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1. Introduction

Random probability measures are a fundamental tool in the Bayesian Nonpara-
metrics since their probability distributions identify priors for Bayesian infer-
ence. Indeed, let X be a complete and separable metric space endowed with the
Borel σ–algebra X and denote by (PX,PX) the space of probability distribu-
tions defined on (X,X ) equipped with the corresponding Borel σ field. Suppose
(Xn)n≥1 is a sequence of exchangeable random variables defined on some prob-
ability space (Ω,F ,P) and taking values in (X,X ). According to de Finetti’s
representation theorem, there exists a probability measures Π on the space of
probability distributions (PX,PX) on (X,X ) such that

P[X1 ∈ A1, . . . , Xn ∈ An] =

∫

PX

n∏

i=1

p(Ai) Π(dp)

for any A1, . . . , An in X and n ≥ 1. Hence, there exists a random probability
measure P̃, defined on (X,X ) and taking values in (PX,PX), conditionally on
which the Xi’s are independent and identically distributed (i.i.d.) with common
distribution P̃ . The distribution of P̃ coincides with Π and it acts a prior
distribution in Bayesian inference. The most celebrated example of prior Π is
the Dirichlet process prior introduced by Ferguson in [26].

Within this framework, a natural object of study are the distributional prop-
erties of means of random probability measures i.e.

∫

X

f(x)P̃(dx), (1.1)

where f is some real–valued function. This important line of research was ini-
tiated in a couple of pioneering papers by Cifarelli and Regazzini. See [8, 9].
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Motivated by statistical considerations, they deal with the problem of deter-
mining the probability distribution of a generic associative mean which admits
the representation

M(P̃;ϕ) = ϕ−1

(∫

X

ϕ(x) P̃(dx)

)

.

where ϕ is a continuous and increasing real–valued function. The problem, then,
reduces to studying the random quantity

∫

R
xP̃(dx) given that

∫

R
|x| P̃(dx) <

∞ almost surely. In particular, in [9] the authors introduce a series of tools and
techniques that, later in [10], turned out to be fundamental for the determination
of the probability distribution of

∫

X
f(x)P̃(dx) when P̃ is a Dirichlet process.

An appealing aspect of this topic is that distributional results concerning the
random quantity in (1.1) are also of interest in research areas not related to
Bayesian nonparametric inference. This fact was effectively emphasized in [15]
and discussed in several later papers to be mentioned in the following sections.

There has recently been a growing interest in the analysis of distributional
properties of random probability measures as witnessed by the variety of pub-
lications that have appeared in the statistics and probability literature. Since
such an interest originates from different lines of research, we believe it is useful
to provide, within an unified framework, an up to date account of the achieved
results. The present survey aims at detailing the origin of the various contribu-
tions and at pointing out the connections among them. In pursuing this goal,
we split the paper into two parts: the first one deals with means of the Dirichlet
process, whereas the second part will focus on means of more general random
probability measures. In both cases, we will provide, whenever known in the
literature, the exact evaluation of the corresponding probability distribution
and of other distributional characteristics such as, e.g., the moments. The last
section provides some concluding remarks and some possible future lines of re-
search. Finally, the Appendix concisely summarizes a few preliminary notions
that play an important role throughout the paper.

2. Means of Dirichlet processes

Before stating the main results, and technical issues, related to the determina-
tion of the probability distribution of random Dirichlet means, we briefly recall
the notion of a Dirichlet process D̃α with parameter measure α. There are sev-
eral different constructions of the Dirichlet process: each one has the merit of
highlighting a peculiar aspect of this important nonparametric prior. Here be-
low we present four possible definitions of the Dirichlet process, which will be
used in the sequel. Similar constructions can also be used to define more general
classes of nonparametric priors and the Dirichlet process is typically the only
member shared by all these resulting families of random probability measures.
Besides the obvious historical reasons, this fact somehow justifies the common
view on the Dirichlet process as a cornerstone of Bayesian Nonparametrics.

Following Ferguson’s original definition in [26], one can construct the Dirich-
let process D̃α in terms of a consistent family of finite–dimensional Dirichlet
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distributions. Recall that the Dirichlet distribution, Dα with α = (α1, . . . , αk),
is the probability distribution on the (k − 1)–dimensional simplex ∆k−1 :=

{(x1, . . . , xk−1) : x1 ≥ 0, . . . , xk−1 ≥ 0,
∑k−1
i=1 xi ≤ 1} given by

Dα(dx1, . . . , dxk−1) =
Γ(θ)

∏k
i=1 Γ(αi)

(
k−1∏

i=1

xαi−1
i

)

(1 − |x|)αk dx1 . . .dxk−1

where |x| := x1 + · · · + xk−1. Let α be a finite measure on X. A random
probability measure is termed Dirichlet process, D̃α if for any k ≥ 1 and any
measurable partition A1, . . . , Ak of X one has

(D̃α(A1), . . . , D̃α(Ak)) ∼ Dα

with α = (α(A1), . . . , α(Ak)). The parameter measure can obviously be decom-
posed as α( · ) = θ P0( · ), where θ > 0 is the total mass of α and P0 = α/θ is a
probability distribution on (X,X ).

