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THE OUTLIERS OF A DEFORMED WIGNER MATRIX

BY ANTTI KNOWLES1 AND JUN YIN2

New York University and University of Wisconsin

We derive the joint asymptotic distribution of the outlier eigenvalues of
an additively deformed Wigner matrix H . Our only assumptions on the de-
formation are that its rank be fixed and its norm bounded. Our results extend
those of [The isotropic semicircle law and deformation of Wigner matrices.
Preprint] by admitting overlapping outliers and by computing the joint dis-
tribution of all outliers. In particular, we give a complete description of the
failure of universality first observed in [Ann. Probab. 37 (2009) 1–47; Ann.
Inst. Henri Poincaré Probab. Stat. 48 (1013) 107–133; Free convolution with
a semi-circular distribution and eigenvalues of spiked deformations of Wigner
matrices. Preprint]. We also show that, under suitable conditions, outliers may
be strongly correlated even if they are far from each other. Our proof relies on
the isotropic local semicircle law established in [The isotropic semicircle law
and deformation of Wigner matrices. Preprint]. The main technical achieve-
ment of the current paper is the joint asymptotics of an arbitrary finite family
of random variables of the form 〈v, (H − z)−1w〉.

1. Introduction. In this paper, we study a Wigner matrix H—a random
N × N matrix whose entries are independent up to symmetry constraints—that
has been deformed by the addition of a finite-rank matrix A belonging to the same
symmetry class as H . By Weyl’s eigenvalue interlacing inequalities, such a de-
formation does not influence the global statistics of the eigenvalues as N → ∞.
Thus, the empirical eigenvalue densities of the deformed matrix H + A and the
undeformed matrix H have the same large-scale asymptotics, and are governed
by Wigner’s famous semicircle law. However, the behavior of individual eigenval-
ues may change dramatically under such a deformation. In particular, deformed
Wigner matrices may exhibit outliers—eigenvalues detached from the bulk spec-
trum. They were first investigated in [20] for a particular rank-one deformation.
Subsequently, much progress [2–4, 8–10, 19, 21, 24, 25] has been made in the un-
derstanding of the outliers of deformed Wigner matrices. We refer to [21, 24, 25]
for a more detailed review of recent developments.

We normalize H so that its spectrum is asymptotically given by the interval
[−2,2]. The creation of an outlier is associated with a sharp transition, where the
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magnitude of an eigenvalue di of A exceeds the threshold 1. As di (resp., −di )
becomes larger than 1, the largest (resp., smallest) nonoutlier eigenvalue of H +A

detaches itself from the bulk spectrum and becomes an outlier. This transition is
conjectured to take place on the scale |di | − 1 ∼ N−1/3. In fact, this scale was
established in [1, 6, 7, 23] for the special cases where H is Gaussian—the Gaus-
sian Orthogonal Ensemble (GOE) and the Gaussian Unitary Ensemble (GUE).
We sketch the results of [1, 6, 7, 23] in the case of additive deformations of
GOE/GUE. For simplicity, we consider rank-one deformations, although the re-
sults of [1, 6, 7, 23] cover arbitrary finite-rank deformations. Let the eigenvalue d
of A be of the form d = 1 + wN−1/3 for some fixed w ∈ R. In [1, 6, 7, 23], the
authors proved for any fixed w the weak convergence

N2/3(λN(H +A)− 2
) �⇒ �w,

where λN(H + A) denotes the largest eigenvalue of H + A. In particular, the
largest eigenvalue of H +A fluctuates on the scale N−2/3. Moreover, the asymp-
totics in w of the law �w was analysed in [1, 5–7, 23]: as w → +∞ (and after an
appropriate affine scaling), the law �w converges to a Gaussian; as w → −∞, the
law �w converges to the Tracy–Widom-β distribution (where β = 1 for GOE and
β = 2 for GUE), which famously governs the distribution of the largest eigenvalue
of the underformed matrix H [28, 29].

The proofs of [1, 23] use an asymptotic analysis of Fredholm determinants,
while those of [5–7] use an explicit tridiagonal representation of H ; both of these
approaches rely heavily on the Gaussian nature of H . In order to study the phase
transition for non-Gaussian matrix ensembles, and in particular address the ques-
tion of spectral universality, a different approach is needed. Interestingly, it was
observed in [8–10] that the distribution of the outliers is not universal, and may
depend on the law of H as well as the geometry of the eigenvectors of A. The
nonuniversality of the outliers was further investigated in [21, 24, 25].

In a recent paper [21], we considered finite-rank deformations of a Wigner ma-
trix whose entries have subexponential decay. The two main results of [21] may be
informally summarized as follows.

(a) We proved that the nonoutliers of H +A stick to the extremal eigenvalues of
the original Wigner matrix H with high precision, provided that each eigenvalue
di of A satisfies ||di | − 1| ≥ (logN)C log logNN−1/3.

(b) We identified the asymptotic distribution of a single outlier, provided
that (i) it is separated from the asymptotic bulk spectrum [−2,2] by at least
(logN)C log logNN−2/3 and (ii) it does not overlap with any other outlier of H +A.
Here, two outliers are said to overlap if their separation is comparable to the scale
on which they fluctuate; see Section 2.2 below for a precise definition.

Note that the assumption (i) of (b) is optimal, up to the logarithmic factor
(logN)C log logN . Indeed, the extremal bulk eigenvalues of H +A are known [21],
Theorem 2.7, to fluctuate on the scale N−2/3; for an eigenvalue of H +A to be an
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outlier, therefore, we require that its distance from the asymptotic bulk spectrum
[−2,2] be much greater than N−2/3. See Section 2.2 below for more details.

The goal of this paper is to extend the result (b) by obtaining a complete de-
scription of the asymptotic distribution of the outliers. Our only assumptions on
the deformation A ≡ AN are that its rank be fixed and its norm bounded. (In
particular, the eigenvalues of A may depend on N in an arbitrary fashion, pro-
vided they remain bounded, and its eigenvectors may be an arbitrary orthonor-
mal family.) Our main result gives the asymptotic joint distribution of all outliers.
Here, an outlier is by definition an eigenvalue of H +A whose classical location
[see (2.5) below] is separated from the asymptotic bulk spectrum [−2,2] by at
least (logN)C log logNN−2/3 for some (large) constant C. Our main result is given
in Theorem 2.11 below.

Thus, in this paper we extend the result (b) in two directions: we allow over-
lapping outliers, and we derive the joint asymptotic distribution of all outliers.
The distribution of overlapping outliers is more complicated than that of nonover-
lapping outliers, as overlapping outliers exhibit a level repulsion similar to that
among the bulk eigenvalues of Wigner matrices. This repulsion manifests itself by
the joint distribution of a group of overlapping outliers being given by the distri-
bution of eigenvalues of a small (explicit) random matrix [see (2.15) below]. The
mechanism underlying the repulsion among outliers is therefore the same as that
for the eigenvalues of GUE: the Jacobian relating the eigenvalue–eigenvector en-
tries to the matrix entries has a Vandermonde determinant structure, and vanishes
if two eigenvalues coincide. Several special cases of overlapping outliers have al-
ready been studied in the works [8–10, 24, 25], which in particular exhibited the
level repulsion mechanism described above.

Due to this level repulsion, overlapping outliers are obviously not asymptoti-
cally independent. A novel observation, which follows from our main result, is
that in general nonoverlapping outliers are not asymptotically independent either;
in this case the lack of independence does not arise from level repulsion, but from
a more subtle interplay between the distribution of H and the geometry of the
eigenvectors of A. In some special cases, such as GOE/GUE, nonoverlapping out-
liers are, however, asymptotically independent. More precisely, our main result
(Theorem 2.11 below) shows that two outliers may, under suitable conditions on
H and A, be strongly correlated in the limit N → ∞, even if they are far from
each other (e.g., on opposite sides of the bulk spectrum).

Finally, we note that throughout this paper we assume that the entries of H have
subexponential decay. We need this assumption because our proof relies heavily
on the local semicircle law and eigenvalue rigidity estimates for H , proved in [18]
under the assumption of subexponential decay. However, this assumption is not
fundamental to our approach, which may be combined with the recent methods for
dealing with heavy-tailed Wigner matrices developed in [11, 12, 22]. Moreover,
the assumption that the norm of A be bounded may be easily removed; in fact,
large eigenvalues of A are easier to treat than small ones.
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We remark that recently Pizzo, Renfrew and Soshnikov [24, 25] took a different
approach, and derived the asymptotic distribution of a single group of overlapping
outliers under optimal tail assumptions on H . On the other hand, in [24, 25] it is
assumed that the eigenvalues of A are independent of N and that its eigenvectors
satisfy a condition which roughly constrains them to be either strongly localized
or delocalized.

1.1. Outline of the proof. As in [21], our proof relies on the isotropic local
semicircle law, proved in [21], Theorems 2.2 and 2.3. The isotropic local semi-
circle law is an extension of the local semicircle law, whose study was initiated
in [14, 15]. The local semicircle law has since become a cornerstone of random
matrix theory, in particular in establishing the universality of Wigner matrices
[13, 16–18, 26, 27]. The strongest versions of the local semicircle law, proved
in [12, 18], give precise estimates on the local eigenvalue density, down to scales
containing Nε eigenvalues. In fact, as formulated in [18], the local semicircle law
gives optimal high-probability estimates on the quantity

Gij (z)− δijm(z),(1.1)

wherem(z) denotes the Stieltjes transform of Wigner’s semicircle law andG(z) :=
(H − z)−1 is the resolvent of H .

The isotropic local semicircle law is a generalization of the local semicircle law,
in that it gives optimal high-probability estimates on the quantity〈

v,
(
G(z)−m(z)1

)
w
〉
,(1.2)

where v and w are arbitrary deterministic vectors. Clearly, (1.1) is a special case
obtained from (1.2) by setting v = ei and w = ej , where ei denotes ith standard
basis vector of CN .

As in the works [21, 24, 25], a major part of our proof consists in deriving the
asymptotic distribution of the entries of G(z). The main technical achievement
of this paper is to obtain the joint asymptotics of an arbitrary finite family of vari-
ables of the form 〈v,G(z)w〉, whereby the spectral parameters z of different entries
may differ, and are assumed to satisfy 2+ (logN)C log logNN−2/3 ≤ |Re z| ≤ C for
some positive constant C. The question of the joint asymptotics of the resolvent
entries occurs more generally in several problems on deformed random matrix
models, and we therefore believe that the techniques of this paper are also of inter-
est for other problems on deformed matrix ensembles.

An important ingredient in our proof is the four-step strategy introduced in [21].
It may be summarized as follows: (i) reduction to the distribution of the resol-
vent G, (ii) the case of Gaussian H , (iii) the case of almost Gaussian H , (iv) the
case of general H . Steps (i)–(iii) in the current paper are substantially different
from their counterparts in [21]; this results from treating an entire overlapping
group of outliers simultaneously, as well as from the need to develop an argument
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that admits an analysis of the joint law of different groups. In fact, for pedagogical
reasons, first—in Sections 4–7—we give the proof for the case of a single group
of overlapping outliers,3 and then—in Section 9.1—extend it to yield the full joint
distribution. In contrast to the steps (i)–(iii), step (iv) survives almost unchanged
from [21], and in Section 7 we give an explanation of the required modifications.

Another ingredient of our proof is a two-level partitioning of the outliers com-
bined with near-degenerate perturbation theory for eigenvalues. Roughly, outliers
are partitioned into blocks depending on whether they overlap. In the finer parti-
tion, denoted by � below (see Definition 2.10), we regroup two outliers into the
same block if their mean separation is bounded by some large constant (denoted
by s below) times the magnitude of their fluctuations. Due to logarithmic error
factors of the form (logN)C log logN that appear naturally in high-probability esti-
mates pervading our proof, we shall require a second, coarser, partition, denoted by
� below (see Definition 9.1). In �, we regroup two outliers into the same block if
their mean separation is bounded by (logN)C log logN times the magnitude of their
fluctuations. The link between � and � is provided by perturbation theory, and is
performed in Sections 8 (for a single group) and 9 (for the full joint distribution).

2. Formulation of results.

2.1. The setup. Let H = (hij )
N
i,j=1 be an N ×N random matrix. We assume

that the upper-triangular entries (hij : i ≤ j) are independent complex-valued ran-
dom variables. The remaining entries of H are given by imposing H =H ∗. Here
H ∗ denotes the Hermitian conjugate of H . We assume that all entries are centred,
Ehij = 0. In addition, we assume that one of the two following conditions holds.

(i) Real symmetric Wigner matrix: hij ∈ R for all i, j and

Eh2
ii = 2

N
, Eh2

ij = 1

N
(i �= j).

(ii) Complex Hermitian Wigner matrix:

Eh2
ii = 1

N
, E|hij |2 = 1

N
, Eh2

ij = 0 (i �= j).

We introduce the usual index β of random matrix theory, defined to be 1 in the
real symmetric case and 2 in the complex Hermitian case. We use the abbreviation
GOE/GUE to mean GOE if H is a real symmetric Wigner matrix with Gaussian
entries and GUE ifH is a complex Hermitian Wigner matrix with Gaussian entries.
We assume that the entries of H have uniformly subexponential decay, that is, that
there exists a constant ϑ > 0 such that

P
(√

N |hij | ≥ x
)≤ ϑ−1 exp

(−xϑ )(2.1)

3In the resolvent language, this means that the spectral parameters z of all the resolvent entries
coincide.
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for all i, j and N . Note that we do not assume the entries of H to be identically
distributed, and we do not require any smoothness in the distribution of the entries
of H .

We consider a deformation of fixed, finite rank r ∈ N. Let V ≡ VN be a deter-
ministic N × r matrix satisfying V ∗V = 1r , and D ≡DN be a deterministic r × r

diagonal matrix whose eigenvalues are nonzero. Both V and D depend on N . We
sometimes also use the notation V = [v(1), . . . ,v(r)], where v(1), . . . ,v(r) ∈ C

N are
orthonormal, as well as D = diag(d1, . . . , dr). We always assume that the eigen-
values of D satisfy

−
 + 1 ≤ d1 ≤ d2 ≤ · · · ≤ dr ≤
 − 1,(2.2)

where 
 is some fixed positive constant. We are interested in the spectrum of the
deformed matrix

H̃ :=H + VDV ∗ =H +
r∑

i=1

div(i)
(
v(i)

)∗
.

The following definition summarizes our conventions for the spectrum of a ma-
trix. For our purposes, it is important to allow the matrix entries and its eigenvalues
to be indexed by an arbitrary subset of positive integers.

DEFINITION 2.1. Let π be a finite set of positive integers, and let A =
(Aij )i,j∈π be a |π | × |π | Hermitian matrix whose entries are indexed by elements
of π . We denote by

σ(A) := (
λi(A)

)
i∈π ∈ R

π

the family of eigenvalues of A. We always order the eigenvalues so that λi(A) ≤
λj (A) if i ≤ j .

