

(c) E3(t) is defined as

E3(t) := ∑
x∈N (t−s,c)

e−ασx
(
m̃φs (t − σx) − m̃φs (∞)

)
.

By the choice of s since t − σx ≥ s − c, |m̃φs (t − σx) − m̃φs (∞)| ≤ ε. Thus, one
has |E3(t)| ≤ εRt . Letting t → ∞, one gets lim supt→∞ |E3(t)| ≤ εR∞ a.s.

(d) E4(t) is defined as

E4(t) := m̃φs (∞)

( ∑
x∈N (t−s,c)

e−ασx − Rt−s

)
.
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For E4(t), we have |(∑x∈N (t−s,c) e
−ασx − Rt−s)| = Rt−s,c. Thus,

lim sup
t→∞

E4(t) ≤ m̃φs (∞)K(c)W ≤ m̃φ(∞)εW,

almost surely by Theorem 5.13 for the asymptotics of Rt,c. Here, we have
used m̃φs (∞) ≤ m̃φ(∞) and that our choice of c guarantees K(c) < ε. To
ease notation for the rest of the proof, let κ be a constant chosen such that
max(supu,s≥0(m̃φs (u)), m̃φ(∞)) < κ . The uniform boundedness of φ guarantees
that this can be done. By choice, κ is independent of s, u. Thus, the bound for the
fourth term simplifies to lim supt→∞ E4(t) ≤ κεW .

(e) E5(t) is defined by setting E5(t) := m̃φs (∞)(Rt−s − R∞). Since Rt−s
a.s.−→

R∞, E5(t)
a.s.−→ 0.

(f) E6(t) is defined by setting E6(t) := R∞(m̃φs (∞) − m̃φ(∞)). By choice
of s, |E6(t)| ≤ εR∞.

(g) E7(t) is defined by setting

E7(t) := e−αt
∑

v∈I (t−s,c)

Zv
φs

(t − σv)

= ∑
v∈I (t−s,c)

e−ασv
(
exp

(−α(t − σv)
)
Zv

φs
(t − σv) − m̃φs (t − σv)

)
(5.23)

+ ∑
v∈I (t−s,c)

exp(−αt)m̃φs (t − σv).

Using the strong law of large numbers and arguing as in (b) shows that the first
term goes to zero as t → ∞ a.s. Using the constant κ defined in (d) above we get∑

v∈I (t−s,c)

exp(−αt)m̃φs (t − σx) ≤ κ
∑

v∈I (t−s,c)

exp(−ασx) = κRt−s,c.

Using Theorem 5.13 and the choice of c and letting t → ∞, we get

lim sup
t→∞

E7(t) ≤ εκR∞ a.s.

Combining all these bounds, one finally arrives at

lim sup
t→∞

∣∣e−αtZφ(t) − m̃φ(∞)R∞
∣∣ ≤ ε

(
W + 2R∞ + κ(W + R∞)

)
a.s.

Since ε > 0 was arbitrary, this completes the proof. �

5.5. Time of first birth asymptotics. For a rooted tree with root ρ (here ρ = v1),
there is a natural notion of a generation of a vertex v. This is defined as the number
of edges on the path between v and ρ. Thus, ρ belongs to generation zero, all
the neighbors of ρ belong to generation one, and so forth. The aim of this section
is to define a modified notion of generation in BP(t), owing to the fact that the
surgery operation as constructed in Section 5.2 that sets up a method to go from
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the continuous time model to the discrete time model implies that the object of
study are the number of edges to the closest red vertex on the path to the root v1.
For each fixed k, we shall define stopping times Bir(k) representing the first time
an individual in modified generation k is born into the process BP(·). We study
asymptotics of Bir(k) as k → ∞. In the next section, we use these asymptotics to
understand height asymptotics for the Superstar model.

Fix t > 0. For each vertex v ∈ BP(t), let r(v) denote the first red vertex on the
path from v to the original progenitor of the process BP(·), namely v1. If v is a red
vertex then r(v) = v. Let d(v) be the number of edges on the path between v and
r(v) so that d(v) = 0 if v is a red vertex.

Fix k ≥ 1. Let Bir(k) denote the stopping times

Bir(k) = inf
{
t > 0 :∃v ∈ BP(t), d(v) = k

}
.

