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Abstract: In a recent paper Birke and Bissantz (2009) considered the
problem of nonparametric estimation in inverse regression models with
convolution-type operators. For multivariate predictors nonparametric meth-
ods suffer from the curse of dimensionality and we consider inverse regres-
sion models with the additional qualitative assumption of additivity. In
these models several additive estimators are studied. In particular, we pro-
pose a new estimation method for observations on regular spaced grid and
investigate estimators under the random design assumption which are ap-
plicable when observations are not available on a grid. Finally, we compare
these estimators with the marginal integration and the non-additive estima-
tor by means of a simulation study. It is demonstrated that the new method
yields a substantial improvement of the currently available procedures.
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1. Introduction

Inverse models have numerous applications in such important fields as biology,
astronomy, economy or physics, where they have been intensively studied in
a deterministic framework [Engl et al. (1996), Saitoh (1997)]. Recently inverse
problems have also found considerable interest in the statistical literature. These
investigations reflect the demand in applications to quantify the uncertainty of
estimates or to validate the model assumptions by the construction of statistical
confidence regions or hypotheses tests, respectively [see Mair and Ruymgaart
(1996), Kaipio and Somersalo (2010), Bissantz et al. (2007b), Cavalier (2008),
Bertero et al. (2009), Bertero et al. (2009) or Birke et al. (2010) among others].
In this paper we are interested in the convolution type inverse regression model

Y = g(z) + ε =

∫

Rd

ψ(z− t)θ(t)d(t) + ε (1.1)

with a known function ψ : Rd → R [e.g. Adorf (1995)] and a centered noise
term ε. The goal of the experiment is to recover the signal θ : Rd → R from
data (z1, Y1), . . . , (zn, Yn) which is closely related to deconvolution [e.g. Stefan-
ski and Carroll (1990) and Fan (1991)]. Models of the type (1.1) have important
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applications in the recovery of images from astronomical telescopes or fluores-
cence microscopes in biology. Therefore statistical inference for the problem of
estimating the signal θ in model (1.1) has become an important field of re-
search in recent years, where the main focus is on a one dimensional predictor.
Bayesian methods have been investigated in Bertero et al. (2009) and Kaipio and
Somersalo (2010) and nonparametric methods have been proposed by Mair and
Ruymgaart (1996), Cavalier (2008) and Bissantz et al. (2007b) among others.

In the present paper we investigate convergence properties of Fourier-based
estimators for the function θ with the following purposes. Firstly, our research
is motivated by the fact that deconvolution problems often arise with a multi-
variate predictor such as location and time. For this situation Birke and Bis-
santz (2009) proposed a nonparametric estimate of the signal θ and derived
its asymptotic properties under rather strong assumptions. We will discuss the
nonparametric estimation problem for the signal θ under substantially weaker
assumptions. Secondly, because nonparametric estimation usually suffers from
the curse of dimensionality improved estimators incorporating qualitative as-
sumptions such as additivity or multiplicity are investigated under the fixed and
the random design assumption. While additive estimation has been intensively
discussed for direct problems from different perspectives [see Linton and Nielsen
(1995), Mammen et al. (1999), Carroll et al. (2002), Hengartner and Sperlich
(2005), Nielsen and Sperlich (2005), Doksum and Koo (2000), Horowitz and Lee
(2005), Lee et al. (2010), Dette and Scheder (2011)] – to our best knowledge –
only one additive estimator is available for indirect inverse regression models so
far where it is assumed that the observations are available on a grid [see Birke
et al. (2012)]. In this paper we are particularly interested in two alternative
additive estimators. The first one is applicable if observations are available on
a grid but has a substantially simpler structure than the method proposed by
the last-named authors, which makes it very attractive for practitioners. More-
over, it also yields much more precise estimates than the method of Birke et al.
(2012). The second estimator is additionally applicable in the case of random
predictors.

Thirdly, we will also investigate the case of correlated errors in the inverse
regression model (1.1), which has – to our best knowledge – not been considered
so far although it appears frequently in applications. Finally, we do not assume
that the kernel ψ is periodic, which is a common assertion in inverse regression
models with convolution operator [see e.g. Cavalier and Tsybakov (2002)]. Note
that for many problems such as the reconstruction of astronomical and biolog-
ical images from telescopic and microscopic imaging devices this assumption is
unrealistic.

The remaining part of this paper is organized as follows. In Section 2 we
consider inverse additive regression models with a random design and derive
the weak convergence of an unrestricted estimator. We introduce the marginal
integration estimator and demonstrate that this method yields improved esti-
mators under the assumption of additivity. Section 3 is devoted to the inverse
regression model, where observations are available on a regular grid. We in-
troduce a new additive estimate, which is similar in spirit with the backfitting
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methodology. Asymptotic properties of these estimators are investigated and
asymptotic normality of (appropriately standardized) statistics will be estab-
lished. In Section 4 we explain how the results are changing for dependent data
while Section 5 presents a small simulation study of the finite sample properties
of the proposed methods. In particular we compare the new additive estimator
with the currently available methods and demonstrate its superiority by a fac-
tor 6–8 with respect to the mean squared error criterion. Finally all technical
details regarding the proofs of our asymptotic results can be found in Section 6.

2. Additive inverse regression with random design

2.1. Unrestricted estimation for random design

Recall the definition of model (1.1) where we assume that the moments E[εk]
exist for all k ∈ N such that E[ε] = 0 and σ2 = E[ε2] > 0. For the sake
of transparency we also assume at this point that the errors corresponding to
different predictors are independent – for the more general case of an error
process with an MA(q)-structure, see Section 4. In this section we concentrate
on the random design case, i.e. the explanatory variables zk are realizations of
random variables.

(RD) Under the random design assumption we assume that the explanatory
variables are realizations of independent, identically distributed random
variables X1,n, . . . ,Xn,n with a density fn. We will not reflect the tri-
angular structure in the notation and use Yk,Xk, εk and f instead of
Yk,n,Xk,n, εk,n and fn, respectively, that is

Yk = g(Xk) + εk =

∫

Rd

ψ(Xk − t)θ(t)dt+ εk; k ∈ {1, . . . , N}, (2.1)

where ε1, . . . , εN are independent identically distributed random variables.

Fourier-based estimators have been considered by numerous authors in the uni-
variate case (e.g. Diggle and Hall (1993), Mair and Ruymgaart (1996), Cavalier
and Tsybakov (2002) and Bissantz et al. (2007a)) and its generalization to the
multivariate case considered in model (2.1) is straightforward. A Fourier-based
estimator is given by

θ̂RD(x∗) =
1

(2π)d

∫

Rd

e−i〈w,x
∗〉ΦK(hw)

Φ̂RD(w)

Φψ(w)
dw, (2.2)

where 〈v,w〉 denotes the standard inner product of the vectors v,w ∈ Rd and
ΦK and Φψ denote the Fourier transform of a kernel function K and the con-
volution function ψ (which is assumed to be known), respectively. Moreover, in
(2.2) the quantity h is a bandwidth converging to 0 with increasing sample size,
the empirical Fourier transform Φ̂RD(w) is defined by

Φ̂RD(w) =
1

n

n
∑

k=1

ei〈w,Xk〉 Yk

max{f(Xk), f(
1
aN

)} , (2.3)
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1/aN = (1/aN , . . . , 1/aN) ∈ Rd and aN is a sequence converging to 0 with

increasing sample size. The resulting estimator will be denoted by θ̂RD(x∗). In
(2.3) f denotes the density of X1 and we take the maximum of f(Xk) and

f( 1
aN

) to ensure that the variance of θ̂RD(x∗) is bounded. We also note that the

estimator θ̂RD admits the representation

θ̂RD(x∗) =

n
∑

k=1

YkwN (x∗,Xk), (2.4)

where the weights are given by

wN (x∗,Xk) =
1

N max{f(Xk), f(
1
aN

)}(2π)d
∫

Rd

e−i〈w,x
∗−Xk〉ΦK(hw)

Φψ(w)
dw.

(2.5)

Remark 2.1. Note that we use the same bandwidth for all components of the
predictor. This assumption is made for the sake of a transparent presentation of
the results. In applications the components of the vector x represent different
physical quantities such that different bandwidths have to be used. All results
presented in this paper can be modified to this case with an additional amount
of notation.

2.2. Estimation of additive inverse regression models

It is well known that in practical applications nonparametric methods as intro-
duced in Section 2.1 suffer from the curse of dimensionality and therefore do not
yield precise estimates of the signal θ with a multivariate predictor. A common
approach in nonparametric statistics to deal with this problem is to postulate
an additive structure of the signal θ. In the case of direct regression models sev-
eral estimation techniques such as marginal integration [see Linton and Nielsen
(1995), Carroll et al. (2002), Hengartner and Sperlich (2005)] and backfitting
[Mammen et al. (1999), Nielsen and Sperlich (2005)] have been proposed in the
literature for estimating an additive regression function. Recently the estima-
tion problem of an additive (direct) regression model has also found considerable
interest in the context of quantile regression [see Doksum and Koo (2000), De
Gooijer and Zerom (2003), Horowitz and Lee (2005), Lee et al. (2010), Dette and
Scheder (2011) among others] but – to our best knowledge – only one estimator
has been proposed for additive inverse regression models under the assumption
that observations are available on a grid [see Birke et al. (2012)]. For this sit-
uation we will propose an alternative estimator in the following section, which
yields an improvement by a factor 6–10 with respect to mean squared error (see
our numerical results in Section 5). Before we introduce the marginal integration
method in the context of inverse models, we illustrate it for a direct additive
regression model of the form

y = g1(x) + g2(z) + ε (2.6)
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where y is a one-dimensional response and x and z are d1 and d2-dimensional
predictors, respectively. Following Linton and Nielsen (1995) we denote by Q1

a measure with density q1 satisfying
∫

q1(z)dz = 1 and consider the contrast

αQ1
(x) =

∫

(g1(x) + g2(z))q1(z)dz = g1(x) + c1

where c1 =
∫

g2(z)q1(z)dz. Estimators of the component g1 + c1 can now be
easily obtained by integrating a nonparametric estimator of the regression curve,
say ĝ(x, z), in the same way, that is

α̂Q1
(x) =

∫

ĝ(x, z)q1(z)dz.

Using a similar argument for the second component we obtain

α̂Q2
(z) =

∫

ĝ(x, z)q2(x)dx

as an estimator of g2 + c2, where c2 =
∫

g1(x)q2(x)dx. The resulting estimator
of the regression function is finally constructed as

ĝadd(x, y) = α̂Q1
(x) + α̂Q(z)− ĉ

where ĉ =
∫

ĝ(x, z)q1(z)q2(x)dzdz is an estimate of c1 + c2. In the following
discussion we will combine the marginal integration methodology with Fourier-
estimation techniques [see Diggle and Hall (1993)] for the construction of esti-
mators of an additive signal in the inverse regression model (2.1). To be precise
we assume an additive structure for the signal θ, that is

θ(x∗) = θadd(x∗) := θadd0 +
m
∑

j=1

θaddIj (x∗
Ij ) (2.7)

[see Hastie and Tibishirani (2008)]. Here {I1, . . . , Im} denotes a partition of the
set {1, . . . , d} with cardinalities |Ij | = dj and x∗

Ij
is the vector which includes

all components of the vector x∗ with corresponding indices i ∈ Ij . Furthermore
θadd0 is a constant and θaddIj

: Rdj → R denote functions normalized such that

∫

θaddIj (x)d(x) = 0 (j = 1, . . . ,m).