By a slight abuse of notation, we sometimes identify σ(A) with the set
{λi(A)}i∈π ⊂ R. Thus, for instance, dist(σ (A),σ (B)) := mini,j |λi(A) − λj (B)|
denotes the distance between σ(A) and σ(B) viewed as subsets of R.

We abbreviate the (random) eigenvalues of H and H̃ by

λα := λα(H), μα := λα(H̃ ).

The following definition introduces a convenient notation for minors of matrices.

DEFINITION 2.2 (Minors). For an r × r matrix A = (Aij )
r
i,j=1 and a subset

π ⊂ {1, . . . , r} of integers, we define the |π | × |π | matrix

A[π ] = (Aij )i,j∈π .
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We shall frequently make use of the logarithmic control parameter

ϕ ≡ ϕN := (logN)log logN.(2.3)

The interpretation of ϕ is that of a slowly growing parameter [note that ϕ ≤Nε for
any ε > 0 and large enough N ≥N0(ε)]. Throughout this paper, every quantity that
is not explicitly a constant may depend on N , with the sole exception of the rank r
of the deformation, which is required to be fixed. Unless needed, we consistently
drop the argument N from such quantities.

We denote by C a generic positive large constant, whose value may change from
one expression to the next. For two positive quantities AN and BN , we use the no-
tation AN � BN to mean C−1AN ≤ BN ≤ CAN for some positive constant C.
Moreover, we write AN � BN if AN/BN → 0 and AN � BN if BN � AN . Fi-
nally, for a < b we set [[a, b]] := [a, b] ∩Z.

2.2. Heuristics of outliers. Before stating our results, we give a heuristic de-
scription of the behavior of the outliers. An eigenvalue di of D satisfying

|di | − 1 �N−1/3(2.4)

gives rise to an outlier μα(i) located around its classical location θ(di), where we
defined, for d ∈ R \ (−1,1),

θ(d) := d + 1

d
(2.5)

and

α(i) :=
{
i, if di < 0,
N − r + i, if di > 0.

(2.6)

Condition (2.4) may be heuristically understood as follows; for simplicity set
r = 1 and D = d > 1. The extremal eigenvalues of H̃ that are not outliers fluc-
tuate on the scale N−2/3 (see [21], Theorem 2.7), the same scale as the extremal
eigenvalues of the undeformed matrix H . For the largest eigenvalue μN of H̃ to
be an outlier, we require that its separation from the asymptotic bulk spectrum
[−2,2], which is of the order θ(d)− 2, be much greater than N−2/3. This leads to
condition (2.4) by a simple expansion of θ around 1.

The outlier μα(i) associated with di fluctuates on the scale N−1/2(|di | − 1)1/2.
Thus, μα(i) fluctuates on the scale N−1/2 if di is well-separated from the critical
point 1, and on the scale N−2/3 if di is critical, that is, di = 1 + aN−1/3 for some
fixed a > 0. The outliers associated with di and dj overlap if their separation
is comparable to or less than the scale on which they fluctuate. The overlapping
condition thus reads ∣∣θ(di)− θ(dj )

∣∣≤ CN−1/2(|di | − 1
)1/2(2.7)

for some (typically large) constant C > 0. Note that the factor |di |−1 on the right-
hand side could be replaced with |dj | − 1. Indeed, recalling (2.4), it is not hard to
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FIG. 1. A general outlier configuration. We draw the outlier μα(i) associated with di using a
black line marking its mean location θ(di) and a grey curve indicating its probability density. The
breadth of the curve associated with di is of the order N−1/2(|di |−1)1/2. Outliers whose probability
densities overlap satisfy (2.7) [or, equivalently, (2.8)]. We do not draw the bulk eigenvalues, which
are contained in the grey bar.

check that (2.7) for some C > 0 is equivalent to (2.7) with di on the right-hand side
replaced with dj and the constant C replaced with a constant C′ � C. Using (2.5)
and recalling (2.4), we may rewrite the overlapping condition (2.7) as

N1/2(|di | − 1
)1/2|di − dj | ≤ C(2.8)

for some C > 0. As in (2.7), |di | − 1 may be replaced with |dj | − 1. Figure 1
summarizes the general picture of outliers.

2.3. The distribution of a single group. After these preparations, we state our
results. We begin by defining a reference matrix which will describe the distribu-
tion of a group of overlapping outliers. Define the moment matrices μ(3) = (μ

(3)
ij )

and μ(4) = (μ
(4)
ij ) of H through

μ
(3)
ij :=N3/2

E
(|hij |2hij ), μ

(4)
ij :=N2

E|hij |4.
Using the matrices μ(3) and μ(4), we define the deterministic functions

Pij,kl(R) := RilRkj + 1(β = 1)RikRjl,

Qij,kl(V ) := 1√
N

∑
a,b

(�Vai�VakValμ(3)ab Vbj + �Viaμ(3)ab Vbj
�VbkVbl

+ �Vak�VaiVajμ(3)ab Vbl + �Vkaμ(3)ab Vbl
�VbiVbj ),

Rij,kl(V ) := 1

N

∑
a,b

(
μ
(4)
ab − 4 + β

)�VbiVbj �VbkVbl,

where i, j, k, l ∈ [[1, r]], R is an r × r matrix, and V an N × r matrix. Moreover,
we define the deterministic r × r matrix

S(V ) := 1

N
V ∗μ(3)V .

REMARK 2.3. Using Cauchy–Schwarz and assumption (2.1), it is easy to
check that P(V ∗V ), Q(V ), R(V ) and S(V ) are uniformly bounded for V sat-
isfying 0 ≤ V ∗V ≤ 1 (in the sense of quadratic forms).
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Next, let δ ≡ δN be a positive sequence satisfying ϕ−1 ≤ δ � 1. (Our result will
be independent of δ provided it satisfies this condition; see Remark 2.4 below.) The
sequence δ will serve as a cutoff in the size of the entries of V when computing the
law of V ∗HV : entries of V smaller than δ give rise to an asymptotically Gaussian
random variable by the central limit theorem; the remaining entries are treated
separately, and the associated random variable is in general not Gaussian. Thus,
we define the matrix Vδ = (V δ

ij ) through

V δ
ij := Vij1

(|Vij |> δ
)
.

For � ∈ [[1, r]] satisfying |d�|> 1 we define the r × r matrix

ϒ� := (|d�| + 1
)(|d�| − 1

)1/2
(
N1/2V ∗

δ HVδ

d2
�

+ S(V )
d4
�

)
.(2.9)

Abbreviate

�ij,kl := Pij,kl(1)= δilδkj + 1(β = 1)δikδjl.(2.10)

Note that � is nothing but the covariance matrix of a GOE/GUE matrix: if r−1/2�

is an r × r GOE/GUE matrix then E�ij�kl =�ij,kl . We introduce an r × r Gaus-
sian matrix ��, independent of H , which is complex Hermitian for β = 2 and real
symmetric for β = 1. The entries of �� are centred, and their law is determined by
the covariance

E��
ij�

�
kl =

|d�| + 1

d2
�

�ij,kl + (|d�| + 1
)2(|d�| − 1

)
(2.11)

×
(
−Pij,kl(V

∗
δ Vδ)

d4
�

+ Qij,kl(V )

d5
�

+ Rij,kl(V )

d6
�

)
+Eij,kl.

Here Eij,kl := ϕ−1�ij,kl is a term, that is, needed to ensure that the right-hand
side of (2.11) is a nonnegative r2 × r2 matrix. This nonnegativity follows as a
by-product of our proof, in which the right-hand side of (2.11) is obtained from
the covariance of an explicit random matrix; see Proposition 6.1 below for more
details. Note that the term Eij,kl does not influence the asymptotic distribution
of ��.

REMARK 2.4. A different choice of δ, subject to ϕ−1 ≤ δ � 1, leads to the
same asymptotic distribution for ϒ� + ��. This is an easy consequence of the
central limit theorem and the observation that the matrix entries((|d�| + 1

)(|d�| − 1
)1/2N

1/2V ∗
δ HVδ

d2
�

)
ij

have covariance matrix (|d�| + 1)2(|d�| − 1)d−4
� Pij,kl(V

∗
δ Vδ).
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Before stating our result in full generality, we give a special case which captures
its essence and whose statement is somewhat simpler.

THEOREM 2.5. For large enough K the following holds. Let π ⊂ [[1, r]] be a
subset of consecutive integers, and fix � ∈ π . Suppose that |d�| ≥ 1 + ϕKN−1/3.
Suppose moreover that there is a constant C such that

N1/2(|d�| − 1
)1/2|di − d�| ≤ C(2.12)

for all i ∈ π and, as N → ∞,

N1/2(|d�| − 1
)1/2|di − d�| → ∞(2.13)

for all i ∈ [[1, r]] \ π .
Define the rescaled eigenvalues ζ = (ζi)i∈π through

ζi :=N1/2(|d�| − 1
)−1/2(

μα(i) − θ(d�)
)
,(2.14)

where we recall the definition (2.6) of α(i). Let ξ = (ξi)i∈π denote the eigenvalues
of the random |π | × |π | matrix

ϒ�[π ] +��[π ] +N1/2(|d�| − 1
)1/2(|d�| + 1

)(
d−1
� −D−1

[π ]
)
.(2.15)

Then for any bounded and continuous function f we have

lim
N

(
Ef (ζ )−Ef (ξ)

)= 0.

The subset π indexes outliers that belong to the same group of overlapping out-
liers, as required by (2.12) [see also (2.8) in the preceding discussion]. As required
by (2.13), the remaining outliers do not overlap with the outliers indexed by π .

REMARK 2.6. The reference point � for the block π is arbitrary and unim-
portant. See Lemma 4.6 below and the comment preceding it for a more detailed
discussion.

REMARK 2.7. For the special case π = {�}, Theorem 2.5 essentially4 reduces
to Theorem 2.14 of [21]. In addition, Theorem 2.5 corrects a minor issue in the
statement of Theorem 2.14 of [21], where the variance of ϒ was not necessarily
positive. Indeed, in the language of the current paper, in [21] the term V ∗

δ HVδ
in (2.9) was of the form V ∗HV , which amounted to transferring a large Gaussian
component from � to ϒ . This transfer was ill-advised as it sometimes resulted
in a negative variance for � (which would however be compensated in the sum
ϒ +� by a large asymptotically Gaussian component in ϒ).

4In fact, condition of [21] analogous to (2.13), equation (2.24) in [21], is slightly stronger
than (2.13).
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The functions P , Q, R and S in (2.9) and (2.11) are in general nonzero in the
limit N → ∞. They encode the nonuniversality of the distribution of the outliers.
Thus, the distribution of the outliers may depend on the law of the entries of H as
well as on the geometry of the eigenvectors V .

In the GOE/GUE case, it is easy to check that ϒ� +�� is asymptotically Gaus-
sian with covariance matrix

|d�| + 1

d2
�

�ij,kl .(2.16)

Moreover, if limN |d�| = 1 then the matrix ϒ� +�� converges weakly to a Gaus-
sian matrix with covariance given by (2.16). In this case, therefore, the nonuniver-
sality is washed out. Thus, only outliers separated from the bulk spectrum [−2,2]
by a distance of order one may exhibit nonuniversality.

If limN maxi,j |Vij | = 0, then an appropriate choice of δ yields ϒ� = (|d�| +
1)(|d�|−1)1/2d−4

� S(V ) as well as a matrix �� whose covariance is asymptotically
that of the GOE/GUE case, that is, (2.16). Hence, in this case the only manifesta-
tion of nonuniversality is the deterministic shift given by ϒ�.

It is possible to find scenarios in which each term of (2.9) and (2.11) [apart from
the trivial error term E in (2.11)] contributes in the limit N → ∞. This is, for in-
stance, the case if μ(3)ij and μ

(4)
ij do not depend on i and j , μ(4)ij is not asymptoti-

cally 4−β , and an eigenvector v(i) satisfies ‖v(i)‖∞ ≥ c as well as ‖v(i)‖1 ≥ cN1/2

for some constant c > 0. We refer to [21], Remarks 2.17–2.21, for analogous re-
marks, where more details are given for the case π = {�}.

Next, we give the asymptotic distribution of a group of overlapping outliers in
full generality. Thus, Theorem 2.9 below holds for arbitrary sequences V ≡ VN
and D ≡DN satisfying V ∗V = 1 and (2.2).

DEFINITION 2.8. Let N and D be given. For s > 0 and � ∈ [[1, r]] satisfying
|d�|> 1, define π(�, s)≡ πN,D(�, s) as the smallest subset of [[1, r]] with the two
following properties.

(i) � ∈ π(�, s).
(ii) If for i, j ∈ [[1, r]] we have |di |> 1 and

N1/2(|di | − 1
)1/2|di − dj | ≤ s,(2.17)

then either i, j ∈ π(�, s) or i, j ∈ [[1, r]] \ π(�, s).

The subset π(�, s) indexes those outliers that belong to the same group of over-
lapping outliers as �, where s is a cutoff distance used to determine whether two
outliers are considered overlapping. Note that π(�, s) is a set of consecutive inte-
gers.
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THEOREM 2.9. For large enough K the following holds. Let ε > 0 be arbi-
trary, and let f1, . . . , fr be bounded continuous functions, where fk is a function
on R

k . Then there exist N0 ∈ N and s0 > 0 such that for all N ≥N0 and s ≥ s0 the
following holds.

Suppose that � ∈ [[1, r]] satisfies

|d�| ≥ 1 + ϕKN−1/3(2.18)

and set π := π(�, s). Then ∣∣Ef|π |(ζ )−Ef|π |(ξ)
∣∣≤ ε,(2.19)

where ζ and ξ were defined Theorem 2.5.

2.4. The joint distribution. In order to describe the joint distribution of all
outliers, we organize them into groups of overlapping outliers, using a partition �
whose blocks π are defined using the subsets π(�, s) from Definition 2.8.

DEFINITION 2.10. Let N and D be given, and fix K > 0 and s > 0. We
introduce a partition5 �≡�(N,K, s,D) on a subset of [[1, r]], defined as

� := {
π(�, s) :� ∈ [[1, r]], |d�| ≥ 1 + ϕKN−1/3}.

We also use the notation �= {π}π∈� and [�] :=⋃
π∈�π .

The indices in [�] give rise to outliers, which are grouped into the blocks of �.
Indices in [[1, r]] \ [�] do not give rise to outliers.

For π ∈�, we define

dπ := min{di : i ∈ π}.(2.20)

We chose this value for definiteness, although any other choice of di with i ∈ π

would do equally well.
Next, in analogy to (2.15), we define a |[�]| × |[�]| reference matrix whose

eigenvalues will have the same asymptotic distribution as the appropriately
rescaled outliers (μα(i))i∈[�]. Define the block diagonal |[�]| × |[�]| matrix
ϒ =⊕

π∈�ϒπ , where

ϒπ := (|dπ | + 1
)(|dπ | − 1

)1/2
(
N1/2V ∗

δ HVδ

d2
π

+ S(V )
d4
π

)
[π ]
.

