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Abstract. We consider a planar Poisson process and its associated Voronoi map. We show that there is a proper coloring with 6
colors of the map which is a deterministic isometry-equivariant function of the Poisson process. As part of the proof we show that
the 6-core of the corresponding Delaunay triangulation is empty.

Generalizations, extensions and some open questions are discussed.

Résumé. Nous étudions un processus de Poisson planaire et sa partition de Voronoi associée. Nous montrons qu’il existe une
coloration à six couleurs de cette partition satisfaisant les deux propriétés suivantes : la coloration est une fonction déterministe
du processus de Poisson. Par ailleurs, elle commute avec les isométries du plan. Une partie de la preuve consiste à montrer que le
“6-core” de la triangulation de Delaunay associée est vide.

Des généralisations, extensions et problèmes ouverts sont discutés.
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1. Introduction

The Poisson–Voronoi map is a natural random planar map. Being planar, a specific instance can always be colored
with 4 colors with adjacent cells having distinct colors (see Figure 1). The question we consider here is whether such
a coloring can be realized in a way that would be isometry-equivariant, that is, that if we apply an isometry to the
underlying Poisson process, the colored Poisson–Voronoi map is affected in the same way. In other words, can a
Poisson process be equivariantly extended to a colored Poisson–Voronoi map process? How many colors are needed?
Can such an extension be deterministic?

Extension of spatial processes, particularly of the Poisson process, have enjoyed a surge of interest in recent years.
The general problem is to construct in the probability space of the given process, a richer process that (generally)
contains the original process. Notable examples include allocating equal areas to the points of the Poisson process
[6,7,11,12,16,18]; matching points in pairs or other groups [1,9,14,15,24]; thinning and splitting of a Poisson process
[2,3,13]. Coloring extensions of i.i.d. processes on Z

d are considered in [4].
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Fig. 1. A proper 4-coloring of a portion of the Poisson–Voronoi map.

We now proceed with formal definitions and statement of the main results. A non-empty, locally finite subset
S ⊂ R

d defines a partition of R
d , called the Voronoi tessellation, as follows: The Voronoi cell C(x) of a point x ∈ S

contains the points of R
d whose distance to S is realized at x:

C(x) = {
z ∈ R

d : d(z, x) = d(z, S)
}
.

Points in the intersection C(x) ∩ C(y) have equal distance to x and y. It follows that the cells cover R
d and have

disjoint interiors.
For the purposes of coloring, we consider the adjacency graph G of these cells, with vertices S and edge (x, y) if

C(x)∩C(y) �= ∅. In the case d = 2, this graph is called the Delaunay triangulation, and is a triangulation of the plane
for generic point sets. (In general, this graph is the 1-skeleton of a simplicial cover of R

d .) A k-coloring of the Voronoi
tessellation is a proper k-coloring of the Delaunay triangulation, i.e. an assignment of one of k colors to each cell so
that adjacent cells have distinct colors. Note that if S does not contain four or more co-cyclic points, then no more
than three cells meet at a single point. This is a.s. the case for the Poisson process. However, for greater generality one
needs the more careful definition, where (x, y) is an edge if |C(x) ∩ C(y)| > 1. This ensures that the graph is planar.

Given a standard (unit intensity) Poisson process P ⊂ R
2, the Poisson–Voronoi map is the Voronoi map of its

support. By the 4 color theorem, the Poisson–Voronoi map can always be properly colored with 4 colors. Our main
question is whether it is possible to color the Poisson–Voronoi map in an isometry equivariant way and if so, how
many colors are needed.

To make this precise, let M be the space of locally finite sets in R
d , endowed with the local topology and Borel

σ -algebra.3 Let P be the probability on M which is the law of the Poisson process. Each realization P ∈ M has the
Delaunay graph associated with it. A (proper) k-coloring of P is a disjoint partition P = ⋃k

i=1 Pi such that if x ∼ y

in the Delaunay graph of P , then x, y are not in the same Pi . Thus the space of k-colored maps is a subset of M
k .

As in other works on extensions of spatial processes, we consider both deterministic and randomized versions of
our main object of study, as follows:

A deterministic k-coloring scheme of the Voronoi map is a measurable function F : M → M
k such that F(P ) is

P-a.s. a k-coloring of P . Informally, given the point process, F assigns a color to each point so that the result is a
proper coloring.

A randomized k-coloring scheme of the Voronoi map is a probability measure μ on M
k , supported on proper k-

colorings, such that the law under μ of P := ⋃k
i=1 Pi is P. Given such a measure μ, one may consider μ conditioned

3It is also common to let M be the set of non-negative integer valued measures on R
d with μ({x}) ∈ {0,1}. The distinction will not be important to

us.
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on P . This conditional distribution is defined P-a.s., and is supported on k-colorings of P . Thus a randomized k-
coloring can be interpreted as assigning to each P ∈ M a probability measure on k colorings of P . Note that any
deterministic coloring scheme is also a randomized one, with μ being the push-forward of P by F .

A deterministic coloring scheme is said to be isometry equivariant if every isometry γ of R
d , acting naturally on

M and M
k , has γF(P ) = F(γ P ). For randomized schemes equivariance is defined by μ ◦ γ = μ. These definitions

coincide for deterministic schemes.

Theorem 1.1. There exists a deterministic isometry equivariant 6-coloring scheme of the Poisson–Voronoi diagram
in R

2.

The requirement of determinism complicates things significantly. In contrast, we have the much simpler result

Proposition 1.2. There exists a randomized isometry equivariant 4-coloring scheme of the Poisson–Voronoi diagram
in R

2.

In dimensions other than 2 the problem is not as interesting.

Proposition 1.3. In R, there is a randomized isometry equivariant coloring of the Poisson–Voronoi map with 2 colors
and a deterministic one with 3 colors. In both cases this is the best possible.

In R
d for d > 2, the chromatic number of the Poisson–Voronoi map is a.s. ∞.

The rest of the paper is organized as follows: In Section 2 we outline the proof of Theorem 1.1, and present
our deterministic coloring algorithm and the two main propositions needed to prove its correctness. In Section 3 we
discuss related questions: randomized colorings, dimensions other than 2, and mention some open problems. Section 4
contains the proof of our main theorem.