Note that the completely additive case is obtained for the choice m = d, that is
d1 = · · · = dd = 1.

To construct an estimator in the additive inverse regression model (2.7) with
random design we apply the marginal integration method introduced in Linton
and Nielsen (1995) to the statistic defined in (2.4). To this end we consider
weighting functions QI1 , . . . , QIm , QIj : R

dj → R and define

Q(x∗) = QI1(x
∗
I1) · · ·QIm(x∗

Im)

QIc
j
(x∗
Ic
j
) = QI1(x

∗
I1) · · ·QIj−1

(x∗
Ij−1

)QIj+1
(x∗
Ij+1

) · · ·QIm(x∗
Im), (2.8)
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where Icj = {1, . . . , d} \ Ij . With this notation we introduce the quantities

αj,QIc
j
(x∗
Ij ) =

∫

R
d−dj

θ(x∗)dQIc
j
(x∗
Ic
j
), j = 1, . . . ,m, (2.9)

c =

∫

Rd

θ(x∗)dQ(x∗). (2.10)

Now let θ̂RD denote the unrestricted estimator introduced in Section 2.1 for
the random design model, then the additive estimator for the signal θ is finally
defined by

θ̂add,RD(x∗) = α̂1,QIc
1

(x∗
I1) + · · ·+ α̂m,QIcm (x∗

Im)− (m− 1)ĉ (2.11)

where ĉ and α̂j,QIc
j
denote estimates for the quantities c and αj,QIc

j
which are

obtained by replacing in (2.9) and (2.10) the signal θ by its estimator θ̂RD,
respectively. Recalling the definition of the unrestricted estimator in (2.2) and
(2.3), we obtain from (2.9) the representation

α̂j,QIc
j
(x∗
Ij ) =

n
∑

k=1

Ykw
add
N (x∗

Ij ,Xk), (2.12)

where the weights are given by

waddN (x∗
Ij ,Xk) =

1

Nhd(2π)d

∫

Rd

ei〈w,Xk〉/he
−i〈wIj ,x

∗

Ij
〉/h
LIc

j

(

wIc
j

h

)

× ΦK(w)

Φψ(
w
h )
dw

1

max{f(Xk), f(
1
aN

)} .

Here and throughout this paper we define for y ∈ Rd−dj

LIc
j
(y) =

∫

R
d−dj

e
−i〈y,xIc

j
〉
dQIc

j
(xIc

j
), (2.13)

where QIc
j
(xIc

j
) is defined in (2.8).

2.3. Technical Assumptions

In this Section we will derive important asymptotic properties of the pro-
posed estimators in the additive inverse regression model with a random de-
sign. For this purpose the following assumptions are required. Throughout this
paper ‖ · ‖ denotes the Euclidean norm and the symbol an ∼ bn means that
limn→∞ an/bn = c for some positive constant c.

Assumption (A.1). The Fourier transform Φψ of the function ψ satisfies
(as h→ 0)

∫

Rd

|ΦK(w)|
|Φψ(wh )|

dw ≤ C1h
−β ,

∫

Rd

|ΦK(w)|2
|Φψ(wh )|2

dw ∼ C2h
−2β

for some β > 0 and constants C1, C2 > 0.
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Assumption (A.2). The Fourier transform ΦK of the kernel K in (2.2) is
symmetric, supported on the cube [−1, 1]d and there exists a constant b ∈ (0, 1]
such that ΦK(w) = 1 for w ∈ [−b, b]d, b > 0, and |ΦK(w)| ≤ 1 for all w ∈
[−1, 1]d.

Assumption (A.3).

(A) The Fourier transform Φθ of the signal θ in model (1.1) exists and satisfies

∫

Rd

|Φθ(w)| ‖ w ‖s−1 dw <∞ for some s > 1.

(B) The function g in model (1.1) satisfies

∫

Rd

|g(z)| ‖ z ‖r dz <∞

for some r > 0 such that arn = O(hβ+d+s−1).
(C) The Fourier transforms Φθadd

I1

, . . . ,Φθadd
Im

of the functions θaddI1
, . . . , θaddIm

in

the additive model (2.7) satisfy

∫

Rd

|Φθadd
Ij

(w)| ‖ w ‖s−1 dw <∞ for some s > 1andj = 1, . . . ,m.

(D) The functions gI1 , . . . , gIm defined in (3.3) satisfy

∫

R
dj

|gIj (z)| ‖ z ‖r dz <∞ for j = 1, . . . ,m

for some r > 0 such that a
r−dj
N = O(hβj+s+dj−1).

Assumption (A.4). For each N ∈ N let X1, . . . ,XN denote independent iden-
tically distributed d-dimensional random variables with density f (which may
depend on N) such that f(x) 6= 0 for all x ∈ [− 1

aN
, 1
aN

]d. Furthermore we
assume, that for sufficiently large N ∈ N

f(x) ≥ f(
1

aN
) for x ∈

[

− 1

aN
,
1

aN

]d

.

The final assumption is required for the marginal integration estimator and
is an extension of Assumption (A.1).

Assumption (A.5). There exist positive constants γ1, . . . , γm such that the
Fourier transform Φψ of the convolution function ψ satisfies

(A)
∫

Rd

∣

∣

∣LIc
j

(wIc
j

h

)∣

∣

∣

2 |ΦK(w)|2
|Φψ(w

h
)|2 dw ∼ C3h

−2β+γj (j = 1, . . . ,m)

(B)
∫

Rd

∣

∣

∣

∑m
j=1 e

−i〈wIj ,x
∗

Ij
〉/h
LIc

j

(wIc
j

h

)∣

∣

∣

2 |ΦK(w)|2
|Φψ(w

h
)|2 dw ∼ C4h

−2β+γmin , where

γmin = minmj=1 γj
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(C)
∫

Rd

(

∏m
j=1

∣

∣

∣LIc
j

(wIc
j

h

)∣

∣

∣

2
)

|ΦK(w)|2
|Φψ(w

h
)|2 dw = o

(

h−2β+γmin
)

.

Remark 2.2.

1. Assumptions (A.3)(B) and (A.3)(D) are needed for the computation of
the bias, where we have to ensure that g(x) converges sufficiently fast to
zero as x→ ∞.

2. The results of this and the following Section can be extended to multi-
plicative signals of the form

θ(x∗) =
m
∏

j=1

θIj (x
∗
Ij ). (2.14)

The details are omitted for the sake of brevity.

Example 2.3. In order to demonstrate that the assumptions are satisfied in
many cases of practical importance we consider exemplarily Assumptions (A.1)
and (A.5) and a two dimensional additive signal that is x = (x1, x2),

θ(x1, x2) = θ1(x1) + θ2(x2),

(I1 = Ic2 = {1}, I2 = Ic1 = {2}). For the convolution function in (1.1) and the
weight (2.8) we choose

ψ(x) =
λ2

4
e−λ(|x1|+|x2|)

Q(x) = 1[−1,1]2(x),

respectively, and the kernel K is defined by

K(x) =
sin(x1) sin(x2)

π2x1x2
.

Note that the Fourier transform of the kernel is given by ΦK(w) = I[0,1]2(w).
The integrals in Assumptions (A.1) and (A.5) are obtained by a straightforward
calculation

∫

R2

|ΦK(w)|
|Φψ(wh )|

dw =

∫

[−1,1]2

(

1 +
w2

1

h2

)(

1 +
w2

2

h2

)

dw =

(

2

3h2
+ 2

)2

∫

R2

|ΦK(w)|2
|Φψ(wh )|2

dw =

∫

[−1,1]2

(

1 +
w2

1

h2

)2(

1 +
w2

2

h2

)2

dw =

(

2

5h4
+

4

3h2
+ 2

)2

∫

R2

∣

∣

∣L1

(w1

h

)∣

∣

∣

2 |ΦK(w)|2
|Φψ(wh )|2

dw =

∫

[−1,1]2

4h2| sin
(

w1

h

)

|2
(

1 +
w2

1

h2

)2 (

1 +
w2

2

h2

)2

w2
1

dw

=
8

15h6
+ o(h−6).
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Similarly we obtain for the remaining integrals in (A.5)

∫

R2

∣

∣

∣

∣

∣

∣

2
∑

j=1

e
−i〈wIj ,x

∗

Ij
〉/h
LIc

j

(

wIc
j

h

)

∣

∣

∣

∣

∣

∣

2

|ΦK(w)|2
|Φψ(wh )|2

dw

= h2
∫

[−1,1]2

∣

∣

∣

∣

∣

e−iw1x1/h
sin
(

w2

h

)

w2
+ e−iw2x2/h

sin
(

w1

h

)

w1

∣

∣

∣

∣

∣

2

×
(

1 +
w2

1

h2

)2(

1 +
w2

2

h2

)2

dw =
16

15h6
+ o

(

h−6
)

∫

R2

2
∏

j=1

∣

∣

∣
LIj

(wIj
h

)∣

∣

∣

2 |ΦK(w)|2
|Φψ(wh )|2

dw =

(

∫

[−1,1]

4h2| sin
(

w1

h

)

|2
(

1 +
w2

1

h2

)2

w2
1

dw1

)2

=
16

9h4
+ o(h−4)

2.4. Asymptotic properties

We begin with a discussion of the weak convergence of the unrestricted estimator
θ̂RD for the signal θ in the inverse regression model (2.1) corresponding to the
random design assumption. Here the estimator is given by

θ̂RD(x∗) =
1

Nhd(2π)d

n
∑

k=1

∫

Rd

e−i〈w,x
∗−Xk〉/hΦK(w)

Φψ(
w
h )
dw

Yk

max{f(Xk), f(
1
aN

)}
(2.15)

and its asymptotic properties are described in our first main result which is
proved in the Appendix. Throughout this paper the symbol ⇒ denotes weak
convergence.

Theorem 2.4. Consider the inverse regression model (2.1) under the random
design assumption (RD). Let Assumptions (A.1), (A.2), (A.3)(A), (A.3)(B),
(A.4) and (A.5) be fulfilled and assume that h → 0 and aN → 0 as N → ∞
such that

N1/2hβ+d/2f(a−1
N )1/2 → ∞ and N1/2h3d/2f(a−1

N )3/2 → ∞.

Furthermore, assume that the errors in model (2.1) are independent, identically
distributed with mean zero and variance σ2. Then

V
−1/2
1

(

θ̂RD(x∗)− E[θ̂RD(x∗)]
)

⇒ N (0, 1), (2.16)

where E[θ̂RD(x∗)] = θ(x∗) +O(hs−1) and the normalizing sequence

V1 =
1

N(2π)2d

∫

Rd

∣

∣

∣

∣

∫

Rd

e−i〈s,(x
∗−y)〉ΦK(hs)

Φψ(s)
ds

∣

∣

∣

∣

2
(σ2 + g2(y))f(y)

max
{

f(y), f( 1
aN

)
}2 dy (2.17)
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is bounded by

ClN
1/2hd/2+βf(a−1

N )1/2 ≤ V
−1/2
1 ≤ CuN

1/2hd/2+β. (2.18)

Remark 2.5. Note that the rate of convergence in Theorem 2.4 depends sen-
sitively on the design density. We demonstrate this by providing two examples,
one for the fastest and one for the slowest possible rate. First, assume that the
predictors are uniformly distributed on the cube [− 1

aN
, 1
aN

]d and that the convo-
lution function is the d-dimensional Laplace density function. This yields β = 2d

in Assumption (A.1) and we get a rate of convergence of order N1/2h5d/2a
d/2
N ,

which is exactly the lower bound in Theorem 2.4. However, a rate of order
N1/2h5d/2 is obtained for the design density

f(x1, . . . , xd) =

d
∏

k=1

ga,b(xk),

where the function ga,b : R → R is defined by

ga,b(x) =

{

a, if x ∈ [−1, 1]
a

|x|b , else,

and the parameters a and b are given by b > 1, a = (2+ 2
b−1 )

−1. In this case we
have

V
−1/2
1 ∼ N−1/2h−5d/2 +N−1/2h−2da

(−b+1)/2
N .

