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IS THE LOCATION OF THE SUPREMUM OF A STATIONARY
PROCESS NEARLY UNIFORMLY DISTRIBUTED?1

BY GENNADY SAMORODNITSKY AND YI SHEN

Cornell University

It is, perhaps, surprising that the location of the unique supremum of a
stationary process on an interval can fail to be uniformly distributed over that
interval. We show that this distribution is absolutely continuous in the interior
of the interval and describe very specific conditions the density has to satisfy.
We establish universal upper bounds on the density and demonstrate their
optimality.

1. Introduction. The extremes of stationary processes, especially of Gaus-
sian processes, have attracted significant interest for a long time. Many results are
described in the books Adler and Taylor (2007) and Azaïs and Wschebor (2009),
with shorter versions in Adler (1990) and Azaïs and Wschebor (2002). Roughly
speaking, these results can be categorized as follows: the exact distributions of
the suprema have been calculated for several particular processes; bounds on the
supremum distribution have been obtained for a large number of processes; the
asymptotic behavior of the level crossing probability has been studied for a larger
number of processes. Almost without exception, however, these results deal with
the value of the supremum, while very little is known about the random location
of the supremum.

The present work arises from an obvious attempt to understand the effect of
stationarity of the process on the distribution of the location of the supremum.
Therefore in this paper, we look at stationary stochastic processes in continuous,
one-dimensional time and we will consider the location of its global supremum
over a compact interval. It turns out that answering even this, apparently simple
question leads to unexpected insights.

We now discuss our setup more formally. Let X = (X(t), t ∈ R) be a stationary
process. If the sample paths of the process are upper semi-continuous, then the
process is bounded from above on any compact interval [0, T ], and its supremum
over that interval is attained. We are interested in the location of that supremum
within the interval [0, T ].

It is, of course, entirely possible that the supremum of the process in the interval
[0, T ] is not unique (i.e., that it is achieved at more than one point). In that case

Received October 2011; revised June 2012.
1Supported in part by the ARO Grant W911NF-07-1-0078, NSF Grant DMS-10-05903 and NSA

Grant H98230-11-1-0154 at Cornell University.
MSC2010 subject classifications. 60G10, 60G17.
Key words and phrases. Stationary process, global supremum location, bounded variation.

3494

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/12-AOP787
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


LOCATION OF THE SUPREMUM 3495

one could be more specific and take, for example, the left-most point in which
the largest value over the interval is achieved, as the location of the supremum.
In this paper we will sometimes deal with the situation in which, on an event of
probability 1, the supremum is achieved at a single point. In either case it is easy
to check that the location of the supremum is a well defined random variable.

Will the stationarity of the process guarantee a uniform distribution of the lo-
cation of the supremum over the interval? The answer is negative. The examples
in Section 9.4 of Leadbetter, Lindgren and Rootzén (1983) show that even in the
case of Gaussian processes with a uniquely attained supremum (thus eliminating
a possible bias resulting from taking the leftmost supremum location), the supre-
mum can still be located, with a positive probability, at one of the endpoints of the
interval and, furthermore, the remaining mass in the interior of the interval does
not have to be uniformly distributed there.

It is, of course, the endpoints of the interval that are responsible for the lack of
uniformity. In a sense, the points near the ends of the interval have “fewer local
competitors” for being the supremum than the points further from the endpoints
do. But exactly how far from having the uniform distribution can the location of
the supremum be? In this paper we give a very detailed answer to this question
by showing that this distribution is absolutely continuous in the interior of the
interval and describing very specific conditions its density must satisfy. This is
done in Section 2. Our results turn out to be quite complete. In fact, we show in a
companion paper, Samorodnitsky and Shen (2012), that for a very broad class of
stationary processes with a uniquely achieved supremum, our description actually
gives all possible distributions of its location. In the present paper we start with
treating a general upper semi-continuous stationary process and (with one excep-
tion) allowing the process to have multiple supremum locations within an interval.
We proceed with establishing extra conditions the density has to satisfy if the pro-
cess satisfies certain assumptions. In Section 4 we provide the sharpest possible
universal upper bounds on the density, both in the general case and in the case of
time-reversible stationary processes.

2. Notation and assumptions on the stationary process. For the remainder
of this paper X = (X(t), t ∈ R) is a stationary process with upper semi-continuous
sample paths, defined on some probability space (�, F ,P ). For a compact interval
[a, b], we will denote by

τX,[a,b] = min
{
t ∈ [a, b] :X(t) = sup

a≤s≤b

X(s)
}
.

That is, τX,[a,b] is the first time the overall supremum in the interval [a, b] is
achieved. It is elementary to check that τX,([a,b]) is a well-defined random vari-
able. If a = 0, we will use the single variable notation τX,b.

We denote by FX,[a,b] the law of τX,[a,b]; it is a probability measure on the
interval [a, b]. If a = 0, we have the corresponding single variable notation FX,b.
The following statements are obvious.
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LEMMA 2.1. (i) For any � ∈ R,

FX,[�,T +�](·) = FX,T (· − �).

(ii) For any intervals [c, d] ⊆ [a, b],
FX,[a,b](B) ≤ FX,[c,d](B) for any Borel set B ⊂ [c, d].

The discussion of the leftmost supremum location τX,[a,b] in the sequel applies
equally well to the rightmost supremum location, for instance, by considering the
time-reversed stationary process (X(−t), t ∈ R). In some cases we will find it
convenient to assume that the supremum is achieved at a unique location. Formally,
for T > 0 we denote by X∗(T ) = sup0≤t≤T X(t) the largest value of the process
in the interval [0, T ], and consider the set

�T = {
ω ∈ � :X(ti) = X∗(T ) for at least two different t1, t2 ∈ [0, T ]}.

It is easy to see that �T is a measurable set. The following assumption says that,
on a set of probability 1, the supremum over interval [0, T ] is uniquely achieved.

ASSUMPTION UT . P(�T ) = 0.

In our previous notation, under Assumption UT , τX,[a,b] is the unique point at
which the supremum over the interval [0, T ] is achieved, and FX,T is the law of
that point.

Even though many of our results do not require it, the most complete descrip-
tion of the distribution of the location of the supremum that we have requires the
following, additional, assumption.

ASSUMPTION L.

K := lim
ε↓0

P(X has a local maximum in (0, ε))

ε
< ∞.

It is easy to check that the limit in Assumption L exists. If, for example, the
process X has differentiable sample paths, then a sufficient condition for Assump-
tion L is that the expected number of times the process Y(t) = X′(t), t ∈ R crosses
zero in a unit time interval is finite; the latter can be checked using, for instance,
Theorem 7.2.4 in Leadbetter, Lindgren and Rootzén (1983).

Assumption L rules out existence of “too frequent” local extrema of the sample
paths. For sample continuous processes this also rules out rapid oscillation of the
sample paths possessed, for instance, by the Gaussian Ornstein–Uhlenbeck pro-
cess of Example 3.7 below. In fact, we will presently see that, at least for sample
continuous processes, under Assumption L the process has, with probability 1,
sample paths of locally bounded variation.
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LEMMA 2.2. Let X = (X(t), t ∈ R) be a stationary sample upper semi-
continuous process satisfying Assumption L. Then, for any T > 0, on an event
of probability 1 the process has finitely many local maxima and minima in the in-
terval (0, T ). In particular, if the process is sample continuous, then its sample
paths are, on event of probability 1, of locally bounded variation.