In addition, we introduce a Hermitian, Gaussian |[�]| × |[�]| matrix � , that
is, independent of H and whose entries have mean zero. It is block diagonal,

5That � is a partition follows from the observation that �′ ∈ π(�, s) if and only if � ∈ π(�′, s).
Therefore if � and �′ satisfy |d�| ≥ 1 + ϕKN−2/3 and |d�′ | ≥ 1 + ϕKN−2/3 then either π(�, s) =
π(�′, s) or π(�, s)∩ π(�′, s)= ∅.
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� =⊕
π∈��π , where the block �π = (�π

ij )i,j∈π is a |π | × |π | matrix. The law
of � is determined by the covariance

E�π
ij�

π ′
kl = |dπ | + 1

d2
π

δππ ′�ij,kl + δππ ′Eij,kl

+
( ∏
p=π,π ′

(|dp| − 1)1/2(|dp| + 1)

d2
p

)
(2.21)

×
(
−Pij,kl

(
V ∗
δ Vδ

)+ 1

dπdπ ′
Rij,kl(V )

+ Wij,kl(V )

dπ ′
+ Wkl,ij (V )

dπ

)
,

where we defined

Wij,kl(V ) := 1√
N

∑
a,b

(�Vai�VakValμ(3)ab Vbj + �Viaμ(3)ab Vbj
�VbkVbl).

(Note that Qij,kl = Wij,kl + Wkl,ij .) As in (2.11), the factor Eij,kl = ϕ−1�ij,kl ,
whose contribution vanishes in the limit N → ∞, simply ensures that the right-
hand side of (2.21) defines a nonnegative matrix; this nonnegativity is an immedi-
ate corollary of our proof in Section 9.1.

Next, in analogy to (2.14), we introduce the rescaled family of outliers ζ =
(ζπi :π ∈�, i ∈ π) ∈ R

[�] whose entries are defined by

ζπi :=N1/2(|dπ | − 1
)−1/2(

μα(i) − θ(dπ)
)
,(2.22)

where we recall the definition (2.6) of α(i). Moreover, for π ∈� let ξπ = (ξπi : i ∈
π) denote the eigenvalues of the random |π | × |π | matrix

ϒπ +�π +N1/2(|dπ | − 1
)1/2

(|dπ | + 1)
(
d−1
π −D−1

[π ]
)

and write ξ = (ξπ :π ∈ �) = (ξπi :π ∈ �, i ∈ π) ∈ R
[�]. We may now state our

main result in its greatest generality.

THEOREM 2.11. For large enough K the following holds. Let ε > 0 be arbi-
trary, and let f1, . . . , fr be bounded continuous functions, where fk is a function
on R

k . Then there exist N0 ∈N and s0 > 0 such that for all N ≥N0 and s ≥ s0 we
have ∣∣Ef|[�]|(ζ )−Ef|[�]|(ξ)

∣∣≤ ε.

We conclude this section by drawing some consequences from Theorem 2.11.
In the GOE/GUE case, it is easy to see that the law of the block matrix ϒ +� is
asymptotically Gaussian with covariance

|dπ | + 1

d2
π

δππ ′�ij,kl .
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In particular, we find that overlapping outliers repel each other according to the
usual random matrix level repulsion, while nonoverlapping outliers are asymptot-
ically independent.

In general outliers are not asymptotically independent, even if they do not over-
lap. Such correlations arise from correlations between different blocks of ϒ +� .
There are two possible sources for these correlations: the term V ∗

δ HVδ in the def-
inition of ϒ , and the terms R and W in the covariance (2.21) of the Gaussian
matrix � . Thus, two outliers may be strongly correlated even if they are located
on opposite sides of the bulk spectrum.

3. Tools. The rest of this paper is devoted to the proofs of Theorems 2.5, 2.9
and 2.11. Sections 3–8 are devoted to the proof of Theorem 2.9; Theorem 2.5 is an
easy corollary of Theorem 2.9. Finally, Theorem 2.11 is proved in Section 9 by an
extension of the arguments of Sections 3–8.

We begin with a preliminary section that collects tools we shall use in the proof.
We introduce the spectral parameter

z=E + iη,

which will be used as the argument of Stieltjes transforms and resolvents. In the
following, we often use the notation E = Re z and η = Im z without further com-
ment. Let

�(x) := 1

2π

√[
4 − x2

]
+ (x ∈ R)

denote the density of the local semicircle law, and

m(z) :=
∫

�(x)

x − z
dx

(
z /∈ [−2,2])(3.1)

its Stieltjes transform. It is well known that the Stieltjes transform m satisfies the
identity

m(z)+ 1

m(z)
+ z= 0.(3.2)

It is easy to see that (3.2) and the definition (2.5) imply

m
(
θ(d)

)= − 1

d
.(3.3)

For E ∈ R, define

κE := ∣∣|E| − 2
∣∣,(3.4)

the distance from E to the spectral edges ±2. We have the simple estimate

κθ(d) � (|d| − 1
)2(3.5)

for |d|> 1. The following lemma collects some useful properties of m.
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LEMMA 3.1. For |z| ≤ 2
, we have∣∣m(z)∣∣� 1,
∣∣1 −m(z)2

∣∣� √
κ + η.(3.6)

Moreover,

Imm(z)�
⎧⎨⎩

√
κ + η, if |E| ≤ 2,
η√
κ + η

, if |E| ≥ 2.

(Here the implicit constants depend on 
.)

PROOF. The proof is an elementary calculation; see Lemma 4.2 in [17]. �

The following definition introduces a notion of high probability that is suitable
for our needs.

DEFINITION 3.2 (High probability events). We say that anN -dependent event
� holds with high probability if there is some constant C such that

P
(
�c)≤NC exp(−ϕ)(3.7)

for large enough N .

Next, we give the key tool behind the proof of Theorem 2.9: the Isotropic lo-
cal semicircle law. We use the notation v = (vi)

N
i=1 ∈ C

N for the components of
a vector. We introduce the standard scalar product 〈v,w〉 := ∑

i v̄iwi . For η > 0,
we define the resolvent of H through

G(z) := (H − z)−1.

The following result was proved in [21], Theorem 2.3.

THEOREM 3.3 (Isotropic local semicircle law outside of the spectrum). Fix

 ≥ 3. There exists a constant C such that for large enough K and any determin-
istic v,w ∈ C

N we have with high probability

∣∣〈v,G(z)w〉−m(z)〈v,w〉∣∣≤ ϕC

√
Imm(z)

Nη
‖v‖‖w‖(3.8)

for all

E ∈ [−
,−2 − ϕKN−2/3]∪ [2 + ϕKN−2/3,

]

and η ∈ (0,
].
Using (3.5) and Lemma 3.1, we find that the control parameter in (3.8) may be

written as √
Imm(z)

Nη
�N−1/2(κE + η)−1/4 ≤N−1/2κ

−1/4
E .(3.9)

The following result provides sharp (up to logarithmic factors) large deviations
bounds on the locations of the outliers.
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THEOREM 3.4 (Locations of the deformed eigenvalues). There exists a con-
stant C such that, for large enough K and under condition (2.2), we have∣∣μα(i) − θ(di)

∣∣≤ ϕCN−1/2(|di | − 1
)1/2(3.10)

with high probability provided that |di | ≥ 1 + ϕKN−1/3.

PROOF. This was essentially proved in [21], Theorem 2.7, by setting ψ = 1
there; see equation (2.20) of [21]. Note that Theorem 2.7 of [21] has slightly
stronger assumptions than Theorem 3.4, requiring in addition that there be no
eigenvalues dj of D satisfying ||dj | − 1| < ϕKN−1/3. However, this assumption
was only needed for equation (2.21) of [21], and the proof from Section 6 of [21]
may be applied verbatim to (3.10) under the assumptions of Theorem 3.4. �

We shall often need to consider minors of H , which are the content of the fol-
lowing definition. It is a convenient extension of Definition 2.2.

DEFINITION 3.5 (Minors and partial expectation). (i) For U ⊂ [[1,N]], we
define

H(U) :=H[Uc] = (hij )i,j∈Uc,

where Uc := [[1,N]] \U . Moreover, we define the resolvent of H(U) through

G(U)(z) := (
H(U) − z

)−1
.

(ii) Set

(U)∑
i

:= ∑
i : i /∈U

.

When U = {a}, we abbreviate ({a}) by (a) in the above definitions; similarly, we
write (ab) instead of ({a, b}).

(iii) For U ⊂ [[1,N]] define the partial expectation EU(X) := E(X|H(U)).

Next, we record some basic large deviations estimates from [21], Lemma 3.5.

LEMMA 3.6 (Large deviations estimates). Let a1, . . . , aN , b1, . . . , bM be in-
dependent random variables with zero mean and unit variance. Assume that there
is a constant ϑ > 0 such that

P
(|ai | ≥ x

)≤ ϑ−1 exp
(−xϑ ) (i = 1, . . . ,N),

(3.11)
P
(|bi | ≥ x

)≤ ϑ−1 exp
(−xϑ ) (i = 1, . . . ,M).
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Then there exists a constant ρ ≡ ρ(ϑ) > 1 such that, for any ξ > 0 and any deter-
ministic complex numbers Ai and Bij , we have with high probability∣∣∣∣∑

i

Ai |ai |2 −∑
i

Ai

∣∣∣∣≤ ϕρξ
(∑

i

|Ai |2
)1/2

,(3.12)

∣∣∣∣∑
i �=j

āiBij aj

∣∣∣∣≤ ϕρξ
(∑
i �=j

|Bij |2
)1/2

,(3.13)

∣∣∣∣∑
i,j

aiBij bj

∣∣∣∣≤ ϕρξ
(∑
i,j

|Bij |2
)1/2

.(3.14)

We conclude this preliminary section by quoting a result on the eigenvalue rigid-
ity of H . Denote by γ1 ≤ γ2 ≤ · · · ≤ γN the classical locations of the eigenvalues
of H , defined through

N

∫ γα

−∞
�(x)dx = α (1 ≤ α ≤N).(3.15)

The following result was proved in [18], Theorem 2.2.

THEOREM 3.7 (Rigidity of eigenvalues). There exists a constant C such that
we have with high probability

|λα − γα| ≤ ϕC
(
min{α,N + 1 − α})−1/3

N−2/3

for all α ∈ [[1,N]].
4. Coarser grouping of outliers and reduction to the law of G. For the fol-

lowing, we fix the sequences (VN)N and (DN)N . It will sometimes be convenient
to assume that

lim
N
d
(N)
i exists for all i ∈ [[1, r]].(4.1)

To that end, we invoke the following elementary result.

LEMMA 4.1. Let (aN)N be a sequence of nonnegative numbers and ε > 0.
The following statements are equivalent.

(i) aN ≤ ε for large enough N .
(ii) Each subsequence has a further subsequence along which aN ≤ ε.

We use Lemma 4.1 by setting aN to be the left-hand side of (2.19). Using
Lemma 4.1, we therefore find that Theorem 2.9 holds for arbitrary D if it holds
for D satisfying (4.1). From now on, we therefore assume without loss of general-
ity that (4.1) holds.

For the proof of Theorem 2.9, we need a new subset of [[1, r]], denoted by γ (�),
which is larger than or equal to the subset π(�, s) from Definition 2.8.
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DEFINITION 4.2. For � ∈ [[1, r]] satisfying (2.18), define γ (�) ≡ γN,D,K(�)

as the smallest subset of [[1, r]] with the two following properties.

(i) � ∈ γ (�).
(ii) If for i, j ∈ [[1, r]] we have |di |> 1 and

N1/2(|di | − 1
)1/2|di − dj | ≤ ϕK/2,(4.2)

then either i, j ∈ γ (�) or i, j ∈ γ̄ (�).

Here we use the notation γ̄ (�) := [[1, r]] \ γ (�).

Note that γ (�) is a set of consecutive integers. Similar to π(�, s), the set γ (�)
indexes outliers that are close to that indexed by �, except that now the thresh-
old used to determine whether two outliers overlap is larger (ϕK/2 instead of the
N -independent s). This need to regroup outliers into larger subsets arises from the
perturbation theory argument in Proposition 4.5 below. At the end of the proof,
in Section 8, we shall use perturbation theory a second time to obtain a statement
involving outliers in π(�, s) instead of γ (�).

For the following, we introduce the abbreviation

δρ(d) := ϕρN−1/2(|d| − 1
)−1/2

,

so that (4.2) reads |di − dj | ≤ δK/2(di). We have the following elementary result.

LEMMA 4.3. Let ρ > 0. If |d| ≥ 1 + ϕρN−1/3 and |d − d ′| ≤ δρ(d), then∣∣d ′∣∣− 1 = (|d| − 1
)(

1 +O
(
ϕ−ρ/2)).

For brevity, we fix � satisfying (2.18), and abbreviate γ ≡ γ (�) and γ̄ ≡ γ̄ (�)

when there is no risk of confusion. The indices of γ and γ̄ are separated in the
following sense.

LEMMA 4.4. If i ∈ γ and j ∈ γ̄ , then

|di − dj |> δK/2(di).(4.3)

If i, j ∈ γ , then

|di − dj | ≤ 2rδK/2(di).(4.4)

PROOF. The bound (4.3) follows immediately from the definition of γ . The
bound (4.4) follows immediately from Lemma 4.3 and the fact that γ is a set of at
most r consecutive integers. �

Since D is diagonal, we may write

D =D[γ ] ⊕D[γ̄ ].
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The matrix D[γ ] has dimensions |γ | × |γ | and eigenvalues (di)i∈γ . Define the
region

B :=
[
min
i∈γ

(
di − δK/4(di)

)
,max
i∈γ

(
di + δK/4(di)

)]
.(4.5)

From (2.18), (4.4) and Lemma 4.3 we get, for any i ∈ γ , that

|di | − δK/4(di) ≥ |d�| − |di − d�| − 2ϕK/4N−1/2(|d�| − 1
)−1/2

≥ 1 + ϕKN−1/3 − (2r + 2)ϕK/2N−1/2(|d�| − 1
)−1/2

≥ 1 + ϕKN−1/3 − (2r + 2)N−1/3

> 1.

We therefore conclude that B ⊂ R \ [−1,1]. For large enough K a simple estimate
using the definition of θ and the bound (3.10) yields for all i ∈ γ

σ(H̃ )∩ θ(B)= {μα(i)}i∈γ(4.6)

with high probability. In other words, θ(B) houses with high probability all of the
outliers indexed by γ , and no other eigenvalues of H̃ . Moreover, from Theorem 3.7
we find that for large enough K the region θ(B) contains with high probability no
eigenvalues of H .

We may now state the main result of this section. Introduce the r × r matrix

M(z) := V ∗G(z)V .

To shorten notation, for i satisfying |di |> 1 we often abbreviate

θi := θ(di).

PROPOSITION 4.5. The following holds for large enough K . Let � ∈ [[1, r]]
satisfy (2.18), and write γ ≡ γ (�). Then for all i ∈ γ we have∣∣∣∣μα(i) − λi

(
θ� − 1

m′(θ�)
(
M(θ�)+D−1)

[γ ]
)∣∣∣∣≤ ϕ−1N−1/2(|d�| − 1

)1/2(4.7)

with high probability. [Recall Definitions 2.1 and 2.2 for the meaning of λi(·) on
the left-hand side.]

