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Abstract. In a panel count data setup, repeated counts of an individual are
assumed to be influenced by the individual’s random effect. Consequently,
conditional on the random effect, the repeated responses of the individual are
assumed to be serially correlated. Under the assumption that the random ef-
fects of the individuals follow a normal distribution, Jowaheer and Sutradhar
(Statist. Probab. Letters 79 (2009) 1928–1934) have demonstrated that the
generalized quasi-likelihood (GQL) estimation approach produces more ef-
ficient estimates than the so-called generalized method of moments (GMM)
approach for both regression effects and the variance component of the nor-
mal random effects. For the cases where the distribution of the random ef-
fects is unknown, there exist two estimation approaches, namely the condi-
tional maximum likelihood (CML) and instrumental variables based GMM
(IVGMM) approaches, for the estimation of the regression effects. The pur-
pose of this paper is to examine the asymptotic efficiency performances of
the CML and IVGMM approaches as compared to the GQL approach for the
regression estimation. When the covariates are stationary, that is, time inde-
pendent, it is, however, known that the CML and IVGMM approaches are
useless for the regression estimation, whereas the GQL approach does not
encounter any such limitations. For the general case, that is, when the covari-
ates are time dependent, the IVGMM approach appears to be computationally
expensive and hence it is not included in efficiency comparison. Between the
CML and GQL approaches, it is found through exact asymptotic variance
calculations that the GQL approach is asymptotically more efficient than the
CML approach in estimating the regression effects. This makes the GQL as
a unified efficient approach irrespective of the cases whether the panel count
data are stationary or nonstationary.

1 Introduction

Let yit denote the count response for an individual i (i = 1, . . . , I ) at time t

(t = 1, . . . , T ). Also let xit be the p-dimensional vector of fixed covariates corre-
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sponding to yit , and β denote the p-dimensional vector of regression parameters.
It is also likely that a random effect, say γi for the ith individual, will influence the
expectation of yit , for all t = 1, . . . , T . Furthermore, conditional on this individual
random effect γi , any two responses of the ith individual, say yiu and yit for u < t ,
will be serially correlated.

Suppose that yi1 conditional on γi has the Poisson density, that is,

fi1(yi1|γi) = exp(−μ∗
i1)μ

∗yi1
i1

yi1! , (1.1)

where μ∗
i1 = exp(x′

i1β +γi). Next suppose that for t = 2, . . . , T , yit and yi,t−1 has
the dynamic relationship

[yit |γi] = ρ ∗ [yi,t−1|γi] + [dit |γi] (1.2)

(Sutradhar (2011, Section 8.1), Sutradhar and Bari (2007)), where ρ ∗ yi,t−1 =∑yi,t−1
s=1 bs(ρ) with Pr[bs(ρ) = 1] = ρ and Pr[bs(ρ) = 0] = 1 − ρ. In (1.1),

[yi1|γi] ∼ Poi(μ∗
i1), and in (1.2), for t = 2, . . . , T , [dit |γi] ∼ Poi(μ∗

it − ρμ∗
i,t−1),

with μ∗
it = exp(x′

itβ + γi), for t = 1, . . . , T . It then follows that the conditional
mean and variance of yit conditional on the random effect γi are given by

E[yit |γi] = var[Yit |γi] = μ∗
it = exp

(
x′
itβ + γi

)
, (1.3)

and for u < t , the lag (t − u) correlation conditional on γi has the formula

corr[Yiu, Yit |γi] = ρt−u

√
μ∗

iu

μ∗
it

, (1.4)

which is free from γi . Further suppose that γi
i.i.d.∼ N(0, σ 2

γ ) (Breslow and Clay-
ton (1993), Jiang (1998), Sutradhar (2004)). Since by (1.2), yit conditional on γi

follows the Poisson distribution with parameter μ∗
it given in (1.3), yit then uncon-

ditionally has the mean and the variance given by

μit

(
β,σ 2

γ

)= E[Yit ] = Eγi
E[Yit |γi] = Eγi

[
μ∗

it

]= exp
[
x′
itβ + σ 2

γ /2
]
, (1.5)

and

σitt

(
β,σ 2

γ

)= var[Yit ] = E
[
Y 2

it

]− [E(Yit )
]2 = Eγi

E
[
Y 2

it |γi

]− μ2
it

(1.6)
= Eγi

[
μ∗

it + μ∗2
it

]− μ2
it = μit + [exp

(
σ 2

γ

)− 1
]
μ2

it ,

respectively, and the lag t − u unconditional correlation between yiu and yit has
the formula

corr(Yiu, Yit ) = ρt−u(1/μit ) + [exp(σ 2
γ ) − 1]