In other words, Bir(k) is the first time that there exists a red vertex in BP(t) such
that the subtree consisting of all blue descendants of this vertex and rooted at this
red vertex has an individual in generation k. Here, we use Bir to remind the reader
that this is the time of the first birth in a particular generation. The next theorem
proves asymptotics for these stopping times.

THEOREM 5.15. Let Lam(·) be the Lambert function [9]. We have

Bir(k)

k

a.s.−→ Lam(1/e)

1 − p
as k → ∞.

PROOF. Given any rooted tree T and v ∈ T , we shall let G(v) denote the
generation of this vertex in T . Write BPv1

b (·) for the subtree consisting of all blue
descendants of the original progenitor v1 and rooted at v1. In distribution, this is
just a single type continuous time branching process where each vertex has the
same distribution as the process Yu1−p(·) − 1. Further, let

Bir∗(k) = inf
{
t :∃v ∈ BPv1

b (t),G(v) = k
}
.

In words, this is the time of first birth of an individual in generation k for
the branching process BPv1

b (·). From the definitions of Bir(k),Bir∗(k), we have
Bir(k) ≤ Bir∗(k).

Much is know about the time of first birth of a single type supercritical branch-
ing process, in particular implies that for BPv1

b (·), there exists a limit constant β

such that

Bir∗(k)/k
a.s.−→ β.

Here, β can be derived as follows. Write μb for the expected intensity measure of
the blue offspring, that is, as in Lemma 5.5

μb

([0, t]) = E
(
cB[v1, t]) = e(1−p)t − 1, t ≥ 0.
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For θ > 0, let

�(θ) := E

(∫ ∞
0

e−θt cB(v1, dt)

)
, θ ∈ R.

It is easy to check that this is finite only for θ > 1 − p since

�(θ) = θ

∫ ∞
0

e−θtμb

([0, t])dt = 1 − p

θ − (1 − p)
.

For a > 0, define

�(a) := inf
{
�(θ)eθa : θ ≥ 1 − p

} = (1 − p)ae(1−p)a+1.(5.24)

Then by [17], Theorem 5, the limit constant β is derived as

β = sup
{
a > 0 :�(a) < 1

}
.(5.25)

From this, it follows that β = Lam(1/e)/(1 − p) where Lam(·) is the Lambert
function. Then we have

lim sup
k→∞

Bir(k)

k
≤ lim

k→∞
Bir∗(k)

k

a.s.−→ W(1/e)

1 − p
.

This gives an upper bound in Theorem 5.15. Lemma 5.16 proves a lower bound
and completes the proof.

LEMMA 5.16. Fix any ε > 0 and let β = Lam(1/e)/(1 − p) be the asserted
limit constant. Then

∞∑
l=1

P
(
Bir(l) < (1 − ε)βl

)
< ∞.

Thus, one has lim infl→∞ Bir(l)/ l ≥ β a.s.

PROOF. For ease of notation, for the rest of this proof we shall write tε(l) =
(1 − ε)βl. In the full process BP(·), two processes occur simultaneously:

(a) New “roots” (red vertices) are created. Recall that we used R(·) for the
counting process for the number of red roots.

(b) The blue descendants of each new root have the same distribution as a sin-
gle type continuous time branching process with offspring process have the same
distribution as the process Yu1−p(·) − 1.

Fix l ≥ 2 and suppose a new red vertex v was created at some time σv < tε(l).
Let BPv

b(·) denote the subtree of blue descendants of v. Let Bir∗(v, l) > σv be
the time of creation of the first blue vertex in generation l for subtree BPv

b(·).
Now Bir(l) < tε(l) if and only if there exists a red vertex v born before tε(l) such
that the subtree of blue descendants of this vertex has a vertex in generation l
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by this time. For a fixed red vertex v ∈ BP(·), write Av(l) for this event. Since

Bir∗(v, l) − σv
d= Bir∗(l), conditional on BP(σv) one has

P
(
Av(l)|BP(σv)

) = P
(
Bir∗(l) ≤ tε(l) − σv

)
.

Fix 0 < s < (1 − ε)βl. Then for θ > 1 − p, Markov’s inequality implies

P
(
Bir∗(l) < (1 − ε)βl − s

) ≤ eθ((1−ε)βl−s)
E

[
e−θ Bir∗(l)].