An alternative definition of the Dirichlet process, pointed out in [26], makes
use of completely random measures (CRMs). See the Appendix for a concise
account and some noteworthy examples of CRMs. Indeed, if γ̃ is a gamma
CRM on X with finite parameter measure α, then it can be shown that the
Dirichlet process coincides, in distribution, with the normalized gamma process

γ̃( · )
γ̃(X)

d
= D̃α( · ). (2.1)

As we shall see this definition suggests interesting generalizations of the Dirich-
let process and is useful for investigating the probability distribution of the
corresponding random means. See Section 3.2.

Another construction which has recently become very popular in Bayesian
Nonparametrics is based on a stick–breaking procedure. This construction was
originally proposed in [78] and it can be described as follows. Let (Vi)≥1 be a
sequence of independent and identically distributed (i.i.d.) random variables,
with Vi ∼ beta(1, θ) and define random probability weights (p̃j)j≥1 as

p̃1 = V1, p̃j = Vj

j−1
∏

i=1

(1 − Vi) j = 2, 3, . . . . (2.2)

If (Yi)i≥1 is a sequence of i.i.d. random variables whose common probability
distribution is P0, then

∑

j≥1

p̃j δYj ( · )
d
= D̃α( · ) . (2.3)

with α = θP0. This construction can be generalized to define interesting classes
of random probability measures among which it is worth mentioning the two–
parameter Poisson–Dirichlet process as a remarkable example. See Section 3.1.

Finally, we mention a definition which stems from applications to survival
analysis. In this setting one has X = R+ since the object of investigation are
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survival times. Suppose, for simplicity, that P0 is a non–atomic measure and let
S0(x) = P0((x,∞)) for any x. If µ̃ is a CRM with Lévy intensity

ν(ds, dx) = e−s θ S0(x)
{
1 − e−s

}−1
α(dx) ds,

and P̃ is a random probability measure on R
+ characterized by the cumulative

distribution function F̃ (t) = 1 − e−µ̃((0,t]), then P̃( · ) d
= D̃α( · ). This provides

a representation of the Dirichlet process as a neutral to the right process. See
[17] and [27].

Each of the definitions we have briefly described are useful for determining
distributional results about a Dirichlet random mean

∫

X
f(x) D̃α(dx), where

f is a real–valued measurable function defined on X. Indeed, the most con-
venient construction of the underlying Dirichlet process to resort to is sug-
gested by the specific technique one applies for investigating the properties of
∫

X
f(x) D̃α(dx). Before entering the main details, it should be recalled that

an important preliminary step requires the specification of conditions ensuring
finiteness of

∫

X
f(x) D̃α(dx). In other words, one has to determine those measur-

able functions f for which the integral
∫

X
|f(x)| D̃α(dx) is almost surely finite.

As shown in [25] a necessary and sufficient condition is given by

∫

X

log(1 + |f(x)|)α(dx) <∞ . (2.4)

An alternative proof of this fact can be found in [12]. Let now αf = α ◦ f−1

denote the image measure of α through f and note that, since

∫

X

f(x) D̃α(dx)
d
=

∫

R

x D̃αf (dx),

with no loss of generality we can confine ourselves to considering distributional
properties related to M(D̃α) :=

∫

R
x D̃α(dx). Moreover, denote by M the set

of non null, non degenerate and finite measures on R and define the following
classes of measures indexed by the total mass parameter θ ∈ (0,∞)

Aθ :=

{

α ∈ M : α(R) = θ ∧
∫

R

log(1 + |x|)α(dx) <∞
}

(2.5)

Throughout the present Section will provide a broad description of the main
results achieved in the literature about the representation of the probability
distribution Q( · ;α) defined by

Q(B;α) = P

[∫

X

x D̃α(dx) ∈ B

]

∀B ∈ B(R). (2.6)

Note that, if not otherwise stated, it will be tacitely assumed that the Dirichlet
base measure α is an element of Aθ for some θ > 0.
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2.1. Cifarelli–Regazzini identity and related results

A first remarkable result about random Dirichlet means is an identity which
was obtained by Cifarelli and Regazzini [9, 10]. This provides a representation
of the generalized Stieltjes transform of order θ

Sθ[z;M(D̃α)] := E

[(
z +M(D̃α)

)−θ]
(2.7)

of the law of the mean M(D̃α) in terms of the Laplace functional of a gamma
process. It should be recalled that the order θ > 0 coincides with the total mass
of the parameter measure α, i.e. θ = α(R). The interest in (2.7) is motivated by
the fact that one can resort to inversion formulae of generalized Stieltjes trans-
forms and deduce a representation of the probability distribution of M(D̃α).
See Appendix B.1 for a concise account on generalized Stieltjes transforms. In
the following Re z and Im z stand for the real and imaginary parts of z ∈ C,
respectively. The important identity is then as follows.