For the choice h = o(ab−1
N ) we therefore obtain V

−1/2
1 ∼ N−1/2h−5d/2.

We now consider the marginal integration estimator θ̂add,RD defined in (2.11)
under the random design assumption. Lemma 2.6 below gives the asymptotic
behaviour of the j-th component α̂j,QIc

j
and Theorem 2.8 the asymptotic dis-

tribution of θ̂add,RD. The proofs are complicated and therefore also deferred to
Section 6.

Lemma 2.6. If Assumptions (A.1), (A.2), (A.3)(C), (A.3)(D), (A.4) and (A.5)
are satisfied and

N1/2hβ+d/2−γj/2f(a−1
N )1/2 → ∞ and N1/2h3/2(d−γj)f(a−1

N ) → ∞
as N → ∞. Then the appropriately standardized estimator α̂j,QIc

j
(x∗
Ij
) defined

in (2.12) converges weakly to a standard normal distribution, that is

V
−1/2
2

(

α̂j,QIc
j
(x∗
Ij )− E[α̂j,QIc

j
(x∗
Ij )]
)

⇒ N (0, 1) (2.19)

for j = 1, . . . ,m, where E[α̂j,QIc
j
(x∗
Ij
)] = αj,QIc

j
(x∗Ij ) + O(hs−1) and the stan-

dardizing factor

V2 =
1

N(2π)d

∫

Rd

∣

∣

∣

∣

∫

Rd

e−i〈w,x〉ei〈wIj ,xIj 〉LIc
j

(

wIc
j

)ΦK(hw)

Φψ(w)
dw

∣

∣

∣

∣

2

× (σ2 + g(x)2)f(x)

max{f(x), f( 1
aN

)}2 dx.
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satisfies

ClN
1/2hd/2+β−γjf(a−1

N )1/2 ≤ V
−1/2
2 ≤ CuN

1/2hd/2+β−γj . (2.20)

Remark 2.7.

(a) Similar to the unrestricted case, the rate of convergence depends on the
design density f . Note that under the given assumptions the rate of con-
vergence of the estimator α̂j,QIc

j
is by the factor hγj faster than the rate

of the unrestricted estimator.
(b) In the cases of direct regression the problem of estimating an additive

function has been studied extensively in the literature [see Linton and
Nielsen (1995), Mammen et al. (1999) Hengartner and Sperlich (2005)
among many others]. In the direct additive regression model

Yk = g(Xk) + εk = g0 + g1(X1,k) + · · ·+ gd(Xd,k) + εk

the rate of the convergence of the marginal integration estimators of the
component gj is given by N1/2h1/2 (assuming appropriate smoothness
conditions). On the other hand it follows from Lemma 2.6 that in the
inverse regression model the corresponding rate of convergence is bounded
by N1/2h1/2+β−γjf1/2(1/aN) and N1/2h1/2+β−γj . The additional factor
f1/2(1/aN)hβ−γj can be interpretated as the price which has to be paid
for the ill-posed problem.

(c) Assume thatm = 1 (i.e. dj = 1; j = 1, . . . , d). If all components except one
in model (2.6) would be known, this component could be estimated at a
rate varying between N1/2hβ+1/2 and N1/2hβ+1/2f(1/aN)1/2. Comparing
these bound with (2.20) we conclude that in the case of the random design
the marginal integration estimate does not have an oracle property.

Theorem 2.8. If Assumptions (A.1), (A.2), (A.3)(C), (A.3)(D), (A.4) and
(A.5) are satisfied and

N1/2hβ+(3d+γmin)/2f(a−1
N )1/2 → ∞, N1/2hβ+(d−γmin)/2f(a−1

N )1/2 → ∞
N1/2h3/2(d−γj)f(a−1

N )3 → ∞ (j = 1, . . . ,m)

as N → ∞, then the appropriately standardized additive estimator θ̂add,RD con-
verges weakly to a standard normal distribution, that is

V
−1/2
3

(

θ̂add,RD(x∗)− E[θ̂add,RD(x∗)]
)

⇒ N (0, 1), (2.21)

where E[θ̂add,RD(x∗)] = θadd(x∗) +O(hs−1) and the standardizing factor

V3 =
1

N(2π)2d

∫

Rd

∣

∣

∣

∣

∫

Rd

ei〈w,s〉
( m
∑

j=1

e
−i〈wIj ,x

∗

Ij
〉
LIc

j
(wIc

j
)

)

ΦK(hw)

Φψ(w)
dw

∣

∣

∣

∣

2

× (σ2 + g(s)2)f(s)

max{f(s), f( 1
aN

)}2 ds.

satisfies

ClN
1/2hd/2+β−γminf(a−1

N )1/2 ≤ V
−1/2
3 ≤ CuN

1/2hd/2+β−γmin .
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3. Additive inverse regression with fixed design

An important application of inverse regression is image reconstruction. In these
cases observations are often available on a regular grid and this situation will
be studied in this section. We assume again the existence of the moments E[εk]
of the errors in model (1.1) for all k ∈ N such that E[ε] = 0 and σ2 = E[ε2] > 0.
Regarding the design we make the following assumption.

(FD) Under the fixed design assumption we assume that observations are avail-
able on a grid of increasing size. More precisely we consider a sequence
an → 0 as n → ∞ and assume that at each location zk = k

nan
∈ R

d with

k = (k1, . . . , kd) ∈ {−n, . . . , n}d a pair of observations (zk, Yk) is available
in the model

Yk = g(zk) + εk =

∫

Rd

ψ(zk − t)θ(t)dt+ εk, (3.1)

where {εk |k ∈ {−n, . . . , n}d} are independent and identically distributed
random variables. Under this assumption the sample size is N = (2n+1)d.
Note that formally the random variables {Yk | k ∈ {−n, . . . , n}d} form a
triangular array, but we do not reflect this dependence in the notation. In
other words we will use the notation Yk, zk, εk instead of Yk,n, zk,n, εk,n
throughout this paper.

3.1. An alternative additive estimator for a fixed design

In principle the marginal integration estimator could also be used under the
fixed design assumption (FD) and its asymptotic properties have been studied
by Birke et al. (2012). This estimator is defined as in (2.2), where the empirical
Fourier transform is replaced by

Φ̂FD(w) =
1

ndadn

∑

k∈{−n,...,n}d
Yke

i〈w,zk〉.

However, it turns out that for observations on a grid a simpler and more efficient
estimator can be defined. This idea is closely related to the backfitting approach.
To be precise we note that the assumption of additivity for the signal θ implies
additivity of the observable signal g due to the linearity of the convolution
operator. Hence, model (3.1) is equivalent to

Yk = g0 + gI1(zkI1 ) + · · ·+ gIm(zkIm ) + εk, (3.2)

where g0 =
∫

Rd
ψ(z− t)θ0dt,

gIj (zkIj ) =

∫

R
dj

ψIj (zkIj − tIj )θ
add
Ij (tIj )dtIj (j = 1, . . . ,m) (3.3)
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and ψI1 , . . . , ψId are the marginals of ψ, that is

ψIj (tIj ) =

∫

R
d−dj

ψ(t)dtIc
j
.

Recall the definition of kIj and kIc
j
as the dj and (d − dj)-dimensional vector

corresponding to the components (kl | l ∈ Ij) and (kl | l ∈ Icj ) of the vector
k = (k1, . . . , kd), respectively. In order to define estimators of these terms we
consider the empirical Fourier transforms in dimension dj

Ψ̂Ij (w) =
1

(nan)dj

∑

kIj∈{−n,...,n}dj
ZkIj

e
i〈w,zkIj 〉 (j = 1, . . . ,m),

where the random variables ZkIj
are given by

ZkIj
=

1

(2n+ 1)d−dj

∑

kIc
j
∈{−n,...,n}d−dj

Yk. (3.4)

The additive estimator is now defined by

θ̂add,FD(x∗) = θ̂0 + θ̂FDI1 (x∗
I1) + · · ·+ θ̂FDIm (x∗

Im), (3.5)

where

θ̂0 =
1

N

∑

k∈{−n,...,n}d
Yk,

θ̂FDIj (x∗
Ij ) =

1

(2π)dj

∫

R
dj

e
−i〈w,x∗

Ij
〉
ΦKj (hw)

Ψ̂gIj (w)

ΦψIj (w)
dw (3.6)

and Kj is a dj-dimensional kernel (j = 1, . . . ,m). Note that by the lattice

structure the statistic ZkIj
in (3.4) is a

√
nd−dj -consistent estimator of gIj (zkIj ).

Therefore the deconvolution problem for the j-th component is reduced to a
problem in dimension dj and the estimator θ̂FDIj (x∗

Ij
) can be rewritten as

θ̂FDIj (x∗
Ij ) =

∑

kIj∈{−n,...,n}dj
ZkIj

wkIj ,n
(x∗
Ij ), (3.7)

where the weights wkIj ,n
are defined by

wkIj ,n
(x∗
Ij ) =

1

(nhan2π)dj

∫

R
dj

e
−i〈w,(x∗

Ij
−zkIj

)〉/h ΦKj (w)

ΦψIj (
w
h )
dw. (3.8)

Remark 3.1. It is worthwhile to mention that under the fixed design assump-
tion the estimator θ̂FDIj can be defined explicitly (see equation (3.6)), because
observations are available on a regular grid. On the other hand in the random
design case the situation is substantially more complicated because – even in
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the direct case – the estimator can only be defined implicity as a solution of the
backfitting equations, which have to be solved iteratively. A detailed analysis
including a proof of the existence and uniqueness of a solution and the geomet-
ric convergence of the backfitting equations in direct regression models can be
found in Mammen et al. (1999). It is an open and very challenging problem for
future research to investigate if these techniques can be combined with Fourier
based estimation methods to construct backfitting estimators in inverse additive
regression models.

3.2. Technical Assumptions

In order to derive the asymptotic properties of the estimator (3.6) we require
the assumptions (A.3) from Section 2.3, which refer to the signal θ, the con-
volution function ψ and the kernel K. Additionally the following assumptions
corresponding to the fixed design are required.

Assumption (B.1). The Fourier transforms ΦψIj of the marginals ψIj of ψ

satisfy
∫

R
dj

|ΦKj (w)|
|ΦψIj (

w
h )|

dw ≤ C1h
−βj ,

∫

R
dj

|ΦKj (w)|2
|ΦψIj (

w
h )|2

dw ∼ C2h
−2βj

for some βj > 0 (j = 1, . . . ,m) and constants C1, C2 > 0.

Assumption (B.2). Under the assumption of additivity the Fourier transform
ΦKj of the kernel Kj is symmetric and supported on [−1, 1]dj and there exists
a constant b ∈ (0, 1] such that ΦKj (w) = 1 for w ∈ [−b, b]dj , b > 0, and
|ΦKj (w)| ≤ 1 for all w ∈ [−1, 1]dj for all j = 1, . . . ,m.

Remark 3.2.