[{[exp(σ 2
γ ) − 1] + 1/μiu}{[exp(σ 2

γ ) − 1] + 1/μit }]1/2 . (1.7)

In (1.6) and (1.7), μit is used for μit (β, σ 2
γ ), without any loss of generality.
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Note that the mean (1.5), variance (1.6), and correlations of the responses (1.7)
are functions of both β and σ 2

γ . Consequently, to understand the influence of the
covariates xit on the mean and the variance of the data, it is not enough to estimate
β , rather, both β and σ 2

γ have to be estimated. Some researchers have, however,
gone ahead with the computation of β only to understand the effect of xit on the
count response yit . They have exploited certain estimation techniques for β which
are unaffected by γi , and these techniques are suitable when one cannot assume
any distributions for the random effects γi . For example, we refer to the conditional
maximum likelihood (CML) approach discussed by Wooldridge (1999, eqn. (2.6),
p. 79), and the so-called instrumental variables based GMM (IVGMM) approach
considered by Montalvao (1997, eqn. (32), p. 85). Further discussions on these
approaches are available in Sutradhar (2011, Sections 8.2.1.3 and 8.2.1.4). For
convenience of computing the asymptotic variances of these estimators for β , we
reproduce these two approaches in brief in the following two sections.

1.1 CML approach for β estimation

Note that when the correlations between any two responses of an individual are
ignored, that is when ρ = 0 is used in model (1.2), it follows that yit conditional
on γi has the marginal Poisson distribution given by

fit (yit |γi) = exp(−μ∗
it )μ

∗yit

it

yit ! , (1.8)

with μ∗
it = exp(x′

itβ + γi). In the CML approach, conditional on total count∑T
t=1 yit = ni , one first writes a conditional likelihood for the repeated responses

under the ith firm as

Li(β|ni) = fi(yi1, . . . , yiT |ni)
(1.9)

= ni !
yi1! · · ·yi,T −1!(ni −∑T −1

t=1 yit )!
p

yi1
i1 · · ·pyi,T −1

i,T −1p
ni−∑T −1

t=1 yit

iT ,

where pit = μ∗
it /
∑T

t=1 μ∗
it . Note that because

pit = exp(x′
itβ + γi)

exp(γi)
∑T

t=1 exp(x′
itβ)

= exp(x′
itβ)∑T

t=1 exp(x′
itβ)

(1.10)

is free from γi , the conditional likelihood in (1.9) is also free from γi . Conse-
quently, one may estimate β (Montalvo (1997, Section 1), Wooldridge (1999, eqn.
(2.6), p. 79)) by maximizing the log-likelihood

L∗(β) = log
I∏

i=1

Li(β|ni) = k0 +
I∑

i=1

T∑
t=1

yit log(pit ), (1.11)
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where k0 is a constant free from β , and yiT = ni −∑T −1
t=1 yit . Further note that the

maximization of the log-likelihood function (1.11) for β is equivalent to solve the
likelihood estimating equation given by

∂L∗(β)

∂β
=

I∑
i=1

T∑
t=1

yit

[
xit −

T∑
t=1

pitxit

]
= 0. (1.12)

The CML estimate of β obtained from (1.12) is expected to be consistent but
inefficient. The inefficiency arises mainly because of conditioning on the cluster
total as well as for ignoring the serial correlations. More specially, when the data
are serially correlated, the independence assumption based conditional likelihood
(1.11) is no longer a valid likelihood. Hence, it is bound to produce inefficient
estimate.