PROOF. For notational simplicity we take T = 1. For n = 1,2, . . . let

Nn =
2n∑
i=1

1
(

a point in
[
i − 1

2n
,

i

2n

)
is a local maximum of X

)
.

Clearly, the sequence Nn is nondecreasing, and Nn → N∞, where N∞ is the total
number of local maxima of X in the interval [0,1). By the monotone convergence
theorem,

EN∞ = lim
n→∞ENn

≤ lim sup
n→∞

2nP
(
X has a local maximum in

(
0,2−n

)) ≤ K.

Therefore, N∞ < ∞ a.s. Since between any two distinct local minima there is a
local maximum, the number of local minima in [0,1) is a.s. finite as well. Since a
sample continuous process must have a monotone path between any two consecu-
tive local extrema, the lemma has been proved. �

3. Description of the possible distributions of the location of the supre-
mum. We start with a result showing existence of a density in the interior of
the interval [0, T ] of the leftmost location of the supremum in that interval for
any upper semi-continuous stationary process, as well as conditions this density
has to satisfy. Only one of the statements of the theorem requires Assumption UT ,
in which case the statement applies to the unique location of the supremum. See
Remark 3.2 in the sequel.

THEOREM 3.1. Let X = (X(t), t ∈ R) be a stationary sample upper semi-
continuous process. Then the restriction of the law FX,T to the interior (0, T ) of
the interval is absolutely continuous. The density, denoted by fX,T , can be taken
to be equal to the right derivative of the cdf FX,T , which exists at every point in the
interval (0, T ). In this case the density is right continuous, has left limits, and has
the following properties:

(a) The limits

fX,T (0+) = lim
t→0

fX,T (t) and fX,T (T −) = lim
t→T

fX,T (t)

exist.



3498 G. SAMORODNITSKY AND Y. SHEN

(b) The density has a universal upper bound given by

fX,T (t) ≤ max
(

1

t
,

1

T − t

)
, 0 < t < T .(3.1)

(c) Assume that the process satisfies Assumption UT . Then the density is
bounded away from zero,

inf
0<t<T

fX,T (t) > 0.(3.2)

(d) The density has a bounded variation away from the endpoints of the interval.
Furthermore, for every 0 < t1 < t2 < T ,

TV(t1,t2)(fX,T ) ≤ min
(
fX,T (t1), fX,T (t1−)

) + min
(
fX,T (t2), fX,T (t2−)

)
,(3.3)

where

TV(t1,t2)(fX,T ) = sup
n−1∑
i=1

∣∣fX,T (si+1) − fX,T (si)
∣∣

is the total variation of fX,T on the interval (t1, t2), and the supremum is taken
over all choices of t1 < s1 < · · · < sn < t2.

(e) The density has a bounded positive variation at the left endpoint and a
bounded negative variation at the right endpoint. Furthermore, for every 0 < ε <

T ,

TV+
(0,ε)(fX,T ) ≤ min

(
fX,T (ε), fX,T (ε−)

)
(3.4)

and

TV−
(T −ε,T )(fX,T ) ≤ min

(
fX,T (T − ε), fX,T (T − ε−)

)
,(3.5)

where for any interval 0 ≤ a < b ≤ T ,

TV±
(a,b)(fX,T ) = sup

n−1∑
i=1

(
fX,T (si+1) − fX,T (si)

)
±

is the positive (negative) variation of fX,T on the interval (a, b), and the supremum
is taken over all choices of a < s1 < · · · < sn < b.

(f) The limit fX,T (0+) < ∞ if and only if TV(0,ε)(fX,T ) < ∞ for some (equiv-
alently, any) 0 < ε < T , in which case

TV(0,ε)(fX,T ) ≤ fX,T (0+) + min
(
fX,T (ε), fX,T (ε−)

)
.(3.6)

Similarly, fX,T (T −) < ∞ if and only if TV(T −ε,T )(fX,T ) < ∞ for some (equiva-
lently, any) 0 < ε < T , in which case

TV(T −ε,T )(fX,T ) ≤ min
(
fX,T (T − ε), fX,T (T − ε−)

) + fX,T (T −).(3.7)
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PROOF. Choose 0 < δ < T/2. We claim that for every δ ≤ t ≤ T −δ, for every
ρ > 0 and every 0 < ε < δρ/(1 + ρ),

P(t < τX,T ≤ t + ε) ≤ ε(1 + ρ)max
(

1

t
,

1

T − t

)
.(3.8)

This statement, once proved, will imply absolute continuity of FX,T on the interval
(δ, T − δ) and, since δ > 0 can be taken to be arbitrarily small, also on (0, T ).
Further, (3.8) will imply that the version of the density given by

fX,T (t) = lim sup
ε↓0

1

ε
P (t < τX,T ≤ t + ε), 0 < t < T,

satisfies bound (3.1).
We proceed to prove (3.8). Suppose that, to the contrary, (3.8) fails for some

δ ≤ t ≤ T − δ and 0 < ε < δρ/(1 + ρ). Choose

ε < θ <
ρ

1 + ρ
δ

and 0 < a < t < b < T such that

min(t, T − t) − θ < b − a < min(t, T − t) − ε.

For a ≤ s ≤ b, by stationarity, we have

P(s < τX,[s−t,s−t+T ] ≤ s + ε) > ε(1 + ρ)max
(

1

t
,

1

T − t

)
.(3.9)

Further, let a ≤ s1 < s1 + ε ≤ s2 ≤ b. We check next that

{sj < τX,[sj−t,sj−t+T ] ≤ sj + ε, j = 1,2} = ∅.(3.10)

Indeed, let �s1,s2 be the event in (3.10). Note that the intervals (s1, s1 + ε) and
(s2, s2 + ε) are disjoint and, by the choice of the parameters a and b, each of these
two intervals is a subinterval of both [s1 − t, s1 − t + T ] and [s2 − t, s2 − t + T ].
Therefore, on the event �s1,s2 we cannot have

X(τX,[s1−t,s1−t+T ]) < X(τX,[s2−t,s2−t+T ])

for otherwise τX,[s1−t,s1−t+T ] would fail to be a location of the maximum over the
interval [s1 − t, s1 − t + T ]. For the same reason, on the event �s1,s2 we cannot
have

X(τX,[s1−t,s1−t+T ]) > X(τX,[s2−t,s2−t+T ]).

Finally, on the event �s1,s2 we cannot have

X(τX,[s1−t,s1−t+T ]) = X(τX,[s2−t,s2−t+T ])

for otherwise τX,[s2−t,s2−t+T ] would fail to be the leftmost location of the maxi-
mum over the interval [s2 − t, s2 − t + T ]. This establishes (3.10).