One of the main bounds of Kingman ([17], equation (2.5), Theorem 1) is
E[e−θ Bir∗(l)] ≤ (�(θ))l . Thus, we get

P
(
Bir∗(l) < (1 − ε)βl − s

) ≤ [
�(θ)eθ(1−ε)β]l

e−θs .(5.26)

By the definition of β ,

�ε := �
(
β(1 − ε)

) := inf
{
�(θ)eθ(1−ε)β : θ > 1 − p

}
< 1,

where � is as in (5.24). It is easy to check that the minimizer occurs at

θε = 1 − p + 1

(1 − ε)β
.

The final probability bound we shall use is

P
(
Bir∗(l) < (1 − ε)βl − s

) ≤ [�ε]le−θεs .(5.27)

Let Nε
l be the number of red vertices born before time tl(ε) whose trees of blue de-

scendants BPv
b(·) have at least one vertex in generation l by time tε(l). Obviously,

P(Bir(l) < (1 − ε)βl) ≤ E(Nε
l ). Conditioning on the times of birth of red vertices,

one gets

E
(
Nε

l

) ≤
∫ tε(l)

0
[�ε]ldE(

R(s)
)

using equation (5.27),

= p[�ε]l
∫ tε(l)

0
e−(θε−q)s ds using Lemma 5.5.

Simplifying, we get for all l ≥ 2, E(Nε
l ) ≤ C[�ε]l for a constant C. Thus,

∞∑
l=1

P
(
Bir(l) < (1 − ε)βl

)
< ∞.

�

6. Proofs of the main results. Recall the equivalence created by the surgery
operation between the Superstar model and the two-type branching process as es-
tablished in Section 5.2. We shall use this equivalence and the proven results on
BP(·) in Section 5 to complete the proof of the main results. We record the follow-
ing fact about the asymptotics for the stopping times τn.
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LEMMA 6.1 (Stopping time asymptotics). The stopping times τn satisfy

τn − 1

2 − p
logn

a.s.−→ − 1

2 − p
logW.

PROOF. Proposition 5.4 proves that |BP(t)|e−(2−p)t a.s.−→ W . Thus
ne−(2−p)τn

a.s.−→ W . �

Let us now start by proving the main results. We note that Theorem 2.1 is obvi-
ous since the degree of the superstar is given by R(τn) = ∑n

i=1 1{vi is red}, the to-
tal number of red vertices and (1{vi} is red)i≥1 is an i.i.d. sequence with Bernoulli
p as the marginal distribution. We now prove the remaining results using the cor-
respondence between the continuous time and discrete time processes.

6.1. Proof of the degree distribution strong law. In this section, we shall prove
Theorem 2.2. Since Gn+1 is a connected tree, every vertex has degree at least one.
Recall that cB(v, t) denotes the number of blue children of vertex v by time t .
Write deg(v,Gn+1) for the degree of a vertex in Gn+1. The surgery operation
implies that for any nonsuperstar vertex

deg(v,Gn+1) = cB(v, τn) + 1.(6.1)

Fixing k ≥ 0, the number of nonsuperstar vertices with degree exactly k + 1 is the
same as the number of vertices in BP(τn) that have exactly k blue children. Recall
that we used Z≥k(t) for the number of vertices in BP(t) that have at least k blue
children. Proposition 5.4, showed that the total number of vertices |BP(t)| satisfies

e−(2−p)t
∣∣BP(t)

∣∣ a.s.−→ W ∗

(2 − p)
as t → ∞.(6.2)

Theorem 5.6 showed that

e−(2−p)tZ≥k(t)
a.s.−→ k!

k∏
i=1

(
i + 2 − p

1 − p

)−1 W ∗

2 − p
.

Thus, writing p≥k(t) = Z≥k(t)/BP(t) for the proportion of vertices with degree k,
Theorem 5.6 implies one has

p≥k(t)
a.s.−→ k!

k∏
i=1

(
i + 2 − p

1 − p

)−1

:= p≥k(∞) as t → ∞.

Now let k ≥ 1. Writing N≥k(n) for the number of vertices with degree at least k

in Gn+1, one has N≥k(n)/n
a.s.−→ p≥k−1(∞) as n → ∞. Thus, the proportion of

vertices with degree exactly k converges to p≥k−1(∞) − p≥k(∞) = νSM(k). This
completes the proof.
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6.2. Proof of maximal degree asymptotics. The aim of this is to prove Theo-
rem 2.4. We wish to analyze the maximal nonsuperstar degree that we wrote as

ϒn = max
{
deg(vi,Gn+1) : 1 ≤ i ≤ n

}
.