1.2 Instrumental variables based GMM estimation approach

As opposed to the conditioning on the total count as in the last section, Montalvo
(1997, eqn. 32, p. 85) considered the lag 1 based differences, namely

ψit (β) = yit − yi,t−1 exp
[
(xit − xi,t−1)

′β
]

for t = 2, . . . , T

which is unbiased for zero irrespective of the distribution of γi . Next, by exploiting
the (T − 1) × 1 vector

ψi(β) = [
ψi2(β), . . . ,ψit (β), . . . ,ψiT (β)

]′
,

Montalvo (1997, eqn. 36) obtained a GMM estimate for β by minimizing the
quadratic distance function

D =
[

I∑
i=1

Z′
iψi(β)

]′
W−1

[
I∑

i=1

Z′
iψi(β)

]
, (1.13)

where Zi is the (T − 1) × p{T (T +1)
2 − 1} instrumental matrix given by

Zi =

⎡
⎢⎢⎢⎣

zi2 0 0 · · · 0
0 zi3 0 · · · 0
...

...
...

...

0 0 0 · · · ziT

⎤
⎥⎥⎥⎦ , (1.14)

with zit = [x′
it , x

′
i(t−1), . . . , x

′
i1], and where

W = 1

I

I∑
i=1

Z′
iψi(β)ψ ′

i (β)Zi.

Note that obtaining β by minimizing the distance function D in (1.13) is equiv-
alent to solve the estimating equation[

I∑
i=1

∂ψ ′
i

∂β
Zi

]
W−1

[
I∑

i=1

Z′
iψi(β)

]
= 0 (1.15)



Efficient estimation for panel count data 245

for β , where
∂ψ ′

i

∂β
is obtained by using the formula for the general element

∂ψit

∂β
= −yi,t−1[xit − xi,t−1] exp

[
(xit − xi,t−1)

′β
]
.

But, the use of a sandwich type covariance matrix estimate Ŵ (β̂r ) in the distance
function D in (1.13) may cause bias and hence inconsistency, because of the re-
peated use of iterative estimated values for the parameter of interest.

In the next section, we explain the GQL approach in brief for the estimation of
β , for known σ 2

γ and ρ. This we do for the purpose of comparing the asymptotic
variances of the estimators of β only.

1.3 GQL estimation of β

Let yi = (yi1, . . . , yit , . . . , yiT )′ be the T × 1 response vector, and μi = (μi1, . . . ,

μit , . . . ,μiT )′ is the mean and �i(ρ,σ 2
γ ) = (σiut ) is the covariance matrix of yi .

Recall that the formulas for μit and σitt are given in (1.5) and (1.6), respectively.
Also it follows by (1.7) that σiut has the formula

σiut = corr(Yiu, Yit )[σiuuσitt ]1/2.

Note that for known σ 2
γ and ρ, one may obtain the GQL estimate of β by solving

the GQL estimating equation

I∑
i=1

∂μ′
i

∂β
�−1

i

(
ρ,σ 2)(yi − μi) = 0 (1.16)

(Sutradhar (2003)).
Note that the GQL estimation for β by solving (1.16) requires the knowledge

of the distribution of the random effects γi , whereas the CML estimation by (1.12)
and the IVGMM estimation by solving (1.15) do not require this distribution be-
cause these later equations are technically constructed free of γi’s. This however
does not imply that the properties such as the variances of the CML and IVGMM
estimators can be unaffected by the distribution of the random effects. This is ev-
ident from the formulas for the variances of the estimators those we derive in the
next section. A further empirical study by considering nonnormal random effects
and examining their effects on the GQL estimation and on the variances of all esti-
mators would have been more revealing, but this type of robust analysis is beyond
the scope of the present paper.

2 Asymptotic variances of the regression estimators

Recall from Section 1.1 that for known σ 2
γ and ρ, the CML estimate of β is ob-

tained by solving the likelihood estimating equation (1.12). Let β̂CML denote this
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estimate, which we obtain by using the iterative equation

β̂CML(r + 1) = β̂CML(r) −
[{

∂2L∗(β)

∂β ∂β ′
}−1 ∂L∗(β)

∂β

]∣∣∣∣
β=β̂CML(r)

= β̂CML(r)
(2.1)

+
[{

I∑
i=1

(
T∑

t=1

yit

)(
T∑

t=1

pitxitx
′
it −

T∑
t=1

pitxit

T∑
t=1

pitx
′
it

)}−1

×
I∑

i=1

T∑
t=1

yit

{
xit −

T∑
t=1

pitxit

}]∣∣∣∣∣
β=β̂ML(r)

,

where β̂CML(r) is the value of β at r th iteration. It then follows from Theorem 3.4
of Newey and McFadden (1993), for example, that with probability approaching
1, the solution β̂CML obtained from (2.1) would be unique satisfying