Theorem 2.1. (Cifarelli-Regazzini identity) For any z ∈ C such that Im(z) 6=
0, one has

Sθ[z;M(D̃α)] = z−θe−
∫

R
log[1+z−1x]α(dx)

. (2.8)

It is worth noting that the identity (2.8) holds true when the order of the
generalized Stieltjes transform coincides with the total mass θ of the parame-
ter measure of the underlying Dirichlet process. An interesting case of (2.8) is
obtained when θ = 1 since it reduces to

∫

R

1

z + x
Q(dx;α) =

1

z
e
−
∫

R

log[1+z−1x]P0(dx)
. (2.9)

Indeed, in the terminology of [49], one says that the probability distribution
Q( · ;α) of M(D̃α) is the Markov transform of P0. And the moment problem for
Q( · ;α) is determined if and only if it is determined for P0. See Corollary 3.2.5
in [49]. As one can see from [49] and [15], the interest in (2.8) and (2.9) also
arises in other seemingly unrelated areas of research such as, for example, the
growth of Young diagrams or the exponential representations of functions of
negative imaginary parts.

The proof of (2.8) can be achieved by means of different techniques. In [10]
the result is obtained by resorting to analytic arguments whose preliminary ap-
plication can also be found in [9]. Indeed, the authors consider the truncated
functional U(τ, T ) :=

∫

(τ,T ]
x D̃α(dx) − τ with −∞ < τ < T < ∞. Letting

Qτ,T ( · ;α) denote the probability distribution of U(τ, T ), they obtain the fol-
lowing series expansion

s−θSθ(1/s; τ, T ) =

∫

R+

1

(1 + sx)θ
Qτ,T (dx;α) =

∑

n≥0

cn(τ, T )sn (2.10)

for any s ∈ (0, (T −τ )−1]. Differentiating the series in (2.10), term by term, with
respect to τ it can be shown that the function s−θSθ(1/s; τ, T ) satisfies a partial
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differential equation whose solution is exp
{
−
∫ T

τ
[z α((x,∞))](s+ x− τ )−1 dx

}
.

This concise description of the main ideas hides the technical difficulties one
has to overcome in order to get to the final result. The interested reader should
check [9] and [10] to appreciate their complete line of reasoning.

An approach based on combinatorial arguments has been pursued in [84] and
in [15], under the additional assumption that supp(α) = [0, 1]. The result in [84]
is more general since it allows to obtain similar identities for the two–parameter
Poisson–Dirichlet process to be examined in Section 3.1. Indeed, in [87] one finds
a relation between the moments of Q( · ;α) and those of α

∫

[0,1]

xnQ(dx;α) =
1

(θ)n

n∑

k=1

θk ×

×
∑

(m1,...,mn)∈Z(n,k)

n!
∏

j≥1mj !jmj

k∏

j=1

r
mj

j,α (2.11)

where rj,α :=
∫

[0,1]
xj α(dx), (a)n =

∏n
j=1(a+ j−1) is the Pochhammer symbol

with the convention that (a)0 ≡ 1 and

Z(n, k) := {(m1, . . . , mn) ∈ Z
n
+ :
∑

i

imi = n,
∑

i

mi = k} (2.12)

with Z+ := {0, 1, 2, . . .}. Note that Z(n, k) identifies all possible partitions of
the set of integers {1, . . . , n} into k sets. It is apparent from its definition that,
if (m1, . . . , mn) ∈ Z(n, k), then max{i : mi 6= 0} ≤ n − k + 1. The relation in
(2.11) can be found, with different proofs, also in other papers as we shall see
when discussing moments of random Dirichlet means. Hence, one has

H(z) :=

∫

R

1

(1 − zx)θ
Q(dx;α)− 1 =

∑

n≥1

zn

n!
(θ)n

∫

[0,1]

xnQ(dx;α)

=
∑

n≥1

zn

n!

n∑

k=1

θk
∑

(m1,...,mn)∈Z(n,k)

n!
∏

j≥1mj !jmj

∏

j≥1

r
mj

j,α =
∑

n≥1

zn

n!
Hn

where Hn is expressed in terms of Bell polynomials as follows

Hn =

n∑

k=1

fkBn,k(g) =

n∑

k=1

θk
∑

(m1,...,mn)∈Z(n,k)

n!
∏

j≥1mj !(j!)mj

∏

j≥1

{gj}mj .

In the above expression, one has fk = θk and gj = (j − 1)!rj,α for any k ≥
1 and j ≥ 1. If we define f(t) =

∑

n≥1 fnt
n/n! = exp{θt} − 1 and g(t) =

∑

n≥1 gnt
n/n! = −

∫
log(1 − tx)α(dx), a result from the theory of symmetric

functions yields

H(z) = f(g(z)) = e−θ log[1−zx]α(dx) − 1 .
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A similar argument is used in [15] where a series expansion of z−θ Sθ[z−1;M(D̃α)]
along with the so-called exponential formula (see, e.g., Corollary 5.1.9 in [81])

∑

j≥0

z−jE
[

M j(D̃α)
]

= e
−
∑

j≥1
z−jrj,α/j

yield (2.8).
In [28] a simple procedure for deriving Sθ[z;M(D̃α)] is proposed. In partic-

ular, starting from the case of α with bounded support, a first–type Volterra
equation for the Laplace transform m of M(D̃α) is introduced: it then follows
that the Laplace transform of xθ−1m(x), which corresponds to Sθ[z;M(D̃α)],
satisfies a certain first order ordinary differential equation, whose solution is
explicitly given and coincides with (2.8). Then, the result is also extended to
the case of α having support bounded from below.