The plan will be as follows: we will first prove the simpler assertion of convergence
of the degree of vertex vk for fixed k ≥ 1. Then we shall show that given any
ε > 0, we can choose K such that for large n, the maximal degree vertex has to be
one of the first K vertices v1, v2, . . . , vK with probability greater than 1 − ε. This
completes the proof.

Fix k ≥ 1. Recall from (6.1) that deg(vk,Gn+1) = cB(vk, τn) + 1 where
cB(vk, t) are the number of blue vertices born to vertex k by time t . Recall that
cB(vk, t) is a Yule process of rate 1 − p started at time τk (i.e., at the birth of
vertex vk). By Lemma 5.3,

cB(vk, t)

e(1−p)(t−τk)

a.s.−→ W ′
k,(6.3)

where W ′
k is an exponential random variable with mean one. Write γ = (1 −

p)/(2 − p) and let �k = e−(1−p)τkW ′W−γ . Using (6.2) and (6.3), we have

n−γ deg(vk,Gn+1) = cB(vk, τn−1) + 1

e(1−p)(τn−1−τk)

(
e(2−p)τn−1

|BP(τn−1)| + 1

)γ

e−(1−p)τk

a.s.−→ W ′
kW

−γ e−(1−p)τk := �k.

Now let us prove distributional convergence of the properly normalized maxi-
mal nonsuperstar degree ϒn. Fix L > 0 and let

M̃n[0,L] := max
{
deg(vk,Gn+1) : τk ≤ L

}
.(6.4)

In other words, this is the largest degree in Gn+1 amongst all vertices born before
time L in BP(·). The convergence of the degree of vk for any k ≥ 1 implies the
next result.

LEMMA 6.2 (Convergence near the root). Fix any L > 0. Then there exists a
random variable �∗[0,L] > 0 such that

n−γ M̃n[0,L] a.s.−→ �∗[0,L],
where γ = (1 − p)/(2 − p).

Now if we can show that with high probability, ϒn = M̃n[0,L] for large finite
L as n → ∞, then we are done. This is accomplished via the next lemma. Recall
that by asymptotics for the stopping times τn in Lemma 6.1, given any ε > 0, we
can choose Kε > 0 such that

lim sup
n→∞

P

(∣∣∣∣τn − 1

2 − p
logn

∣∣∣∣ > Kε

)
≤ ε.(6.5)
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For any 0 < L < t , let BP(L, t] denote the set of vertices born in the interval
(L, t]. Recall that we used v1 for the original progenitor. For any time t and v ∈
BP(t), let degv(t) = cB(v, t) + 1 denote the degree of vertex v in the Superstar
model G|BP(t)|+1 obtained through the surgery procedure. For fixed K and L, let
An(K,L) denote the event that for some time t ∈ [(2 − p)−1 logn ± K], there
exists a vertex v in BP(L, t] with degv(t) > degv1

(t).

LEMMA 6.3 (Maxima occurs near the root). Given any K and ε, one can
choose L > 0 such that

lim sup
n→∞

P
(
An(K,L)

) ≤ ε.

In particular, given any ε > 0, we can choose L such that

lim sup
n→∞

P
(
ϒn �= M̃n

([0,L])) ≤ ε.

Deferring the proof of this result note that Lemma 6.2 now coupled with
the above lemma now shows that there exists a random variable �∗ such that
ϒn/nγ P−→ �∗. This completes the proof of Theorem 2.4.

PROOF OF LEMMA 6.3. For ease of notation, write

t−n = (2 − p)−1 logn − K, t+n = (2 − p)−1 logn + K.

Since the degree of any vertex is an increasing process it is enough to show that
we can choose L = L(K,ε) such that as n → ∞, the probability that there is some
vertex born in the time interval [L, t+n ] whose degree at time t+n is larger than
the degree of the root v1 at time t−n is smaller than ε. Let M[L,t+n ](t+n ) denote the
maximal degree by time t+n of all vertices born in the interval [L, t+n ]. Then for
any constant C > 0

P
(
An(K,L)

) ≤ P
({

degv1

(
t−n

)
< Cnγ } ∪ {

M[L,t+n ]
(
t+n

)
> Cnγ })

≤ P
(
degv1

(
t−n

)
< Cnγ ) + P

(
M[L,t+n ]

(
t+n

)
> Cnγ )

.