√
I (β̂CML − β)

= E

[
I−1

{
I∑

i=1

(
T∑

t=1

yit

)(
T∑

t=1

pitxitx
′
it −

T∑
t=1

pitxit

T∑
t=1

pitx
′
it

)}]−1

(2.2)

× I−1/2

[
I∑

i=1

T∑
t=1

yit

{
xit −

T∑
t=1

pitxit

}]
+ op(1),

implying the consistency of β̂CML for β . Next, by using the Lindeberg–Feller cen-
tral limit theorem (see Amemiya (1985, Theorem 3.3.6, p. 92)), for example, it
follows from (2.2) that asymptotically (as I → ∞)

√
I (β̂CML − β) ∼ Np(0, IVCML), (2.3)

where

VCML =
[

I∑
i=1

X∗′
i AiX

∗
i

]−1( I∑
i=1

X∗′
i �iX

∗
i

)[
I∑

i=1

X∗′
i AiX

∗
i

]−1

, (2.4)

where

X∗′
i = [

x∗
i1 . . . x∗

it . . . x
∗
iT

]
, Ai = diag[μi1, . . . ,μiT ] and �i = (σiut ),

with x∗
it = [xit −∑T

t=1 pitxit ],pit = μit∑T
t=1 μit

, where μit = exp(x′
itβ+ 1

2σ 2
γ ), σitt =

μit + [exp(σ 2
γ ) − 1]μ2

it and σiut = ρt−uμiu + [exp(σ 2
γ ) − 1]μiuμit for u < t .

Similarly, for known σ 2
γ and ρ, the IVGMM estimate of β , say β̂IVGMM, is

obtained by solving the estimating equation (1.15). This may be achieved by using
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the iterative equation

β̂IVGMM(r + 1)

= β̂IVGMM(r) −
[[{

I∑
i=1

∂ψ ′
i

∂β
Zi

}
W−1

{
I∑

i=1

Z′
i

∂ψi(β)

∂β ′

}]−1

(2.5)

×
[

I∑
i=1

∂ψ ′
i

∂β
Zi

]
W−1

[
I∑

i=1

Z′
iψi(β)

]]∣∣∣∣∣
β=β̂IVGMM(r)

,

where β̂IVGMM(r) is the value of β at r th iteration. By similar calculations as in
(2.1)–(2.3), it follows that

√
I (β̂IVGMM − β) ∼ Np(0, IVIVGMM), (2.6)

where

VIVGMM =
[{

I∑
i=1

∂ψ ′
i

∂β
Zi

}
W−1

{
I∑

i=1

Z′
i

∂ψi(β)

∂β ′

}]−1

×
[

I∑
i=1

∂ψ ′
i

∂β
Zi

]
W−1

[
I∑

i=1

Z′
i cov

(
ψi(β)

)
Zi

]

(2.7)

× W−1

[
I∑

i=1

Z′
i

∂ψi(β)

∂β ′

]

×
[{

I∑
i=1

∂ψ ′
i

∂β
Zi

}
W−1

{
I∑

i=1

Z′
i

∂ψi(β)

∂β ′

}]−1

.

Next, for known values of σ 2
γ and ρ, we solve the GQL estimating equation

(1.16) for the regression effects β . Let β̂GQL be the solution of (1.16), which may
be obtained by using the iterative equation

β̂GQL(r + 1) = β̂GQL(r) +
[{

I∑
i=1

∂μ′
i

∂β
�−1

i

(
ρ,σ 2

γ

)∂μi

∂β ′

}−1

(2.8)

×
{

I∑
i=1

∂μ′
i

∂β
�−1

i

(
ρ,σ 2

γ

)
(yi − μi)

}]∣∣∣∣∣
β=β̂GQL(r)

,

where β̂GQL(r) is the value of β at r th iteration. Once again following (2.1)–(2.3),
one obtains by (2.8) that

√
I (β̂GQL − β) ∼ Np(0, IVGQL), (2.9)
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where

VGQL =
{

I∑
i=1

∂μ′
i

∂β
�−1

i

(
ρ,σ 2

γ

)∂μi

∂β ′

}−1

. (2.10)

Note that the computation of β̂IVGMM by (2.5) (see also (1.15)) is much more
involved than the computation of β̂CML by (2.1) (see also (1.12)). Furthermore, the
IVGMM estimate obtained from (1.15) will in fact produce less efficient estimate
than the CML approach. This is because, the IVGMM estimating equation (1.15)
uses only lag 1 pair-wise responses, whereas the CML approach uses all possible
responses in the cluster to form the likelihood function (1.9). Consequently, we
will not include the IVGMM approach for empirical asymptotic variance compar-
ison in the next section. More specifically, in the next section, we compare the
asymptotic variances for the CML and GQL estimators of β empirically. This we
do under two scenarios, first, for the stationary case when covariates are time in-
dependent, and then for the general case under the nonstationary model.