1. The common assumption on the convolution function ψ in the fixed design
case is

Φψ(w) ‖ w ‖β→ C w → ∞, (3.9)

[see Birke and Bissantz (2009)]. Assumption (B.1) is substantially weaker
because we do not assume the Fourier transform Φψ to be asymptotically
radial-symmetric. It is satisfied for many commonly used convolution func-
tions such as the multivariate Laplace density and the density of several
Gamma distributions for which (3.9) does not hold.

2. Note that the asymptotic theory for the new estimator in the completely
additive case m = d (d1 = · · · = dm = 1) does not require the additive
functions to have compact support as it is assumed in Birke et al. (2012).

3.3. Asymptotic properties

In the case of a fixed design on a grid (assumption (FD)) the asymptotic proper-
ties of the unrestricted estimator have been studied in Birke and Bissantz (2009)
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and in this section we investigate the asymptotic properties of the backfitting
estimator introduced in the previous section. Our first result, Lemma 3.3, gives
the weak convergence of θ̂FDIj , whereas Theorem 3.4 contains the asymptotic dis-

tribution of the estimator θ̂add,FD defined in (3.5). The proofs are again deferred
to Section 6.

Lemma 3.3. Consider the inverse regression model under the fixed design as-
sumption (FD). Let Assumptions (B.1), (B.2), (A.3)(C) and (A.3)(D) be fulfilled
for some j ∈ {1, . . . ,m}, h→ 0 and an → 0 as n→ ∞ such that

ndhdj+2βjadjn → ∞ and n2h2+dj+βja3n → ∞,

then

Unj(x
∗
Ij )

−1/2(θ̂FDIj (x∗
Ij )− E[θ̂FDIj (x∗

Ij )]) ⇒ N (0, 1), (3.10)

where the normalizing sequence is defined by

Unj(x
∗
Ij ) =

σ2

(2n+ 1)d−dj

∑

kIj∈{−n,...,n}dj
wkIj ,n(x

∗
Ij )

2,

the weights wkIj ,n are defined in (3.8) and

E[θ̂FDIj (x∗
Ij )] = θaddIj (x∗

Ij ) +O(hs−1) +O(n−2h−dj−βj−2a−3
n ).

The result of Theorem 3.4 below follows immediately from Lemma 3.3.
The bias is of the same order as the bias in Lemma 3.3 and we define j∗ =
argmaxj (dj + 2βj).

Theorem 3.4. Consider the inverse regression model under the fixed design
assumption (FD). Let Assumptions (B.1), (B.2), (A.3)(C) and (A.3)(D) be ful-
filled, h→ 0 and an → 0 as n→ ∞ such that

ndhdj∗+2βj∗ a
dj∗
n → ∞ and n2h2+dj∗+βj∗a3n → ∞.

Then

Un(x
∗)−1/2(θ̂add,FD(x∗)− E[θ̂add,FD(x∗)]) ⇒ N (0, 1), (3.11)

where the normalizing sequence is defined by

Un(x
∗) = σ2

∑

k∈{−n,...,n}d





m
∑

j=1

1

(2n+ 1)d−dj
wkIj ,n(x

∗
Ij )





2

,

the weights wkIj ,n are defined in (3.8) and

E[θ̂add,FD(x∗)] = θadd(x∗) +O(hs−1) +O

(

1

n2h2+maxj dj+maxj βja3n

)

.
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Remark 3.5.

(1) The normalizing sequence Un(x
∗) in (3.11) is of order ndhdj∗+2βj∗a

dj∗
n .

(2) The bias of the additive estimator in the fixed design case is only vanishing
if the subsets Ij in the decomposition (2.7) satisfy dj ≤ 3 for all j =
1, . . . ,m.

(3) Theorem 3.4 can easily be extended to multiplicative models of the form
(1.1) with

θ(x∗) =

m
∏

j=1

θIj (x
∗
Ij )

if the convolution function ψ is also multiplicative. Otherwise the estimator
is not consistent and other techniques such as the marginal integration
method have to be used.

Remark 3.6. Note that for a one-dimensional predictor the estimator θ̂FD

in (2.2) for the signal θ in the inverse regression model converges with a rate

n−d/2h−1/2−βa−1/2
n under the fixed design assumption. Consequently if all com-

ponents in the inverse additive regression model with a d-dimensional predictor
were known except for one remaining component, this component could be esti-

mated at rate N−1/2h−1/2−βa−1/2
n . It follows from Lemma 3.3 (with dj = 1) and

its proof in the Appendix that the backfitting estimator θ̂FDIj defined in (3.7)
converges with the same rate. In other words under the fixed design assumption
the backfitting estimator (3.7) attains this oracle rate for each component.

Remark 3.7. The choice of the sequence an is a delicate problem. Note that the
estimators (2.2) and (2.4) are based on the Fourier inversion formula. This for-
mula is applied to the empirical Fourier-transform, which estimates the Fourier
transform

Φ(w) =

∫

Rd

g(z)ei〈w,z〉dz.

Thus in order to obtain good estimates it is necessary to observe data, where
the signal deviates significantly from 0. If aN is chosen too large, there appear
serious bias problems, while a too small choice will increase the variability of
the estimate. Consequently in the cases of a fixed design the cube [1/an, 1/an]

d

should be as small as possible such that it contains a reasonable part of the
region, where the function g deviates from 0, say 90% or 95%. In applications
it is recommended to investigate d two-dimensional scatterplots of the data and
choose the sequence an for each component of the predictor appropriately.

In the case of a random design this procedure has to be slightly modified.
Here we choose each component of the vector aN = (aN1, . . . , aNd)

T from the
empirical quantiles of the corresponding marginal distribution. More precisely,
we propose

aNj =
(1

2
(F̂−1
j (0.5) + F̂j(0.95))

)−1
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for the jth coordinate, where F̂j(x) denotes the empirical distribution ofXj,1, . . . ,
Xj,N and Xk = (X1,k, . . . , Xd,k)

T .

4. Dependent data

In this Section we briefly discuss the case of dependent data. To be precise we
assume that the errors in the inverse regression models have an MA(q) structure.
Under the random design assumption this structure is given by

εt = Zt + β1Zt−1 + · · ·+ βqZt−q, (4.1)

where {Zt}t∈Z denotes a white noise process with variance σ2. A careful in-
spection of the proof of Theorem 2.4, which is based on the investigation of
the asymptotic properties of cumulants, shows that the result of Theorem 2.4
remains valid under this assumption.

Theorem 4.1.
(1) Consider the inverse regression model (2.1) under the random design as-
sumption (RD). If the Assumptions of Theorem 2.4 are satisfied, then

V
−1/2
1

(

θ̂RD(x∗)− E[θ̂RD(x∗)]
)

⇒ N (0, 1), (4.2)

where the normalizing sequence is given by

V1 =
1

Nhd(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

e−i〈s,(x
∗/h−y)〉ΦK(s)

Φψ(
s
h )
ds
∣

∣

∣

2

×
(σ2

∑q
k,l=0 βkβl + g2(hy))f(hy)

max{f(hy), f( 1
aN

)}2 dy,

β0 = 1 and E[θ̂RD(x∗)] = θ(x∗) +O(hs−1).
(2) If the assumptions of Theorem 2.8 are satisfied, then the appropriately stan-

dardized additive estimator θ̂add,RD converges weakly to a standard normal dis-
tribution, that is

V
−1/2
3

(

θ̂add,RD(x∗)− E[θ̂add,RD(x∗)]
)

⇒ N (0, 1), (4.3)

where the standardizing factor is given by

V3 =
1

N(2π)2d

∫

Rd

∣

∣

∣

∣

∫

Rd

ei〈w,s〉
(

m
∑

j=1

e
−i〈wIj ,x

∗

Ij
〉
LIc

j
(wIc

j
)
)ΦK(hw)

Φψ(w)
dw

∣

∣

∣

∣

2

×
(σ2

∑q
k,l=0 βkβl + g(s)2)f(s)

max{f(s), f( 1
aN

)}2 ds.

and E[θ̂add,RD(x∗)] = θadd(x∗) +O(hs−1).



18 T. Hildebrandt et al.

Under the assumption of a fixed design on a grid we consider an error process
with an MA(q) structure defined by

εk =
∑

r∈{−q,...,q}d
βrZk−r, (4.4)

where {Zj}j∈Zd are i.i.d. random variables with mean zero and variance σ2. This
means, that the noise terms are influenced by all shocks, which have a distance
on the lattice lower or equal q regarding the ∞-norm. The following result can
be obtained by similar arguments as used for the proof of Theorem 3.4.

Theorem 4.2. Consider the inverse regression model (3.1) under the fixed
design assumption with an MA(q) dependent error process of the form (4.4). If
the assumptions of Theorem 3.3 are satisfied we have

V
−1/2
MA (x∗)

(

θ̂add,FD(x∗)− E[θ̂add,FD(x∗)]
)

⇒ N (0, 1),

where the normalizing sequence is given by

VMA(x
∗) = σ2

∑

l∈Z
d

‖l‖∞≤2q

∑

r1∈{−q,...,q}d
βr1βl+r1

×
∑

k∈{−n,...,n}d

∣

∣

∣

∣

m
∑

j=1

1

(2n+ 1)d−dj
wkIj ,n

(x∗
Ij )

∣

∣

∣

∣

2

.

and E[θ̂add,FD(x∗)] = θadd(x∗) +O(hs−1) +O( 1

n2h2+maxj dj+maxj βja3n
).

Remark 4.3. If εt has an MA(∞) representation Theorems 4.1 and 4.2 will
not hold in general, because without additional assumptions the l-th cumulant
of the normalized statistic does not converge to zero for all l ≥ 3.

5. Finite sample properties

In this Section we investigate the finite sample properties of the new estimators
and also provide a comparison with competing methods. We first investigate the
case of a fixed design in model (1.1) with the convolution function

ψ(x1, x2) =
9

4
e−3(|x1|+|x2|),

and two additive signals

θ(1)(x1, x2) = e−(x1−0.1)2 + e−(x2−0.4)2 (5.1)

θ(2)(x1, x2) = e−|x1−0.4| + 2e−2x2
2 (5.2)

For the kernel K in the Fourier transform ΦK we use the kernel K(x) =
sin(x1) sin(x2)

π2x1x2
. We consider a fixed design on the grid {( k1

nan
, k2
nan

|k1, k2 ∈ {−n, . . . ,
n}} with N = (2n + 1)2 points where n ∈ {30, 50}. In both cases we choose
the design parameter as an = 0.25, such that the cube [−1

an
, 1
an

]2 covers most
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Fig 1. Mean integrated squared error of the estimator θ̂add,FD for different bandwidths in
model (5.1), where σ = 0.5.

of the region where the functions θ(1) and θ(2) deviate significantly from 0. In
all simulations we use (independent) noise terms, which are normal distributed
with mean 0 and variance 0.25.

The bandwidth h in the estimator (3.6) is chosen such that the mean inte-
grated squared error (MISE)

E

[

∫

R2

(θ̂(x)− θ(x))2dx
]

is minimized. Figure 1 shows a typical example of the MISE as a function of
the bandwidth h. Figure 2 shows the contour plot of the function θ(1) defined
in (5.1) and contour plots of three typical additive estimates where n = 50
and the bandwidths are chosen as h = 0.32, 0.36, 0.4 (the bandwidth h = 0.36
minimizes the MISE). We observe that the shapes in all figures are very similar.
The bandwidths h = 0.32 and h = 0.4 yield stronger deviations from the true
function especially at the boundary, but the main structure is even for these
choices still recovered. Because other simulations showed a similar picture we
conclude that small changes in the bandwidth do not effect the general structure
of the estimator significantly.