Since the offspring process of v1 has the same distribution as a rate (1 − p) Yule
process

e−(1−p)t−n degv1

(
t−n

) = e(1−p)K/2 degv1
(t−n )

nγ

a.s.−→ Wv1,

where Wv1 has an exponential distribution with mean one. Thus, for a fixed K , we
can choose C = C(ε) large enough such that

lim sup
n→∞

P
(
degv1

(
t−n

)
< Cnγ ) ≤ ε/2.
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Thus, for a fixed ε,C,K , it is enough to choose L large such that

lim sup
n→∞

P
(
M[L,t+n ]

(
t+n

)
> Cnγ ) ≤ ε/2.

Without loss of generality, we shall assume throughout that Lε and t+n are integers.
For any integer Lε < m < t+n − 1, let M[m,m+1](t+n ) denote the maximum degree
by time t+n of all vertices born in the interval [m,m + 1]. Then

M[L,t+n ]
(
t+n

) = max
L≤m≤t+n −1

M[m,m+1]
(
t+n

)
.

Let |BP[m,m+1]| denote the number of vertices born in the time interval [m,m+
1]. Since for a vertex born at some time s < t+n , the degree of the vertex at time t+n
has distribution Yu1−p(t+n − s), an application of the union bound yields

P
(
M[L,t+n ]

(
t+n

)
> Cnγ ) ≤

t+n −1∑
m=L

E
(∣∣BP[m,m + 1]∣∣)P(

Yu1−p

(
t+n − m

)
> Cnγ )

.

Now E(BP[m,m + 1]) ≤ E(|BP(m + 1)|). By Proposition 5.4, E(|BP(t)|) ≤
e(2−p)t . Further by Lemma 5.3, for fixed time s, a rate 1 − p Yule process has
a geometric distribution with parameter e−(1−p)s . Thus, we have

P
(
M[L,t+n ]

(
t+n

)
> Cnγ ) ≤

t+n −1∑
m=L

Ae(2−p)m[
1 − e−(1−p)(t+n −m)]Cnγ

(6.6)

≤
t+n −1∑
m=L

Ae((2−p)m−Ce(1−p)(m−K)),

where last inequality follows from the fact that for 0 ≤ x ≤ 1, 1 − x ≤ e−x and

et+n /2 = nγ e(1−p)K.

Now choosing L large, one can make the right-hand side of the last inequality as
small as one desires and this completes the proof. �

6.3. Proof of logarithmic height scaling. The aim of this section is to complete
the proof of Theorem 2.5. Let us first understand the relationship between the
distances in BP(τn) and Gn+1 due to the surgery operation. The distance of all
the red vertices in BP(τn) from the superstar v0 is one. For each blue vertex v ∈
BP(τn), let r(v) denote the first red vertex on the path from v to the root v1 in
BP(τn). Recall from Section 5.5 that d(v) denoted the number of edges on the
path between v and r(v) with d(v) = 0 if v was a red vertex. Then the distance of
this vertex from the superstar v0 in Gn+1 is just d(v) + 1 since the vertex needs
d(v) steps to get to r(v) that is then directly connected to v0 in Gn+1 by an edge.
Let D(u,v) denote the graph distance between vertices u and v in Gn+1. Since
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by convention d(v) = 0 for all the red vertices, this argument shows that for all
v �= v0 ∈ Gn+1, D(v, v0) = d(v) + 1. In particular, the height of Gn+1 is given by

H(Gn+1) = max
{
d(v) + 1 :v ∈ BP(τn)

}
.(6.7)

Now by the definition of H(Gn+1), there is a vertex in BP(τn) such that d(v) =
H(Gn+1) − 1 but no vertex with d(v) = H(Gn+1). Recall the stopping times
Bir(k), defined as the first time a vertex with d(v) = k is born in BP(·). Thus,
we have

Bir
(
H(Gn+1) − 1

) ≤ τn ≤ Bir
(
H(Gn+1)

)
.(6.8)

Now recall that Theorem 5.15 showed that the stopping times Bir(k) satisfy

Bir(k)/k
a.s.−→ Lam(1/e)/(1 − p) as k → ∞.