3 Exact asymptotic variance computation

It is of interest here to compare the asymptotic variances of the estimators for the
regression effects β under different methods. This we do for known values of σ 2

γ

and ρ. Note that even though the estimating equations for β under any methods
involve the estimates of other parameters, namely σ̂ 2

γ and ρ̂, the asymptotic vari-
ances of the estimators such as the formulas in (2.4), (2.6) and (2.10), for CML,
IVGMM, and GQL estimators, respectively, are obtained for known σ 2

γ and ρ.
This is quite reasonable because the nuisance parameters estimates are supposed
to be consistent and the variances of the main regression estimators are computed
by using the converged (in probability) values of the estimators σ̂ 2

γ and ρ̂. We also
remark that unlike in some linear model studies, the computation for the exact vari-
ance formulas for regression estimators using the nuisance parameter estimates in
their equations, would be extremely complicated, which is avoided by using the
true values of the nuisance parameters in the equations while computing the vari-
ances. Further remark that the variances may however be consistently computed
by using back the consistent estimates of the nuisance parameters.

3.1 Stationary case

In some situations in practice it may happen that the covariates of an individual
are time independent, that is, xit = x̃i for all t = 1, . . . , T . There appears to be a
serious problem with the estimation of the regression effects β by the CML and
IVGMM approaches, in such a stationary situation. In fact, in this special case, β

is not estimable by these two approaches. This is because, if xit = x̃i , then

pit = exp(x′
itβ)∑T

t=1 exp(x′
itβ)

= exp(x̃′
iβ)∑T

t=1 exp(x̃′
iβ)

= 1

T
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becomes free from β , and consequently, the CML estimating function

I∑
i=1

T∑
t=1

yit

[
xit −

T∑
t=1

pitxit

]

in CML estimating equation (1.12) becomes free from β . Thus, the estimation
breaks down and no questions arises to compute the asymptotic variance of the
estimator by using (2.1). The IVGMM approach also encounters the same problem
for β estimation. This is because, in this special stationary case,

ψit (β) = yit − yi,t−1 exp
[
(xit − xi,t−1)

′β
]= yit − yi,t−1

becomes free from β . Thus, the IVGMM estimating equation (2.5) is no longer a
function of β , and hence β is not estimable.

As opposed to the CML and IVGMM approaches, the GQL approach does not
encounter any problems in β estimation. Note that for

μ̃i = exp
(
x̃′
iβ + 1

2
σ 2

γ

)
and ai = (

exp
(
σ 2

γ

)− 1
)
μ̃2

i ,

the covariance matrix �i (see (1.6) and (1.7)) under the stationarity assumption
may be written as

�i = μ̃i

[
C + ai

μ̃i

1T 1′
T

]
, (3.1)

where

C =

⎡
⎢⎢⎢⎣

1 ρ ρ2 · · · ρT −2 ρT −1

ρ 1 ρ · · · ρT −3 ρT −2

...
...

...
...

...

ρT −1 ρT −2 ρT −3 · · · ρ 1

⎤
⎥⎥⎥⎦ . (3.2)

One may then simplify the GQL estimating equation for β (1.16) as

I∑
i=1

μ̃−1
i bidi(y)x̃i = 0, (3.3)

where

bi = 1

1 + 1′
T C−1

i 1T (ai/μ̃i)
, with

(3.4)
di(y) = 1′

T C−1(yi − μ̃i1T ).