3500 G. SAMORODNITSKY AND Y. SHEN

We now apply (3.9) and (3.10) to the points si = a + iε, i = 0,1, . . . , �(b −
a)/ε� − 1. We have

1 ≥ P

(�(b−a)/ε�−1⋃
i=0

{si < τX,[si−t,si−t+T ] ≤ si + ε}
)

=
�(b−a)/ε�−1∑

i=0

P(si < τX,[si−t,si−t+T ] ≤ si + ε)

>
b − a

ε
ε(1 + ρ)max

(
1

t
,

1

T − t

)

>
(
min(t, T − t) − θ

)
(1 + ρ)max

(
1

t
,

1

T − t

)

>

(
1 − δ

min(t, T − t)

ρ

1 + ρ

)
(1 + ρ) ≥

(
1 − ρ

1 + ρ

)
(1 + ρ) = 1

by the choice of θ . This contradiction proves (3.8).
Before proceeding with the proof of Theorem 3.1, we pause to prove the fol-

lowing important lemma.

LEMMA 3.1. Let 0 ≤ � < T . Then for every 0 ≤ δ ≤ �, fX,T −�(t) ≥
fX,T (t + δ) almost everywhere in (0, T − �). Furthermore, for every such δ and
every ε1, ε2 ≥ 0, such that ε1 + ε2 < T − �,∫ T −�−ε2

ε1

(
fX,T −�(t) − fX,T (t + δ)

)
dt

(3.11)

≤
∫ ε1+δ

ε1

fX,T (t) dt +
∫ T −ε2

T −�−ε2+δ
fX,T (t) dt.

PROOF. We simply use Lemma 2.1. For any Borel set B ⊆ (0, T − �) we
have ∫

B
fX,T −�(t) dt = P(τX,T −� ∈ B) ≥ P(τX,[−δ,T −δ] ∈ B)

=
∫
B

fX,[−δ,T −δ](t) dt =
∫
B

fX,T (t + δ) dt,

which shows that fX,T −�(t) ≥ fX,T (t + δ) almost everywhere in (0, T − �).
For (3.11), notice that by Lemma 2.1,∫ T −�−ε2

ε1

(
fX,T −�(t) − fX,T (t + δ)

)
dt

= P
(
τX,T −� ∈ (ε1, T − � − ε2)

) − P
(
τX,T ∈ (ε1 + δ, T − � − ε2 + δ)

)
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= P
(
τX,T /∈ (ε1 + δ, T − � − ε2 + δ)

) − P
(
τX,T −� /∈ (ε1, T − � − ε2)

)
= P

(
τX,T ∈ [0, ε1 + δ)

) + P
(
τX,T ∈ (T − � − ε2 + δ, T ])

− P
(
τX,T −� ∈ [0, ε1)

) − P(τX,T −� ∈ (T − � − ε2, T − �])
= P

(
τX,T ∈ (ε1, ε1 + δ)

) + (
P

(
τX,T ∈ [0, ε1)

) − P
(
τX,T −� ∈ [0, ε1)

))
+ P

(
τX,T ∈ (T − � − ε2 + δ, T − ε2)

)
+ (

P
(
τX,T ∈ (T − ε2, T ]) − P

(
τX,[�,T ] ∈ (T − ε2, T ]))

≤ P
(
τX,T ∈ (ε1, ε1 + δ)

) + P
(
τX,T ∈ (T − � − ε2 + δ, T − ε2)

)
=

∫ ε1+δ

ε1

fX,T (t) dt +
∫ T −ε2

T −�−ε2+δ
fX,T (t) dt

as required. �

We return now to the proof of Theorem 3.1. Our next goal is to prove that the cdf
FX,T is right differentiable at every point in the interval (0, T ). Since we already
know that FX,T is absolutely continuous on (0, T ), the set

A = {
t ∈ (0, T ) :FX,T is not right differentiable at t

}
(3.12)

has Lebesgue measure zero. Define next

B = {
t ∈ Ac :fX,T restricted to Ac does not have a right limit at t

}
.(3.13)

We claim that the set B is at most countable. To see this, we define for t ∈ Ac

L(t) = lim sup
s↓t,s∈Ac

fX,T (s), l(t) = lim inf
s↓t,s∈Ac

fX,T (s).

Our claim about set B will follow once we check that for any 0 < ε < T/2 and
θ > 0, the set

Bε,θ = {
t ∈ Ac ∩ (ε, T − ε) :L(t) − l(t) > θ

}
is finite. In fact, we will show that the cardinality of Bε,θ cannot be larger than
4/(εθ). If not, let N > 4/(εθ) and find points ε < t1 < t2 < · · · < tN < T − ε.
Choose δ > 0 so small that δ < ε/2 and

0 < δ < 1
2 min(t1 − ε, t2 − t1, . . . , tN − tN1, T − ε − tN ).

Let now i = 1, . . . ,N and choose a sequence sn ↓ ti , sn ∈ Ac, such that fX,T (sn) →
L(ti). Consider n so large that sn − ti < δ/3, and let

j ≥ 3

δ − (sn − ti)

be an integer. We have

P
(
τX,T −δ ∈ (ti − δ, ti)

) ≥
�j (δ−(sn−ti ))�−1∑

k=0

P
(
τX,T −δ ∈ (

ti − (k + 1)/j, ti − k/j
))

,
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and for each k as in the sum

hk := sn − ti + k + 1

j
∈ (0, δ].

Therefore, by Lemma 2.1

P
(
τX,T −δ ∈ (ti − δ, ti)

)

≥
�j (δ−(sn−ti ))�−1∑

k=0

P
(
τX,T ∈ (

ti − (k + 1)/j + hk, ti − k/j + hk

))

= ⌊
j
(
δ − (sn − ti)

)⌋
P

(
τX,T ∈ (sn, sn + 1/j)

) → (
δ − (sn − ti)

)
fX,T (sn)

as j → ∞. Letting n → ∞, we conclude that

P
(
τX,T −δ ∈ (ti − δ, ti)

) ≥ δL(ti), i = 1, . . . ,N.(3.14)

Similarly, for i = 1, . . . ,N choose a sequence wn ↓ ti ,wn ∈ Ac, such that
fX,T (wn) → l(ti). For large n and j we have

P
(
τX,T +δ ∈ (ti, ti + δ)

)
= P

(
τX,T +δ ∈ (ti,wn)

) + P
(
τX,T +δ ∈ (wn,wn + δ)

)

≤ P
(
τX,T +δ ∈ (ti,wn)

) +
�δj�−1∑
k=0

P
(
τX,T +δ ∈ (

wn + k/j,wn + (k + 1)/j
))

.

For each k as in the sum above,

hk := k

j
∈ [0, δ].

Therefore, by Lemma 2.1,

P
(
τX,T +δ ∈ (ti, ti + δ)

)
≤ P

(
τX,T +δ ∈ (ti,wn)

) + �δj�P (
τX,T ∈ (wn,wn + 1/j)

)
.