PROOF. Our strategy for locating the outliers is based on the well-known fact
that x /∈ σ(H) is an eigenvalue of H̃ if and only if M(x)+D−1 has a zero eigen-
value (see, e.g., Lemma 6.1 of [21]). Below, we develop a counting argument
that finds the eigenvalues of H̃ by analysing the behavior of each eigenvalue of
M(x) + D−1 as x varies. For our argument to work, it is important that no two
eigenvalues of M(x) + D−1 simultaneously cross the origin. [This condition is
made precise in the claim (∗) below.] In order to rule out such coincidences, we
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introduce additional randomness, by adding a small perturbation ε�, where � has
an absolutely continuous law. The sole purpose of this perturbation is to exclude
these coincidences almost surely in the randomness of �. This perturbation is
purely qualitative in the sense that ε > 0 may be arbitrarily small; once the count-
ing argument is concluded, we may easily take ε → 0 and recover the claim for
ε = 0 by a trivial continuity argument.

Thus, let � be an r×r Hermitian random matrix whose upper-triangular entries
are independent and have an absolutely continuous law supported in the unit disc.
Moreover, let � be independent of H . Let ε > 0. We shall prove the claim of
Proposition 4.5 for the matrix H̃ ε :=H +V (D−1 + ε�)−1V ∗ for small enough ε
(depending on N ), instead of H̃ =H + VDV ∗.

Define the r × r matrix

Aε(x) :=M(x)−m(x)+D−1 + ε�.(4.8)

From [21], Lemma 6.1, we get that x /∈ σ(H) is an eigenvalue of H̃ ε if and only
if Aε(x)+m(x) has a zero eigenvalue. Similar to Proposition 7.1 in [21], we use
perturbation theory to compare the eigenvalues of Aε(x) with those of the block
matrix

Ãε(x) :=Aε[γ ](x)⊕Aε[γ̄ ](x).

In order to apply perturbation theory, we must establish a lower bound on the
spectral gap

dist
(
σ
(
Aε[γ ](θ�)

)
, σ
(
Aε[γ̄ ](θ�)

))
.

We find, for large enough K and small enough ε (depending on N ), that with high
probability

dist
(
σ
(
Aε[γ ](θ�)

)
, σ
(
Aε[γ̄ ](θ�)

))
≥ dist

(
σ
(
D−1

[γ ]
)
, σ
(
D−1

[γ̄ ]
))− δC(d�)− rε(4.9)

≥ cδK/2(d�)− δC(d�)≥ δK/2−1(d�);
in the first step we used Lemma A.2, ‖ε�‖ ≤ rε and∥∥M(θ�)−m(θ�)

∥∥≤ δC(d�)(4.10)

by Theorem 3.3, (3.5), (3.9) and (2.18); in the second step we used (4.3) and
chose ε to be small enough (depending on N ); in the last step we chose K to
be large enough (depending on C).

Next, Theorem 3.3, (3.5) and (3.9) yield, with high probability,∥∥Aε(θ�)− Ãε(θ�)
∥∥≤ δK/4−2(d�)(4.11)

for large enough K and small enough ε (depending on N ).
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Define the regions

D := ⋃
i∈γ

[
d−1
i − δK/4(d�), d

−1
i + δK/4(d�)

]
,

�D := ⋃
i∈γ̄

[
d−1
i − δK/4(d�), d

−1
i + δK/4(d�)

]
,

which are disjoint by (4.3). Using (4.10), we find that for large enough K and small
enough ε (depending on N ) we have, with high probability,

σ
(
Aε[γ ](θ�)

)⊂D, σ
(
Aε(θ�)

)⊂D ∪ �D.
Moreover, both Aε(θ�) and Aε[γ ](θ�) have exactly |γ | eigenvalues in D; we denote
these eigenvalues by (aεi )i∈γ and (ãεi )i∈γ , respectively.

We may now apply perturbation theory. Invoking Proposition A.1 using (4.9)
and (4.11) yields with high probability

aεi = ãεi +O

(
δK/4−2(d�)

2

δK/2−1(d�)

)
= ãεi +O

(
δ−3(d�)

)
(4.12)

for i ∈ γ .
Next, we allow the argument x of Aε(x) to vary in order to locate the eigen-

values of H̃ ε . We recall the following derivative bound from [21], Lemma 7.2:
there is a constant C such that for large enough K we have for all �2-normalised
v,w ∈C

N , with high probability,∣∣∂xGvw(x)− ∂xm(x)〈v,w〉∣∣≤ ϕCN−1/3κ−1
x

(4.13)
for x ∈ [−
,−2 − ϕK/2N−2/3]∪ [2 + ϕK/2N−1/3,


]
.

By the definition (4.5) of B, we find from Lemma 4.3, (2.18) and (4.4) that

x ∈ θ(B) �⇒ θ
(
d� − 3rδK/2(d�)

)≤ x ≤ θ
(
d� + 3rδK/2(d�)

)
.(4.14)

We deduce using Lemma 4.3, (2.18) and (3.5) that

κx � (|d�| − 1
)2 for x ∈ θ(B).(4.15)

Therefore from Theorem 3.3, we conclude with high probability

M(x)=m(x)+O
(
δC(d�)

)
for x ∈ θ(B).(4.16)

Similarly, from (4.13) we get with high probability

M ′(x)=m′(x)+O
(
ϕCN−1/3(|d�| − 1

)−2) for x ∈ θ(B).(4.17)

With these preliminary bounds, we may vary x ∈ θ(B). Let (ai(x))i∈γ denote
the continuous family of eigenvalues of Aε(x) satisfying aεi (θ�) = aεi for i ∈ γ .
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FIG. 2. The spectrum of Aε(x) for x ∈ θ(B). For definiteness, we chose γ = [[1,5]]. The region
x ∈ θ(B) is delimited by dotted lines. The eigenvalues of H̃ ε are labelled by black dots on the x-axis.

For the following argument, it is helpful to keep Figure 2 in mind. We make the
following claim:

Almost surely, for all x ∈ θ(B) we have that
(∗)

aεi (x)= −m(x) for at most one i ∈ γ.

We omit the details of the proof 6 of (∗). Note that the necessity for (∗) to hold is
the only reason we had to introduce the additional randomness � into H̃ ε .

For definiteness, suppose for the following that d� > 1. We claim that for all
i ∈ γ we have with high probability

aεi (x−)≤ −m(x−), −m(x+)≤ aεi (x+),(4.18)

where x± denote the endpoints of the interval θ(B). Let us focus on the first esti-
mate; the second one is proved similarly. Let i := minγ . Since d �→ d − δK/4(d)

is increasing, we find that the left endpoint of B is di − δK/4(di). From (4.16) and
Lemma A.2, we find with high probability

max
x∈θ(B)max

j∈γ a
ε
j (x)≤ 1

di
+ δC(d�)+ rε

≤ 1

di − δK/4(di)
− cδK/4(di)+ δC(d�)+ rε

≤ 1

di − δK/4(di)
= −m(x−);

6The claim (∗) reduces to the following statement. Let B(x) with x ∈ I and � be Hermitian matri-
ces such that B(x) is deterministic and depends smoothly on x, and � has an absolutely continuous
law; then, almost surely in �, for all x ∈ I the matrix B(x)+� has at most one zero eigenvalue. Let
S denote the subset of matrices with multiple eigenvalues at zero, so that S is an algebraic variety of
codimension two. The claim therefore reduces to the statement that the path {B(x)}x∈I +� almost
surely does not intersect S, which is standard.
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in the second step we used 1 ≤ di ≤ 
 − 1; the third step holds for large enough
K and small enough ε (depending on N ), by Lemma 4.3; the last step follows
from (3.3). This concludes the proof of (4.18).

Recall that H̃ ε has with high probability exactly |γ | eigenvalues in θ(B). By
continuity of aεi (x) the property (∗) and (4.18), we therefore get that the func-
tion −m(x) intersects each function aεi (x), i ∈ γ , exactly once in θ(B). Let
i ∈ γ and denote by xεi the unique point (with high probability) in θ(B) at which
aεi (x

ε
i )= −m(xεi ).

From the definition of Aε and (4.17) we get, with high probability,

−m(xεi )= aεi (θ�)+O
(
ϕCN−1/3(|d�| − 1

)−2∣∣xεi − θ�
∣∣)

(4.19)
= aεi +O

(
ϕK/2+CN−5/6(|d�| − 1

)−3/2)
,

where in the second step we used (4.14), the fact that xεi ∈ θ(B), and the elemen-
tary bound |θ ′(d)| � |d| − 1. [Recall that by definition aεi (θ�)= aεi .] Now we may
use (4.12) and (4.19) to get

−m(xεi )= ãεi +O
(
δ−3(d�)+ ϕK/2+CN−5/6(|d�| − 1

)−3/2)(4.20)

with high probability. Now we expand the left-hand side using the identity

m′ = m2

1 −m2 � κ−1/2
x ,(4.21)

which follows easily from (3.2); in the second step we used Lemma 3.1. Differen-
tiating again, we get m′′(x)� κ

−3/2
x . From (4.15), we therefore get

m
(
xεi
)=m(θ�)+m′(θ�)

(
xεi − θ�

)
+O

((|d�| − 1
)−3((|d�| − 1

)
δK/2(d�)

)2)(4.22)

=m(θ�)+m′(θ�)
(
xεi − θ�

)+O
(
ϕK

(|d�| − 1
)−2

N−1)
with high probability. Solving xεi from (4.22) and −m(xεi ) from (4.20), we find for
large enough K with high probability

xεi = θ� − 1

m′(θ�)
(
ãεi +m(θ�)

)
+O

(
ϕ−3N−1/2(|d�| − 1

)1/2

+ ϕK/2+CN−5/6(|d�| − 1
)−1/2 + ϕKN−1(|d�| − 1

)−1)
= θ� − 1

m′(θ�)
(
ãεi +m(θ�)

)
+O

(
ϕ−3N−1/2(|d�| − 1

)1/2

+ ϕ−K/2+CN−1/2(|d�| − 1
)1/2 + ϕ−K/2N−1/2(|d�| − 1

)1/2)
= θ� − 1

m′(θ�)
(
ãεi +m(θ�)

)+O
(
ϕ−2N−1/2(|d�| − 1

)1/2);
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in the first step we estimated the error terms using m′(θ�)� (|d�| − 1)−1 by (4.21)
and (4.15); in the second step we used (2.18); the last step follows by choosing K
large enough. Thus, we conclude that

xεi = λi

(
θ� − 1

m′(θ�)
(
M[γ ](θ�)+D−1

[γ ] + ε�[γ ]
))+O

(
ϕ−2N−1/2(|d�| − 1

)1/2)
with high probability for small enough ε (depending on N ). Taking ε → 0 com-
pletes the proof. �

We conclude this section with a remark on the choice of the reference point θ�
in Proposition 4.5. By definition of γ , if i ∈ γ (�) then γ (i) = γ (�). Obvi-
ously, the distribution of the overlapping group of outliers (μα(i))i∈γ cannot
depend on the particular choice of � ∈ γ . Nevertheless, the reference matrix
θ� − 1

m′(θ�) (M[γ ](θ�) + D−1
[γ ]) in (4.7) depends explicitly on � ∈ γ via θ�. This

is not a contradiction, however, since a different choice of � leads to a refer-
ence matrix which only differs from the original one by an error term of order
O(ϕ−1N−1/2(|d�| − 1)1/2); this difference may be absorbed into the error term
on the right-hand side of (4.7). We shall need this fact in Section 9. The precise
statement is as follows. (To simplify notation, we state it without loss of generality
for the case γ = [[1, r]].)

LEMMA 4.6. Suppose that γ (1)= [[1, r]] and that |d1| ≥ 1 + ϕKN−1/3. Let

d, d̃ ∈ [d1 − δK/2+1(d1), d1 + δK/2+1(d1)
]
.

Then for large enough K we have∥∥∥∥(θ − 1

m′(θ)
(
M(θ)+D−1))−

(
θ̃ − 1

m′(θ̃)
(
M(θ̃)+D−1))∥∥∥∥

≤ ϕ−1N−1/2(|d1| − 1
)1/2

,

where we abbreviated θ ≡ θ(d) and θ̃ ≡ θ(d̃).

PROOF. We write(
θi − 1

m′(θ)
(
M(θ)+D−1))−

(
θ̃ − 1

m′(θ̃)
(
M(θ̃)+D−1))

= θ − θ̃ + 1

m′(θ)
(
M(θ̃)−M(θ)

)+ (
1

m′(θ̃)
− 1

m′(θ)

)(
M(θ̃)+D−1)

= θ − θ̃ + 1

m′(θ)
(
m(θ̃)−m(θ)

)+ (
1

m′(θ̃)
− 1

m′(θ)

)(
m(θ̃)+ d̃−1)

+O
(
ϕK/2+CN−5/6(|d1| − 1

)−1/2 + ϕK/2+CN−1(|d1| − 1
)−1)
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= d + 1

d
− d̃ − 1

d̃
+ (

d2 − 1
)(1

d
− 1

d̃

)
+O

(
ϕ−2N−1/2(|d1| − 1

)1/2)
=O

(
ϕ−2N−1/2(|d1| − 1

)1/2)
with high probability; in the second step we wrote M(θ̃)−M(θ) = ∫ θ̃

θ M
′(ξ)dξ

and used (4.17) and Lemma 4.3, as well as Theorem 3.3, (3.9), (3.5), (4.21),
and the fact that m′′(x) � κ

−3/2
x ; in the third step we used (2.5), (3.3), and the

assumption that K is large enough; in the last step we used that (d − d̃)2 ≤
4ϕK+1N−1(|d1| − 1)−1. �

5. The Gaussian case. Suppose that � satisfies (2.18). By Proposition 4.5,
in order to analyse the joint distribution of the outliers (μα(i))i∈γ with γ ≡ γ (�),
it suffices to analyse the distribution of the eigenvalues of the |γ | × |γ | matrix
M[γ ](θ�). In this section, we do this under the assumption that the entries of H are
Gaussian, that is, that H is a GOE/GUE matrix.

Recall that γ may depend on N . To simplify notation, in Sections 5–7 we take
γ = [[1, r]], which allows us to drop subscripts [γ ] and avoid minor nuisances
arising from the fact that γ may depend on N . In fact, this special case will easily
imply the case of general γ ; see Section 8.

The following definition is a convenient shorthand for the equivalence relation
defined by two random matrices of fixed size having the same asymptotic distribu-
tion.

DEFINITION 5.1. For two sequences XN and YN of random k × k matrices,

where k ∈ N is fixed, we write X
d∼ Y if

lim
N

(
Ef (XN)−Ef (YN)

)= 0

for all continuous and bounded f .