An even simpler proof has been devised in [85] and it relies on the definition
of the Dirichlet process in (2.1) as a normalized gamma process. Indeed, using
the independence between γ̃(R) and D̃α one has

E

[

e
−z
∫

R

x γ̃(dx)
]

= E

[

e−z γ̃(R)M(D̃α(dx))
]

= E

[(
1 − zM(D̃α)

)−θ]

where the last equality follows from the fact that γ̃(R) has the gamma density
g(x) = [Γ(θ)]−1xθ−1 e−x1(0,∞)(x). See Theorem 2 in [85].

We finally mention that (2.8) can be shown by means of a discretization pro-
cedure which consists in evaluating the Stieltjes transform of a Dirichlet random
mean

∫
x D̃αm(dx) with αm =

∑km

i=1 α(Am,i) δxm,i being a suitable discretization
of α. Moreover, αm converges weakly to α as m→ ∞. This approach has been
developed in [71] and later applied in [72]. A similar discretization procedure is
also at the basis of the proof given in [36].

It should be remarked that in (2.8) the order of the Stieltjes transform on the
right–hand side must coincide with the total mass of the parameter measure α.
If interest relies in evaluating the probability distribution of M(D̃α), it would
be desirable, regardless of the value of θ, to work with the Stieltjes transform of
order 1. This is due to the fact that inversion formulae for Stieltjes transforms
of order different from 1 are much harder to implement. Extensions of (2.8)
where the order of the generalized Stieltjes transform can differ from the total
mass θ = α(R) are given in [59] and [41]. In [59], the authors make use of
the connection between Lauricella multiple hypergeometric functions and the
Dirichlet distribution. Before recalling this connection, set ∆n = {(x1, . . . , xn) :
x1 ≥ 0, . . . , xn ≥ 0,

∑n
i=1 xi ≤ 1} and let α = (b1, . . . , bn+1) ∈ (0,∞)n+1, with

θ =
∑n+1

i=1 bi. One then has the power series representation

FD(θ, b1, . . . , bn; c; x1, . . . , xn) =
∑

l1,...,ln

(θ)l1+ ···+ln
(c)l1+ ···+ln

n∏

i=1

(bi)li
li!

xlii

=

∫

∆n

Dα(dx1, . . . , dxn)

{1 −∑n
i=1 pixi}

θ
(2.13)
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where FD denotes the fourth Lauricella hypergeometric function. See (2.3.5) in
[23]. Another useful integral representation is

FD(θ, b1, . . . , bn; c; x1, . . . , xn) =

Γ(θ)

Γ(c) Γ(θ − c)

∫ 1

0

uc−1(1 − u)θ−c−1
n∏

i=1

(1 − uxi)
−bi du (2.14)

whenever θ > 0 and θ − c > 0. In the case where θ = c the identity in (2.14)
reduces to

FD(θ, b1, . . . , bn; θ; x1, . . . , xn) =

n∏

i=1

(1 − xi)
−bi . (2.15)

Letting α =
∑n+1

i=1 biδxi be a measure with point masses at x1, . . . , xn and
xn+1 = 0, from (2.13) and (2.15) one finds that

(−1)θ Sθ[−1; M(D̃α)] = e
−
∫

R

log[1−x] α(dx)
.

Hence, one can easily recover a simplified form of the identity (2.8) from integral
representations of F

D
. Let us now consider a measure α such that α(R) = θ ∈

(0,∞) and with supp(α) contained in a bounded interval [0, t), for some t > 0.
Using the above mentioned connection between the law of M(D̃α) and FD , in
[71] it has been proved that for any θ ≥ c and z ∈ C such that Im(z) 6= 0 when
Re(z) ≤ 0

Sc[z;M(D̃α)] = zθ−c
∫ 1

0

e
−
∫

R

log[z+ux] α(dx)
B(du; c, θ− c) (2.16)

where B(du; a, b) is the beta probability distribution if b > 0 and it reduces to
the point mass δ1 at 1 if b = 0. Hence, one obtains a representation of the order
c Stieltjes transform of M(D̃α), the order c being not greater than the total
mass θ of α, under the assumption that the support α is included in a bounded
interval of R+. Accordingly, if θ > 1, one can fix c = 1 and invert (2.16) to
obtain a representation for the density function of the mean M(D̃α). Finally, in
[59] the authors obtain an extension to the case α being an arbitrary member
of Aθ as defined in (2.5) and c being any positive number. In particular, using
arguments similar to those exploited in [71] it has been shown that