The asymptotic variance of β̂GQL obtained from (2.10) has the formula

cov[β̂GQL] =
[

I∑
i=1

siμ̃
2
i x̃i x̃

′
i

]−1

, (3.5)
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where

si = 1′
T �−1

i 1T =
(

bi

μ̃i

)
1′
T C−11T ,

with

C−1 = 1

(1 − ρ2)

⎡
⎢⎢⎢⎢⎢⎣

1 −ρ 0 · · · 0 0
−ρ 1 + ρ2 −ρ · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 + ρ2 −ρ

0 0 0 · · · −ρ 1

⎤
⎥⎥⎥⎥⎥⎦ . (3.6)

In a further special case with p = 1, for example, the variance of β̂GQL has a
simple formula

cov[β̂GQL] =
[

I∑
i=1

siμ̃
2
i x̃

2
i

]−1

. (3.7)

In order to have a feel how this variance of the GQL estimator of β may change
when longitudinal correlation (ρ) as well as variance of the random effects σ 2

γ

vary, we now compute the exact asymptotic variance by using the formula (3.7) for
I = 200. We use T = 3, and β = 1.0. Next, we consider x̃i = 1 for i = 1, . . . , I/2,
and x̃i = −1 for i = I/2 + 1, . . . ,200. The asymptotic variances were found to be

ρ σ 2
γ values Corresponding asymptotic variances

0.0 0.0, 0.5, 1.0, 2.0 4.59×10−4, 2.79×10−4, 1.69×10−4, 6.21 ×10−5

0.3 0.0, 0.5, 1.0, 2.0 6.64×10−4, 4.02×10−4, 2.44×10−4, 8.99 ×10−5

0.5 0.0, 0.5, 1.0, 2.0 8.27×10−4, 5.02×10−4, 3.04×10−4, 1.12 ×10−4

0.8 0.0, 0.5, 1.0, 2.0 1.13×10−3, 6.84×10−4, 4.15×10−4, 1.53 ×10−4

The asymptotic variances of the GQL estimator of β appear to decrease as σ 2
γ

increases but they increase as the longitudinal correlation ρ gets larger. Thus, un-
der stationary correlation model, that is when the covariates of an individual are
time independent, the CML and the IVGMM approaches break down completely
for the estimation of the regression effects, whereas the GQL approach produces
consistent estimates with very small asymptotic variances.

3.2 Nonstationary case

Since the IVGMM approach appears to be much more complicated computation-
ally than the CML approach, in this section, we make a comparison between the
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exact asymptotic variances of the GQL and CML estimators of β for a special-
ized time dependent covariates design with T = 3. In the next section, we dis-
cuss a simulation study based finite sample efficiency comparison among the three
competitive approaches including the IVGMM approach. For the exact asymptotic
variance computation, we consider I = 300 individuals with same time dependent
covariates, for example. Suppose that

xi1 = −1.0, xi2 = 0 and xi3 = 1.0

for all i = 1, . . . ,300. Further, let the true values of the parameters are:

β = 1.0, σ 2
γ = 2.0 and ρ = 0.0,0.50 and 0.8.

These design covariates and parameter values yield

μi1 = 1.0, μi2 = e1 and μi3 = e2;
and

�i =
⎡
⎣ 1 ρ ρ2

ρ e1 ρe1

ρ2 ρe1 e2

⎤
⎦+ (e2 − 1

)⎡⎣ 1 e1 e2

e1 e2 e3

e2 e3 e4

⎤
⎦ (3.8)

for all i = 1, . . . ,300. We will use �i = � for all i = 1, . . . ,300.
Next, since

∂μ′
i

∂β
= [μi1xi1,μi2xi2,μi3xi3]

= [−1.0,0, e2]
for all i = 1, . . . ,300, by (2.10), we compute the asymptotic variance of β̂GQL by
using

var(β̂GQL) = 1

300

⎡
⎣(−1.0,0, e2)�−1

⎛
⎝−1.0

0
e2

⎞
⎠
⎤
⎦

−1

, (3.9)

with � matrix as in (3.8).
To compute the asymptotic variance of β̂CML by (2.4), we note that

pi1 = e−1

1 + e1 + e−1 , pi2 = 1

1 + e1 + e−1 , pi3 = e1

1 + e1 + e−1 ,

yielding

T∑
t=1

pitxit = e1 − e−1

1 + e1 + e−1
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for all i = 1, . . . ,300. Further, they yield

x∗
it = E[ZiZj ] = xit −

T∑
t=1

pitxit =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1 + 2e1

1 + e1 + e−1 for t = 1,

e−1 − e1

1 + e1 + e−1 for t = 2,

1 + 2e−1

1 + e1 + e−1 for t = 3,

(3.10)