Let � = (�ij )
r
i,j=1 be an r × r GOE/GUE matrix multiplied by

√
r . In other

words, the covariances of � are given by

E�ij�kl =�ij,kl,(5.1)

where �ij,kl was defined in (2.10). The following proposition is the main result of
this section. It provides the joint distribution of the eigenvalues of M(θ), which, by
Proposition 4.5, immediately yields the distribution of the γ -group of outliers un-
der the assumption that H is a GOE/GUE matrix. However, since we are ultimately
interested in non-Gaussian H , we shall not combine it Proposition 4.5 directly, but
instead use it as an input for the more general case covered in Section 6.
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PROPOSITION 5.2. The following holds for large enough K . Let θ ≡ θ(d) for
some d satisfying |d| ≥ 1 + ϕKN−1/3. Suppose moreover that H is a GOE/GUE
matrix. Then

N1/2(|d| − 1
)1/2(

M(θ)−m(θ)
) d∼ 1

|d|√|d| + 1
�.

PROOF. Throughout the proof, we drop the spectral parameter z = θ from
quantities such as M(θ). By unitary invariance of H , we may assume that
Vij = δij , that is, v(i) is the ith standard basis vector of CN . By Schur’s comple-
ment formula, we therefore get M = B−1 where B = (Bij )

r
i,j=1 is the Hermitian

r × r matrix defined by

Bij := hij − θ −
(1···r)∑
a,b

hiaG
(1···r)
ab hbj .

We now claim that ∣∣∣∣∣ 1

N

(1···r)∑
a

G(1···r)
aa −m

∣∣∣∣∣≤ ϕCN−1κ−1
θ .(5.2)

Bearing later applications in mind, we in fact prove, for any � ∈ N, that∣∣∣∣TrG� −N

∫
�(x)

(x − θ)�
dx
∣∣∣∣≤ ϕCκ−�

θ(5.3)

with high probability. Applying (5.3) with �= 1 to the minor H(1···r) immediately
yields (5.2). In order to prove (5.3), we use Theorem 3.7 to get with high probabil-
ity ∣∣∣∣∑

α

1

(λα − θ)�
−∑

α

1

(γα − θ)�

∣∣∣∣
≤ ϕC

N/2∑
α=1

α−1/3N−2/3

(|θ | − |γα|)�+1 ≤ ϕC

N

N/2∑
α=1

(α/N)−1/3

((α/N)2/3 + κθ )�+1(5.4)

≤ ϕC
∫ ∞

0

x−1/3

(x2/3 + κθ )�+1 dx ≤ ϕC

κ�θ
;

in the first step we estimated the contribution of α > N/2 by the contribution of
N + 1 − α, and used that |λα − γα| � |θ | − |γα| with high probability by Theo-
rem 3.7 and the assumption on θ (for large enough K); in the second step we used
the estimate

2 − |γα| � α2/3N−2/3(5.5)
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for α ≤N/2, as follows from the definition of γα . Similarly, setting γ0 := −2, we
find

N

∫
�(x)

(x − θ)�
dx =N

N∑
α=1

∫ γα

γα−1

�(x)

(x − θ)�
dx

=
N∑
α=1

1

(γα − θ)�
+O

(N/2∑
α=1

α−1/3N−2/3

(|θ | − |γα|)�+1

)
(5.6)

=
N∑
α=1

1

(γα − θ)�
+O

(
1

κ�θ

)
.

Now (5.3) follows from (5.4) and (5.6).
Using Ehiahbj = δij δabN

−1 and (3.5), we therefore get from (5.2)

(1···r)∑
a,b

hiaG
(1···r)
ab hbj − δijm

= (1 −E1···r )
(1···r)∑
a,b

hiaG
(1···r)
ab hbj +O

(
ϕCN−1(d − 1)−2)

with high probability. We may therefore write

Bij = −θ −m− (−hij +Wij +Rij ),

where

Wij := (1 −E1···r )
(1···r)∑
a,b

hiaG
(1···r)
ab hbj and Rij =O

(
ϕCN−1(|d| − 1

)−2)
with high probability.

Next, we claim that

Wij =O
(
ϕCN−1/2(|d| − 1

)−1/2)(5.7)

with high probability. Indeed, using Lemma 3.6 we get

|Wij | ≤ ϕC

(
1

N2

(1···r)∑
a,b

∣∣G(1···r)
ab

∣∣2)1/2

= ϕC
(

1

N2 Tr
(
G(1···r)∗G(1···r)))1/2

≤ ϕCN−1/2(|d| − 1
)−1/2

with high probability. In the last step we used (5.3), (4.13), and G = G∗ to get
(dropping the upper indices to simplify notation)

1

N2 Tr
(
G∗G

)=N−1m′ +O
(
ϕCN−2κ−2

θ

)
=O

(
N−1κ

−1/2
θ + ϕCN−2κ−2

θ

)=O
(
N−1(|d| − 1

)−1)



THE OUTLIERS OF A DEFORMED WIGNER MATRIX 2007

with high probability.
Using the bounds (5.7) and |hij | ≤ ϕCN−1/2 with high probability [as follows

from (2.1)], we may expand with (3.2) to get

Mij =mδij +m2(−hij +Wij )+O
(
ϕCN−1(|d| − 1

)−2)
with high probability. Let H[1···r] =H(r+1···N) denote the upper r × r block of H .
Thus we get

N1/2(|d| − 1
)1/2

(M −m)
(5.8)

=m2N1/2(|d| − 1
)1/2

(−H[1···r] +W)+O
(
ϕCN−1/2(|d| − 1

)−3/2)
with high probability. In particular, for large enough K we get

N1/2(|d| − 1
)1/2

(M −m)
d∼m2N1/2(|d| − 1

)1/2
(−H[1···r] +W).(5.9)

By definition, H[1···r] and W are independent. What therefore remains is to com-
pute the asymptotic distribution ofW . We claim thatW converges in law to an r×r

Gaussian matrix:

N1/2(|d| − 1
)1/2

W
d∼ 1√|d| + 1

�.(5.10)

By the Cramér–Wold device, it suffices to show that

N1/2(|d| − 1
)1/2∑

i,j

QijWij
d∼ 1√|d| + 1

∑
i,j

Qij�ij

for any deterministic matrix Q= (Qij ) satisfying Q=Q∗ and Qij ∈ R if β = 1.
To that end, we diagonalize G(1···r) by writing

N−1/2(|d| − 1
)1/2

G(1···r) =U∗�U,

where U is a unitary (N − r) × (N − r) matrix and � = diag(�r+1, . . . ,�N).
Moreover, we introduce the r × (N − r) matrix h := (hia : i ≤ r, a ≥ r + 1). Since
the entries of h are i.i.d. Gaussians, U is orthogonal/unitary, and H is independent
of (�,U), we find that (�,Uh) d= (�,h). We conclude that

N1/2(|d| − 1
)1/2

r∑
i,j=1

QijWij = N(1 −E1···r )Tr
(
Qh∗U∗�Uh

)
d= N(1 −E1···r )Tr

(
Qh∗�h

)
=

(1···r)∑
a

�a

r∑
i,j=1

QijN(hiahaj −Ehiahaj )

=:X.
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Note that (
∑

i,j QijN(hiahaj − Ehiahaj ))
N
a=r+1 is a family of i.i.d. random vari-

ables, independent of �, with variance 2β−1 TrQ2. Therefore,

EX2 = 2

β
TrQ2

(1···r)∑
a

�2
a

= 2

β
TrQ2N−1(|d| − 1

)
Tr
(
G(1···r))2

= 2

β
TrQ2((|d| − 1

)
m′ +O

(
ϕCN−1(|d| − 1

)−3))
= 2

β
TrQ2((|d| − 1

)
m′ +O

(
ϕ−1))

with high probability for large enough K , where we used (5.3). Moreover, we have
(1···r)∑
a

�4
a =N−2(|d| − 1

)2 Tr
(
G(1···r))4

=N−2(|d| − 1
)2(
Nm′′′/6 +O

(
ϕC
(|d| − 1

)−8))
=O

(
N−1(|d| − 1

)−3 +N−2(|d| − 1
)−6)=O

(
ϕ−1)

with high probability for large enough K , where in the second step we used (5.3)
and in the third step the estimate m′′′ � κ

−5/2
θ as follows by differentiating (4.21)

twice and from Lemma 3.1.
We conclude from the central limit theorem that

X
d∼N

(
0,

2

β(|d| + 1)
TrQ2

)
,

where we used the identity (|d| − 1
)
m′ = 1

|d| + 1
as follows from (4.21) and (3.3). Thus, (5.10) follows the identity

1√|d| + 1

∑
i,j

Qij�ij
d=N

(
0,

2

β(|d| + 1)
TrQ2

)
as follows from a from a simple variance calculation.

Next, by definition of H[1···r] we have

−N1/2(|d| − 1
)1/2

H[1···r] d= (|d| − 1
)1/2

�.

Thus, we find

N1/2(|d| − 1
)1/2

(−H[1···r] +W)
d∼ |d|√|d| + 1

�.

The claim now follows from (5.9) and (3.3). �
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6. The almost Gaussian case. The next step of the proof is to consider the
case where most entries of H are Gaussian. The exponent ρ ≥ 2 is used to define
a cutoff scale in the entries of V , below which the corresponding entries of H are
assumed to be Gaussian. Proposition 6.1 will ultimately be fed into Lemma 7.1
below, at which time we shall choose ρ to be large enough.

PROPOSITION 6.1. The following holds for large enough K . Let θ ≡ θ(d) for
some d satisfying |d| ≥ 1 + ϕKN−1/3. Let ρ ≥ 2. Suppose that the Wigner matrix
H satisfies

max
1≤l≤r max

{|Vil|, |Vjl|}≤ ϕ−ρ �⇒ hij is Gaussian.(6.1)

Then

N1/2(|d| − 1
)1/2(

M(θ)−m(θ)
) d∼ −N1/2(|d| − 1

)1/2
d−2V ∗

δ HVδ +�0,

where �0 =�∗
0 is a Gaussian matrix, independent of H , with centred entries and

covariance

E(�0)ij (�0)kl = |d| − 1

d4

(
�ij,kl −Pij,kl

(
V ∗
δ Vδ

))+ 1

d4(|d| + 1)
�ij,kl

+ |d| − 1

d5 Qij,kl(V )+ |d| − 1

d6 Rij,kl(V ).

PROOF. Throughout the proof, we drop the spectral parameter z= θ from our
notation.

Step 1. We start with some linear algebra in order to write the matrix M in a
form amenable to analysis. Since ‖v(l)‖ = 1 for all l we find that∣∣{i : |Vil|> ϕ−ρ}∣∣≤ ϕ2ρ.

We shall permute the rows of V by using an N ×N permutation matrix O accord-
ing to M = V ∗GV = (OV )∗OGO∗OV . It is easy to see that we may permute the
rows of V by setting V �→OV so that after the permutation we have

V =
(
U

W

)
,

where:

(i) U is a μ× r matrix and W an (N −μ)× r matrix,
(ii) |Wil| ≤ ϕ−ρ for all i and l,

(iii) μ≤ rϕ2ρ .

After the permutation H �→OHO∗, we may write H as

H =
(
A B∗
B H0

)
,
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whereA is a μ×μ matrix, B an (N−μ)×μ matrix, and H0 an (N−μ)×(N−μ)

matrix with Gaussian entries [as follows from (6.1)].
Next, we rotate the rows of W by choosing a unitary (N −μ)× (N −μ) matrix

S̃ such that

S̃W =
(
W̃

0

)
,

where W̃ is an r × r matrix that satisfies

U∗U +W ∗W =U∗U + W̃ ∗W̃ = 1r .(6.2)

Thus, we get

M = V ∗
(

1 0
0 S̃∗

)(
1 0
0 S̃

)(
A− θ B∗
B H0 − θ

)−1 (1 0
0 S̃∗

)(
1 0
0 S̃

)
V

d=
⎛⎝ U

W̃

0

⎞⎠∗ (
A− θ B∗S̃∗
S̃B H0 − θ

)−1
⎛⎝ U

W̃

0

⎞⎠ ,
where d= denotes equality in distribution. Here we used the unitary invariance of
the Gaussian matrix H0.

Next, we decompose

H0 =
(
H1 Z∗
Z H2

)
, S̃ =

(
R

S

)
,

where H1 is an r × r Gaussian matrix, Z an (N −μ− r)× r Gaussian matrix, and
H2 an (N −μ− r)× (N −μ− r) Gaussian matrix. Moreover, R is an r× (N −μ)

matrix and we have

RR∗ = 1r , SS∗ = 1N−μ−r , RS∗ = 0, R∗R + S∗S = 1N−μ.

Thus, we find

M
d=
⎛⎝ U

W̃

0

⎞⎠∗⎛⎝A− θ B∗R∗ B∗S∗
RB H1 − θ Z∗
SB Z H2 − θ

⎞⎠−1⎛⎝ U

W̃

0

⎞⎠
=
(
Y

0

)∗ (
Ã− θ F ∗
F H2 − θ

)−1 (
Y

0

)
=:�,

where

Y :=
(
U

W̃

)
, F := (SB,Z), Ã :=

(
A B∗R∗
RB H1

)
.

Here Y is a (μ+ r)× r matrix satisfying Y ∗Y = 1r , and F is an (N − μ− r)×
(μ+ r) matrix.
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Step 2. We claim that

F ∗F = 1μ+r +O
(
ϕCN−1/2)(6.3)

with high probability (in the sense of matrix entries). In order to prove (6.3), we
write

F ∗F =
(
B∗S∗SB B∗S∗Z
Z∗SB Z∗Z

)
and consider each block separately. For i �= j , we get using (3.14)∣∣(B∗S∗SB

)
ij

∣∣= ∣∣∣∣∑
k,l

�Bki(S∗S
)
klBlj

∣∣∣∣
≤ ϕC

N

(∑
k,l

∣∣(S∗S
)
kl

∣∣2)1/2

= ϕC

N

(
Tr
(
S∗S

)2)1/2 ≤ ϕCN−1/2

with high probability. Similarly, (3.12) and (3.13) yield(
B∗S∗SB

)
ii =∑

k

(
S∗S

)
kk|Bki |2 +∑

k �=l
�Bki(S∗S

)
klBli = 1 +O

(
ϕCN−1/2)

with high probability, where we used that N−1 TrS∗S = 1 − (μ + r)N−1. Next,
from (3.12), (3.13) and (3.14) we easily get

Z∗Z = 1r +O
(
ϕCN−1/2)(6.4)

with high probability. Finally, (3.14) yields∣∣(B∗S∗Z
)
ij

∣∣= ∣∣∣∣∑
k,l

�BkiS∗
klZlj

∣∣∣∣≤ ϕC

N

(∑
k,l

∣∣S∗
kl

∣∣)1/2

= ϕC

N

(
TrS∗S

)1/2 ≤ ϕCN−1/2

with high probability. This concludes the proof of (6.3).
Next, we define

G2 := (H2 − θ)−1

and claim that

F ∗G2F =m+O
(
ϕCN−1/2(|d| − 1

)−1/2)(6.5)

with high probability (in the sense of matrix entries). Since N1/2(N − μ −
r)−1/2H2 is an (N − μ − r) × (N − μ − r) GOE/GUE matrix that is indepen-
dent of F , (6.5) follows from Theorem 3.3, (3.5), (3.9) and (6.3).