Sc[z;M(D̃α)] = z−θ
∫ 1

0

e
−
∫

R

log[1+z−1ux]α(dx)
B(du; c, θ− c) (2.17)

if θ ∈ [c,∞), whereas

Sc[z;M(D̃α)] = z−θ [1− e2π(θ−c)]−1 Γ(c)

Γ(θ)Γ(c − θ)
×

×
∫ (1+)

0

e
−
∫

R

log[1+z−1wx]α(dx)
wθ−1(1 − w)c−θ−1 dw (2.18)



A. Lijoi and I. Prünster/Random means 56

if θ ∈ (0, c), and the above integral is evaluated along the path, in the complex
plane, starting at w = 0, encircling in a counterclockwise sense w = 1 and
ending at w = 0. Hence, the new identities (2.17) and (2.18) express the Stieltjes
transform of order c as a mixture of Laplace functional transforms of the gamma
process, the mixing measure being a beta probability distribution on (0, 1) or
on the complex plane according as to whether c is greater than or less than the
total mass θ of the parameter measure α. Given that they have been directly
deduced from integral representations of FD , the authors in [59] have termed
them Lauricella identities. It should be recalled that this connection between
random Dirichlet means and multiple hypergeometric functions has also been
exploited in [50] to deduce a multivariate version of (2.8) involving a vector
of means (

∫
f1 dD̃α, . . . ,

∫
fd dD̃α), with f1, . . . , fd being measurable functions

such that
∫

log[1 + |fi|] dα <∞ for any i = 1, . . . , d.
Finally, the extension provided in [41] is achieved by introducing a new pro-

cess taking values on the space of measures on (X,X ). To this end, let Pγ̃ denote
the probability distribution of a gamma process γ̃ with parameter measure α
such that α(X) = θ. Next define, for any d ∈ (0, θ), another probability measure
Pγ̃,d on the space of measures on (X,X ) such that Pγ̃,d ≪ Pγ̃ and

dPγ̃,d

dPγ̃
(µ) =

Γ(θ)

Γ(θ − d)
(µ(X))−d.

The random measure µ̃ whose distribution coincides with Pγ̃,d is named a Beta-
gamma process by [41]. For any c > 0 it is shown that

Sc[z;M(D̃α)] = Eγ̃,θ−c
[

e
−z
∫

R

x dµ̃
]

. (2.19)

When θ − c > 0, (2.19) reduces to the Lauricella identity (2.17). On the other
hand, when θ − c < 0, (2.19) provides an interesting alternative expression for
Sθ which can be compared to (2.18).

2.2. Probability distribution of random Dirichlet means

An expression for the Stieltjes transform of M(D̃α), as discussed in the previ-
ous section, represents a very useful tool in order to evaluate the probability
distribution of M(D̃α). Indeed, one can resort to an inversion formula for Sθ
and recover Q( · ;α). Before dealing with the subject, it must be recalled that
Q( · ;α) is absolutely continuous with respect to the Lebesgue measure on R and
we will denote by q( · ;α) the corresponding density function. See Lemma 2 in
[10]. Moreover, denote by A the distribution function corresponding to the base
measure α, i.e.

A(x) = α((−∞, x]) for any x ∈ R, (2.20)

where obviously limx→∞A(x) = θ. As outlined in the Appendix, if appropriate
conditions are satisfied one can invert Sθ for any θ > 0. Nonetheless, as already
mentioned, one can more easily handle the inversion formula when α(R) = θ = 1.
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Theorem 2.2. Let α ∈ Aθ with θ = 1. Then

q(y;α) =
1

π
e
−
∫

R

log |x−y|α(dx)
sin (πA(y)) . (2.21)

for any y point of continuity of A.

The representation in (2.21) follows from Theorem 1(ii) in [10] under the as-
sumption that, given inf supp(α) =: τ ∈ R, one has A(τ ) = 0. The same rep-
resentation has been achieved in Proposition 9(iii) of [72] by removing this
condition on α. The proof is based on a different approach and makes use of a
simple and useful idea given in [33]. Indeed, from (2.1) one has that

F(y) := P

[∫

R

x D̃α(dx) ≤ y

]

= P

[∫

R

(x− y) γ̃(dx) ≤ 0

]

(2.22)

for any y ∈ R, where we recall that γ̃ stands for the gamma process. Note
that such an equality will be extensively used later in Section 3.2 for studying
means of more general random probability measures. Given this, an application
of the inversion formula for characteristic functions in [31] yields an expression
for the cumulative distribution function in (2.22) and, consequently, for the
corresponding density function q( · ;α).