Letting, once again, first j → ∞ and then n → ∞, we conclude that

P
(
τX,T +δ ∈ (ti , ti + δ)

) ≤ δl(ti), i = 1, . . . ,N.(3.15)

Now we use the estimate in Lemma 3.1 as follows. By the definition of the point ti
and the smallness of δ,

Nδθ ≤ P

(
τX,T −δ ∈

N⋃
i=1

(ti − δ, ti)

)
− P

(
τX,T +δ ∈

N⋃
i=1

(ti, ti + δ)

)

=
∫

⋃N
i=1(ti−δ,ti )

(
fX,T −δ(t) − fX,T +δ(t + δ)

)
.
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Using the fact that

N⋃
i=1

(ti − δ, ti) ⊂ (ε − δ, T − ε),

and that, by Lemma 3.1, the integrand above is a.e. nonnegative, we have by the
estimate in that lemma that the integral above does not exceed

∫ T −ε

ε−δ

(
fX,T −δ(t) − fX,T +δ(t + δ)

)
dt

≤
∫ ε

ε−δ
fX,T +δ(t) dt +

∫ T −ε+2δ

T −ε+δ
fX,T +δ(t) dt.

Applying the already proved (3.1), we conclude that

Nδθ ≤ 2
δ

ε − δ
≤ 4δ

ε
,

and this contradicts the assumption that we can choose N > 4/(εθ). This proves
that the set B in (3.13) is at most countable. We notice, further, that

fX,T (t) = lim
s↓t

1

s − t
P (t < τX,T ≤ s)

(3.16)

= lim
s↓t

1

s − t

∫ s

t
fX,T (w)dw = lim

w↓t,w∈Ac\B fX,T (w)

for every t ∈ Ac \ B [recall the set A is defined in (3.12)].
Now we are ready to prove that the right derivative of the cdf FX,T exists at

every point in the interval (0, T ). Suppose, to the contrary, that this is not so. Then
there is t ∈ (0, T ) and real numbers a < b such that

lim inf
ε↓0

FX,T (t + ε) − FX,T (t)

ε
< a < b < lim sup

ε↓0

FX,T (t + ε) − FX,T (t)

ε
.

This implies that there is a sequence tn ↓ t with tn ∈ Ac \ B for each n such that

fX,T (t2n−1) > b, fX,T (t2n) < a for all n = 1,2, . . . .

We can and will choose t1 so close to t that t1 < (T + t)/2.
Notice that by (3.16), for every n = 1,2, . . . there is δn > 0 such that

fX,T (w) > b a.e. in (t2n−1, t2n−1 + δ2n−1),

fX,T (w) < a a.e. in (t2n, t2n + δ2n)

for n = 1,2, . . . .
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Let now m ≥ 1, and consider s > 0 so small that both s < minn=1,...,2m δn and
t1 < (T + t)/2 − s. Observe that

∫ (T +t)/2

t

(
fX,T (w + s) − fX,T (w)

)
+ dw

≥
∫ t+s

t

�(T −t)/2s�−1∑
i=0

(
fX,T

(
w + (i + 1)s

) − fX,T (w + is)
)
+ dw,

and for every point w ∈ (t, t + s), each one of the intervals (tn, tn + δn), n =
1, . . . ,2m, contains at least one of the points in the finite sequence w + is, i =
0,1, . . . , �(T − t)/2s�−1. By construction, apart from a set of points w ∈ (t, t +s)

of measure zero, those points of the kind w + is that fall in the odd-numbered in-
tervals satisfy fX,T (w + is) > b, and those points that fall in the even-numbered
intervals satisfy fX,T (w + is) < a. We conclude that

�(T −t)/2s�−1∑
i=0

(
fX,T

(
w + (i + 1)s

) − fX,T (w + is)
)
+ ≥ m(b − a)

a.e. in (t, t + s). Therefore, for all s > 0 small enough,

∫ (T +t)/2

t

(
fX,T (w + s) − fX,T (w)

)
+ dw ≥ sm(b − a)

and, since m can be taken arbitrarily large, we conclude that

lim
s↓0

1

s

∫ (T +t)/2

t

(
fX,T (w + s) − fX,T (w)

)
+ dw = ∞.(3.17)

We will see that this is, however, impossible, and the resulting contradiction will
prove that the right derivative of the cdf FX,T exists at every point in the interval
(0, T ).

Indeed, recall that by Lemma 3.1, for all s > 0 small enough,

fX,T −2s(w − s) ≥ fX,T (w + s) a.e. on (s, T − s) ⊃ (
t, (T + t)/2

)
.

Therefore, for such s,∫ (T +t)/2

t

(
fX,T (w + s) − fX,T (w)

)
+ dw

≤
∫ (T +t)/2

t

(
fX,T −2s(w − s) − fX,T (w)

)
+ dw

≤
∫ (T +t)/2−s

t−s

(
fX,T −2s(w) − fX,T (w + s)

)
dw
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since, by another application of Lemma 3.1, the integrand is a.e. nonnegative over
the range of integration. Applying (3.11), we see that∫ (T +t)/2

t

(
fX,T (w + s) − fX,T (w)

)
+ dw

≤
∫ t

t−s
fX,T (w)dw +

∫ (T +t)/2+s

(T +t)/2
fX,T (w)dw.

However, we already know that the density fX,T is bounded on any subinterval
of (0, T ) that is bounded away from both endpoints. Therefore, the upper bound
obtained above shows that (3.17) is impossible. Hence the existence of the right
derivative everywhere, which then coincides with the version of the density fX,T

chosen above.
Next we check that this version of the density is right continuous. To this end

we recall that we already know that the set A in (3.12) is empty. Next, we rule out
existence of a point t ∈ (0, T ) such the limit of fX,T (s) as s ↓ t over s ∈ Bc does
not exist. Suppose that, to the contrary, that such t exists. This means that there are
real numbers a < b and a sequence tn ↓ t with tn ∈ Bc for each n such that

fX,T (t2n−1) > b, fX,T (t2n) < a for all n = 1,2, . . . .

However, we have already established that such a sequence cannot exist.
As in (3.16), we see that for every t ∈ (0, T )

fX,T (t) = lim
s↓t,s∈Bc

fX,T (s),

and since the set B is at most countable, the restriction to s ∈ Bc in the above
limit statement can be removed. This proves right continuity of the version of the
density given by the right derivative of FX,T . The proof of existence of left limits
is similar.

Next, we address the variation of the version of the density we are working with
away from the endpoints of the interval (0, T ). Let 0 < t1 < t2 < T . We start with
a preliminary calculation. Let 0 < rn < T − t2. Introduce the notation

C+ = {
t ∈ (t1, t2) :fX,T (t + rn) ≥ fX,T (t)

}
,

C− = {
t ∈ (t1, t2) :fX,T (t + rn) < fX,T (t)

}
,

so that∫ t2

t1

∣∣fX,T (t + rn) − fX,T (t)
∣∣dt

=
∫
C+

(
fX,T (t + rn) − fX,T (t)

)
dt +

∫
C−

(
fX,T (t) − fX,T (t + rn)

)
dt.

To estimate the two terms we will once again use Lemma 3.1. Since

fX,T −rn(t) ≥ fX,T (rn + t) a.e. on (0, T − rn) ⊃ (t1, t2)
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for n large enough, for such n, we have the upper bound∫
C+

(
fX,T (t + rn) − fX,T (t)

)
dt ≤

∫
C+

(
fX,T −rn(t) − fX,T (t)

)
dt

≤
∫ t2

t1

(
fX,T −rn(t) − fX,T (t)

)
dt.