Dividing (6.8) throughout by H(Gn+1) by Theorem 5.15

Bir(H(Gn+1) − 1)

H(Gn+1)

a.s.−→ Lam(1/e)

1 − p
,

while by Lemma 6.1 we get

τn

logn

a.s.−→ 1

2 − p
.

Rearranging shows that

H(Gn+1)

logn

a.s.−→ (1 − p)

Lam(1/e)(2 − p)
.

This completes the proof. �

6.4. Extension to the variants of the Superstar model. We now describe how
the above methodology easily extends to the two variants described in Section 3,
namely the superstar linear preferential attachment and the uniform attachment
model (Theorems 3.1 and 3.2). Since the proofs are identical to the original model,
modulo the driving continuous time branching process, we will not give full proofs
but rather describe the continuous time versions that need to be analyzed to under-
stand the corresponding discrete model. The surgery operation and the subsequent
analysis of the continuous time model are identical to the original Superstar model.

For fixed a > −1 and p ∈ (0,1), we write {Glin
n (a,p) :n ≥ 1} for the corre-

sponding family of growing random trees obtained via following the dynamics of
the linear attachment scheme (see Section 3). We let {Guni

n (p) :n ≥ 1} be the fam-
ily of random trees obtained via uniform attachment. Now recall that the analysis
of the superstar preferential attachment model start with the formulation of a con-
tinuous time two type branching process (consisting of red and blue vertices). One
then performs surgery on this two type branching process at appropriate stopping
times τn as defined in (5.1) to obtain the Superstar model. For the two variants, let
us now describe the corresponding continuous time versions.
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(a) Superstar linear preferential attachment: We write {BPlin(t)}t≥0 for this
branching process. Here one starts with a single red vertex v1 at time t = 0. Each
individual lives forever. For any fixed t ≥ 0, each individual v ∈ BPlin(t) in the
branching process reproduces at rate

λ(v, t) := cB(v, t) + 1 + a,

where as before cB(v, t) denotes the number of blue children of vertex v at time t .
Each new offspring is colored red with probability p and blue with probability
q := 1 − p.

(b) Uniform attachment: Start with a single red vertex v1 at time t = 0. Each
individual reproduces at rate one and lives forever. Each new offspring is colored
red with probability p and blue with probability q := 1 − p. Write {BPuni(t)}t≥0
for this branching process.

Fix n ≥ 1 and recall the stopping time τn from (5.1), namely the time for the
branching process to reach size n. From Section 5.2, recall the surgery operation
that takes BP(τn) to a random tree Sn on n + 1 vertices. The following proposi-
tion which is the general analog of Proposition 5.1 showing the equivalence of the
continuous time models and the discrete time versions. The result is stated for the
linear preferential attachment model, the same result is true using the correspond-
ing branching process for the uniform attachment model.

PROPOSITION 6.4. Fix a > −1 and p ∈ (0,1). Let {BPlin(t) : t ≥ 0} be the
continuous time two type branching process constructed as above for the superstar
linear preferential attachment model with parameters a,p. The sequence of trees
{Sn :n ≥ 1} obtained by performing the surgery operation on {BPlin(τn) :n ≥ 1}
has the same distribution as {Gn+1(a,p) :n ≥ 1}.

Now recall that in the proof of the original Superstar model, a major role
was played by Proposition 5.4 which showed that the associated continuous time
branching process grew at rate exp((2 − p)t). This allowed us to make rigorous
the following two ideas (see, e.g., the proof of Corollary 5.9):

(a) As t → ∞, the age of an individual chosen uniformly at random from the
population has an exponential distribution with rate (2 − p).

(b) For vertex v, let cB(v, σv + t) be the number of blue children t units after
being born and note that {cB(σv + t) : t ≥ 0} has the same distribution for any ver-
tex. Since the number of blue children of a vertex represents the out-degree in the
Superstar model after the surgery operation, using (i), the limiting degree distribu-
tion should be the same as 1 + cB(v1, T ), where T ∼ exp((2 − p)) independent of
{cB(v1, t) : t ≥ 0}. Here, we use v1 for convenience since σv1 = 0.

The corresponding version of Proposition of 5.4 is the following.
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PROPOSITION 6.5. (a) Fix a > −1 and p ∈ (0,1). Then there exists a random
variable W(a,p) > 0 a.s. such that as t → ∞,

exp
(−(2 − p + a)

)∣∣BPlin(t)
∣∣ a.s.−→ W(a,p).