2. Proof outline

We outline the proof of Theorem 1.1. The idea is to find an isometry equivariant adaptation to the Voronoi map of a
6 coloring algorithm for finite planar graphs, originating in Kempe’s attempted proof of the four color theorem. By
Euler’s formula it is known that any finite planar graph G has a vertex of degree at most 5. The algorithm proceeds
by iteratively removing such a vertex until the graph is empty, then putting back the vertices one by one in reverse
order. As each vertex is put back into the graph, it is assigned a color distinct from those already assigned to any of its
neighbors. Since a vertex has at most 5 neighbors when it is put back, this produces a proper 6 coloring.

To adapt this algorithm to the Poisson–Voronoi isometry equivariant setting, one must deal with several issues.
First, there exist infinitely many vertices of degree at most 5 and there is no way to pick just one of them in an
isometry-equivariant way. Second, even if we iteratively remove all vertices of degree at most 5, the graph will not
become empty after any finite number of steps. Finally, when returning the vertices, it is not clear in what order to do so
(which may be important if some of them are neighbors). We need a way to order them which is isometry-equivariant.

We overcome these issues by proving that for a Poisson–Voronoi map, the following two properties hold almost
surely. Let G = (V ,E) be the Delaunay graph formed by the Poisson–Voronoi map. For a cell v ∈ V write A(v) for
its area as a planar region. Inductively, define G0 = G and Gi+1 as the graph formed from Gi by removing all vertices
of degree (in Gi ) at most 5.

Proposition 2.1. There exists an integer M > 0 such that, almost surely, GM contains only finite connected compo-
nents.

Proposition 2.2. Almost surely, all cells have different areas and there is no infinite path in G with decreasing areas.

We now exhibit a deterministic algorithm which takes as input a graph G = (V ,E) with chromatic number at
most 6 and an area function A :V → R

+ satisfying the two propositions above and returns a proper 6-coloring of the
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graph. Since the algorithm only depends on the graph structure G and areas A which are preserved by isometries, it
is clear that when applying it to the Delaunay graph of a Poisson–Voronoi map we will get a deterministic isometry-
equivariant 6-coloring.

The algorithm starts with all vertices uncolored. Once a vertex is colored, its color never changes. Consider first
GM . Each of its components is finite and hence may be colored with 4 colors in an isometry equivariant way (e.g. take
the minimal coloring in lexicographic order, when the vertices of the component are ordered by their area).

Next, having colored Gk , we color Gk−1 inductively. Once G = G0 is colored, we are done. Consider the vertices
of Gk−1 \ Gk . Each has at most 5 neighbors in Gk−1. We order these vertices by increasing areas and wish to color
them in order, i.e., coloring a vertex v only after its neighbors of smaller area have been colored. The color of these
neighbors is determined using the same method in an iterative manner. Proposition 2.2 implies that there are just
finitely many vertices that need to be considered before v (see also Lemma 4.19). Hence, going over these finitely
many vertices in the order of their areas, we color each one by a color which is unused by its neighbors (say, the
minimal such color) until we finally color v.

Proposition 2.1 is more difficult than Proposition 2.2 and the main lemma required for its proof (Lemma 4.9) says
that if we consider a square of side length 6R and iteratively remove vertices inside this square having degree at most 5,
then the square of side length 2R with the same center will eventually become empty with probability tending to 1 as
R → ∞. This is shown using several probabilistic estimates and uses of Euler’s formula. We then show that for well
separated squares of side length 6R, the events just described, applied to these squares, are nearly independent. A small
variation on the above event (requiring that the boxes are also sealed; see below) makes separated boxes completely
independent. Proposition 2.1 then follows by standard k-dependent percolation arguments. Proposition 2.2 is proved
using a similar but easier k-dependent percolation argument.

As a corollary of the proofs of the above propositions we obtain that our coloring is finitary with exponential tails.
That is, for any given point p ∈ R

2, the probability that the color of the cell containing p is not determined by the
points of the Poisson process within a ball of radius R around p is at most Ce−cR for some C,c > 0. See remark after
the proof of the main theorem for more details.

Note that instead of the area A, we could use any other parameter of the cell (e.g. diameter) which satisfies Propo-
sition 2.2 (in fact, one can relax the requirement that all cells have different areas to the requirement that adjacent cells
have different areas). The sole purpose of A is to induce a well founded order on cells which would “break ties” when
putting back vertices. We chose to use the area because it is a very natural parameter to consider, but it is as easy to
prove the required properties for other parameters (see Section 4.2). A related result is that there is no infinite path
where each Poisson point is the closest to the previous one in the path [8].

3. Generalizations, extensions and questions

In this section we explain some variants and extensions of the question and settings discussed in our paper.

3.1. Randomized colorings

The fact that there is a randomized 4-coloring scheme of the Poisson–Voronoi map follows from the four color theorem
by a soft argument. This involves an averaging consideration of ergodic theory and works for any amenable transitive
space.

Proof of Proposition 1.2. We first claim that the 4-color theorem implies existence of a measurable function F (not
necessarily equivariant) which assigns each Voronoi diagram a 4-coloring. One such map is the lexicographically
minimal proper coloring (when the centers are ordered by their distance to the origin). It is measurable since it is the
limit of the lexicographically minimal coloring of the n nearest centers.

To get a randomized equivariant coloring, let τx be a translation by x ∈ R
2, ρθ a rotation by θ , and ε the reflection

about the x axis. Let σ = τx ◦ρθ ◦ εu be a random isometry, where u ∈ {0,1}, θ ∈ [0,2π] and x ∈ B(0,R) are uniform
and independent.

This defines a probability measure FR on 4-colored maps by conjugating F by σ . It is clear (due to compactness
of the space of distributions over 4-colorings) that {FR} has a subsequential weak limit as R → ∞, and any such limit
is an isometry equivariant 4-coloring. �
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Explicit randomized colorings
While the previous argument is clearly optimal with respect to the number of colors used, it is not constructive. It is
instructive to consider an explicit construction with 7 colors. The construction below will be algorithmic, i.e. there is
an algorithm, that determines the color of each cell by accessing a finite (but unbounded) number of cells along with
a random independent bit for each cell.

As a first stage, we explain how to get an 8-coloring. Start by assigning a fair coin toss to each cell independently.
Consider the subgraph of H ⊂ G where an edge is present if its endpoints have the same coin result. The connected
components in this graph are components of site percolation on G with p = 1/2. By a result of Zvavitch [25], almost
surely all connected components of both the heads and tails will be finite (in fact, Bollobás and Riordan [5] proved
that the critical percolation threshold is indeed p = 1

2 ).
Color each “head” component independently with colors {0,1,2,3} in some deterministic isometry-equivariant

manner which is a function only of the cells of this component (e.g., again, a lexicographically minimal coloring with
vertex order based on cell areas). Color the “tail” components with {4,5,6,7}. The result is a.s. a proper 8-coloring
of G. The randomness comes exclusively from the coin tosses. The color of a cell is determined by its connected
component in H (and the size of the corresponding cells).