We now once again use (3.11) to conclude that for all n large, we have∫
C+

(
fX,T (t + rn) − fX,T (t)

)
dt ≤

∫ t2+rn

t2

fX,T (t) dt

so that

lim sup
n→∞

1

rn

∫
C+

(
fX,T (t + rn) − fX,T (t)

)
dt ≤ fX,T (t2).

Similarly, by Lemma 3.1,

fX,T (t + rn) ≥ fX,T +rn(t + rn) a.e. on (0, T − rn) ⊃ (t1, t2)

for n large enough, and we obtain, for such n, using (3.11)∫
C−

(
fX,T (t) − fX,T (t + rn)

)
dt ≤

∫
C−

(
fX,T (t) − fX,T +rn(t + rn)

)
dt

≤
∫ t2

t1

(
fX,T (t) − fX,T +rn(t + rn)

)
dt

≤
∫ t1+rn

t1

fX,T +rn(t) dt.

This can, in turn, be bounded from above both by∫ t1+rn

t1

fX,T (t) dt

and by ∫ t1+rn

t1

fX,T (t − rn) dt =
∫ t1

t1−rn

fX,T (t) dt.

Therefore,

lim sup
n→∞

1

rn

∫
C−

(
fX,T (t) − fX,T (t + rn)

)
dt ≤ min

(
fX,T (t1), fX,T (t1−)

)
.

Overall, we have proved that

lim sup
n→∞

1

rn

∫ t2

t1

∣∣fX,T (t + rn) − fX,T (t)
∣∣dt

(3.18)
≤ min

(
fX,T (t1), fX,T (t1−)

) + fX,T (t2).
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To relate (3.18) to the total variation of the density fX,T over the interval (t1, t2),
we notice first that by the right continuity of the density, it is enough to consider
the regularly spaced points si = t1 + irn, i = 1, . . . , n, where rn = (t2 − t1)/(n+1)

for some n = 1,2, . . . . Write
∫ t2

t1

∣∣fX,T (t +rn)−fX,T (t)
∣∣dt =

∫ t1+rn

t1

n∑
i=0

∣∣fX,T

(
t +(i+1)rn

)−fX,T (t + irn)
∣∣dt

and observe that

lim
n→∞

n∑
i=0

∣∣fX,T

(
t + (i + 1)rn

) − fX,T (t + irn)
∣∣ ≥ TV(t1,t2)(fX,T )

uniformly in t ∈ (t1, t2). Therefore, by (3.18)

min
(
fX,T (t1), fX,T (t1−)

) + fX,T (t2)

≥ lim sup
n→∞

1

rn

∫ t2

t1

∣∣fX,T (t + rn) − fX,T (t)
∣∣dt

≥ lim sup
n→∞

1

rn

∫ t1+rn

t1

n∑
i=0

∣∣fX,T

(
t + (i + 1)rn

) − fX,T (t + irn)
∣∣dt

≥ TV(t1,t2)(fX,T ).

Now bound (3.3) follows from the obvious fact that

TV(t1,t2)(fX,T ) = lim
ε↓0

TV(t1,t2−ε)(fX,T ).

Furthermore, the proof of (3.4) and (3.5) is the same as the proof of (3.3), with
each one using one side of the two-sided calculation performed above for (3.3).

Next, the boundedness of the positive variation of the density at zero, clearly,
implies that the limit fX,T (0+) = limt↓0 fX,T (t) exists, while the boundedness
of the negative variation of the density at T implies that the limit fX,T (T −) =
limt↑T fX,T (t) exists as well. If TV(0,ε)(fX,T ) < ∞ for some 0 < ε < T , then,
trivially, fX,T (0+) < ∞. On the other hand, if fX,T (0+) < ∞, then the same
argument as we used in proving (3.3), shows that for any 0 < ε < T ,

TV−
(0,ε)(fX,T ) ≤ fX,T (0+),

which, together with (3.4), both shows that TV(0,ε)(fX,T ) < ∞ and proves (3.6).
One can prove the statement of part (f) of the theorem concerning the behavior of
the density at the right endpoint of the interval in the same way.

It only remains to prove part (c) of the theorem, namely the fact that the version
of the density given by the right derivative of the cdf FX,T is bounded away from
zero. Recall that Assumption UT is in effect here.
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Suppose, to the contrary, that (3.2) fails and introduce the notation

t1 = inf
{
s ∈ (0, T ) : inf

0<t<s
fX,T (t) = 0

}
,

t2 = sup
{
s ∈ (0, T ) : inf

s<t<T
fX,T (t) = 0

}
.

Clearly, 0 ≤ t1 ≤ t2 ≤ T . We claim that

if t1 < t2, then fX,T (t) = 0 for all t1 < t < t2.(3.19)

We start with the case 0 < t1 < t2 < T . Notice that, in this case,

min
(
fX,T (t1), fX,T (t1−)

) = min
(
fX,T (t2), fX,T (t2−)

) = 0.

By (3.3) the density is constant on the interval (t1, t2). If fX,T (t1) = 0, then by
the right continuity of the density, the constant must be equal to zero, so (3.19)
is immediate. If fX,T (t1−) = 0, then given ε > 0, choose 0 < s < t1 such that
fX,T (s) ≤ ε. By (3.3) we know that TV(s,t2)(fX,T ) ≤ ε, which implies that f (t) ≤
2ε on (s, t2), hence also on (t1, t2). Letting ε → 0 proves (3.19). If either t1 = 0
and/or t2 = T , then (3.19) can be proved using a similar argument, and the conti-
nuity of the density at 0 and at T shown in part (a) of the theorem. Furthermore,
we also have

if t1 = t2, then min
(
fX,T (t1), fX,T (t1−)

) = 0,(3.20)

with the obvious conventions in the case t1 = t2 coincide with one of the endpoints
of the interval.

It follows from (3.19), (3.20) and Lemma 3.1 that for any � > 0,

fX,T +�(t) = 0 for t1 < t < t2 + �.(3.21)

Furthermore, we know by Lemma 2.1 that

FX,T +�

([0, t1]) ≤ FX,T

([0, t1])(3.22)

and

FX,T +�

([t2 + �,T + �]) ≤ FX,T

([t2, T ]).(3.23)

Note that for � > 0 all the quantities in the above equations refer to the leftmost
location τX,T +� of the supremum, which is no longer assumed to be unique.