Step 3. For the following, we use the letter E to denote any (random) error term
satisfying |E | ≤ ϕCN−1(|d|−1)−1 with high probability for some constant C. We
apply Schur’s complement formula to get

�= Y ∗(−θ −m− (−Ã+ F ∗G2F −m
))−1

Y

=mY ∗Y −m2Y ∗ÃY +m2(Y ∗F ∗G2FY −mY ∗Y
)+ E

=m−m2Y ∗ÃY +m2(Y ∗F ∗G2FY −m
)+ E,
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where in the second step we expanded using (3.2) and estimated the error term
using (6.5),μ≤ ϕC , and ‖Ã‖ ≤ ϕCN−1/2 with high probability. UsingR∗W̃ =W ,
we get

�=m−m2(U∗AU +U∗B∗W +W ∗BU + W̃ ∗H1W̃
)

+m2Y ∗F ∗(G2 −m)FY +m3(Y ∗F ∗FY − 1
)+ E .

Next, we rewrite the term Y ∗F ∗(G2 − m)FY so as to decouple the randomness
of H2 from that of F . From (6.3), we find

Y ∗F ∗FY = 1r +O
(
ϕCN−1/2)(6.6)

with high probability. Define the deterministic (N −μ− r)× r matrix

E1 :=
(

1r
0(N−μ−2r)×r

)
.

Next, we claim that there is a unitary (N −μ− r)× (N −μ− r) matrix O1, which
is F -measurable, such that

‖O1FY −E1‖ ≤ ϕCN−1/2(6.7)

with high probability. In order to prove (6.7), write (x1, . . . ,xr ) := FY . Then (6.6)
simply states that the vectors x1, . . . ,xr form a basis of an r-dimensional subspace,
which is orthonormal up to errors of order ϕCN−1/2 with high probability. More
precisely, we choose a unitary matrix U1 such that U1x1 lies in the direction of e1.
Hence, by (6.6), we have U1FY = (e1,U1x2, . . . ,U1xr )+O(ϕCN−1/2) with high
probability. Note moreover that by (6.6) we have 〈e1,U1xi〉 =O(ϕCN−1/2) with
high probability for i ≥ 2. Next, we choose a unitary matrix U2 that leaves e1
invariant and maximizes 〈e2,U2U1x2〉. Hence, again by (6.6), we have U2U1FY =
(e1, e2,U2U1e3, . . . ,U2U1er )+O(ϕCN−1/2) with high probability. We continue
in this manner, at the kth step choosing a unitary matrix Uk that leaves e1, . . . , ek−1
invariant and maximizes 〈ek,Uk · · ·U1xk〉. Finally, we define O1 := Ur · · ·U1. By
construction, the estimate in (6.7) holds. Moreover, since Y is deterministic, O1 is
clearly F -measurable. This concludes the proof of (6.7).

Using Theorem 3.3 and the fact that F and H2 are independent, we therefore
get from (6.7)

(O1FY)
∗(G2 −m)O1FY =E∗

1(G2 −m)E1 + E .
We conclude that

M
d=m−m2(U∗AU +U∗B∗W +W ∗BU + W̃ ∗H1W̃

)
+m2E∗

1(G2 −m)E1 +m3(Y ∗F ∗FY − 1
)+ E,

where we used thatO1G2O
∗
1

d=G2 and that all terms apart fromm2E∗
1 (G2 −m)E1

are independent of H2.
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Next, we compute

Y ∗F ∗FY
=U∗B∗S∗SBU +U∗B∗S∗ZW̃ + W̃ ∗Z∗SBU + W̃ ∗Z∗ZW̃
=U∗B∗BU −U∗B∗R∗RBU +U∗B∗S∗ZW̃ + W̃ ∗Z∗SBU + W̃ ∗Z∗ZW̃
=U∗B∗BU +U∗B∗S∗ZW̃ + W̃ ∗Z∗SBU + W̃ ∗Z∗ZW̃ +O

(
ϕCN−1)

with high probability, where in the last step we used Lemma 3.6 and Tr(R∗R)2 = r .
Using (6.2), we rewrite

U∗B∗BU + W̃ ∗Z∗ZW̃ − 1

= IE
(
U∗B∗BU + W̃ ∗Z∗ZW̃

)− μ

N
U∗U − μ+ r

N
W̃ ∗W̃ ,

where we introduced the notation IEX :=X−EX.
Thus, we conclude that

M −m
d=�1 +�2 +�3 +�4 + E,(6.8)

where

�1 :=m2E∗
1 (G2 −m)E1,

�2 := −m2U∗AU,
�3 := −m2W̃ ∗H1W̃ ,

�4 := −m2(U∗B∗W +W ∗BU
)

+m3
IE
(
U∗B∗BU +U∗B∗S∗ZW̃ + W̃ ∗Z∗SBU + W̃ ∗Z∗ZW̃

)
.

By definition, the random variables �1, �2, �3 and �4 are independent.
Step 4. We compute the asymptotics of �1, �2, and �3. We begin with �1. We

shall apply Proposition 5.2 to the (N −μ− r)× (N −μ− r) Gaussian matrix H2.
Thus, in Proposition 5.2 we replace N with N − μ− r , H with H2, and M(θ)=
V ∗(H − θ)−1V by V ∗(H2 − θ)−1V with V :=E1. Since μ+ r ≤ ϕC we find that
N −μ− r �N . We therefore conclude from Proposition 5.2 that

N1/2(|d| − 1
)1/2

�1
d∼ 1

|d|3√|d| + 1
�.

Here we used (3.3). Recall that� is the rescaled GOE/GUE matrix satisfying (5.1).
In order to deal with �2, we introduce, in analogy to Vδ , the matrix Uδ = (Uδ

il)

whose entries are defined by Uδ
il :=Uil1(|Uil|> δ). In particular, since δ ≥ ϕ−1 ≥

ϕ−ρ , we have Vδ = (Uδ
0

)
. Writing Ûδ = (Û δ

il) :=U −Uδ , we get

U∗AU =U∗
δ AUδ + Û∗

δ AUδ +U∗
δ AÛδ + Û∗

δ AÛδ.
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Next, we define the matrices

�1 := Û∗
δ AUδ +U∗

δ AÛδ, �2 := Û∗
δ AÛδ.

Note that, by definition, �1, �2 and U∗
δ AUδ are independent. We now compute

the covariances of the matrices �1 and �2. A simple calculation yields

NE(�1)ij (�1)kl = 2Tij,kl
(
U∗
δ Uδ, Û

∗
δ Ûδ

)
,

(6.9)
NE(�2)ij (�2)kl = Tij,kl

(
Û∗
δ Ûδ, Û

∗
δ Ûδ

)
,

where we defined

Tij,kl(R,T ) := 1
2

(
RilTkj +RkjTil + 1(β = 1)(RikTjl +RjlTik)

)
.

For example, let us prove the second identity for the case β = 2. Using
NEhabhcd = δadδbc we find

NE(�2)ij (�2)kl =NE

μ∑
a,b,c,d=1

Û δ∗
ia habÛ

δ
bj Û

δ∗
kc hcdÛ

δ
dl

=
μ∑

a,b=1

Û δ∗
ia Û

δ
bj Û

δ∗
kb Û

δ
al =

(
Û∗
δ Ûδ

)
il

(
Û∗
δ Ûδ

)
kj .

The other cases are handled similarly. Moreover, since by definition we have
|Û δ

il| ≤ δ � 1, the central limit theorem implies that N1/2�1 and N1/2�2 con-
verge to a Gaussian random matrix. Hence, the asymptotics of �1 and �2 are
governed entirely by their covariances (6.9).

Similarly, �3 is Gaussian with covariance

NE(�3)ij (�3)kl = d−4Tij,kl
(
W ∗W,W ∗W

)
,

where we used (3.3). Using U∗
δ AUδ = V ∗

δ HVδ , we therefore conclude that

N1/2(|d| − 1
)1/2

(�1 +�2 +�3)(6.10)

d∼ 1

|d|3√|d| + 1
�−N1/2 (|d| − 1)1/2

d2 V ∗
δ HVδ +�3,

where �3 is Gaussian with covariance

E(�3)ij (�3)kl

= |d| − 1

d4

(
2Tij,kl

(
U∗
δ Uδ, Û

∗
δ Ûδ

)+ Tij,kl
(
Û∗
δ Ûδ, Û

∗
δ Ûδ

)
(6.11)

+ Tij,kl
(
W ∗W,W ∗W

))
.
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Step 5. Next, we compute the asymptotics of �4. We shall prove that
N1/2(|d| − 1)1/2�4 is asymptotically Gaussian, and compute its covariance ma-
trix.

Using Lemma 3.6, we find(
B∗S∗SB

)
ij =∑

k �=l

(
S∗S

)
kl

�BkiBlj +∑
k

(
S∗S

)
kk

�BkiBkj

=∑
k �=l

(
S∗S

)
kl

�BkiBlj +∑
k

(
S∗S

)
kk

(
�BkiBkj − δij

N

)
(6.12)

+ N −μ− r

N
δij

= δij +O
(
ϕCN−1/2)

with high probability. Define the deterministic (N −μ− r)×μ matrix

E2 :=
(

1μ
0(N−2μ−r)×μ

)
.

Exactly as after (6.12) we find that (6.12) and Gaussian elimination imply that
there is a unitary (N −μ− r)× (N −μ− r) matrix O2, which is B-measurable,
such that

‖O2SB −E2‖ ≤ ϕCN−1/2

with high probability. Thus, we get∣∣(W̃ ∗Z∗(O2SB −E2)U
)
ij

∣∣= ∣∣∣∣∑
k

W̃ ∗
ik

∑
l

(
(O2SB −E2)U

)
lj

�Zlk

∣∣∣∣
≤ ϕCN−1/2(U∗(O2SB −E2)

∗(O2SB −E2)U
)1/2
ii

≤ ϕCN−1

with high probability. Using that Z is independent of B and O2, we therefore find

�4
d= −m2(U∗B∗W +W ∗BU

)
+m3

IE
(
U∗B∗BU +U∗E∗

2ZW̃ + W̃ ∗Z∗E2U + W̃ ∗Z∗ZW̃
)+ E .

Defining the (N −μ− r)× r matrix

Ũ :=E2U =
(

U

0(N−μ−2r)×r

)
,

we therefore have

�4
d=�′

4 +�′′
4 + E,
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where

�′
4 := −m2(U∗B∗W +W ∗BU

)+m3
IE
(
U∗B∗BU

)
,

�′′
4 :=m3(Ũ∗ZW̃ + W̃ ∗Z∗Ũ + IE

(
W̃Z∗ZW̃

))
.

By definition, �′
4 and �′′

4 are independent. Recalling that |Wil| ≤ ϕ−ρ , we find
from the central limit theorem that N1/2�′

4 and N1/2�′′
4 are each asymptotically

Gaussian. Hence, it suffices to compute their covariances. A straightforward com-
putation yields

NE
(
�′

4
)
ij

(
�′

4
)
kl = 2m4Tij,kl

(
U∗U,W ∗W

)−m5Qij,kl(U,W)

+m6(Tij,kl(U∗U,U∗U
)+Rij,kl(U)

)
,

where we defined

Qij,kl(U,W) :=N−1/2
∑
a,b

(�Uai
�UakUalμ

(3)
ab Wbj + �Wiaμ

(3)
ab Ubj

�UbkUbl

+ �Uak
�UaiUajμ

(3)
ab Wbl + �Wkaμ

(3)
ab Ubl

�UbiUbj

)
.

[By a slight abuse of notation, we write Rij,kl(U) by identifying U with the N × r

vector
(U

0

)
.]

We may similarly deal with �′′
4. Using Ũ∗Ũ = U∗U and W̃ ∗W̃ = W ∗W we

find

NE
(
�′′

4
)
ij

(
�′′

4
)
kl = 2m6Tij,kl

(
U∗U,W ∗W

)+m6Tij,kl
(
W ∗W,W ∗W

)
.

Combining �′
4 and �′′

4, and recalling (3.3), we find

NE(�4)ij (�4)kl = 2d−4Tij,kl
(
U∗U,W ∗W

)+ d−5Qij,kl(U,W)
(6.13)

+ d−6(�ij,kl +Rij,kl(U)
)
,

where we used that

Tij,kl
(
U∗U,U∗U

)+ Tij,kl
(
W ∗W,W ∗W

)+ 2Tij,kl
(
U∗U,W ∗W

)
= Tij,kl(1,1)=�ij,kl

as follows from W ∗W +U∗U = 1.
Step 6. We may now consider the sum �1 +�2 +�3 +�4. From (6.8), (6.10),

(6.11), (6.13), and the definition of E , we get

N1/2(|d| − 1
)1/2

(M −m)
d∼ −N1/2(|d| − 1

)1/2
d−2V ∗

δ HVδ +�4,

where �4 =�∗
4 is a Gaussian matrix, independent of H , with covariance

E(�4)ij (�4)kl

= |d| − 1

d4

(
�ij,kl −Pij,kl

(
V ∗
δ Vδ

))+ |d| − 1

d5 Qij,kl(U,W)

+ |d| − 1

d6

(
�ij,kl +Rij,kl(U)

)+ 1

d6(|d| + 1)
�ij,kl .
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Here we used that

2Tij,kl
(
U∗
δ Uδ, Û

∗
δ Ûδ

)+ Tij,kl
(
Û∗
δ Ûδ, Û

∗
δ Ûδ

)
+ Tij,kl

(
W ∗W,W ∗W

)+ 2Tij,kl
(
U∗U,W ∗W

)
=�ij,kl − Tij,kl

(
U∗
δ Uδ,U

∗
δ Uδ

)=�ij,kl −Pij,kl

(
V ∗
δ Vδ

)
as follows from the bilinearity of Tij,kl(·, ·) as well as the identities Tij,kl(1,1)=
�ij,kl , 1 =U∗

δ Uδ + Û∗
δ Ûδ +W ∗W and U∗

δ Uδ = V ∗
δ Vδ .

Using that U is a μ× r matrix with μ≤ rϕ2ρ and |Wil| ≤ ϕ−ρ , we easily find
that

Qij,kl(U,W)= Qij,kl(V )+O
(
ϕ−ρ),

(6.14)
Rij,kl(U)= Rij,kl(V )+O

(
ϕ−2ρ).

Since ρ ≥ 2, it is not hard to see that the errors on the right-hand side of (6.14) are
bounded from above (in the sense of matrices) by the matrix Eij,kl = ϕ−1�ij,kl .
In particular, from (6.13) we get that the matrix

2d−4Tij,kl
(
U∗U,W ∗W

)+ d−5Qij,kl(V )+ d−6(�ij,kl +Rij,kl(V )
)+Eij,kl

is nonnegative, from which we conclude that the right-hand side of (2.11) is non-
negative. This completes the proof. �

7. The general case. The general case follows from Proposition 6.1 and
Green function comparison. The argument is almost identical to that of Section 7.4
in [21], and we only sketch the differences.