Unfortunately, the evaluation of q( · ;α) becomes more difficult if θ 6= 1. In
[10] one can find an expression for q( · ;α) of M(D̃α) when α(R) = θ > 1 and the
possible jumps of A, defined as in (2.20), are smaller than one and with the ad-
ditional assumption that the support of α is bounded from below by some τ ∈ R

and A(τ ) = 0. This assumption is dropped by [72] and [59] to prove the following

Theorem 2.3. Suppose α ∈ Aθ with θ > 1 and that A defined in (2.20) has
jumps of size smaller than one. Then

q(y;α) =
θ − 1

π

∫ y

−∞
(y − x)θ−2e

−
∫

R

log |x−s|α(ds)
sin(π A(x)) dx (2.23)

for any point y of continuity for A.

Explicit expressions for q( · ;α) for values of θ > 1 with A having discontinuities
with jumps of size greater than or equal to one and for values of θ ∈ (0, 1) can
be found in items (i) and (iv) of Proposition 9 of [72] and in Section 6 of [59].

As far as the evaluation of the cumulative distribution function F( · ) of
M(D̃α) is concerned, from Proposition 3 in [72] one has the following result

Theorem 2.4. Let α ∈ Aθ. Then, for any y in R,

F(y) =
1

2
+

1

π

∫ ∞

0

1

t
e
− 1

2

∫

R

log[1+t2(y−x)2]α(dx) ×

× sin

(∫

R

arctan [t(y − x)] α(dx)

)

dt . (2.24)

Here below we describe a few examples mainly based on an application of The-
orem 2.2 and Theorem 2.3.
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Example 2.1. Suppose α(dx) = 1(0,1)(x) dx. Then, from (2.21) it can be easily
seen that

q(y;α) =
sin(πy)

π
y−y (1 − y)−1+y 1(0,1)(y).

See also [15].

Example 2.2. Let α(dx) = λ e−λx1(0,∞)(x) dx. Since α(R) = 1, one can apply
(2.21) and obtain

q(y;α) =
sin
(
π − πe−λy

)

π y
eh(y,λ) 1(0,∞)(y)

where h(y, λ) = e−λy Ei(λy). Recall Ei is the usual notation for the exponential
integral, i.e. Ei(x) =

∫ x

−∞ t−1 et dt for x < 0 and Ei(x) = PV
∫ x

−∞ t−1 et dt for
x > 0, where PV denotes the principal value integral. See also [72].

Example 2.3. Suppose α = θ0δ0 + θ1δ1, with θ0 + θ1 = θ. If one observes

that in this case M(D̃α)
d
= D̃α({1}), then it can be deduced that q( ·, ;α) is

the beta density with parameters (θ0, θ1). On the other hand, this same result
can also be achieved by resorting to (2.21) and to (2.23) when θ = 1 or θ > 1,
respectively. The case θ < 1 can be dealt with by means of the expression
provided in Proposition 9(iv) of [72].

Example 2.4. Let α(dx) = σπ−1[1 + σ2(x− µ)2]−1 dx be the Cauchy density
with parameters (µ, σ). It can then be seen that

∫

R

log |x− y| α(dx) =
1

2
log

1 + σ2(y − µ)2

σ2

for any y ∈ R. From (2.21) one has

q(y, α) =
σ

π
√

1 + σ2(y − µ)2
sin
(π

2
+ arctan(σ(y − µ))

)

=
α(dy)

dy
.

Hence, in this case Q( · ;α) = α( · ) and such a result was first proved in [89].
Furthermore, it can be shown that Q( · ;α) = α( · ) if and only if α is Cauchy.
See [10] and [59].

2.3. Determination of the parameter measure α

An interesting question to be raised concerns the connection between q( · ;α)
and the parameter α. Indeed, one might wonder whether there is a one–to–one
correspondence between the set of possible probability distributions of random
Dirichlet means and the space of parameter measures α given by Aθ in (2.5).
Hence, denote by Mθ the family of all possible density functions of M(D̃α) as
α varies in Aθ. Indeed, the answer is positive and the identity (2.8) sets up a
bijection between the set Aθ and Mθ as shown, e.g. in [59] and in [36].
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Given this important result, one might try to provide an answer to the follow-
ing question: is it possible to determine the parameter measure α ∈ Aθ yielding
a specific distribution in Mθ? This corresponds to reversing the issue we have
been addressing up to now. An early answer can be found in [11]. The authors
provided a general solution to the problem, valid for parameter measures whose
support is included in (0,∞). Unfortunately this contribution has been unno-
ticed in the literature since it has appeared on an unpublished technical report.
If α ∈ Aθ, from identity (2.8) it is possible to show that

α((a, b]) =
1

π
lim
ǫ↓0

∫ b

a

Im

(

S′
θ[−x+ iǫ; M(D̃α)]

Sθ[−x+ iǫ; M(D̃α)]

)

dx (2.25)

where a and b are continuity points of A. Below we provide three examples for
which it is possible to determine explicitly α starting from a pre-specified law
for the mean. See [11] for details and the discussion of the first two examples
we describe below.

Example 2.5. Suppose that q(x;α) = B(dx; a, b) with a and b positive and
a + b = θ, where, as before, B(dx; a, b) denotes a beta probability distribution.
Moreover, B(a, b) = Γ(a)Γ(b)/Γ(a+ b). In this case it can be seen that

Sθ[z;M(D̃α)] = z−a(1 + z)−b.