A trick suggested by Gady Kozma [17] reduces the number of colors required to 7 as follows. A finite planar graph
embedded in the plane has a unique unbounded face, called the external face. Attaching an additional vertex to the
vertices of the external face preserves planarity. Thus a finite planar graph can be 4-colored so vertices of the external
face do not use one specified color. Now color the “heads” components using {0,1,2,3} so that color 0 does not
appear at vertices of the external face of any component. Color the “tails” components using {0,4,5,6} with the same
constraint. Whenever two connected planar graphs are jointly embedded in the plane, one is contained in the external
face of the other. Thus when a “tails” component is adjacent to a “heads” component, it is impossible for them to have
adjacent vertices colored 0, and the coloring is proper.

As noted above, in order to determine the color of any cell, it is sufficient to know the map structure and the
coin-tosses within a ball of a certain random radius around this cell. In addition, if one modifies the above algorithm
by initially performing fair-independent rolls of a 3-sided dice, instead of coin tosses (thus obtaining a proper 10-
coloring in the final outcome, after applying Kozma’s trick) then the distribution of the aforementioned radius will
have exponential tails (see [5]). The radius for our deterministic 6-coloring also has exponential tails, as noted in the
proof outline.

3.2. 1-dimensional Poisson–Voronoi map

The deterministic isometry equivariant chromatic number of a graph may well be different from its usual chromatic
number. For example, consider Zd translated by a uniform random variable in [0,1]d and rotated by a uniform random
angle in [0,2π]. Clearly, the distribution of this random graph is isometry invariant and it is almost surely 2-colorable.
Yet any deterministic isometry equivariant coloring must assign the same color to all vertices and hence cannot be
proper.

A different example is furnished by the 1-dimensional Poisson–Voronoi diagram, i.e., the “Voronoi” map composed
of line segments around the points of a one-dimensional standard Poisson process. This map is 2-colorable, but we
claim that its deterministic isometry equivariant coloring number is 3. First, it is seen to be at most 3 by considering
the following algorithm: First color green all cells which are shorter than both their neighbors. Now, from each green
cell, proceed to alternately color its neighbors to the right by red and blue, until the next green cell is reached. This
produces a deterministic translation equivariant proper 3-coloring. To get an isometry equivariant coloring, instead of
coloring red and blue from left to right, start from the shorter of the two green cells bounding the current stretch of
uncolored cells.

The following lemma states that at least 3 colors are needed. The argument is standard, see e.g. [14] for a similar
context.

Lemma 3.1. There is no deterministic translation equivariant proper 2-coloring of the 1 dimensional Poisson–
Voronoi map.

Proof. In order to reach a contradiction, suppose A is such a coloring scheme. Since A is measurable there exists an
integer L and a function B : M → {0,1} such that B depends only on the point process in the interval [−L,L] and the
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probability that B is the color given by A to the cell of the origin is at least 7
8 . Consider also another point x > 2L.

By translation equivariance, with probability at least 7
8 the A-color of the cell of x is given by B applied to the map

shifted by x, which is determined by the centers in [x − L,x + L].
Hence, with probability at least 3

4 the A-color of both these cells agrees with a function of the centers in
[−L,L] ∪ [x − L,x + L]. However, The A-colors of these cells determine the parity of the number of cells (i.e.
centers) between them. But for the Poisson process, the parity of the number of centers in [L,x − L] is independent
of the process in [−L,L] ∪ [x − L,x + L], and tends to uniform on {0,1} as x → ∞. When x is large enough this
gives a contradiction. �

We remark that a variant of the 3-coloring above can be used to color any invariant point process on R that is not
an arithmetic progression (so that not all points are isomorphic). Furthermore, the proof of impossibility with 2 colors
also applies to more general processes as we only use the fact that the parity of the number of points in [L,x − L] is
not (nearly) determined by the process in [−L,L] and [x − L,x + L] for x large enough.

3.3. Higher dimensional Poisson–Voronoi maps

A natural generalization of our setting is to consider the 3-dimensional Poisson–Voronoi diagram. In this case it is not
obvious whether one can properly color the diagram with finitely many colors even without the isometry equivariant
condition. Dewdney and Vranch [10], and Preparata [22] discovered that n Voronoi cells in R

3 may be all pairwise
adjacent. Indeed, [10] shows that in R

3, the Voronoi cells of (xi, x
2
i , x3

i )ni=1 satisfy this for any {x1, . . . , xn}. Since
pairwise adjacency is preserved by sufficiently small perturbations, and since such configurations a.s. appear in the
Poisson process, this implies that the chromatic number of the 3-dimensional Poisson–Voronoi diagram is almost
surely infinite. Higher dimensional analogues also exist.

Following Proposition 2.1, one can still ask, as a weaker result than having an isometry equivariant coloring, what
is the minimal k such that if we iteratively remove all cells having degree at most k we remain with finite components
only? Such a k necessarily exists by arguments similar to those of Proposition 2.1. (Simulations indicate that k = 12
may suffice in R

3.)

3.4. Ramblings and open questions

Fewer colors
Is there a deterministic 4-coloring of the Poisson–Voronoi map? Theorem 1.1 shows that 6 colors suffice, while
obviously at least 4 are needed. Recent work by Ádám Timár [23] shows the existence of deterministic, equivariant
5-colorings using different methods. In order to get a 5-coloring using our methods it suffices to prove an analogue of
Proposition 2.1 – that after finitely many stages of repeatedly removing vertices of degree at most 4 from the Delaunay
graph the remaining graph does not contain an infinite connected component (this implies that the 5-core, that is, what
remains after infinitely many such stages, has only finite components).

To show this, it is enough to prove a statement similar to Lemma 4.9 (roughly put, that the probability that a large
component of the 5-core intersects the boundary of a box of size R is at most ε for some value of R). Here, R and ε

can be given explicit numerical values, hence our methods reduce this question to a finite computation. Simulations
suggest that this is indeed the case. Back of an envelope computations suggest R = 25 and ε = 0.01 will do.