Let H = (N−1/2Xij ) be an arbitrary real symmetric/complex Hermitian Wigner
matrix and (N−1/2Yij ) a GOE/GUE matrix independent of H . For ρ > 0, define
the subset

Iρ := {
i ∈ [[1,N]] : |Vil| ≤ ϕ−ρ for all l ∈ [[1, r]]}.

Define a new Wigner matrix Ĥ = (N−1/2X̂ij ) through

X̂ij :=
{
Yij , if i ∈ Iρ and j ∈ Iρ ,
Xij , otherwise.

Thus, Ĥ satisfies the assumptions of Proposition 6.1. Let

Jρ := {
(i, j) : 1 ≤ i ≤ j ≤N, i ∈ Iρ and j ∈ Iρ

}
.

Choose a bijective map φ :Jρ → {1, . . . , |Jρ |}. For 1 ≤ τ ≤ |Jρ | denote by Hτ =
(hτij ) the Hermitian matrix defined by

hτij :=
{
N−1/2Xij , if φ(i, j)≤ τ

N−1/2X̂ij , otherwise
(i ≤ j).
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In particular, H0 = Ĥ and H|Jρ | =H . Let now (a, b) ∈ Jρ satisfy φ(a, b)= τ . We
write

Hτ−1 =Q+N−1/2(YabE(ab) + 1(a �= b)YbaE
(ba))

and

Hτ =Q+N−1/2(XabE
(ab) + 1(a �= b)XbaE

(ba)).
Here E(ab) denotes the matrix with entries E(ab)

ij := δaiδbj . Hence we have Qab =
Qba = 0, and the matrices Hτ−1 and Hτ differ only in the entries (a, b) and (b, a).

Next, we introduce the resolvents

R(z) := 1

Q− z
, S(z) := 1

Hτ−1 − z
, T (z) := 1

Hτ − z
.

Let |d| ≥ 1 + ϕKN−1/2. Set z := θ(d) + iN−4 (as in [21], Section 7.4, we add
a small imaginary part to z to ensure weak control on low-probability events) and
define

xR :=N1/2(|d| − 1
)1/2(

V ∗R(z)V −m(z)
)
.(7.1)

The quantities xS and xT are defined analogously with R replaced by S and T ,
respectively.

The following estimate is the main comparison estimate. It is very similar to
Lemma 7.13 of [21].

LEMMA 7.1. Provided ρ is a large enough constant, the following holds. Let
f ∈ C3(Cr×r ) be bounded with bounded derivatives and q ≡ qN be an arbitrary
deterministic sequence of r × r matrices. Then

Ef (xT + q)= Ef (xR + q)+
r∑

i,j=1

Z
(ab)
ij E

∂f

∂xij
(xR + q)

(7.2)
+Aab +O

(
ϕ−1Eab

)
,

Ef (xS + q)= Ef (xR + q)+Aab +O
(
ϕ−1Eab

)
,(7.3)

where Aab satisfies |Aab| ≤ ϕ−1,

Z
(ab)
ij := −N−1(|d| − 1

)1/2(
m4μ

(3)
ab

�VaiVbj +m4μ
(3)
ba

�VbiVaj )
and

Eab :=
r∑

i,j=1

2∑
σ,τ=0

N−2+σ/2+τ/2|Vai |σ |Vbj |τ + δab

r∑
i=1

2∑
σ=0

N−1+σ/2|Vai |σ .(7.4)
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PROOF. The proof follows the proof of Lemma 7.13 of [21] with cosmetic
modifications whose details we omit. �

Using Lemma 7.1, we may now complete the proof in the general case. The
following proposition is the main result of this section, and is the conclusion of the
arguments from Sections 5–7.

PROPOSITION 7.2. The following holds for large enough K . Let θ ≡ θ(d) for
some d satisfying |d| ≥ 1 + ϕKN−1/3. Then

N1/2(|d| − 1
)1/2(

M(θ)−m(θ)
)

d∼ −N1/2(|d| − 1)1/2

d2 V ∗
δ HVδ − (|d| − 1)1/2S(V )

d4 +�0,

where �0 is the Gaussian matrix from Proposition 6.1.

PROOF. The proof follows the proof of Theorem 2.14 in Section 7.4 of
[21] with cosmetic modifications whose details we omit. The main inputs are
Proposition 6.1 and Lemma 7.1. The imaginary part of the spectral parameter
z= θ(d)+ iN−4 is easily removed using the estimate m(z)= −d +O(N−3). The
condition f ∈C3 in Lemma 7.1 can be relaxed to f ∈ C by standard properties of
weak convergence of measures. �

8. Conclusion of the proof of Theorems 2.5 and 2.9. We may now conclude
the proof of Theorems 2.5 and 2.9. First, we note that Theorem 2.5 is an easy
corollary of Theorem 2.9. We focus therefore on the proof of Theorem 2.9.

Fix K to be the constant from Proposition 7.2. Fix � ∈ [[1, r]] and define the
subset

� := {
N ∈ N :

∣∣d(N)�

∣∣≥ 1 + ϕKN−1/3}.
We assume that � is a subsequence (i.e., infinite), for otherwise the claim of The-
orem 2.9 is vacuous. For given s > 0, we introduce the partition

�= ⋃
γ,π

�π,γ (s),(8.1)

where the union ranges over subsets π,γ of [[1, r]] satisfying � ∈ π ⊂ γ ⊂ [[1, r]],
and

�π,γ (s) := {
N ∈� :γN(�)= γ,πN(�, s)= π

}
,

where πN(�, s) ≡ π(�, s) and γN(�) ≡ γ (�) are the subsets from Definitions 2.8
and 4.2.

We shall prove the following result.

PROPOSITION 8.1. Fix �, π and γ satisfying � ∈ π ⊂ γ ⊂ [[1, r]]. Let ε > 0 be
given, and let f1, . . . , fr be bounded continuous functions, where fk is a function
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on R
k satisfying ‖fk‖∞ ≤ 1. Then there exist constants N0 and s0, both depending

on ε and f1, . . . , fr , such that (2.19) holds for all s ≥ s0 and all N ≥N0 satisfying
N ∈�π,γ (s).

Before proving Proposition 8.1, we note that it immediately implies Theo-
rem 2.9, since the partition (8.1) ranges over a finite family containing O(1) el-
ements.

PROOF OF PROPOSITION 8.1. From (4.6), we know that θ(B) contains with
high probability precisely |γ | outliers, namely (μα(i))i∈γ . Following (2.14), for
i ∈ γ we introduce the rescaled eigenvalues

ζi =N1/2(|d�| − 1
)−1/2

(μα(i) − θ�).

In order to identify the asymptotics of ζi , we introduce the |γ | × |γ | matrices

X ≡XN := −N1/2(|d�| − 1
)1/2(|d�| + 1

)(
M[γ ](θ�)−m(θ�)

)
,

Y ≡ YN := −N1/2(|d�| − 1
)1/2(|d�| + 1

)(
D−1

[γ ] − d−1
�

)
.

Note that X is random and Y deterministic. From (4.7), (3.3) and (4.21), we get
for all i ∈ γ that ∣∣ζi − λi(X+ Y)

∣∣≤ ϕ−1(8.2)

with high probability. By Proposition 7.2 and Remark 2.3, the family (XN)N is
tight.

By definition of π and Lemma 4.3, if i ∈ π and j ∈ γ \ π then

|di − dj |> sN−1/2(|d�| − 1
)−1/2

/2.(8.3)

We have the splitting

D[γ ] =D[π ] ⊕D[γ \π ].
We shall apply perturbation theory to the matrix X + Y . In order to do so, we
truncate X by defining Xt :=X1(‖X‖ ≤ t) for t > 0. Then by tightness of X there
exists a t ≡ t (ε) > 0 such that

P
(
XN �=Xt

N

)≤ ε

5
(8.4)

for all N . For the truncated matrices, we find the spectral gap

dist
(
σ
(
Xt[π ] + Y[π ]

)
, σ
(
Xt[γ \π ] + Y[γ \π ]

))
≥ dist

(
σ(Y[π ]), σ (Y[γ \π ])

)− 2t ≥ cs − 2t,

where the constant c only depends on 
 in (2.2); here in the last step we used (8.3).
Proposition A.1 therefore yields∣∣λi(Xt + Y

)− λi
(
Xt[π ] + Y[π ]

)∣∣≤ t2

cs − 2t − 2t2
.(8.5)
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We conclude that for there exists an s0 and an N0, both depending on ε and f|π |,
such that for s ≥ s0 and N ≥N0 satisfying N ∈�π,γ (s) we have∣∣Ef|π |

(
(ζi)i∈π

)−Ef|π |
((
λi(X[π ] + Y[π ])

)
i∈π

)∣∣
≤ ∣∣Ef|π |

(
(ζi)i∈π

)−Ef|π |
((
λi
(
Xt[π ] + Y[π ]

))
i∈π

)∣∣+ ε

5

≤ ∣∣Ef|π |
(
(ζi)i∈π

)−Ef|π |
((
λi
(
Xt + Y

))
i∈π

)∣∣+ 2ε

5

≤ ∣∣Ef|π |
(
(ζi)i∈π

)−Ef|π |
((
λi(X+ Y)

)
i∈π

)∣∣+ 3ε

5

≤ 4ε

5
,

where in the first step we used (8.4), in the second step (8.5) and dominated conver-
gence, in the third step (8.4) again, and in the last step (8.2) and dominated conver-
gence. Proposition 8.1 now follows from Proposition 7.2 applied to the |π | × |π |
matrix

N1/2(|d� − 1|)1/2(
M(θ�)−m(θ�)

)
[π ] = −(|d�| + 1

)−1
X[π ]. �

9. The joint distribution: Proof of Theorem 2.11. In this final section, we
extend the arguments of Sections 4–8 to cover the joint distribution of all outliers,
and hence prove Theorem 2.11.

We begin by introducing a coarser partition �, defined analogously to � from
Definition 2.10, except that π(�, s) is replaced with γ (�) from Definition 4.2.

DEFINITION 9.1. Let N and D be given, and fix K > 0. We introduce a par-
tition7 � ≡ �(N,K,D) on a subset of [[1, r]], defined as

� := {
γ (�) :� ∈ [[1, r]], |d�| ≥ 1 + ϕKN−1/3}.

We also use the notation � = {γ }γ∈� .

It is immediate from Definitions 2.10 and 9.1 that [�] ⊂ ⋃
γ∈� γ and that for

each π ∈� there is a (unique) γ ∈ � such that π ⊂ γ . In analogy to (2.20), we set
for definiteness

dγ := min{di : i ∈ γ }, θγ := θ(dγ ).

Note that for π ∈ γ we have

dπ

dγ
= 1 + o(1),

|dπ | − 1

|dγ | − 1
= 1 + o(1).(9.1)

The following result follows from Proposition 4.5 and (4.21).

7As in the footnote to Definition 2.10, it is easy to see that � is a partition.
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PROPOSITION 9.2. The following holds for large enough K . For any γ ∈ �

and i ∈ γ we have∣∣μα(i) −λi
(
θγ − (

d2
γ − 1

)(
M(θγ )+D−1)

[γ ]
)∣∣≤ ϕ−1N−1/2(|dγ |− 1

)1/2(9.2)

with high probability.

As in Section 8, we may assume without loss of generality that the partitions
� and � are independent of N . [Otherwise partition

N = ⋃
�,�

��,�(s),

��,�(s) := {
N ∈ N :�(N,K,D)= �,�(N,K, s,D)=�

}
.

Since the union is over a finite family of O(1) subsets of N, we may first fix
� and � and then restrict ourselves to N ∈��,�(s).] As in the proof of Proposi-
tion 8.1, we define for each π ∈ � the |π | × |π | matrix

Xπ := −N1/2(|dπ | − 1
)1/2(|dπ | + 1

)(
M(θπ)−m(θπ)

)
[π ].

The joint distribution of (Xπ)π∈� is described by the following result, which is
analogous to Proposition 7.2.

PROPOSITION 9.3. For large enough K , we have⊕
π∈�

Xπ d∼ ⊕
π∈�

(
ϒπ +�π ),(9.3)

where ϒπ and �π were defined in Section 2.4.

We postpone the proof of Proposition 9.3 to the next section, and finish the
proof of Theorem 2.11 first. In order to identify the location of ζπi , we invoke
Proposition 9.2 and make use of the freedom provided by Lemma 4.6 in order to
change the reference point θγ at will. Thus, Proposition 9.2 and Lemma 4.6 yield,
for any π ∈�, i ∈ π , and γ ∈ � containing π , that

ζπi =N1/2(|dπ | − 1
)−1/2

(μα(i) − θπ)
(9.4)

= −N1/2(|dπ | − 1
)1/2(|dπ | + 1

)
λi
((
M(θπ)+D−1)

[γ ]
)+O

(
ϕ−1)

with high probability, where we used (4.21), (9.1) and Lemma A.2.
Next, for π ∈ � let γ (π) denote the unique element of � that contains π . For

each π ∈�, we introduce the |γ (π)| × |γ (π)| matrices

X̃π := −N1/2(|dπ | − 1
)1/2(|dπ | + 1

)(
M(θπ)−m(θπ)

)
[γ (π)],

Ỹ π := −N1/2(|dπ | − 1
)1/2(|dπ | + 1

)(
D−1 − d−1

π

)
[γ (π)].
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Thus, (9.4) reads

ζπi = λi
(
X̃π + Ỹ π )+O

(
ϕ−1)

with high probability. By Proposition 7.2 and Remark 2.3, X̃π is tight (in N ). We
may now repeat verbatim the truncation and perturbation theory argument from
the proof of Proposition 8.1, following (8.3). The conclusion is that there exists an
s0 and an N0, both depending on ε and f|[�]|, such that for s ≥ s0 and N ≥N0 we
have ∣∣Ef|[�]|

((
ζπi
)
π∈�,i∈π

)−Ef|[�]|
((
λi
[(
X̃π + Ỹ π )

[π ]
])
π∈�,i∈π

)∣∣≤ ε

2
.

The claim now follows from Proposition 9.3 and the observation that (X̃π )[π ] =
Xπ . This concludes the proof of Theorem 2.11.

9.1. Proof of Proposition 9.3. What remains is to prove Proposition 9.3.
Clearly, it is a generalization of Proposition 7.2. The proof of Proposition 9.3 relies
on the same three-step strategy as that of Proposition 7.2: the Gaussian case, the
almost Gaussian case and the general case.

We begin with the Gaussian case (generalization of Section 5).

PROPOSITION 9.4. Suppose that H is a GOE/GUE matrix. Then for large
enough K we have⊕

π∈�
N1/2(|dπ | − 1

)1/2(
M(θπ)−m(θπ)

)
[π ]

d∼ ⊕
π∈�

1

|dπ |√|dπ | + 1
�π ;

here (�π)π∈� is a family of independent Gaussian matrices, where each �π is a
|π | × |π | matrix whose covariance is given by (5.1).