Since the distributions FX,T and FX,T +� have equal total masses (equal to one),
it follows from (3.21), (3.22) and (3.23) that the latter two inequalities must hold
as equalities for all relevant sets. We concentrate on the resulting equation

FX,T +�

([t2 + �,T + �]) = FX,T

([t2, T ]).(3.24)

Since we are working with the leftmost supremum location on a larger interval, we
can write for � > 0

P
(
τX,T ∈ [t2, T ]) = P

(
τX,[−�,T ] ∈ [t2, T ])

+ P
(
τX,T ∈ [t2, T ], τX,[−�,T ] ∈ [−�,0)

)
.
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Using Lemma 2.1 and (3.24), we see that

P
(
τX,T ∈ [t2, T ], τX,[−�,T ] ∈ [−�,0)

) = 0,

which implies that if � > T − t2, then

P
(
τX,T ∈ [t2, T ], sup

−�≤t≤−�+T −t2

X(t) ≥ sup
t2≤t≤T

X(t)
)

= 0.(3.25)

Pick δ > T . Using (3.25) with � = nδ − t2, n = 1,2, . . . , we see that

Yn < Y0 a.e. on
{
τX,T ∈ [t2, T ]} for n = 1,2, . . . ,

where Yn = supt2−nδ≤t≤T −nδ X(t), n = 0,1,2, . . . . Note, however, that the se-
quence (Yn, n = 0,1,2, . . .) is stationary, and for a stationary sequence it is im-
possible that, on a set of positive probability, Y0 > Yn for n = 1,2, . . . (this is clear
for an ergodic sequence; in general one can use the ergodic decomposition). We
conclude that

P
(
τX,T ∈ [t2, T ]) = 0.(3.26)

Reversing the direction of time (or, equivalently, switching to the rightmost supre-
mum location on a larger interval) and using Assumption UT , we also have

P
(
τX,T ∈ [0, t1]) = 0.(3.27)

However, (3.19), (3.26) and (3.27) rule out any possible mass of the distribution
FX,T . This contradiction shows that, under Assumption UT , the version of the
density given by the right derivative of the cdf FX,T is bounded away from zero.
This completes the proof of the theorem. �

REMARK 3.2. The following example shows that the statement of part (c) of
Theorem 3.1 may fail without Assumption UT .

Let (x(t), t ∈ R) be a continuous periodic function with period 1, for which
t = 0 is a global maximum. Let U be a standard uniform random variable. Then
(X(t) = x(t + U), t ∈ R) is a continuous stationary process, that always attains its
global maximum in the interval [0,1]. Therefore, with T > 1, we have fX,T (t) = 0
for 1 ≤ t < T .

Next we describe what extra restrictions on the distribution of the location of
the supremum, in addition to the statements of Theorem 3.1, Assumption L of
Section 2 imposes. Again, one of the statements of the theorem requires Assump-
tion UT . See Remark 3.6 for a discussion.

THEOREM 3.3. Let X = (X(t), t ∈ R) be a stationary sample upper semi-
continuous process, satisfying Assumption L. Then the version of the density fX,T

of the leftmost location of the supremum in the interval [0, T ] described in Theo-
rem 3.1 has the following additional properties:
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(a) fX,T (0+) < ∞, fX,T (T −) < ∞ and TV(0,T )(fX,T ) ≤ fX,T (0+) +
fX,T (T −). In particular, the density has a bounded variation on the entire in-
terval (0, T ).

(b) Assume additionally that the process is sample continuous and satisfies As-
sumption UT . Then either fX,T (t) = 1/T for all 0 < t < T , or

∫ T
0 fX,T (t) dt < 1.

REMARK 3.4. Theorem 3.3 provides a list of specific conditions that the dis-
tribution of the supremum location has to satisfy (under Assumptions UT and L).
The list turns out to be complete. That is, for any function f satisfying the con-
ditions described in the theorem, there is a sample continuous stationary process
satisfying Assumptions UT and L, for which f is the density of the supremum
location. Thus we have obtained a full characterization of the set of all possible
densities. In order to decide whether a candidate function can be the density of the
supremum location for some stationary process, we only need to check the list of
conditions given in the theorem. This is, of course a much easier task than trying to
construct an appropriate process. We refer the reader to Samorodnitsky and Shen
(2012) for details and proofs.

REMARK 3.5. Note that part (b) of Theorem 3.3 says that, unless the location
of the supremum is uniformly distributed in the interval (0, T ), the supremum is
achieved, with a positive probability, at an endpoint of the interval. The proof of
this part, exhibited in the following pages, actually implies more. It shows that the
uniform distribution occurs only when the suprema of the process appear periodi-
cally with period equal to T :

P
(
X(τX,[T ,2T ]) = X(τX,T ), τX,[T ,2T ] − τX,T = T

) = 1.

PROOF OF THEOREM 3.3. Assumption L and stationarity imply that for any
0 < t < T ,

fX,T (t) = lim
ε↓0

P(τX,T ∈ (t, t + ε))

ε

≤ lim sup
ε↓0

P(X has a local maximum in (t, t + ε))

ε

= lim sup
ε↓0

P(X has a local maximum in (0, ε))

ε
≤ K.

This proves finiteness of fX,T (0+) < ∞ and fX,T (T −). The rest of the statement
in part (a) follows from (3.6) by letting ε ↑ T .

We now prove part (b). Assume that P(τX,T = 0 or T ) = 0. By stationarity this
implies that τX,[T ,2T ] ∈ (T ,2T ) with probability 1. We first prove that

P
(
X(τX,[T ,2T ]) �= X(τX,T )

) = 0.(3.28)
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By symmetry, it is enough to prove the one-sided claim

P
(
X(τX,[T ,2T ]) < X(τX,T )

) = 0.(3.29)

Indeed, suppose, to the contrary, that the probability in (3.29) is positive. Under
Assumption UT we can use the continuity from below of measures to see that
there is ε > 0 such that

p := P
(
X(τX,T ) > X(τX,[T ,2T ]) + ε,X(τX,T ) > max

t∈LT ,t �=τX,T

X(t) + ε
)

> 0.

Here LT is the (a.s. finite) set of the local maxima of X in the interval (0, T ).
Next, by the uniform continuity of the process X on [0, T ], there is n ≥ 1 such

that

P
(

sup
0≤s<t≤T ,t−s≤T/n

∣∣X(t) − X(s)
∣∣ > ε/2

)
≤ p/2.

We immediately conclude by the law of total probability that there is i = 1, . . . , n

such that P(Ai) > 0, where

Ai = {
X(τX,T ) > X(τX,[T ,2T ]) + ε,X(τX,T ) > max

t∈LT ,t �=τX,T

X(t) + ε,

(i − 1)T /n < τX,T < iT /n, sup
(i−1)T /n≤s,t≤iT /n

∣∣X(t) − X(s)
∣∣ ≤ ε/2

}
.

However, on the event Ai , X(iT /n) = supiT /n≤t≤2T X(t), implying that
τX,[iT /n,iT /n+T ] = iT /n. By stationarity, this contradicts the assumption P(τX,T =
0) = 0. This contradiction proves (3.29) and, hence, also (3.28).

Next, we check that

P
(
X(τX,[T ,2T ]) = X(τX,T ), τX,[T ,2T ] − τX,T < T

) = 0.(3.30)

Indeed, suppose that, to the contrary, the probability above is positive. By the con-
tinuity from below of measures, there is ε > 0 such that

P
(
X(τX,[T ,2T ]) = X(τX,T ), τX,[T ,2T ] − τX,T < T − ε

)
> 0.

Take n > 2T/ε. By the law of total probability there are i1, i2 = 1, . . . , n such that
P(Ai1,i2) > 0, where

Ai1,i2 = {
X(τX,[T ,2T ]) = X(τX,T ), τX,[T ,2T ] − τX,T < T − ε,

(i1 − 1)T /n < τX,T < i1T/n,

T + (i2 − 1)T /n < τX,[T ,2T ] < T + i2T/n
}
.