A small difficulty involved in the case of 5 colors is that not every vertex is removed at some finite stage. Indeed,
the 5-core of the Delaunay triangulation will not be empty, since it contains finite sub-graphs with minimal degree 5.
The smallest such sub-graph is the dodecahedron, involving 12 vertices.

Applying the same proof for 4 colors cannot work, since the 4-core of the Delaunay triangulation has an infinite
component. Indeed, a vertex of degree 3 is necessarily in the interior of the triangle formed by its neighbors. It is
straightforward to check that there are no infinite chains of triangles each one inside the next (since the probability of
long edges decays exponentially; see also Lemma 4.16 below). Therefore, one can consider all the maximal triangles
in the Delaunay triangulation. This is also a triangulation of the plane, since every triangle is contained in a maximal
one, and these are all disjoint. All the vertices of this triangulation also belong to G∞ (since none of them are in the
interior of another triangle), and they are all in the same connected component, which is therefore infinite.
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Finally, while we only prove that some GM (again, deleting vertices of degree < 6) has only finite connected
components, simulations suggest that M = 2 suffices while M = 1 does not. In fact, it appears sufficient to delete in
the second iteration roughly half the vertices of degree at most 5. Can one prove any of these assertions?

Other properties of colorings
If there is no deterministic 4-coloring, one could consider intermediate properties between deterministic and un-
restricted randomized colorings. For example, one may seek colorings that are ergodic, mixing, finitary, etc. Such
properties were first brought to our attention by Russ Lyons [21].

Other planar processes
It might be more interesting to consider other translation or isometry equivariant graph processes in the plane. These
could be the Voronoi tessellation of some point process or more general planar graph processes. Except for some
obvious counterexamples (see remarks before and after Lemma 3.1), is it true that every such process can be colored
deterministically with 4 colors? The aforementioned work of Timár [23] shows the existence of deterministic 5-
colorings.

Hyperbolic geometry
What can be done in the hyperbolic plane? Our argument can be adapted to give a deterministic coloring. However,
the number of colors diverges as the density of the Poisson process tends to 0, since the average degree diverges.
For high enough density we can get a deterministic 6-coloring. Is there a (deterministic or randomized) k-coloring
with k independent of the density? While the Poisson–Voronoi map is 4-colorable by Proposition 1.2, our randomized
constructions use amenability and fail for the hyperbolic plane.

Prescribed color distribution
What color distributions are achievable (with deterministic or randomized colorings)? We only show that coloring
schemes exist such that the color of (say) the cell of 0 is supported on a finite set. If one asks for a particular distribution
the question is interesting also in R

d for d > 2. For example, in R
d , it is possible to get a coloring so that color i

appears with exponentially (in i) small probability. What is the minimal possible entropy of the color of a cell?

4. Proof of the main result

In this section we prove Theorem 1.1. As explained in the proof outline, the proof is based on Propositions 2.1 and 2.2.
These in turn will be proved by reduction to k-dependent percolation. Section 4.1 below gives the basic fact about
k dependent percolation we shall need and introduces sealed squares, the tool which allows us to deduce that events
taking place in distant locations are almost independent. In Section 4.2 we prove the simpler Proposition 2.2 and
in Section 4.3 the more difficult Proposition 2.1. Section 4.4 shows how to deduce the main result from the two
propositions.

Notation. Throughout we shall denote by G = (V ,E) the Delaunay graph embedded in the plane where V is the
set of points of the Poisson process and the edges are straight lines connecting these points (this can be seen to be a
planar representation of G). We will sometimes call the vertices centers and say that a Voronoi cell is centered at its
vertex. We also let A :V → R+ be the function which assigns to each vertex the area of the corresponding Voronoi
cell. For x ∈ R

2 we denote Q(x,R) := x + [−R,R]2, i.e., a square centered at x of side length 2R. We let BR(x) or
B(x,R) stand for a closed ball of radius R around x (in the Euclidean metric). We write d(x, y) for the Euclidean
distance between x, y ∈ R

2. Similarly d(x,U) := inf{d(x, y)|y ∈ U} for sets U ⊆ R
2.

4.1. Dependent percolation and sealed squares

A process {Ax}x∈Z2 is said to be k-dependent if for any sets S,T ⊂ Z
2 at �∞-distance at least k, the restrictions of A

to S and to T are independent. Our processes will always take values in {0,1}. Vertices x ∈ Z
2 with Ax = 1 are called

open (and others are closed). An open component is a connected component in Z
2 of open vertices.
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A well known result of Liggett, Schonmann and Stacey [20] states that k-dependent percolation with sufficiently
small marginals (EAx ) is dominated by sub-critical Bernoulli percolation. The following simple lemma is weaker,
and is a standard argument in percolation theory. We include a proof for completeness:

Lemma 4.1. For any k there is some p0 = p0(k) < 1 such that if {Ax}x∈Z2 is k-dependent and for all x, P(Ax =
1) ≤ p0, then

P(∃ an infinite open component) = 0.

Proof. The number of simple paths of length L starting at a given x ∈ Z
2 is bounded by 4L. Any simple path of length

L contains at least L

k2 coordinates which are pairwise k-separated. Thus, the probability that any given path of length

L is open is at most p
L/k2

0 . The expected number of open paths originating at x is bounded by

4L · pL/k2

0 = (
4p

1/k2

0

)L
.

If p0 < 4−k2
this quantity tends to 0 as L tends to infinity. However, an infinite open component must contain an open

path of any length. �

Definition 4.2. A set S ⊂ R
2 is called α-sealed w.r.t. the point configuration V if d(x,V ) ≤ α for every point x ∈ ∂S.

Thus a set is sealed if the point process is not far from any point on the boundary of S. This implies that the Voronoi
cells of V which intersect the boundary of S are centered near the boundary. The purpose of this term is that it bounds
the dependency between the Voronoi map inside and outside the set. For a set S we denote

Sα = {
x ∈ R

2: d(x,S) ≤ α
}

i.e. the closed (Euclidean) α-neighborhood of S (so that α-sealed is equivalent to ∂S ⊂ V α). Note that being α-sealed
is determined by V ∩ (∂S)α (the points in the α-neighborhood of the boundary). We denote by S−α the points at
distance at least α from the complement Sc (the idea is that if S = BR(x) then Sα = BR+α(x) for any α ≥ −R).