In order to investigate the finite sample properties of the new estimate θ̂add,FD

defined in (3.5) we performed 1000 iterations with the signal θ(2) (the results
for the signal θ(1) are similar and are not depicted for the sake of brevity). The

simulated mean, variance and mean squared error (MSE) of θ̂add,FD are given in
Table 1 for different choices of x = (x1, x2) where the sample size is N = 10201
and the variance of the errors is 0.25. We observe that in most cases the mean
squared error is dominated by the bias.

In the second part of this section we compare three different estimates for
the signal in the inverse regression model (1.1). The first estimate for θ is the
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Fig 2. Contour plot of the function θ(1) defined in (5.1) (left upper panel) and its estimates

θ̂add,FD defined in (3.5) with different bandwidths. Upper right panel: h = 0.32; Lower left
panel: h = 0.36 (which minimizes the MISE); Lower right panel: h = 0.4.

statistic θ̂add,FD proposed in this paper [see formula (3.5)]. The second method
is the marginal integration estimator suggested by Birke et al. (2012) and the
third method is the non additive estimate of Birke and Bissantz (2009). The
results are shown in Table 2 for the sample size N = 3721 and selected values of
the predictor. We observe that the additive estimate of Birke et al. (2012) im-
proves the unrestricted estimate with respect to mean squared error by 20–50%.
However, the new additive estimate θ̂add,FD yields a much larger improvement.
The MSE is about 14 and 7–10 times smaller than the MSE obtained by the
unrestricted estimator or the estimator proposed by Birke et al. (2012). Further
simulations for the signal θ(2) in (5.2) show similar results and are not depicted
for the sake of brevity.
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Table 1

Mean, variance and mean squared error of the new additive estimator θ̂ = θ̂add,FD in the
case of a fixed design. The model is given by (5.2) with variance σ2 = 0.25

N x1 x2 θ(2)(x) E[θ̂(x)] Var(θ̂(x)) MSE(θ̂(x)
−1.6 0.1473 0.2522 0.0017 0.0127
−0.8 0.3131 0.3805 0.0017 0.0063

10201 −1.6 0 0.6823 0.8296 0.0017 0.0234
0.8 0.6823 0.8159 0.0017 0.0195
1.6 0.3131 0.3827 0.0017 0.0065
−1.6 0.6914 0.8216 0.0017 0.0187
−0.8 0.8573 0.9446 0.0018 0.0094

10201 −0.8 0 1.2264 1.3977 0.0017 0.0310
0.8 1.2264 1.3864 0.0017 0.0273
1.6 0.8573 0.9496 0.0018 0.0103
−1.6 2.1353 2.1887 0.0018 0.0046
−0.8 2.3012 2.3123 0.0017 0.0018

10201 0 0 2.6703 2.7640 0.0018 0.0106
0.8 2.6703 2.7548 0.0016 0.0087
1.6 2.3012 2.3178 0.0018 0.0020
−1.6 0.6914 0.8181 0.0017 0.0178
−0.8 0.8573 0.9445 0.0018 0.0094

10201 0.8 0 1.2264 1.3967 0.0017 0.0307
0.8 1.2264 1.3864 0.0017 0.0273
1.6 0.8573 0.9496 0.0018 0.0103
−1.6 0.1473 0.2532 0.0016 0.0128
−0.8 0.3131 0.3785 0.0017 0.0060

10201 1.6 0 0.6823 0.8290 0.0018 0.0233
0.8 0.6823 0.8168 0.0019 0.0200
1.6 0.3131 0.3855 0.0017 0.0069

For the sake of comparison, the first two rows of Table 2 contain results of the
estimators θ̂RD and θ̂add,RD, where the explanatory variables follow a uniform
distribution on the same cube [ 1

an
, 1
an

]2 as used for the fixed design. We observe
a similar behaviour of the unrestricted estimators under the fixed and random
design assumption. This corresponds to the asymptotic theory, which shows that
in the case of a uniform distribution the unrestricted estimators converge with
the same rate of convergence (see Remark 2.5). On the other hand, the additive

estimator θ̂add,RD produces a substantially larger mean squared error compared
to the estimator θ̂add,FD, which is of similar size as the mean squared error of
the estimator proposed by Birke et al. (2012).

Because the performance of the estimators depends on the correct specifica-
tion of the convolution function ψ we next investigate the performance of the
estimators under misspecification of the function ψ. In Figure 3 we display the
contour plots of the estimates θ̂add,FD, where in every panel the convolution
function is misspecificated as Laplace distribution Lap(α, β) with parameters
α = 0 and β = 1

3 . In the upper left and upper right panel the parameter β of
the Laplace distribution Lap(α, β) is misspecificated, whereas in the lower left
panel the true convolution function is the density of a standard normal distri-
bution and in the lower right panel it is a gamma distribution. We observe, that
a miss-specification of the shape of the convolution function (as it occurs if a
Laplace density is used instead of the density of a Gamma(3,2) distribution)
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Table 2

Mean, variance and mean squared error of the unrestricted estimator θ̂FD proposed in
Birke and Bissantz (2009), the estimator θ̂BBH proposed by Birke et al. (2012) and the

new estimators θ̂RD, θ̂add,RD and θ̂add,FD proposed in this paper. The model is given by
(5.1), where σ2 = 0.25

N x1 x2 θ(1)(x) Eθ̂(x) Var θ̂(x) MSE θ̂(x)
3721 0 0 1.8422 1.9667 0.0516 0.0671

θ̂RD 3721 0 1 1.6877 1.6983 0.0458 0.0459
3721 1 1 1.1425 1.1909 0.0329 0.0352
3721 1 1.8 0.5857 0.6624 0.0189 0.0248
3721 0 0 1.8422 1.8680 0.0440 0.0301

θ̂add,RD 3721 0 1 1.6877 1.6405 0.0195 0.0217
3721 1 1 1.1425 1.3371 0.0232 0.0610
3721 1 1.8 0.5857 0.8184 0.0199 0.0740

3721 0 0 1.8422 1.8123 0.0426 0.0435

θ̂FD 3721 0 1 1.6877 1.7305 0.0425 0.0443
3721 1 1 1.1425 1.2143 0.0418 0.0470
3721 1 1.8 0.5857 0.4774 0.0416 0.0533
3721 0 0 1.8422 1.8234 0.0027 0.0031

θ̂add,FD 3721 0 1 1.6877 1.6589 0.0024 0.0032
3721 1 1 1.1425 1.1097 0.0025 0.0036
3721 1 1.8 0.5857 0.5494 0.0023 0.0036
3721 0 0 1.8422 1.8874 0.0194 0.0214

θ̂BBH 3721 0 1 1.6877 1.7316 0.0191 0.0210
3721 1 1 1.1425 1.1833 0.0201 0.0218
3721 1 1.8 0.5857 0.4438 0.0207 0.0408

yields to an estimator with a different structure as the true signal (see the lower
right panel in Figure 3). All other panels show the same structure as the upper
left panel Figure 2 which gives the contour plot of the true signal θ(1). This
indicates that the structure of the signal can be reconstructed, as long as the
chosen convolution kernel exhibits similar modal properties as the “true kernel”.
However, we also observe from Figure 3 that the levels of the contour differ from
those of the true signal.

It was pointed out by a referee that it might also be of interest to investi-
gate the properties of the estimates under misspecification of the density f and
corresponding results are shown in Figure 4. All estimates are calculated under
the assumption of a N (0, I2) distribution for density f . The upper left panel
shows the corresponding contour plots of the estimate for the first component
in model (5.1) if this density is in fact the correct density. Results for a mis-
specification in the mean and a factor for the covariance matrix are shown in
the upper right panel and lower left panel of Figure 4, where f is the density
of a N (µ, I2) distribution with µ = (0.1, 0.1)T and a N (0, 0.9I2) distribution,
respectively. We observe that the structure of the estimates is still preserved.
On the other hand, if the true density is a N (0,Σ) distribution with

Σ =

(

1 1√
2

1√
2

1

)

(5.3)

the estimate of θ(1) does not reflect the main features of the signal.
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Fig 3. Contour plot of the estimate θ̂add,FD of θ(1) with misspecificated convolution func-
tion. Upper left panel: ψ misspecificated as Lap(0, 1

3
), where the true convolution function

is Lap(0,1); Upper right panel: ψ misspecificated as Lap(0, 1
3
), where the true convolution

function is Lap(0, 1
5
); Lower left panel: ψ misspecificated as Lap(0, 1

3
), where the true convo-

lution function is N (0, 1); Lower right panel: ψ misspecificated as Lap(0, 1
3
), where the true

convolution function is Gamma(3,2). The model is given by (5.1), where σ2 = 0.25.

We conclude this section with a brief discussion of the performance of the un-
restricted estimator θ̂RD under the assumption (RD) of a non-uniform random
design. In Table 3 we display the simulated mean, variance and mean squared
error for various distributions of the predictor X, where the components are
independent and identically distributed. In most cases we observe similar re-
sults for the bias, independently of the distribution of X and the choice of the
sequence an. On the other hand the mean squared error is dominated by the
variance, which depends sensitively on the choice of the parameter an. This
observation corresponds with the representation of the asymptotic variance of
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Fig 4. Contour plot of the estimate θ̂add,FD of θ(1) with misspecified density function. Up-
per left panel: density f correctly specified as N (0, I2); Upper right panel: f misspecified as
N (0, I2), where the true convolution function is N (µ, I2) and µ = (0.1, 0.1)T ; Lower left
panel: f misspecified as N (0, I2), where the true convolution function is N (0, 0.9I2); Lower
right panel: f misspecified as N (0, I2), where the true convolution function is N (0,Σ) and Σ
is defined in (5.3). The model is given by (5.1), where σ2 = 0.25.

θ̂RD in formula (2.17) of Theorem 2.4. We also observe that the impact of the

distribution of the explanatory variable on the variance of the estimate θ̂RD is
much smaller.
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Table 3

Mean, variance and mean squared error of the unrestricted estimator θ̂RD proposed in this
paper for different distributions of the explanatory variables X and different choices for the

parameter an. The model is given by (5.1) and the variance is σ2 = 0.25

X N an x1 x2 θ(1)(x) Eθ̂(x) Var θ̂(x) MSE θ̂(x)
10201 0.25 0 0 1.8422 1.7421 0.0297 0.0397

U [−1
an
, 1
an

] 10201 0.25 0 1 1.6877 1.7163 0.0272 0.0283

10201 0.25 1 1 1.1425 1.2858 0.0194 0.0399
10201 0.25 1 1.8 0.5857 0.6105 0.0117 0.0123
10201 0.5 0 0 1.8422 1.4957 0.0076 0.1277

U [−1
an
, 1
an

] 10201 0.5 0 1 1.6877 1.8123 0.0070 0.0225

10201 0.5 1 1 1.1425 1.5438 0.0044 0.1654
10201 0.5 1 1.8 0.5857 0.5695 0.0023 0.0026
10201 0.25 0 0 1.8422 1.8512 0.3271 0.3271

N(0, 1) 10201 0.25 0 1 1.6877 1.7019 0.7098 0.7100
10201 0.25 1 1 1.1425 1.2038 0.7077 0.7115
10201 0.25 1 1.8 0.5857 0.5983 0.4477 0.4479
10201 0.5 0 0 1.8422 1.8229 0.0079 0.0083