and
3∑

t=1

μitx
∗2
it = 6e2 + 6e1 + e−1 + 5

[1 + e1 + e−1]2 (3.11)

for all i = 1, . . . ,300. We now follow (2.4) and compute the asymptotic variance
of β̂CML by using

var(β̂CML) =
[300∑

i=1

3∑
t=1

μitx
∗2
it

]−2 300∑
i=1

⎡
⎣(x∗

i1, x
∗
i2, x

∗
i3
)
�

⎛
⎝x∗

i1
x∗
i2

x∗
i3

⎞
⎠
⎤
⎦

(3.12)

= 1

300

(1 + e1 + e−1)4

[6e2 + 6e1 + e−1 + 5]2

⎡
⎣(x∗·1, x∗·2, x∗·3

)
�

⎛
⎝x∗·1

x∗·2
x∗·3

⎞
⎠
⎤
⎦ ,

where x∗·t ≡ x∗
it for t = 1, . . . ,3, and all i = 1, . . . ,300.

The formulas for the asymptotic variances in (3.9) and (3.12) are computation-
ally straightforward. Under the special case with I = 300,p = 1, T = 3, β = 1.0
and σ 2

γ = 2.0, we obtain the exact asymptotic variances as

ρ var(β̂CML) var(β̂GQL)

0.0 1.01×10−3 6.99 ×10−4

0.5 9.85×10−4 6.78 ×10−4

0.8 9.05×10−4 6.15 ×10−4

These results show that the asymptotic variance of the GQL estimator of β is
always smaller than that of the CML estimator, irrespective of the value for the
longitudinal correlation parameter ρ.

For a finite sample based relative performances of the GQL, CML, as well as
IVGMM estimators of the regression effect β , we, for example, refer to the simula-
tion study reported by Sutradhar (2011, Table 8.1, p. 331). This finite sample study
also shows the efficiency gain of the GQL approach over the CML approach. More
specifically, as opposed to I = 300 considered above under an asymptotic study,
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we now consider I = 100 individuals each with p = 2 time dependent covariates
over a period of T = 4 time points. These covariates are given by

xit1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.0 for i = 1, . . . , I/2; t = 1,2,
1.0 for i = 1, . . . , I/2; t = 3, T ,
1.0 for i = I/2 + 1, . . . , I ; t = 1,2,
1.5 for i = I/2 + 1, . . . , I ; t = 3, T

and

xit2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05 + 0.10(t − 1) for i = 1, . . . , I/4; t = 1, . . . ,T,
t

4
for i = I/4 + 1, . . . , I/2; t = 1, . . . , T ,

0.0 for i = I/2 + 1, . . . ,3I/4; t = 1,2,
1.0 for i = I/2 + 1, . . . ,3I/4; t = 3, T ,
−1.0 for i = 3I/4 + 1, . . . , I ; t = 1,2,
1.0 for i = 3I/4 + 1, . . . , I ; t = 3, T .

Further consider γi
i.i.d.∼ N(0, σ 2

γ = 1.0), two regression parameters as β1 = β2 =
0.0, and the longitudinal correlation index parameter ρ = 0.5. By using the above
design covariates and design parameters, the longitudinal count data {yit , i =
1, . . . , I ; t = 1, . . . , T } are generated following the dynamic model (1.1)–(1.2).
Next by applying the data {yit } and the covariates xit1, xit2, the CML, IVGMM,
and GQL estimates were obtained by using the iterative equations (2.1), (2.5) and
(2.8), respectively. The data generation and hence estimates were obtained 500
times. For known σ 2

γ = 1.0 and ρ = 0.5, it was reported in Sutradhar (2011)
that the simulated standard errors (SSEs) of these estimates for β1 were found
to be 0.109,1.163 and 0.066, respectively. Similarly, the simulated standard er-
rors (SSEs) of the CML, IVGMM and GQL estimates for β2 were found to be
0.138,1.434 and 0.127, respectively. When the SSEs of the CML and GQL es-
timates are compared it is clear that the GQL approach produces regression esti-
mates with smaller standard errors as compared to the CML approach. Thus, this
finite sample based results are in agreement with the relative asymptotic efficien-
cies discussed above.
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