Lemma 4.3. Condition on the points of V ∩ (∂S)α . On the event that S is α-sealed, the Voronoi map in S−α is
determined by the process V ∩ Sα . Moreover, the cell as well as all neighbors of x ∈ V ∩ S−α are contained in Sα .

Proof. The lemma follows from the following simple geometrical fact: If V ∩ (∂S)α is such that S is α-sealed, then
the center of the cell of any z ∈ ∂S is in (∂S)α . Thus the cells of centers in (∂S)α separate S−α from R

2 \Sα . It follows
that the cell of x ∈ S−α is contained in S, and is adjacent only to cells centered in Sα . �

Next we argue that squares are likely to be α-sealed

Lemma 4.4. The probability that Q(0,R) is not α-sealed is at most

�8R/α�e−πα2/4.

Proof. Take an α/2 net in ∂Q(0,R), of size �8R/α�. Each of these points fails to have a center within distance α/2
from it with probability e−πα2/4. If none fail to have such a nearby center then the square is α-sealed. A union bound
gives the claim. �

4.2. Areas behave – Proposition 2.2

Our present goal is to prove Proposition 2.2. To this end we need two properties of the areas of Poisson–Voronoi cells.
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Lemma 4.5. Let μ be the law of the area of the cell containing the origin, then μ is absolutely continuous w.r.t. the
Lebesgue measure.

A partition of R+ is a finite union R+ = ⋃
i<M [xi, xi+1), given by a sequence 0 = x0 < x1 < · · · < XM = ∞. The

following is an immediate corollary of Lemma 4.5.

Corollary 4.6. For any R,ε > 0 there is some sufficiently refined partition A of R+ such that for every interval I ∈ A
the probability that there exists v ∈ V ∩ BR(0) with A(v) ∈ I is at most ε.

Proof. Given R and ε, there is a finite S ⊂ BR(0) such that with probability at least 1 − ε
2 every cell of every

v ∈ V ∩BR(0) contains a point in S. Let A be a partition of R+ such that μ(I) < ε
2|S| for all I ∈ A. Then for all I ∈ A

the probability that there exists v ∈ V ∩ BR(0) with A(v) ∈ I is bounded by ε
2 + ε

2|S| |S| = ε. �

However, just knowing that the area distribution is continuous is not enough, since the areas of different cells are
not independent. For this reason we also need.

Lemma 4.7. Almost surely, all cells have different areas.

These two lemmas are intuitively obvious, though writing a precise proof is delicate. It is possible to get a somewhat
simpler proof by replacing the area of a cell by some other quantity. For example, the total distance to the neighbors
in the Delaunay graph works. However, the distance to the nearest neighbor does not work since there are pairs of
centers that are mutually closest, and so have the same distance to their nearest neighbor.

Proof of Lemma 4.5. The idea of the proof is this: let x be the center of the cell of the origin and let y be the center
of an adjacent cell. Conditioned on the location of all centers other than y, and on the direction of the vector y − x,
we get that the area of x is an a.e. differentiable function of r = ‖y − x‖, the distance between x and y, with positive
derivative. Thus, μ conditioned on this σ -algebra is a.s. absolutely continuous w.r.t. Lebesgue and so μ itself is also
absolutely continuous.

To make this precise, we partition R
d into cubes of size εd centered around εZ

d . We condition on the number of
points of the Poisson process in each of these cubes. We then use finer and finer partitions (say, with εi = 2−i ) until
we reach a partition which already reveals in what cube lies the center of the cell of the origin (i.e. x) as well as its
nearest neighbor (i.e. y). We then continue according to the previous paragraph: we condition on the exact location of
all points of the Poisson process except y and on the direction of y −x. After that we get that A(x) is now a monotone
function of r = ‖y − x‖ and its derivative is equal to the length of the intersection of the cells of x and y, which is
strictly positive, with probability 1. Since under this conditioning, the distribution of r is absolutely continuous w.r.t.
Lebesgue measure on some interval we get that the conditioned μ is also absolutely continuous w.r.t. Lebesgue and
so is μ itself. �

Proof of Lemma 4.7. The proof is similar to that of Lemma 4.5. Fixing any two points, a and b we wish to show
that the probability that they belong to different cells with equal areas is zero. To that end, we find the two centers
of the cells, x and y and find a third cell, centered at z, which is adjacent to one of these cells, say, x, but not to
the other. (Such z exists for any x, y in any planar triangulation with no unbounded face.) Now A(x) depends on the
exact location of z, as in the proof of Lemma 4.5, but A(y) does not. Of course, all this needs to be done using fine
partitions, etc.

The lemma now follows by considering all possible values for a and b with rational coordinates. �

Note that the proof of Lemma 4.7 above does not apply as is to higher dimensions, since in such dimensions, there
are configurations with two distinct cells having the same neighbors. Of course, Lemma 4.7 itself remains valid.

We now prove Proposition 2.2. The key idea is that cells with areas in any sufficiently small interval are dominated
by sub-critical percolation.
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Proof of Proposition 2.2. We show that there is some sufficiently refined partition A of R+, such that a.s. for any
I ∈ A there is no infinite path in G with all areas in I . The proposition will follow since an infinite path with decreasing
areas will have all areas in the same interval of A from some point on.

For some R to be determined later, consider the lattice L = (2RZ)2. For an interval I , if there is an infinite path of
cells with areas in I , then there is an infinite path {xi} in L so that every Q(xi,R) intersects such a cell. The probability
that a square intersects a cell with area in I can be made arbitrarily small, but these events are not independent. To
overcome this we use sealed boxes.

For an interval I , call a point x ∈ L open if either Q(x,R) intersects a cell with area in I , or if either one of
Q(x,R + α) or Q(x,R + 3α) is not α-sealed. If there is an infinite path in G with areas in I then there is also an
infinite open path in L.

The event that the squares are sealed depends only on the Poisson process within Q(x,R + 4α). We claim that on
the event that they are sealed, the areas of cells intersecting Q(x,R) also depend only on the process in Q(x,R +4α).
Taking α = R/8 it follows that the process of open boxes is 2-dependent. To see this claim, note that the center of
any cell intersecting Q(x,R) must be within Q(x,R + 2α). The second seal implies that the cell of this center is
contained in Q(x,R + 4α) and determined by the process in this box.

To complete the proof, take some ε > 0 so that a 2-dependent percolation with marginal ε is sub-critical (using
Lemma 4.1). Using Lemma 4.4, fix R large enough so that with α = R/8,

P
(
Q(x,R + iα) is not α-sealed

)
< ε/3 for i = 1,3.