An application of (2.25) yields that the parameter measure α has support {0, 1}
and it coincides with α(dx) = a δ0(dx) + b δ1(dx).

Example 2.6. Another interesting case is that of M(D̃α) beta distributed with
parameters θ + 1/2 and θ + 1/2. One can check that

Sθ[z;M(D̃α)] = z−θ22θ
(

1 +
√

1 + z−1
)−2θ

and resorting again to (2.25) one finds out that α = θP0, where P0 is a beta
probability distribution with parameters (1/2, 1/2).

Example 2.7. Suppose q(x;α) = 1(0,1)(x) so that

S1[z;M(D̃α)] = log(1 + z) − log(z).

This implies that S′
1[z;M(D̃α)] = −z−1(1 − z)−1 and for any x ∈ (0, 1)

S′
1[−x+ iǫ;M(D̃α)]

S1[−x+ iǫ;M(D̃α)]
=

x(1 − x) + ǫ2 − iǫ(1 − 2x)

[x(1 − x) + ǫ2]
2

+ ǫ2(1 − 2x)2
×

×
1
2 log (1−x)2+ǫ2

x2+ǫ2 + i
(
π − arctan ǫ

1−x − arctan ǫ
x

)

1
4

log2 (1−x)2+ǫ2
x2+ǫ2

+
[
π − arctan ǫ

1−x − arctan ǫ
x

]2 .

From the previous expression one easily deduces that

lim
ǫ↓0

Im
S′

1[−x+ iǫ;M(D̃α)]

S1[−x+ iǫ;M(D̃α)]
=
x−1(1 − x)−1

π2 + log2 1−x
x

. (2.26)
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Hence, the parameter measure α, corresponding to a random Dirichlet mean
M(D̃α) having a uniform distribution on (0, 1), admits density (2.26) (w.r.t.
the Lebesgue measure on R). As noted in [75, 76], the cumulative distribution
function A corresponding to the density function in (2.26) also appears as the
limiting curve of the sequence of fractional parts of the roots of the derivative of
the polynomial pn(x) = (x−n)n+1 . In other words, letting p′n(x) = n

∏n−1
k=0(x−

k − αn,k) one has

lim
n→∞

αn,[xn] =
1

π
arccot

(
1

π
log

1 − x

x

)

=

∫ x

0

s−1(1 − s)−1

π2 + log2 1−s
s

ds

for any x ∈ (0, 1), where [y] stands for the integer part of y. Hence, the limiting
curve obtained from the sequence of fractional parts of the roots of p′n coincides
with the Markov transform of the uniform distribution on (0, 1).

The previous three examples show that a uniform distribution for the mean
may correspond to different parameter measures according to the specific total
mass θ being chosen. This is not in contradiction with the fact that there is a
bijection between Mθ and Aθ, since we let θ vary. Hence, if θ = 1 the parameter
measure has a density of the form described in (2.26), if θ = 1/2 then α = P0/2,
where P0 is a beta distribution with parameters (1/2, 1/2) and if θ = 2, then α
is a discrete measure with point masses equal to 1 at 0 and 1.

The problem of determining α for fixed Q ∈ Mθ has been also considered in
combinatorics where random Dirichlet means arise in connection with Young
continual diagrams which represent a generalization of Young diagrams for par-
titions. See [49] and [75, 76] for some detailed and exhaustive accounts. In par-
ticular, in [75] one finds a result according to which, given a density q in Mθ

with θ = 1 and support in (a, b), then the corresponding α is such that

α((a, x]) =
1

π
arccot

(

1

π q(x;α)
PV

∫ b

a

q(u;α)

u− x
du

)

. (2.27)

Hence, combining the representations obtained by [11] and [75] with θ = 1, one
has the following new identity

lim
ǫ↓0

∫ x

a

Im

(

S′
1[−u+ iǫ;M(D̃α)]

S1[−u+ iǫ;M(D̃α)]

)

du

= arccot

(

1

π q(x;α)
PV

∫ b

a

q(u;α)

u− x
du

)

(2.28)

which does not seem immediate to us. Although not concerning random Dirichlet
means, we also point out an allied contribution. In [34] a constructive method,
involving the sequential generation of an array of barycenters, is developed in
order to define random probability measures with prescribed distribution of
their means.
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2.4. More distributional properties of random Dirichlet means

In the previous Section we have provided a description of the probability distri-
bution of M(D̃α) in cases where the expression of the density q( · ;α) admits a
simple expression. In general, even though expressed in closed form, the density
q( · ;α) might turn out to be difficult to handle and it is not helpful in order to
determine some characteristics of the probability distribution of M(D̃α) such
as its moments or its shape. Nonetheless, one can still devise some method to
analyze distributional properties of M(D̃α) even if its density function looks
cumbersome.