N(0, 1) 10201 0.5 0 1 1.6877 1.7466 0.0107 0.0143
10201 0.5 1 1 1.1425 1.2531 0.0114 0.0236
10201 0.5 1 1.8 0.5857 0.6366 0.0135 0.0161
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t(2) 10201 0.5 0 1 1.6877 1.7260 0.0158 0.0173
10201 0.5 1 1 1.1425 1.2069 0.0182 0.0223
10201 0.5 1 1.8 0.5857 0.6275 0.0174 0.0191
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6. Appendix

For the proofs we make frequent use of the cumulant method, which is a com-
mon tool in time series analysis. Following Brillinger (2001) the r-th order joint
cumulant cum(Y1, . . . , Yr) of a r-dimensional complex valued random vector
(Y1, . . . , Yr) is given by

cum(Y1, . . . , Yr) =
∑

(−1)p−1(p− 1)!
(

E
∏

j∈ν1
Yj

)

. . .
(

E
∏

j∈νp
Yj

)

, (6.1)

where we assume the existence of moments of order r, i.e. E(|Y rj |) < ∞ (j =
1, . . . , r) and the summation extends over all partitions (ν1, . . . , νp), p = 1, . . . , r
of (1, . . . , r). If we choose Yj = Y, j = 1, . . . , r we denote with cumr(Y ) =
cum(Y, . . . , Y ) the r-th order cumulant of a univariate random variable. The
following properties of the cumulant will be used frequently in our proofs [see
e.g. Brillinger (2001)].
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(B1) cum(a1Y1, . . . , arYr) = a1 . . . arcum(Y1, . . . , Yr) for constants a1, . . . ,
ar ∈ C

(B2) if any group of the Y’s is independent of the remaining Y’s, then cum(Y1, . . . ,
Yr) = 0

(B3) for the random variable (Z1, Y1, . . . , Yr) we have

cum(Z1 + Y1, Y2, . . . , Yr) = cum(Z1, Y2, . . . , Yr) + cum(Y1, Y2, . . . , Yr)

(B4) if the random variables (Y1, . . . , Yr) and (Z1, . . . , Zr) are independent, then

cum(Y1 + Z1, . . . , Yr + Zr) = cum(Y1, . . . , Yr) + cum(Z1, . . . , Zr)

(B5) cum(Yj) = E(Yj) for j = 1, . . . , r
(B6) cum(Yj , Y j) = V ar(Yj) for j = 1, . . . , r

We finally state a result which can easily be proved by using the definition (6.1)
and the properties of the mean.

Theorem 6.1. Let Y = (Y1, . . . , Yr) be a random variable, bn a sequence and
C > 0 a constant with

E
[

l
∏

j=1

|Yij |
]

≤ Clbln for all 1 ≤ l ≤ r,

then |cum(Yi1 , . . . , Yim)| ≤ (m − 1)!Cmbmn
∑m

j=1 Sm,j , where Sm,j denotes the
Sterling number of the second kind.

We will also make use of the fact that the normal distribution with mean µ
and variance σ2 is characterized by its cumulants, where the first two cumulants
are equal to µ and σ2 respectively and all cumulants of larger order are zero.
To show asymptotic normality in our proofs we have to calculate the first two
cumulants which give the asymptotic mean and variance and show in a second
step that all cumulants of order l ≥ 3 are vanishing asymptotically. In the
following discussion all constants which do not depend on the sample size (but
may differ in different steps of the proofs) will be denoted by C.

6.1. Proof of Theorem 2.4

For the sake of brevity we write θ̂ instead of θ̂RD throughout this proof. By
the discussion of the previous paragraph we have to calculate the mean and the
variance of θ̂(x∗) and all cumulants of order l ≥ 3. We start with the mean
conditional on X = (X1, . . . ,XN ), which can be calculated as

E[θ̂(x∗)|X] =

N
∑

k=1

g(Xk)wN (x∗,Xk),
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where the weights wN are defined in (2.5). By iterative expectation we get

E[θ̂(x∗)] =
1

hd(2π)d

∫

Rd

g(x)

∫

Rd

e−i〈s,(x
∗−x)〉/h ΦK(s)

Φψ(
s
h )

× f(x)

max{f(x), f( 1
aN

)}dsdx,

which yields a bias of the form biasθ̂ = E[θ̂(x∗)]−θ(x∗) = A1+A2, where (note
that Φg = Φψ · Φθ)

A1 =
1

hd(2π)d

∫

Rd

e−i〈s,x
∗〉/hΦK(s)Φθ

( s

h

)

ds− θ(x∗),

A2 =
1

hd(2π)d

∫

Rd

e−i〈s,x
∗〉/h ΦK(s)

Φψ(
s
h)

∫

Rd

g(x)ei〈s,x〉/h

×
( f(x)

max{f(x), f( 1
aN

)} − 1
)

dxds.

For the summand A1 we can use exactly the same calculation as in Birke and
Bissantz (2009) to obtain A1 = O(hs−1). For the second term A2 we have

A2 ≤ 1

hd(2π)d

∫

Rd

|ΦK(s)|
|Φψ( s

h )|

∫

Rd

|g(x)|
∣

∣

∣

f(x)

max{f(x), f( 1
aN

)} − 1
∣

∣

∣dxds

≤ C

hd+β(2π)d

∫

([− 1
aN

, 1
aN

]d)c
|g(x)|

∣

∣

∣

f(x)

max{f(x), f( 1
aN

)} − 1
∣

∣

∣dx,

where we used Assumptions (A.1)(A) and (A.4) in the last inequality. In the

next step we will use the fact that 0 ≤ f(x)

max
{

f(x),f( 1
aN

)
} ≤ 1 (x ∈ Rd) and

Assumption (A.3)(B) to obtain

A2 ≤ C

hd+β(2π)d

∫

([− 1
aN

, 1
aN

]d)c
|g(x)| ‖ x ‖r 1

‖ x ‖r dx = O
( arN
hd+β

)

= O(hs−1).

This shows that the bias of θ̂(x∗) is of order O(hs−1). By the definition of θ̂(x∗)
and (2.5) it follows

V (θ̂(x∗)|X) =
σ2

N2h2d(2π)2d

n
∑

k=1

∣

∣

∣

∫

Rd

e−i〈s,(x
∗−Xk)〉/h ΦK(s)

Φψ(
s
h)
ds
∣

∣

∣

2

× 1

max{f(Xk), f(
1
aN

)}2

which yields

E[V (θ̂(x∗)|X)] =
σ2

Nhd(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

e−i〈s,(x
∗/h−y)〉 ΦK(s)

Φψ(
s
h )
ds
∣

∣

∣

2

× f(hy)

max{f(hy), f( 1
aN

)}2 dy.
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The variance of the conditional expectation is given by (observe again the defi-
nition of the weight wN in (2.5))

V (E[θ̂(x∗)|X])

= V

(

N
∑

k=1

g(Xk)wn(x
∗,Xk)

)

=
1

Nhd(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

e−i〈s,(x
∗/h−y)〉 ΦK(s)

Φψ(
s
h )
ds
∣

∣

∣

2

× g2(hy)f(hy)

max{f(hy), f( 1
aN

)}2 dy

− 1

N(2π)2d

∣

∣

∣

∫

Rd

∫

Rd

e−i〈s,(x
∗/h−y)〉ΦK(s)

Φψ(
s
h )
ds

g(hy)f(hy)

max
{

f(hy), f( 1
aN

)
}dy

∣

∣

∣

2

,

where the second summand is of orderO(N−1). Thus the variance can be written
as

V (θ̂(x∗))

= E[V (θ̂(x∗)|X)] + V (E[θ̂(x∗)|X])

=
1

Nhd(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

e−i〈s,(x
∗/h−y)〉ΦK(s)

Φψ(
s
h )
ds
∣

∣

∣

2 (σ2 + g2(hy))f(hy)

max{f(hy), f( 1
aN

)}2 dy

+O(N−1) (6.2)

and the rate of convergence has a lower bound given by

V (θ̂(x∗))−1/2 = Ω
(

N1/2hβ+d/2f(a−1
N )1/2

)

,

where the symbol bN = Ω(cN ) means that there exists a constant C and N0 ∈ N

such that for all N ≥ N0 we have |bN | ≥ C|cN |. The variance has a lower bound

V (θ̂(x∗)) ≥ 1

Nhd(2π)2d

∫

([ −1

haN
, 1
haN

]d)

∣

∣

∣

∫

Rd

e−i〈s,(x
∗/h−y)〉ΦK(s)

Φψ(
s
h)
ds
∣

∣

∣

2

× (σ2 + g2(hy))f(hy)

f(hy)2
dy

≥ C

Nhd(2π)2d

∫

([ −1

haN
, 1
haN

]d)

∣

∣

∣

∫

Rd

e−i〈s,(x
∗/h−y)〉ΦK(s)

Φψ(
s
h)
ds
∣

∣

∣

2

dy

= C(Nhd+2β)−1(1 + o(1)),

where we used Assumption (A.4) and Parsevals equality. This yields to the upper
bound

V (θ̂(x∗))−1/2 = O
(

N1/2hβ+d/2
)

(6.3)

For the proof of asymptotic normality we now show that the l-th cumulant of

Gl =
∣

∣cuml

(

V (θ̂(x∗))−1/2θ̂(x∗)
)∣

∣
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is vanishing asymptotically, whenever l ≥ 3. For this purpose we recall the
definition of the weights wN in (2.5) and obtain from (6.3) the estimate

Gl ≤ CN l/2hlβ+dl/2
N
∑

k1,...,kl=1

|cum
(

Yk1wN (x∗,Xk1), . . . , YklwN (x∗,Xkl)
)

|

= CN l/2hlβ+dl/2
N
∑

k=1

|cuml

(

YkwN (x∗,Xk)
)

|

= CN l/2+1hlβ+dl/2
∑

j∈{0,1}l
|(cum(U j1wN (x∗,X1), . . . , U

jlwN (x∗,X1))|,

(6.4)

where we used (B2) and the notation U0 = g(X1) and U1 = ε. This term can
be written as

CN l/2+1hlβ+dl/2
l
∑

s=0

(

l

s

)

∑

j∈{0,1}l
j1+···+jl=s

∣

∣cum(U j1wN (x∗,X1), . . . , U
jlwN (x∗,X1))

∣

∣.

By using the product theorem for cumulants [see e.g. Brillinger (2001)], we
obtain

CN l/2+1hlβ+dl/2
l
∑

s=0

(

l

s

)

∑

j∈{0,1}l
j1+···+jl=s

∣

∣

∣

∑

ν

p
∏

k=1

cum(Aij , ij ∈ νk)
∣

∣

∣, (6.5)

where the third sum is calculated over all indecomposable partitions ν = (ν1, . . . ,
νp) of the table

Ai1 Ai2
...

...
Ai1 Ai2

Aij
...
Aij

(here the first s rows have two and the last l − s rows have one column) and

Ai1 = ε 1 ≤ i ≤ s

Ai2 = wN (x∗,X1)) 1 ≤ i ≤ s

Aij = g(X1)wN (x∗,X1)) s+ 1 ≤ i ≤ l.