Next, using Corollary 4.6 take a partition A fine enough that for any I ∈ A, the probability that there exists v ∈
V ∩ Q(x,R + 2α) with area in I is at most ε/3. Then for each I ∈ A, the probability that any fixed x is open is at
most ε and so the process of open points does not contain an infinite open path. �

4.3. Deleting low degree vertices – Proposition 2.1

In this section we prove Proposition 2.1. Throughout the section R > 0 is a parameter, assumed large enough as
needed for the calculations which follow. We also define the square annuli A(x, r,R) := Q(x,R) \ Q(x, r).

We now introduce our main object of study in this section:

Definition 4.8. Inductively, let GR
0 := G and let GR

n+1 denote the graph obtained from GR
n by deleting all vertices in

Q(0,3R) with GR
n -degree at most 5. Let GR∞ := ⋂∞

n=0 GR
n .

Thus we iteratively delete vertices of degree at most 5, but only those vertices contained in a fixed large square. We
aim to prove the following

Lemma 4.9. We have P(GR∞ ∩ Q(0,R) �= ∅) −→
R→∞ 0.

Corollary 4.10. For any ε > 0, there are R,M so that P(GR
M ∩ Q(0,R) �= ∅) < ε.

Proof. Pick R such that P(GR∞ ∩ Q(0,R) �= ∅) < ε. Since

{
GR∞ ∩ Q(0,R) �= ∅

} =
⋂
M

{
GR

M ∩ Q(0,R) �= ∅
}
,

the bound will hold for that R and sufficiently large M . �

Before embarking on the proof of Lemma 4.9, let us explain how one can get a similar and simpler result when
deleting vertices of degree at most 6 (thus yielding a deterministic 7-coloring). Suppose that GR∞ contains a vertex
in Q(0,R). By Lemma 4.13 GR∞ is unlikely to contain edges longer then logR within Q(0,3R). All vertices of GR∞
in Q(0,3R) have degree at least 7. It is an easy consequence of Euler’s formula that a planar graph with minimal
degree 7 has positive expansion (the boundary of any set is proportional to its size). This implies (in the absence of
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long edges) that the number of vertices of GR∞ in Q(0,3R) is exponential in R. Of course, this too is unlikely. When
deleting vertices of degree at most 5, the remaining graph has minimal degree 6, which is not as obviously unlikely.
However, this can only happen if G contains a large section of the triangular lattice, which we rule out below.

We begin with two combinatorial lemmas on planar maps. For any finite graph H , let LD = LD(H) be the number
of vertices of low-degree, namely at most 5. For a finite simple planar map H , let ME = ME(H) be the number of
“missing edges”: the number of edges that can be added to the map while keeping it planar and simple. A face of size
k can be triangulated using k − 3 edges, after which no further edges can be added, and so ME = ∑

f (deg[f ] − 3)

(where the sum also includes the external face and where we assume |H | ≥ 3 so that deg[f ] ≥ 3 for all faces).

Lemma 4.11. For any finite, connected and simple planar map H with |V [H ]| ≥ 3 we have LD ≥ 2
5 ME + 12

5 .

Proof. Add ME edges to make the map into a triangulation. Let d ′
v be the resulting vertex degrees, than we have∑

v(6 − d ′
v) = 12 (using Euler’s formula combined with the triangulation property 3F = 2E = ∑

d ′
v), and therefore∑

v(6 − dv) = 12 + 2ME. The claim follows since low-degree vertices contribute at most 5 to this sum, and high
degree vertices at most 0, so that

∑
v(6 − dv) ≤ 5LD. �

Lemma 4.12. Fix ρ > � > 0. Let H be a simple planar graph embedded in R
2 satisfying the following:

1. All vertices in Q(0,3ρ) have degree at least 6.
2. All edges of H with an endpoint in Q(0,3ρ) have length at most �.
3. There exists a vertex of H in Q(0, ρ).

Then H has at least 8ρ2

5�2 vertices in Q(0,3ρ).

Note that the order of magnitude (ρ/�)2 is achieved by a triangular lattice with edge length �.

Proof of Lemma 4.12. We assume that H has only finitely many vertices in Q(0,3ρ) since otherwise the conclusion
is trivial. Fix a vertex v ∈ Q(0, ρ). For t ∈ [ρ,3ρ], let H ′

t be the sub-graph induced by vertices inside Q(0, t), and let
Ht be the connected component of v in H ′

t .
Note that the connected component of v in H is not contained in Q(0,3ρ) since otherwise it would be a finite,

connected and simple planar map with all degrees at least 6 which is impossible by Lemma 4.11. By our assumptions,
all vertices of Ht with neighbors in H \ Ht (which includes all vertices of degree at most 5 in Ht ) must be in the
annulus A(0, t − �, t). It follows that the external face of Ht surrounds v and exits Q(0, t − �) and so has degree at
least 2(t−ρ−�)

�
. Thus

ME(Ht ) ≥ 2(t − ρ − �)

�
− 3 = 2(t − ρ)

�
− 5.

By Lemma 4.11, the number of vertices in A(0, t − �, t) is at least 2
5 ME(Ht ) + 12

5 ≥ 4
5

t−ρ
�

+ 2
5 . Let M = �2ρ/��.

Splitting A(0, ρ,3ρ) into annuli A(0, ρ + (k − 1)�, ρ + k�) for k = 1, . . . ,M one finds that the number of vertices of
H in Q(0,3ρ) is at least

1 +
M∑

k=1

(
4

5
k + 2

5

)
= 2(M + 1)2 + 3

5
≥ 2(2ρ/�)2

5
.

�

Next, a simple lemma showing that long edges in G are unlikely.

Lemma 4.13 (No long edges). The probability of having an edge of length at least � in E[G] which intersects the
square Q(0, ρ) is at most

(√
32ρ

�
+ 8

)2

e−�2/32.



338 O. Angel et al.

Proof. Suppose (x, y) were such an edge, then some disc with x, y on its boundary has no points in its interior.
Consequently at least one of the two semi-circles with diameter (x, y) has no points in its interior. This implies that
there is an empty disc B�/4(z) for some z ∈ Q(0, ρ + �) (z might be outside Q(0, ρ) since one of x, y may be outside
the square).

Cover Q(0, ρ + �) by � ρ+�

�/
√

32
�2 squares of side length �/

√
32. It follows that if such a long edge exists than one of

the squares (the one containing z) must be empty, and the claim follows. �

We continue by showing that after some low-degree vertices are deleted, many large holes remain in the graph.