By the choice of n, T + i2T/n − (i1 − 1)T /n < T , so that, on the event Ai1,i2 ,
the process X has at least two points, τX,T and τX,[T ,2T ], at which the supremum
over the interval [(i1 − 1)T /n, (i1 − 1)T /n + T ] is achieved. By stationarity, this
contradicts Assumption UT . This contradiction proves (3.30).
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Finally, we check that

P
(
X(τX,[T ,2T ]) = X(τX,T ), τX,[T ,2T ] − τX,T > T

) = 0.(3.31)

The proof is similar to the proof of (3.29), so we only sketch the argument. Suppose
that, to the contrary, the probability in (3.31) is positive. Use the continuity of
measures to see that the probability remains positive if we require that τX,[T ,2T ] −
τX,T > T + ε for some ε > 0. Next, use Assumption UT to separate the value of
X(τX,T ) from the values of X at other local maxima in (0, T ) and, finally, use
the uniform continuity of the process X to show that there is a point T < b < 2T

and an event of positive probability on which τX,[b−T ,b] = b. By stationarity, this
contradicts the assumption P(τX,T = T ) = 0.

Combining (3.28), (3.30) and (3.31), we see that the assumption P(τX,T =
0 or T ) = 0 implies that

P
(
X(τX,[T ,2T ]) = X(τX,T ), τX,[T ,2T ] − τX,T = T

) = 1.(3.32)

Let 0 < a < b < T . We have by stationarity,

P
(
τX,T ∈ (0, b − a)

) = P
(
τX,[a,a+T ] ∈ (a, b)

)
= P

(
τX,[a,a+T ] ∈ (a, b), τX,T ∈ (0, a)

)
+ P

(
τX,[a,a+T ] ∈ (a, b), τX,T ∈ (a, T )

)
.

By (3.32), if τX,T ∈ (0, a), then τX,[T ,2T ] ∈ (T , T + a) and X(τX,[T ,2T ]) >

supt∈[a,b] X(t). Therefore, the first term in the right-hand side above vanishes.
Similarly, by (3.32), if τX,T ∈ (a, T ), then τX,[T ,2T ] ∈ (T +a,2T ), and X(τX,T ) >

supt∈[T ,T +a] X(t). Therefore,

P
(
τX,T ∈ (0, b − a)

) = P
(
τX,T ∈ (a, b)

)
for any 0 < a < b < T , which proves the uniformity of the distribution of τX,T .

�

REMARK 3.6. A simple special case of the process in Remark 3.2 shows that
the statement of part (b) of Theorem 3.3 may fail without Assumption UT .

We take, for clarity, a specific function x. Let x(t) = 1 − 2|t | for |t | ≤ 1/2 and
extend x to a periodic function with period 1. Then for any T > 1, the leftmost
location of the supremum in the interval [0, T ] of the process (X(t) = x(t +U), t ∈
R) is in the interval (0,1) with probability 1, and (as we already know) this location
is not uniformly distributed between 0 and T .

None of the statement of Theorem 3.3 holds, in general, without Assumption L,
as the following example shows.
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EXAMPLE 3.7. Let X(t) = e−t/2B(et ), t ≥ 0, where (B(t)) is the stan-
dard Brownian motion. Then X is a stationary Gaussian process, the Ornstein–
Uhlenbeck process. It is, clearly, sample continuous, and the strong Markov prop-
erty of the Brownian motion shows that, for any T > 0, it satisfies Assumption UT .
It is clear that Assumption L fails for the Ornstein–Uhlenbeck process.

By the law of iterated logarithm for the Brownian motion we see that, on a
set of probability 1, in any interval (0, ε) with ε > 0 there is a point t such that
X(t) > X(0). Therefore, P(τX,T = 0) = 0 and, similarly, P(τX,T = T ) = 0 for
any T > 0.

It is also easy to show, using the basic properties of the Brownian motion, that
the density fX,T is not bounded near each of the two endpoints of the interval
[0, T ], so that both statements of Theorem 3.3 fail for this process.

4. Universal upper bounds on the density. The upper bounds in part (b) of
Theorem 3.1 turn out to be the best possible pointwise, as is shown in the following
result.

PROPOSITION 4.1. For each 0 < t < T and any number smaller than the
upper bound given in (3.1), there is a sample continuous stationary process satis-
fying Assumptions UT and L for which the right continuous version of the density
fX,T (t) of the supremum location at time t exceeds that number.

PROOF. By symmetry, it is enough to show that for any 0 < t < T and any
number smaller than 1/t there is a stationary process of the required type for which
fX,T (t) exceeds that number.

To this end, let τ > t and let k ≥ 1 be an integer. We define a periodic function
(x(s), s ∈ R) with period kτ + 2T by defining its values on the interval [0, kτ +
2T ]. We set x(iτ ) = k − i for i = 0,1, . . . , k and x(kτ + 2T ) = k. We set, further,
for i = 0,1, . . . , k − 1, x((i + 1/2)τ ) = −R and also x(kτ + T ) = −R for a large
positive R we describe in a moment. We complete the definition of the function by
connecting linearly the values in neighboring points where the function has already
been defined. Fix t < r < τ , and choose now R so large that the condition

x(iτ ) > x(iτ − r)(4.1)

holds for all i = 1, . . . , k. Now define a stationary process by X(s) = x(s −U), s ∈
R, where U is uniformly distributed between 0 and kτ + 2T . By construction, the
process is sample continuous and satisfies Assumptions UT and L.

If, for i = 1, . . . , k, we have iτ − r < U < iτ , then the local maximum at s = iτ

of the function x becomes the global maximum of the process X over the interval
[0, T ], and is located in the interval (0, r). This contributes 1/(kτ + 2T ) to the
value of the density fX,T at each point of the interval (0, r). In particular, since
t ∈ (0, r),

fX,T (t) ≥ k

kτ + 2T
.
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Since we can take k arbitrarily large, the value of the density can be arbitrarily
close to 1/τ , and since τ can be taken arbitrarily close to t , the value of the density
can be arbitrarily close to 1/t . �

Suppose now that the stationary process X is time reversible, that is, if

(X(−t), t ∈ R)
d= (X(t), t ∈ R). That would, obviously, be the case for stationary

Gaussian processes. If the process satisfies also Assumption UT , then the distri-
bution of the unique supremum location τX,T is symmetric in the interval [0, T ],
meaning that τX,T

d= T − τX,T . Therefore, the density fX,T satisfies

fX,T (t) = fX,T (T − t)(4.2)

for all 0 < t < T/2 that are continuity points of fX,T . Even though the upper bound
given in part (b) of Theorem 3.1 is symmetric around the middle of the interval
[0, T ], it turns out that the bounded variation property in part (d) of Theorem 3.1
provides a better bound in this symmetric case. This bound and its optimality, even
within the class of stationary Gaussian processes, is presented in the following
result.