(b) For the uniform attachment model, for any p ∈ (0,1) as t → ∞,

exp(−t)
∣∣BPuni(t)

∣∣ a.s.−→ W,

where W ∼ exp(1).

PROOF. We start with part (b). For the uniform attachment model, since every
individual lives forever and reproduces at rate one, the process {|BPuni(t)| : t ≥ 0}
has the same distribution as a rate one Yule process (see Definition 5.2). Then the
result follows from Lemma 5.3.

To prove (a), define the process

M(t) := exp
(−(2 − p + a)

)(∣∣BPlin(t)
∣∣ + B(t)

)
, t ≥ 0,

where as before B(t) denotes the number of blue individuals in the population by
time t . Arguing exactly as in the proof of Proposition 5.4, it is easy to check that
this process is a martingale. The rest of the proof now follows along the same lines
as the proof of Proposition 5.4. �

The proof of Theorems 3.1 and 3.2 now proceed as in the analysis of the original
model. For example, to show the convergence of the degree distribution for the
uniform attachment model Theorem 3.2, first note that for any vertex v, since this
vertex reproduces at rate one and each new offspring is colored red with probability
p and blue with probability q = 1 − p. Thus, the process counting the number of
blue children {cB(v1, t) : t ≥ 0} is a rate q Poisson process. Fix k ≥ 1 and write
Z≥k(t) for the number of vertices in BPlin(t) which have k or more blue offspring
by time t . The analogous version of Theorem 5.6 for the uniform attachment model
implies that

exp(−t)Z≥k(t)
a.s.−→ p≥k(∞)W,

where

p≥k(∞) = P
(
cB(v, T ) ≥ k

)
,

where T ∼ exp(1) independent of cB(·). Now note that

P
(
cB(v, T ) ≥ k

) = P

(
k∑

i=1

ξi ≤ T

)
,

where {ξi}i≥1 is a sequence of independent rate q exponential random variables.
Arguing as in the proof of Corollary 5.9, we get

P

(
k∑

i=1

ξi ≤ T

)
= (

E
(
exp(−ξi)

))k =
(

q

q + 1

)k

.



2500 S. BHAMIDI, J. M. STEELE AND T. ZAMAN

For the maximal degree, note that by Proposition 6.5 implies that the stopping time
τn as in (5.1) for the time the continuous time branching process grows to be of
size n satisfies

τn = logn + OP (1).

Since for each vertex, its true degree is the number of blue offspring, as an easy
lower bound, the root v1 by time τn should have degree ∼ (1 − p) logn (since the
process describing the blue offspring of the root is just a rate q Poisson process).
To get that logn is the correct order for the maximal degree and in particular the
weak law, one argues as in Section 6.2 [in particular see (6.6)], teasing apart the
contribution to this maximal degree of vertices born at various times. The proof of
Theorem 3.1 is similar. We omit the details.

APPENDIX

Below we describe each of the thirteen events and show the corresponding event
specific term.

• E = 1: Brazil vs. Netherlands soccer match from the 2010 World Cup. The term
is “Brazil” or “Netherlands.”

• E = 2: Basketball player Lebron James announcement of signing with the Mi-
ami Heat. The term is “Lebron.”

• E = 3: The 2010 World Cup Kick-Off Celebration Concert. The term is “World
Cup.”

• E = 4: Brazil vs. Portugal soccer match from the 2010 World Cup. The term is
“Brazil” or “Portugal.”

• E = 5: Italy vs Slovakia soccer match from the 2010 World Cup. The term is
“Italy” or “Slovakia.”

• E = 6: The 2010 BET Awards show. The term is “BET Awards.”
• E = 7: The firing of General Stanly McChrystal by US President Barack

Obama. The term is “McChrystal.”
• E = 8: The 2010 World Cup Opening Ceremony. The term is “World Cup.”
• E = 9: Mexico vs. South Africa soccer match from the 2010 World Cup. The

term is “Mexico.”
• E = 10: England vs. Slovakia soccer match from the 2010 World Cup. The term

is “England.”
• E = 11: Portugal vs. North Korea soccer match from the 2010 World Cup. The

term is “Portugal.”
• E = 12: Roger Federer’s tennis match in the first round of the 2010 Wimbledon

tournament. The term is “Federer.”
• E = 13: The UN imposing sanctions on Iran. The term is “Iran.”
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