Definition 4.14. Call a square Q(x,ρ) a typical square if there exists some vertex v ∈ Q(x,ρ) such that:

1. deg[v] < 6.
2. v is not in the interior of any triangle in the Delaunay Graph G.

Otherwise we call the square rare.

To make this clear, the second condition states that there are no v1, v2, v3 ∈ V which are pairwise adjacent in G

such that v is contained in the interior of the triangle (v1, v2, v3).

Lemma 4.15. There exist points v ∈ V of degree at most 5 that are not contained in the interior of any triangle.

Proof. Since the event is invariant, its probability is either 0 or 1, by ergodicity of the Poisson process.
Consider the following event: There are exactly 5 points in B(0,3), located within 0.1 of each of (0,0), (0,1),

(0,−1), (1,0), (−1,0), and additionally, for every n > 3, the ball B(0,1.5n) is 1.5n−10 sealed. It is easy to check that
this event has positive probability.

On this event, the point near the origin has degree 4. If {x, y, z} is a triangle in the Voronoi map of diameter R with
the point near 0 in its interior, then there is an empty semi-disc with diameter R within distance R of 0. On our event,
this does not occur. �

Lemma 4.16 (Rare squares are rare). For some α,β > 0 we have P(Q(x,ρ) is rare) ≤ α exp(−βρ).

Proof. We may assume without loss of generality that ρ ≥ C for some large C > 0 (otherwise the claim is trivial).
Let γ = √

ρ. The square Q(0, ρ) contains at least cρ disjoint squares Q(x,4γ ) for some c > 0. Call each of these
squares good if it satisfies the following:

1. Q(x,3γ ) is γ -sealed.
2. Q(x,γ ) contains a vertex v of degree at most 5 which is not in the interior of any triangle with vertices in Q(x,2γ ).

Note that by Lemma 4.3, the event that Q(x,4γ ) is good is determined by the Poisson process within it, and so these
events are all independent. For large γ , Q(x,3γ ) is likely to be γ -sealed. By the previous lemma, Q(x,γ ) is likely
to contain a vertex as needed, hence each square has probability at least p > 0 of being good (independent of ρ, for ρ

large enough). Thus the probability that no square within Q(0, ρ) is good is at most e−βρ for some β > 0.
If the low-degree vertex in a good square is contained in a triangle of G then an edge of that triangle must have

length at least γ . Either the triangle intersects Q(0, ρ), which by Lemma 4.13 has probability at most C1ρe−ρ/32 ≤
C2e−ρ/33 for some C1,C2 > 0. Or the triangle contains Q(0, ρ) in its interior, in which case for some integer m ≥ 1,
its longest edge has length at least mρ and intersects Q(0,mρ). By a union bound, this has probability at most∑∞

m=1 C2e−m2ρ2/33 ≤ C3e−ρ2/33 for some C3 > 0. �

In what follows, define

L := logR, r := R1/3.

L will be a bound on lengths of edges that appear in Q(0,3R) (and can be reduced to C
√

logR for some large C).
The role of r is more involved, and there is much freedom in its choice. Primarily, we consider a partition of boxes of
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size of order R into boxes of size r . For simplicity, we assume that 6R/r is an odd integer (R can be arbitrarily large
under this condition).

Define for each x ∈ rZ
2 the square Qx := Q(x, r

2 ). Note that Q(0,3R) is precisely tiled by the boxes {Qx,x ∈
rZ

2 ∩ Q(0,3R)}. We now define several events which we will show to be unlikely.

Ω0 := {
GR∞ has a vertex in Q(0,R)

}
,

Ω1 := {
There exists e ∈ E[G] of length at least L that intersects Q(0,3R)

}
,

Ω2 := {
Qx is rare for some x ∈ rZ

2 ∩ Q(0,3R)
}
,

Ω3 := {
There exists x ∈ rZ

2 ∩ Q(0,3R) and |V ∩ Qx | ≥ 2r2
}
,

Ω4 := {|V ∩ A| > 2 Area(A)
}
, where A = A(0,3R,3R + L).

Thus Lemma 4.9 states that P(Ω0) is small.

Lemma 4.17. With L, r as above, P(Ωi) −→
R→∞ 0 for i = 1,2,3,4.

Proof. Lemma 4.13 implies that P(Ω1) = O(R2e−L2/32) is small. Lemma 4.16 implies P(Ω2) = O(R4/3e−βr ) (since
there are (6R/r)2 squares to consider).

P(Ω3) and P(Ω4) are bounded by the fact that P(Poi(λ) > 2λ) ≤ e−cλ for some constant c. This gives respective
bounds O(R2e−cr2

) and O(e−cRL). �

Define the set

S := {
x ∈ rZ

2 ∩ Q(0,3R): Qx is typical and GR∞ ∩ Qx �= ∅
}
.

Lemma 4.18. There exists C > 0 such that if Ωc
1 holds then

|S| ≤ C
∣∣V ∩ A(0,3R,3R + L)

∣∣.
Proof. Let H be the sub-graph of GR∞ induced by vertices in Q(0,3R + L). On the event Ωc

1 , the vertices of
H ∩ Q(0,3R) all have degree at least 6. Thus low-degree vertices are all in the annulus A(0,3R,3R + L) and
by Lemma 4.11,

∣∣V ∩ A(0,3R,3R + L)
∣∣ ≥ LD(H) >

2

5
ME(H).

For each x ∈ S the square Qx is typical. Hence there is a vertex vx ∈ Qx of degree at most 5 that is not contained
in any triangle in G. The vertex vx is deleted in the first round and so is not in H . Let fx be the face of H surrounding
vx . Note that fx must have an edge ex that intersects Qx , since otherwise Qx is completely in the interior of fx and
there could be no vertex of H in Qx .

Now, on Ωc
1 , the edge ex has length at most L < r and therefore can intersect at most 3 different squares Qx (it can

intersect 3 if it passes near a corner of Qx ). Since the face fx cannot be a triangle by definition of vx we deduce that

∑
f face of H

deg[f ]>3

deg[f ] ≥ 1

3
|S|.