As ε is independent of X only those indecomposable partitions yield a non
zero cumulant, which separate all ε’s from the other terms. This means that
for a partition ν there are m(ν) sets ν1, . . . , νm(ν) which include only ε′s while
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νm(ν)+1, . . . , νp contain only wN (x∗,X)’s and g(X)wN (x∗,X)’s. Thus the term
(6.5) can be written as

CN l/2+1hlβ+dl/2
l
∑

s=0

(

l

s

)

∑

j∈{0,1}l
j1+···+jl=s

∣

∣

∣

∑

ν

m(ν)
∏

k=1

cumsk(ε)

×
p
∏

k=m(ν)+1

cum(Aij , ij ∈ νk)
∣

∣

∣ (6.6)

with

Aij = wN (x∗ −X1)) 1 ≤ i ≤ s

Aij = g(X)wN (x∗ −X1)) s+ 1 ≤ i ≤ l.

and s1 + · · · + sm(ν) = s. Furthermore we have si ≥ 2, because the noise
terms ε have mean zero, and each set νm(ν)+1, . . . , νp includes at least one
Aij with 1 ≤ i ≤ s because otherwise the partition would not be indecom-
posable. Let ar = |νr| denote the number of elements in the set νr (r =
m(ν) + 1, . . . , p), then we get am+1 + · · · + ap = l. Furthermore for r ∈ {m +
1, . . . , p} the cumulant cum(Aij , ij ∈ νr) equals

cum(g(X1)wN (x∗,X1)), . . . , g(X1)wN (x∗,X1)), wN (x∗,X1)), . . . , wN (x∗,X1)))
(6.7)

because of the symmetry of the arguments in the cumulant. In the next step
we denote by br the number of components of the form g(X1)wN (x∗,X1) and
show the estimate

E
[

br
∏

i=1

|g(X1)wN (x∗,X1))|
ar−br
∏

j=1

|wN (x∗,X1))|
]

≤ Car

Narhar(β+d)f( 1
aN

)ar
(6.8)

(which does not depend on br). From Theorem 6.1 we then obtain that the
term in (6.7) is of order O(N−arh−ar(β+d)f(1/aN)−ar ). Equations (6.4), (6.6)
and (6.7) yield for the cumulants of order l ≥ 3

Gl ≤ CN l/2+1hlβ+dl/2
l
∑

s=0

(

l

s

)

∑

j∈{0,1}l
j1+···+jl=s

∣

∣

∣

∑

ν

m(ν)
∏

k=1

cumsk(ε)

×
p
∏

r=m(ν)+1

Car

Narhar(d+β)f( 1
aN

)ar

∣

∣

∣

= O
(

(N l/2−1hld/2f(aN
−1)l)−1

)

= o(1),

which shows the asymptotic normality.
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In order to prove the remaining estimate (6.8) we use the definition of
wN (x∗,X1) and obtain for the term on the left hand side of (6.8)

LN =

∫

Rd

|g(x)|br
( 1

Nhd(2π)d

∣

∣

∣

∫

Rd

e−i〈s,(x
∗−x)〉/hΦK(s)

Φψ(
s
h )

× 1

max{f(x), f( 1
aN

)}ds
∣

∣

∣

)ar
f(x)dx

≤ C

Narhard

∫

Rd

|g(x)|br
(

∫

Rd

|ΦK(s)|
|Φψ( sh )|

1

max{f(x), f( 1
aN

)}ds
)ar

f(x)dx

≤ C

Narhardf( 1
aN

)ar

∫

Rd

(

∫

Rd

|ΦK(s)|
|Φψ( sh )|

ds
)ar

f(x)dx,

where we used the fact that the function g is bounded. Using this inequality
and Assumption (A.1)(A) it follows that Ln ≤ C/Narhar(d+β)f( 1

aN
)ar , which

proves (6.8).

6.2. Proof of Lemma 2.6

Similar to the proof of Theorem 2.4, we have to calculate the cumulants of the
estimators α̂j,QIc

j
(x∗
Ij
). We start with the first order cumulant

E[α̂j,QIc
j
(x∗
Ij )] =

1

hd(2π)d

∫

R
d−dj

∫

Rd

∫

Rd

g(x)

∫

Rd

ΦK(s)

Φψ(
s
h )

× e−i〈s,(x
∗−x)〉/hf(x)

max{f(x), f( 1
aN

)} dsdxdQI
c
j
(x∗
Ic
j
)

and with the same arguments as in the proof of Theorem 2.4, we obtain a bias of
order O(hs−1). For the calculation of the variance of α̂j,QIc

j
(x∗
Ij
) we investigate

its conditional variance. Recalling the definitions (2.5) and (2.13) it follows by
a straightforward argument

V (α̂j,QIc
j
(x∗
Ij )|X) =

σ2

N2h2d(2π)2d

n
∑

k=1

∣

∣

∣

∫

Rd

e−i〈w,Xk〉/he
i〈wIj ,x

∗

Ij
〉/h

× LIc
j

(wIc
j

h

)ΦK(w)

Φψ(
w
h )
dw
∣

∣

∣

2 1

max{f(Xk), f(
1
aN

)}2 ,

which gives

E
[

V (α̂j,QIc
j
(x∗
Ij )|X)

]

=
σ2

Nh2d(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

e−i〈w,x〉/he
i〈wIj ,x

∗

Ij
〉/h

× LIc
j

(wIc
j

h

)ΦK(w)

Φψ(
w
h )
dw
∣

∣

∣

2 f(x)

max{f(x), f( 1
aN

)}2 dx.
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The variance of the conditional expectation can be calculated as

V
(

E[α̂j,QIc
j
(x∗
Ij )|X]

)

=
1

Nhd(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

e−i〈w,x〉e
i〈wIj ,x

∗

Ij
〉/h

× LIc
j

(wIc
j

h

)ΦK(w)

Φψ(
w
h )
dw
∣

∣

∣

2 g(hx)2f(hx)

max{f(hx), f( 1
aN

)}2 dx

− 1

N(2π)2d

∣

∣

∣

∫

Rd

∫

Rd

e−i〈w,x〉e
i〈wIj ,x

∗

Ij
〉/h
LIc

j

(wIc
j

h

)

× ΦK(w)

Φψ(
w
h )
dw

g(hx)f(hx)

max{f(hx), f( 1
aN

)}dx
∣

∣

∣

2

,

where the second summand is of order O(N−1). Therefore it follows

V (α̂j,QIc
j
(x∗
Ij )) =

1

Nhd(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

e−i〈w,y〉e
i〈wIj ,x

∗

Ij
〉/h
LIc

j

(wIc
j

h

)

× ΦK(w)

Φψ(
w
h )
dw
∣

∣

∣

2 (σ2 + g(hy)2)f(hy)

max{f(hy), f( 1
aN

)}2 dy+O(n−1).

The upper bound for this term is obtained from Assumption (A.4) which gives

(σ2 + g(hy)2)f(hy)

max{f(hy), f( 1
aN

)}2 = O(f(aN
−1)). (6.9)

Therefore an application of Parseval’s equality and Assumption (A.5)(C) yields

V (α̂j,QIc
j
(x∗
Ij )) ≤

C

Nhd+2β−γjf( 1
aN

)
. (6.10)

A similar argument as in the proof of Theorem 2.4 gives the lower bound
V (α̂j,QIc

j
(x∗
Ij
)) ≥ C/Nhd+2β−γj . Finally the statement that the l-th cumulant

of V (α̂j,QIc
j
(x∗
Ij
)−1/2)α̂j,QIc

j
(x∗
Ij
) is of order o(1) can be shown by similar argu-

ments as in the proof of Theorem 2.4.

6.3. Proof of Theorem 2.8

The proof follows by similar arguments as given in the previous Sections. For the
sake of brevity we restrict ourselves for the calculation of the first and second
order cumulants. For this purpose we show, that the estimate ĉ has a faster rate
of convergence than α̂j,QIc

j
(x∗
Ij
) for at least one j ∈ {1, . . . ,m}. If this statement

is correct the asymptotic variance of the statistic

θ̂add,RD(x∗) =

m
∑

j=1

α̂j,QIc
j
(x∗
Ij )− (m− 1)ĉ
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is determined by its first term. Recalling the notation (2.12) this term has the
representation

D̂N =

m
∑

j=1

α̂j,QIc
j
(x∗
Ij ) =

m
∑

j=1

N
∑

k=1

Ykw
add,RD
N (x∗

Ij ,Xk) (6.11)

and can be treated in the same way as before. The resulting bias of D̂N is the
sum of the biases of the individual term and therefore also of order O(hs−1).
The conditional variance is given by

V (D̂N |X) = σ2
N
∑

k=1

∣

∣

∣

m
∑

j=1

wadd,RDN (x∗
Ij ,Xk)

∣

∣

∣

2

=
σ2

N2h2d(2π)2d

n
∑

k=1

∣

∣

∣

∫

Rd

ei〈w,Xk〉/h
(

m
∑

j=1

e
−i〈wIj ,x

∗

Ij
〉/h
LIc

j

(wIc
j

h

))

× ΦK(w)

Φψ(
w
h )
dw

1

max{f(Xk), f(
1
aN

)}
∣

∣

∣

2

.

This yields for expectation of the conditional variance

E
[

V (D̂N |X)
]

=
σ2

Nh2d(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

ei〈w,s〉/h
(

m
∑

j=1

e
−i〈wIj ,x

∗

Ij
〉/h
LIc

j

(wIc
j

h

))ΦK(w)

Φψ(
w
h )
dw
∣

∣

∣

2

× f(s)

max{f(s), f( 1
aN

)}2 ds

and the variance of the conditional expectation is obtained as

V
(

E[D̂N |X]
)

=
1

Nhd(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

ei〈w,s〉
(

m
∑

j=1

e
−i〈wIj ,x

∗

Ij
〉/h
LIc

j

(wIc
j

h

))ΦK(w)

Φψ(
w
h )
dw
∣

∣

∣

2

× g(hs)2f(hs)

max{f(hs), f( 1
aN

)}2 ds

− 1

N(2π)2d

∣

∣

∣

∫

Rd

∫

Rd

ei〈w,s〉
(

m
∑

j=1

e
−i〈wIj ,x

∗

Ij
〉/h
LIc

j

(wIc
j

h

))ΦK(w)

Φψ(
w
h )
dw

× g(hs)f(hs)

max{f(hs), f( 1
aN

)}ds
∣

∣

∣

2

,

where the second summand is of order O(N−1). This gives for the variance

V (D̂N ) =
1

Nh2d(2π)2d

∫

Rd

∣

∣

∣

∫

Rd

ei〈w,s〉/h
(

m
∑

j=1

e
−i〈wIj ,x

∗

Ij
〉/h
LIc

j

(wIc
j

h

))

× ΦK(w)

Φψ(
w
h )
dw
∣

∣

∣

2 (σ2 + g(s)2)f(s)

max{f(s), f( 1
aN

)}2 ds+O(N−1).
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In order to obtain bounds for the rate of the variance, we use the lower bound
for max{f(hs), f( 1

aN

)} mentioned in (6.9) and Parseval’s equality which yields

( 1

Nhdf( 1
aN

)

∫

Rd

∣

∣

∣

∣

∣

∣

m
∑

j=1

e
−i〈wIj ,x

∗

Ij
〉/h
LIc

j

(wIc
j

h

)

∣

∣

∣

∣

∣

∣

2

|ΦK(w)|2
|Φψ(wh )|2

dw
)1/2

= O
(

(nhd+2β−γminf(aN
−1))−1

)

as an upper bound, where the last estimate follows from Assumption (A.5). The
lower bound is of order Ω((Nhd+2β−γmin)−1), where we use Assumption (A.4)
and the same calculations as in the previous Section. These are in fact the same
bounds as for α̂j∗,QIc

j∗
(x∗
Ij∗

) with j∗ = argminj γj . This means that

D̂N − E[D̂N ] = OP (N
−1/2h−d/2−β−γmin/2f(aN

−1)−1/2)

In the last step we show that the estimate ĉ has a faster rate of convergence.
For this purpose we write ĉ as weighted sum of independent random variables
that is

ĉ =

∫

Rd

θ̂(x∗)dQ(x∗) =
1

Nhd(2π)d

n
∑

k=1

∫

Rd

ei〈w,Xk〉/h
(

m
∏

j=1

LIc
j

(wIc
j

h

))

× ΦK(w)

Φψ(
w
h )
dw

Yk

max{f(Xk), f(
1
aN

)}

It now follows by similar calculations as given in the previous paragraph and
Assumption (A.5)(C) that

V (ĉ) = o
(

V
(

m
∑

j=1

α̂j,QIc
j
(x∗
Ij )
))

and thus we can ignore the term ĉ for the calculation of the asymptotic variance
of the statistic θ̂add,RD.