PROOF. The proof is a straightforward extension of that of Proposition 5.2,
and we only indicate the changes. For each argument θπ , we use Schur’s comple-
ment formula on the whole block [[1, r]]. Thus, instead of (5.8), we get

N1/2(|dπ | − 1
)1/2(

M(θπ)−m(θπ)
)

= d−2
π N1/2(|dπ | − 1

)1/2(−H[1···r] +W(θπ)
)+O

(
ϕCN−1/2(|dπ | − 1

)−3/2)
.

This gives ⊕
π∈�

N1/2(|dπ | − 1
)1/2(

M(θπ)−m(θπ)
)
[π ]

(9.5)
d∼ ⊕
π∈�

d−2
π N1/2(|dπ | − 1

)1/2(−H[1···r] +W(θπ)
)
[π ],
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which is the appropriate generalization of (5.9). By definition, H[1···r] is indepen-
dent of the family of matrices (W(θπ))π∈�, and the submatrices H[π ], π ∈�, are
obviously independent. We may now repeat verbatim the proof of (5.10) to get⊕

π∈�
N1/2(|dπ | − 1

)1/2
W[π ](θπ)

d∼ ⊕
π∈�

1√|dπ | + 1
�π.(9.6)

The claim now follows from (9.5). �

Next, we consider the almost Gaussian case (generalization of Section 6).

PROPOSITION 9.5. Let ρ > 0. Suppose that the Wigner matrix H satisfies

max
1≤l≤r max

{|Vil|, |Vjl|}≤ ϕ−ρ �⇒ hij is Gaussian.(9.7)

Define ϒ̃ to be the matrix ϒ without the shift arising from S(V ), that is, ϒ̃ =⊕
π∈� ϒ̃π with

ϒ̃π := (|dπ | + 1
)(|dπ | − 1

)1/2
(
N1/2V ∗

δ HVδ

d2
π

)
[π ]
.

Then for large enough K we have⊕
π∈�

Xπ d∼ ⊕
π∈�

(
ϒ̃π +�π ).(9.8)

PROOF. We start exactly as in the proof of Proposition 6.1. We repeat the
steps up to (6.8) verbatim on the family of r × r matrices (M(θπ)−m(θπ))π∈�,
whereby all of the reduction operations are performed simultaneously on each ma-
trix M(θπ)−m(θπ). Note that these matrices only differ in the argument θπ ; hence
all steps of the reduction (and in particular the quantities O , O1, U , W , W̃ , A, B ,
H0, H1, Z, etc.) are the same for all matrices M(θπ)−m(θπ). We take over the
notation from the proof of Proposition 6.1 without further comment. Thus, we are
led to the following generalization of (6.8):⊕

π∈�
Xπ d∼�1 +�2 +�3 +�′

4 +�′′
4,(9.9)

where

�1 := ⊕
π∈�

(−N1/2(|dπ | − 1
)1/2(|dπ | + 1

)
d−2
π

[
E∗

1
(
G2(θπ )−m(θπ)

)
E1
]
[π ]
)
,

�2 := ⊕
π∈�

(
N1/2(|dπ | − 1

)1/2(|dπ | + 1
)
d−2
π

[
U∗AU

]
[π ]
)
,

�3 := ⊕
π∈�

(
N1/2(|dπ | − 1

)1/2(|dπ | + 1
)
d−2
π

[
W̃ ∗H1W̃

]
[π ]
)
,
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�′
4 := ⊕

π∈�

(
N1/2(|dπ | − 1

)1/2(|dπ | + 1
)

× [
d−2
π

(
U∗B∗W +W ∗BU

)+ d−3
π IE

(
U∗B∗BU

)]
[π ]
)
,

�′′
4 := ⊕

π∈�

(
N1/2(|dπ | − 1

)1/2(|dπ | + 1
)
d−3
π

× [
Ũ∗ZW̃ + W̃ ∗Z∗Ũ + IE

(
W̃Z∗ZW̃

)]
[π ]
)
.

(We deviate somewhat from the convention of Section 6 in that, unlike there,
we include the normalization factor, which depends on π , in the definition of
the variables �.) By definition, the random matrices �1, �2, �3, �′

4 and �′′
4

are independent. They are all block diagonal, and we sometimes use the notation
�1 =⊕

π∈��π
1 , etc., for their blocks. What remains is to identify their individual

asymptotic distributions.
The matrix is �1 is easy: from Proposition 9.4 we immediately get

�1
d∼ ⊕
π∈�

√|dπ | + 1

|dπ |3 �π,

where (�π)π∈� is defined as in Proposition 9.4. The matrix �2 is dealt with in
the same way as in the proof of Proposition 6.1; we omit the details. By definition,
�3 is Gaussian with mean zero. A short computation yields the covariance

E
(
�π

3
)
ij

(
�π ′

3
)
kl =

( ∏
p=π,π ′

(|dp| − 1)1/2(|dp| + 1)

d2
p

)
Tij,kl

(
W ∗W,W ∗W

)
for π,π ′ ∈ �, i, j ∈ π and k, l ∈ π ′. We may therefore conclude that, similar to
(6.10) and (6.11), we have

(�1 +�2 +�3)
d∼ ⊕
π∈�

√|dπ | + 1

|dπ |3 �π + ⊕
π∈�

ϒ̃π + ⊕
π∈�

�π
3 ,(9.10)

where
⊕

π∈��π
3 is a block diagonal Gaussian matrix with mean zero and covari-

ance

E
(
�π

3
)
ij

(
�π ′

3
)
kl =

( ∏
p=π,π ′

(|dp| − 1)1/2(|dp| + 1)

d2
p

)

× (
2Tij,kl

(
U∗
δ Uδ, Û

∗
δ Ûδ

)+ Tij,kl
(
Û∗
δ Ûδ, Û

∗
δ Ûδ

)
(9.11)

+ Tij,kl
(
W ∗W,W ∗W

))
for π,π ′ ∈�, i, j ∈ π and k, l ∈ π ′.

Next, we deal with �′
4 and �′′

4. By the central limit theorem and the definition
of W , as in the proof of Proposition 6.1, both of these matrices are asymptoti-
cally Gaussian (with mean zero). The variances may be computed along the same
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lines as in the proof of Proposition 6.1. The result is, for π , π ′ ∈�, i, j ∈ π and
k, l ∈ π ′,

E
(
�′

4
)
ij

(
�′

4
)
kl

=
( ∏
p=π,π ′

(|dp| − 1)1/2(|dp| + 1)

d2
p

)

×
(

2Tij,kl
(
U∗U,W ∗W

)+ 1

dπdπ ′

(
Tij,kl

(
U∗U,U∗U

)+Rij,kl(U)
)

+ N−1/2

dπ ′

∑
a,b

(�Uai
�UakUalμ

(3)
ab Wbj + �Wiaμ

(3)
ab Ubj

�UbkUbl

)

+ N−1/2

dπ

∑
a,b

(�Uak
�UaiUajμ

(3)
ab Wbl + �Wkaμ

(3)
ab Ubl

�UbiUbj

))
as well as

E
(
�′′

4
)
ij

(
�′′

4
)
kl =

( ∏
p=π,π ′

(|dp| − 1)1/2(|dp| + 1)

d3
p

)
× (

2Tij,kl
(
U∗U,W ∗W

)+ Tij,kl
(
W ∗W,W ∗W

))
.

Putting everything together, we get⊕
π∈�

Xπ d∼ ⊕
π∈�

ϒ̃π + ⊕
π∈�

�π
4 ,(9.12)

where
⊕

π∈��π
4 is a Gaussian block diagonal matrix with mean zero that is inde-

pendent of H , and whose covariance is given by

E
(
�π

4
)
ij

(
�π ′

4
)
kl

= |dπ | + 1

d2
π

δππ ′�ij,kl + δππ ′Eij,kl

+
( ∏
p=π,π ′

(|dp| − 1)1/2(|dp| + 1)

d2
p

)

×
(
−Pij,kl

(
V ∗
δ Vδ

)+ 1

dπdπ ′
Rij,kl(V )

+ N−1/2

dπ ′

∑
a,b

(�Uai
�UakUalμ

(3)
ab Wbj + �Wiaμ

(3)
ab Ubj

�UbkUbl

)

+ N−1/2

dπ

∑
a,b

(�Uak
�UaiUajμ

(3)
ab Wbl + �Wkaμ

(3)
ab Ubl

�UbiUbj

))
.
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Similar to (6.14), we find using the definition of U and W that the two last lines
are asymptotic to Wij,kl (V )

dπ ′ + Wkl,ij (V )

dπ
. Thus, we get⊕

π∈�
�π

4
d∼ ⊕
π∈�

�π.(9.13)

This concludes the proof. �

In order to conclude the proof of Proposition 9.3, we finally consider the general
case (generalization of Section 7). As in Proposition 7.2, in the general case we get
a deterministic shift

⊕
π∈� Sπ , where

Sπ := (|dπ | + 1)(|dπ | − 1)1/2

d4
π

S[π ](V ).(9.14)

The proof is similar to those of Lemma 7.1 and Proposition 7.2. We take over
the setup and notation from Section 7 up to, but not including, (7.1). For each
π ∈�, we define the spectral parameter zπ := θπ + iN−4 and the |π |× |π | matrix

xπR :=N1/2(|dπ | − 1
)1/2(

V ∗R(zπ)V −m(zπ)
)
[π ],(9.15)

we well as the |[�]|×|[�]| block diagonal matrix xR :=⊕
π∈� xπR . The quantities

xS and xT are defined analogously with R replaced by S and T , respectively. The
following is the main comparison estimate, which generalizes Lemma 7.1.

LEMMA 9.6. Provided ρ is a large enough constant, the following holds. Let
f ∈ C3(C|[�]|×|[�]|) be bounded with bounded derivatives and q ≡ qN be an ar-
bitrary deterministic sequence of |[�]| × |[�]| matrices. Then

Ef (xT + q)= Ef (xR + q)+ ∑
i,j∈[�]

Z
(ab)
ij E

∂f

∂xij
(xR + q)

(9.16)
+Aab +O

(
ϕ−1Eab

)
,

Ef (xS + q)= Ef (xR + q)+Aab +O
(
ϕ−1Eab

)
,(9.17)

where Aab satisfies |Aab| ≤ ϕ−1, the error term Eab is defined in (7.4), and Z(ab)

is the |[�]| × |[�]| block diagonal matrix Z(ab) :=⊕
π∈�Z(ab),π with |π | × |π |

blocks

Z
(ab),π
ij := −N−1(|dπ | − 1

)1/2(
m(zπ)

4μ
(3)
ab

�VaiVbj +m(zπ)
4μ

(3)
ba

�VbiVaj )
(i, j ∈ π).

PROOF. The proof of Lemma 7.1 may be taken over almost verbatim, follow-
ing the proof of Lemma 7.13 of [21]. �

The comparison estimate from Lemma 9.6 yields the shift described by S . The
precise statement is given by the following proposition, which generalizes Propo-
sition 7.2.
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PROPOSITION 9.7. For large enough K , we have⊕
π∈�

Xπ d∼ ⊕
π∈�

(
ϒ̃π +�π + Sπ ),

where Sπ was defined in (9.14).

PROOF. As in the proof of Proposition 7.2, we follow the proof of Theo-
rem 2.14 in Section 7.4 of [21]. The inputs are Proposition 9.5 and Lemma 9.6.

�

Now Proposition 9.3 follows immediately from Proposition 9.7 using ϒπ =
ϒ̃π + Sπ . This concludes the proof of Proposition 9.3.

APPENDIX: NEAR-DEGENERATE PERTURBATIONS

In this appendix, we record some basic results on the perturbation of near-
degenerate spectra.

PROPOSITION A.1. Let A and B be nonzero Hermitian matrices on C
N . Let

n+m=N , so that CN = C
n ⊕C

m, and assume that A and B are of the form

A=
(
A11 0

0 A22

)
, B =

(
0 B12

B21 0

)
(in self-explanatory notation). Define the spectral gap

� := dist
(
σ(A11), σ (A22)

)
and assume that �≥ 3‖B‖.

Define the domain

D := {
μ ∈ C : dist

(
μ,σ(A11)

)
< 2‖B‖}.

Then A + B has exactly n eigenvalues μ1 ≤ · · · ≤ μn in D (counted with multi-
plicity), which satisfy∣∣μi − λi(A11)

∣∣≤ ‖B‖2

�− 2‖B‖ (i = 1, . . . , n).

PROOF. The eigenvalue–eigenvector equation reads (A+B)x = μx. Writing
x = (x1,x2) ∈C

n ⊕C
m leads to the system

A11x1 +B12x2 = μx1,
(A.1)

A22x2 +B21x1 = μx2.

By assumption, for μ ∈ D we have

dist
(
μ,σ(A22)

)≥�− 2‖B‖.(A.2)
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Since �− 2‖B‖ ≥ ‖B‖> 0, we find that (A.1) is equivalent to the system

x2 = −(A22 −μ)−1B21x1, A11x1 −μx1 −B12(A22 −μ)−1B21x1 = 0.

Replacing B with tB for t ∈ [0,1], we conclude that for μ ∈ D we have the equiv-
alence

μ ∈ σ(A+ tB) ⇐⇒ ft (μ)= 0,

where

ft (μ) := det
(
A11 −μ− t2B12(A22 −μ)−1B21

)
.

Moreover, from Lemma A.2 below we find that D contains exactly n eigenvalues
of A + tB , for all t ∈ [0,1]. It is well known that the eigenvalues μi(t) of A +
tB are continuous in t . We now claim that each such continuous μi(t) is in fact
Lipschitz continuous with Lipschitz constant

L := ‖B‖2

�− 2‖B‖ .
Assuming this is proved, the claim immediately follows from |μi −λi | = |μi(1)−
μi(0)| ≤ L.

In order to prove the Lipschitz continuity of μi(t), note that μi(t) is an eigen-
value of the matrix

Xi(t) :=A11 − t2B12
(
A22 −μi(t)

)−1
B21.

Then the Lipschitz continuity of μi(t) follows readily from Lemma A.2 below and
the estimate ∥∥B12

(
A22 −μi(t)

)−1
B21

∥∥≤ L

as follows from (A.2), the fact that μi(t) ∈ D for all t ∈ [0,1], and the fact that
A22 is Hermitian. �

LEMMA A.2. Let A and B be square matrices, with A Hermitian. Then the
spectrum of A+ B is contained in the closed ‖B‖-neighborhood of the spectrum
of A.

PROOF. Using the identity (A+ B − z)−1 = (A− z)−1(1 + B(A− z)−1)−1

we conclude that if dist(z, σ (A)) > ‖B‖ then z /∈ σ(A+B). �
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[16] ERDŐS, L., SCHLEIN, B. and YAU, H.-T. (2011). Universality of random matrices and local
relaxation flow. Invent. Math. 185 75–119. MR2810797
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