PROPOSITION 4.2. Let X = (X(t), t ∈ R) be a time reversible stationary sam-
ple upper semi-continuous process satisfying Assumption UT . Then the density
fX,T of the unique location of the supremum in the interval [0, T ] satisfies

fX,T (t) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2t
, if 0 < t ≤ T

3
,

1

T − t
, if

T

3
< t ≤ T

2
,

1

t
, if

T

2
< t ≤ 2T

3
,

1

2(T − t)
, if

2T

3
< t < T .

(4.3)

Furthermore, for each 0 < t < T and any number smaller than the upper bound
given in (4.3), there is a sample continuous Gaussian process satisfying Assump-
tions UT and L for which the density fX,T (t) exceeds that number.

PROOF. Since the density fX,T is right continuous, it is enough to con-
sider only continuity points of the density, and by (4.2), it is enough to con-
sider 0 < t < T/2. Then T − t is also a continuity point of the density. Denote
a = inf0<s≤t fX,T (s), b = inft<s<T/2 fX,T (s). Note that, given ε > 0, there is a
continuity point of the density u ∈ (0, t] such that fX,T (u) ≤ a + ε, and there is
a continuity point of the density v ∈ [t, T /2] such that fX,T (v) ≤ b + ε. Observe
also that

at + b(T /2 − t) ≤
∫ T/2

0
fX,T (s) ds ≤ 1

2
.(4.4)
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Furthermore, applying the total variation bound (3.3) to the interval [u,T − u]
gives us

2(a + ε) ≥ fX,T (u) + fX,T (T − u)

≥ ∣∣fX,T (t) − fX,T (u)
∣∣ + ∣∣fX,T (v) − fX,T (t)

∣∣
+ ∣∣fX,T (T − v) − fX,T (v)

∣∣ + ∣∣fX,T (T − t) − fX,T (T − v)
∣∣

+ ∣∣fX,T (T − u) − fX,T (T − t)
∣∣

≥ 2
(
fX,T (t) − a − ε

)
+ + 2

(
fX,T (t) − b − ε

)
+.

Letting ε → 0 and recalling that a ≤ fX,T (t) and b ≤ fX,T (t), we obtain

fX,T (t) ≤ a + b/2.(4.5)

Since b ≤ fX,T (t), this implies that

b ≤ 2a.(4.6)

If 0 < t ≤ T/3, then the largest value of the right-hand side of (4.5) under the
constraint (4.4) requires taking a as large as possible and b as small as possible.
Taking a = 1/2t and b = 0 in (4.5) results in the upper bound given in (4.3) in
this range. If T/3 < t ≤ T/2, then the largest value of the right-hand side of (4.5)
under the constraint (4.4) requires taking a as small as possible and b as large as
possible. By (4.6), we have to take a = 1/2(T − t), b = 1/(T − t) in (4.5), which
results in the upper bound given in (4.3) in this case.

It remains to prove the optimality part of the statement of the corollary. By
symmetry it is enough to consider 0 < t ≤ T/2. Fix such t . Let ε > 0 be a small
number and h > 0 be a large number, rationally independent of t + ε. Consider a
stationary Gaussian process given by

X(s) = G1 cos
(

2π

t + ε
s

)
+ G2 sin

(
2π

t + ε
s

)

+ G3 cos
(

2π

h
s

)
+ G4 sin

(
2π

h
s

)
, s ∈ R,

where G1, . . . ,G4 are i.i.d. standard normal random variables. The process is,
clearly, sample continuous, and it satisfies Assumption L. Furthermore, rational
independence of t + ε and h implies that, on a set of probability 1, the process X
has different values at all of its local maxima, hence Assumption UT is satisfied
for any T > 0. Note that we can write

X(s) = A1 cos
(

2π

t + ε
s+U1

)
+A2 cos

(
2π

h
s+U2

)
:= X1(s)+X2(s), s ∈ R,

where A1 and A2 have the density xe−x2/2 on (0,∞), and U1 and U2 are uni-
formly distributed between 0 and 2π , with all 4 random variables being indepen-
dent. Clearly, the leftmost location of the supremum of the process X1 is at

τ1 = (t + ε)
2π − U1

2π
,
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which is uniformly distributed between 0 and t + ε. On the event E = {0 < U2 <

π − 2πT/h} the process X2 is decreasing on [0, T ], so the value of the sum X at
the leftmost supremum of X1 exceeds the value of the sum at all the other locations
of the supremum of X1 in the interval [0, T ]. If the supremum of the sum remained
at τ1, the density of that unique supremum would be at least P(E)/(t + ε) at each
point of the interval (0, t + ε). Since P(E) → 1/2 as h → ∞, the value of the
density at t would exceed any value smaller than 1/2t after taking h large and ε

small. The location of the supremum of the sum does not remain at τ1 but, instead,
moves to τ2 = τ2(A1,A2,U1,U2) defined by

τ2 = sup
{
s ≤ τ1 :

A1

t + ε
sin

(
2π

t + ε
s + U1

)
+ A2

h
sin

(
2π

h
s + U2

)
= 0

}
.

For large h, τ2 is nearly identical to τ1, and straightforward but somewhat tedious
calculus based on the implicit function theorem shows that the above statement
remains true for τ2: the contribution of the event E to the density of the unique
supremum of the process X would exceed any value smaller than 1/2t at any point
of the interval (0, t + ε) after taking h large and ε small. We omit the details.

We have shown the optimality of the upper bound given in (4.3) in the case
0 < t ≤ T/3. It remains to consider the case T/3 < t ≤ T/2. We will use again a
two-wave stationary Gaussian process, but with a slightly different twist. Let ε > 0
be a small number, h > 0 a large number and r > 0 a fixed number that is rationally
independent of T − t + ε. Consider a stationary Gaussian process given by

X(s) = A1 cos
(

2π

T − t + ε
s + U1

)
+ 1

h
A2 cos

(
2π

r
s + U2

)

:= X1(s) + X2(s), s ∈ R,

where A1,A2,U1 and U2 are as above. As above, X is a sample continuous Gaus-
sian process satisfying Assumptions L and UT . Now the leftmost location of the
supremum of the process X1 is at

τ1 = (T − t + ε)
2π − U1

2π
,

which is uniformly distributed between 0 and T − t + ε. Further, if τ1 > t − ε/2,
then τ1 is the unique supremum of X1 in the interval [0, T ]. If the supremum of
the sum X remained at τ1, then the density of the supremum location at the point t

would be at least 1/(T − t + ε), which would then exceed any value smaller than
1/(T − t) after taking ε small. The location of the supremum of X does not remain
at τ1, but instead moves to the unique for large h point τ2 = τ2(A1,A2,U1,U2) in
[0, T ] satisfying

A1

T − t + ε
sin

(
2π

T − t + ε
τ2 + U1

)
+ A2

hr
sin

(
2π

r
τ2 + U2

)
= 0.

For large h, τ2 is nearly identical to τ1, and as above, using the implicit value
theorem allows us to conclude that, for any value smaller than 1/(T − t), the value
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of the density of τ2 in the interval (t − ε/2, T − t + ε) exceeds that value after
taking ε small and h large. This proves the optimality of the upper bound given
in (4.3) in all cases. �
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