6.4. Proof of Lemma 3.3

Observing the representation (3.4) and (3.7) we decompose the estimator into
its deterministic and stochastic part, that is

θ̂FDIj (x∗
Ij ) = Ê1n + Ê2n (6.12)

where

Ê1n =
1

(2n+ 1)d−dj

∑

k∈{−n,...,n}d
(gI1(zkI1 ) + · · ·+ gIm(zkIm ))wkIj ,n

(x∗
Ij )
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Ê2n =
1

(2n+ 1)d−dj

n
∑

k∈{−n,...,n}d
εkwkIj ,n

(x∗
Ij )

and wkIj ,n
(x∗
Ij
) are defined in (3.8). In a first step we show, that the bias of

θ̂FDIj is of order O( 1

n2h2+dj+βja3n
). For this purpose we rewrite the deterministic

part as

Ê1n = Ê
(1)
1n + Ê

(2)
1n

where

Ê
(1)
1n =

∑

kIj∈{−n,...,n}dj
gIj (zkIj )wkIj ,n

(xIj )

Ê
(2)
1n =

1

(2n+ 1)d−dj

∑

kIc
j
∈{−n,...,n}d−dj

(

gI1(zkI1 ) + · · ·+ gIj−1
(zkIj−1

)

+ gIj+1
(zkIj+1

) + · · ·+ gIm(zkIm )
)

∑

kIj∈{−n,...,n}dj
wkIj ,n

(x∗
Ij ),

where the second summand is of order Ê
(2)
1n = o( a

r−dj
n

hβj+dj
) = O(hs−1), which

follows from Assumption (A.3)(D). For the difference of the first summand and
θaddI1

(x∗
Ij
) we use the same calculation as in Birke and Bissantz (2009) and obtain

Ê
(1)
1n − θaddIj (xIj ) = O(hs−1) +O(

1

n2a2nh
dj+2+βj

).

Note that the Riemann approximation does not provide an error of order

O((nan)
−d),

but we can show that the lattice structure yields an error term of order

O((n2h2a3n)
−1).

In the next step we derive the variance of the estimator θ̂FDIj . We can neglect

the deterministic part Ê2n in (6.12) and obtain from Parseval’s equality and
Assumption (A.1)(B)

V (θ̂FDIj (x∗
Ij )) =

σ2

(2n+ 1)d−dj

∑

kIj∈{−n,...,n}dj
|wkIj ,n

(x∗
Ij )|2

=
σ2

(2n+ 1)d−djn2djh2dja
2dj
n (2π)2dj

×
∑

kIj∈{−n,...,n}dj

∣

∣

∣

∫

R
dj

e
−i〈w,(x∗

Ij
−zkIj

)〉/h ΦKj (w)

ΦψIj (
w
h )
dw
∣

∣

∣

2
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=
σ2

(2n+ 1)d−djndjhdja
dj
n (2π)2dj

(

∫

[−1/(han),1/(han)]
dj

∣

∣

∣

∫

R
dj

e
−i〈w,(x∗

Ij
/h−s)〉 ΦKj (w)

ΦψIj (
w
h )
dw
∣

∣

∣

2

ds

+O((nan)
−1)
)

∼ σ2

(2n+ 1)d−djndjhdja
dj
n (2π)2dj

∫

R
dj

∣

∣

∣

∫

R
dj

e
−i〈w,(x∗

Ij
/h−s)〉

× ΦKj (w)

ΦψIj (
w
h )
dw
∣

∣

∣

2

ds(1 + o(1))

=
σ2

(2n+ 1)d−djndjhdja
dj
n (2π)2dj

∫

R
dj

|ΦKj (w)|2
|ΦψIj (

w
h )|2

dw(1 + o(1))

=
σ2C

(2n+ 1)d−djndjhdj+2βja
dj
n (2π)2dj

∼ C

ndhdj+2βja
dj
n

.

For the proof of the asymptotic normality, we finally show that the l-th cumulant
of

V (θ̂FDIj (x∗
Ij ))

−1/2θ̂FDIj (x∗
Ij )

converges to zero for l ≥ 3, which completes the proof of Lemma 3.3. For this
purpose we note that

|cuml(V (θ̂FDIj (x∗
Ij ))

−1/2θ̂FDIj (x∗
Ij ))| ≤ |Cnld/2hldj/2+lβjaldj/2n cuml(θ̂

FD
Ij (x∗

Ij ))|

≤
∣

∣

∣

C

(nld/2hldj/2a
ldj/2
n

∑

k1,...,kl∈{−n,...,n}d

l
∏

m=1

(

∫

R
dj

e
−i〈w,(x∗

Ij
−zkm,Ij )〉/h

× ΦKj (w)

Φψ(
w
h )

dw
)

cum(εk1
, . . . , εkl)

∣

∣

∣

≤ C

nld/2hldj/2a
ldj/2
n

∑

k1∈{−n,...,n}d

l
∏

m=1

(∫

R
dj

|ΦKj (w)|
|Φψ(wh )|

dw

)

,

where κl denotes the l-th cumulant of ε. From Assumption 1 it follows that this
term is bounded by

C

nld/2hldj/2a
ldj
n /2

(2n+ 1)dh−lβj = Cn−ld/2+1h−ldj/2aldj/2n ,

which converges to zero for l ≥ 3.

6.5. Proof of Theorem 3.4

In the following discussion we ignore the constant term g0 = θ0 because the
mean

θ̂0 =
1

nd

∑

k∈{−n,...,n}d
Yk
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is a
√
nd-consistent estimator for this constant and the nonparametric compo-

nents in (3.2) can only be estimated at slower rates. Note that

θ̂add,FD(x∗) =
∑

k∈{−n,...,n}d
Yk

n
∑

j=1

1

(2n+ 1)d−dj
wkIj ,n

(x∗
Ij )

and obtain the asymptotic distribution with the same arguments as in the proof
of Lemma 3.3.

6.6. Proof of Theorem 4.2

Under the assumption of an MA(q)-dependency structure (4.4) there are no

changes in the calculation of the mean of the estimator θ̂FDIj and we only have
to calculate the cumulants of order l ≥ 2 in order to establish the asymptotic
normality. We start with the variance, which is given by

V (θ̂FDIj (x∗
Ij )) =

1

(2n+ 1)2(d−dj)

∑

k1,k2∈{−n,...,n}d
wk1,Ij

,n(x
∗
Ij )wk2,Ij

,n(x
∗
Ij )

× cum(εk1
, εk2

)

=
1

(2n+ 1)2(d−dj)

∑

k1∈{−n,...,n}d

∑

k2:‖k2−k1‖∞≤2q

∑

r1,r2∈{−q,...,q}d

× wk1,Ij
,n(x

∗
Ij )wk2,Ij

,n(x
∗
Ij )cum(βr1Zk1−r1 , βr2Zk2−r2)

=
1

(2n+ 1)2(d−dj)

∑

k1∈{−n,...,n}d

∑

k2:‖k2−k1‖∞≤2q

∑

r1∈{−q,...,q}d

× wk1,Ij
,n(x

∗
Ij )wk2,Ij

,n(x
∗
Ij )cum(βr1Zk1−r1 , βk2−k1+r1Zk1−r1)

=
σ2

(2n+ 1)2(d−dj)

∑

k1∈{−n,...,n}d

∑

k2:‖k2−k1‖∞≤2q

∑

r1∈{−q,...,q}d

× wk1,Ij
,n(x

∗
Ij )wk2,Ij

,n(x
∗
Ij )βr1βk2−k1+r1

=
σ2

(2n+ 1)2(d−dj)

∑

k1∈{−n,...,n}d

∑

l∈Z
d

‖l‖∞≤2q

∑

r1∈{−q,...,q}d

× wk1,Ij
,n(x

∗
Ij )wlIj+k1,Ij

,n(x
∗
Ij )βr1βl+r1

=
σ2(1 + o(1))

(2n+ 1)(d−dj)

∑

k1,Ij
∈{−n,...,n}dj

∑

l∈Z
d

‖l‖∞≤2q

∑

r1∈{−q,...,q}d

|wk1,Ij
,n(x

∗
Ij )|2βr1βl+r1 ,

where we used a Taylor-approximation for the weights

wlIj+k1,Ij
,n(x

∗
Ij ) = wk1,Ij

,n(x
∗
Ij )(1 + o(1))
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in the last step. This gives the expression for the variance in Lemma 4.2. For
the calculation of the cumulants of V −1/2θ̂add,FDIj

we first note that the order of

the variance V = V (θ̂add,FDIj
(xIj )) can be calculated in the same way as in the

proof of Lemma 3.3, which gives V = O(n−dh−dj−2βja
−dj
n ). Therefore we have

to show

|cuml(n
d/2hdj/2+βadj/2n θ̂add,FDIj

)| = nld/2hl(dj/2+βaldj/2n |cuml(θ̂
add,FD
Ij

)| → 0

for l ≥ 3. By a straightforward calculation it follows that

|cuml(θ̂
FD
Ij )(x∗

Ij )|

=
∣

∣

∣

1

(2n+ 1)l(d−dj)nldjhldja
ldj
n

∑

k1,...,kl∈{−n,...,n}d

l
∏

m=1

(

∫

R
dj

e
−i〈w,(x∗

Ij
−zkm,Ij )〉/h

× ΦKj (w)

φψ(
w
h )

dw
)

cum(εk1
, . . . , εkl)

∣

∣

∣

≤ C

(2n+ 1)l(d−dj)nldjhldja
ldj
n

∑

k1,...,kl∈{−n,...,n}d

l
∏

m=1

(

∫

R
dj

|ΦKj(w)|
|φψ(wh )|

dw
)

× |cum(εk1
, . . . , εkl)|

=
C

(2n+ 1)l(d−dj)nldjhldja
ldj
n

1

hlβ

∑

k1,...,kl∈{−n,...,n}d
|cum(εk1

, . . . , εkl)|

=
C

(2n+ 1)l(d−dj)nldjhldja
ldj
n

1

hlβ
(2n+ 1)d,

because by (4.4) k1 can be chosen arbitrarily and k2, . . . ,kl have only (4q+1)d

possibilities to be chosen and their bound is independent of n. Thus the l-th

cumulant is of order n−ld/2+1h−ldj/2a
−ldj/2
n , which converges to zero for l ≥ 3.

The result for θ̂add,FD follows immediately from the results of θ̂FDIj .
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Bissantz, N., Dümbgen, L., Holzmann, H., and Munk, A. (2007a). Non-
parametric confidence bands in deconvolution density estimation. Journal of
the Royal Statistical Society, Series B, 69:483–506. MR2323764

Bissantz, N., Hohage, T., Munk, A., andRuymgaart, F. (2007b). Conver-
gence rates of general regularization methods for statistical inverse problems.
SIAM J. Num. Anal., 45:2610–2636. MR2361904

Brillinger, D. R. (2001). Time Series Data Analysis and Theory. SIAM.
MR1853554
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