Hence ME(H) = ∑
f ∈H (deg[f ] − 3) ≥ 1

12 |S| proving the claim (with C = 30). �

Proof of Lemma 4.9. We show that Ω0 ⊂ ⋃4
i=1 Ωi . Assume by negation that Ω0 and Ωc

i hold for i = 1,2,3,4. Let
H be the restriction of GR∞ to Q(0,3R + L), and apply Lemma 4.12 with ρ = R, � = L. Ωc

1 and Ω0 show that the

lemma’s hypotheses hold, thus H has at least 8R2

5L2 vertices in Q(0,3R).
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On the other hand we show that H is small. Tile Q(0,3R) by boxes Qx with x ∈ rZ
2 ∩ Q(0,3R). On Ωc

4 ,
Lemma 4.18 implies that |S| ≤ CRL for some C. On Ωc

3 each of these includes at most 2r2 vertices, so the number
of vertices of H in Q(0,3R) that are in typical boxes is at most 2r2|S| ≤ CRLr2. On Ωc

2 there are no vertices in rare
boxes.

Thus 8R2

5L2 ≤ CRLr2 which is a contradiction for R large enough and our choice of r and L. �

Proof of Proposition 2.1. Define G
R,x
M similarly to GR

M , except that low degree vertices are deleted in Q(x,3R)

instead of Q(0,3R). Consider the following dependent percolation process on the lattice � = RZ
2. A point x is open

in one of 3 cases:

1. The square Q(x,4R) is not R-sealed.
2. G

R,x
M has a vertex in Q(x,R).

3. G has an edge of length at least R/2 intersecting Q(x,R/2).

We first argue that the event {x is open} is determined by the Poisson process in Q(x,5R), so that the process is
11-dependent. Indeed, whether Q(x,4R) is R-sealed depends only on the process in Q(x,5R). If it is R-sealed, the
restriction of the Voronoi map to Q(x,3R) is determined by the process in Q(x,5R), which determine the state of x.

By Lemmas 4.4, 4.9 and 4.13, we can choose M,R so that P(x is open) is arbitrarily small. In particular, for some
M,R, using Lemma 4.1, this percolation is dominated by sub-critical percolation, and has no infinite open component.

Finally, we argue that if there were an infinite component in GM then there would also be an infinite component in
our process on �. Consider all squares Q(x,R/2) which intersect the edges of some infinite open component in GM .
For each such x, either there is a vertex of GM in Q(x,R), or else the edge that passes through Q(x,R/2) has both
endpoints outside Q(x,R). Since GM ⊂ G

R,x
M , either case implies x is open. �

4.4. Equivariant coloring

We now use Propositions 2.1 and 2.2 to construct a deterministic 6-coloring scheme. Recall that Gn is derived from
Gn−1 by deleting low degree vertices. Define the level of a vertex by

�(v) = max{n: v ∈ Gn}.

Thus a vertex has level 0 iff its degree is at most 5. For neighboring v,w we direct the edge from v to w, and write
v → w, if either �(w) > �(v) or (�(v) = �(w) and A(w) < A(v)) (recall that by Proposition 2.2 no two areas are
equal).

Let ≺ to be the transitive closure of →. That is, w ≺ v iff there is a finite sequence such that v = u0 → u1 →
·· · → un = w.

Lemma 4.19. A.s. every v ∈ V has finitely many ≺-predecessors (in particular, ≺ is well founded).

Proof. We first argue that there is no infinite directed path in G. By Proposition 2.2 there are no infinite A-monotone
paths, so any infinite directed path must have �(v) → ∞. However, by Proposition 2.1 there are no infinite paths with
� > M .

Our conclusion then follows from König’s lemma: A locally finite tree with no infinite paths is finite. �

From this we get:

Proposition 4.20. There exists a unique function f :V → {0, . . . ,5} determined by the recursive formula:

f (u) = mex{f (v) :u → v},

where mexS = min(N \ S) is the minimal excluded integer function.
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Proof. The proof is by induction on ≺, which is a well founded order by Lemma 4.19 (see e.g. [19], Chapter 3). Every
edge (x, y) of G has x ≺ y or y ≺ x, and any u ∈ V has at most 5 neighbors v with �(v) ≥ �(u). Thus |{v: u → v}| ≤ 5
and so f (u) < 6 and is well defined.

Uniqueness holds since f (u) is determined by {f (v): v ≺ u}. �

Theorem 1.1 now follows, since Pi = f −1(i) defines a deterministic, isometry equivariant 6-coloring. Note that
the resulting coloring is finitary, that is, for every x ∈ R

2 there exists a finite (but random) R > 0 such that the color of
the cell containing x is a function of the Poisson process restricted to BR(x). Indeed, to determine f (v) for v ∈ V , it is
sufficient to know the graph G induced on the ≺-predecessors of v, which are only finitely many, and only a bounded
portion of the plane needs to be explored to do so. Furthermore, there exist C,c > 0 such that P(R > s) ≤ Ce−cs . This
is the case because Proposition 2.2 is proved using domination by sub-critical percolation.

More explicitly, to determine the color of the cell containing the origin, we start by finding out its level. In order to
determine whether a given cell belongs to Gk+1, we need only know which of its neighbors belong to Gk . Hence, it
is enough to observe all the cells of graph distance at most M + 1. Consider all squares of side length R, centered at
(iR, jR), where i, j ∈ {−M − 1, . . . ,M + 1}. If all of these are R/10-sealed then all cells of graph distance at most
M + 1 are inside the square of side length 2MR. This event fails to happen with only exponentially small probability.

Next, if our cell belongs to GM , we only need to know the location of those cells in its connected component. This
component is dominated by subcritical k-dependent percolation (by the proof of Proposition 2.1) and hence its radius
also has exponential decay, as is evident from the proof of Lemma 4.1.

Next, we see that by the proof of Proposition 2.2, for small enough ε, and any n ≥ 0, the components of the graph
of cells with areas between nε and (n+1)ε also have exponential decay of their diameter. Hence, the radius needed to
determine the color of a cell of GM−1 with area less than ε, also decays exponentially, since this color depends only
on the other cells in GM−1 with areas less than ε and on the cells in GM . We now proceed by induction to prove that
cells in GM−1 with areas between nε and (n+1)ε also have this property. A similar argument shows that the subgraph
of cells with areas more than nε, for some large n, is also dominated by a subcritical k-dependent percolation and
hence the components of this subgraph also exhibit exponential decay. Thus, after finitely many steps we are able to
extend our argument to all the cells in GM−1. Similarly, we continue by backward induction to GM−2 etc. until the
entire graph G = G0 is shown to have exponential decay for the radius of exploration needed to determine the color
of a cell.
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