As for the determination of moments, some early contributions can be found
in [87, 88]. In these papers the evaluation of E

[
(M(D̃α))n

]
is based on combi-

natorial arguments and follows from the relation

E

[
n∏

i=1

∫

X

gi(x) D̃α(dx)

]

=
n!

(θ)n

n∑

k=1

∑

(m1,...,mn)∈Z(n,k)

1
∏n
i=1 i

mi (mi!)
×

×
∫

Xk

g(x)

n∏

i=1

mi∏

j=1

α(dxi,j) (2.29)

where g : Xn → R is a measurable and symmetric function, x is a vector whose
generic entry xi,j is repeated i times for any j = 1, . . . , mi and the set Z(n, k) is
defined in (2.12). If one chooses g(x) ≡ ∏n

i=1(
∏mi

j=1 xi,j)
i, the n–th moment of

the random Dirichlet mean is obtained. This can be summarized in the following
statement

Theorem 2.5. Let α ∈ Aθ be such that
∫

R
|x|n α(dx) < ∞ and set ri,α =

∫

R
xi α(dx). Then

E

[

(M(D̃α))n
]

=
n!

(θ)n

n∑

k=1

∑

(∗)

1
∏n
i=1 i

mi (mi!)

n−k+1∏

i=1

rmi

i,α

=
1

(θ)n

n∑

k=1

Bn,k(r1,α, 2!r2,α, . . . , (n− k + 1)!rn−k+1,α) (2.30)

where

Bn,k(z1, . . . , zn−k+1) =
∑

(m1,...,mn)∈Z(n,k)

n!

m1! · · · mn−k+1!

n−k+1∏

i=1

zmi

i

(i!)mi

is, for any k ≤ n, the partial exponential Bell polynomial.

The result just stated has been independently obtained in a few recent papers.
For example, in [15] the expression in (2.30) is deduced as a corollary of the
Ewens sampling formula which describes the partition of the first n elements of
an infinite sequence of exchangeable random variables directed by a Dirichlet
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process. On the other hand, in [71] the connection between random Dirichlet
means and multiple hypergeometric functions, as already described in the Sec-
tion 2.2, is exploited. Indeed, under the assumption that the support of α is a
bounded subset of R+, a power series representation for the moment generating
function is derived from which the n–th moment is identified by

E

[

(M(D̃α))n
]

=
1

(θ)n
E

[(∫

x γ̃(dx)

)n]

.

The expectation on the right–hand side of the previous equality is evaluated
by means of the Faà di Bruno formula and this explains the appearance of
the partial exponential Bell polynomial Bn,k in (2.30). A useful account on the
Faà di Bruno formula, together with applications to various examples related
to the material presented in this paper, is provided by [13].

Recursive formulae for the moments of random Dirichlet means can be found
in [7] and [36]. They have been obtained without conditions on the support of α
and under the assumption that

∫
|x|n D̃α(dx) is finite. In [7] the starting point

is the identity (2.8), whereas the proof in [36] makes use of the fact that the
Dirichlet process is the unique solution of the stochastic equation

P̃
d
= w δX1 + (1 −w) P̃ (2.31)

where P̃ is a random probability measure on R, the random variable X1 has
probability distribution α/θ, w is a beta distributed random variable with pa-
rameters (1, θ), X1 and w are independent and the random probability P̃ on
the right–hand side is independent from (w,X1). See [78]. From this one deduces

M(D̃α)
d
= wX1 + (1 − w)M(D̃α) and, because of independence,

E

[

(M(D̃α))n
]

=
n!

Γ(θ + n+ 1)

n∑

j=0

Γ(θ + j)

j!
E

[

(M(D̃α))j
]

rn−j,α

where we recall that ri,α =
∫

R
xiα(dx) for any i. Consequently, if

∫
|x|nα(dx) <

∞, one finds out that

E

[

(M(D̃α))n
]

= (n− 1)!

n−1∑

j=0

rn−j,α
j! (θ + j)n−j

E

[

(M(D̃α))j
]

. (2.32)

See [36] for details.
Another interesting distributional property that has been investigated is the

connection between the symmetry of q( · ;α) and the symmetry of the cor-
responding α ∈ Aθ. If the parameter measure α ∈ Aθ is symmetric about
c ∈ R, then M(D̃α) has a symmetric distribution about c. Such a result has
been independently achieved [87] and [33]. In [87] the proof is easily deduced
from the representation of the Dirichlet process as provided in (2.3). Indeed,
∑

j≥1 p̃jδYj

d
=
∑

j≥1 p̃jδ2c−Yj because of symmetry of α. Hence

M(D̃α) =
∑

j≥1

Yj p̃j
d
=
∑

j≥1

(2c− Yj) p̃j = 2c−M(D̃α). (2.33)
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In [33] a proof is given under the assumption that the symmetry center is c = 0.
The argument relies on the relation between M(D̃α) and a linear functional of
the corresponding gamma process recalled in (2.22). Hence, the evaluation of the
characteristic function of the linear functional of γ̃ allows one to show that

∫
(x−

y) γ̃(dx)
d
= −

∫
(−x− y) γ̃(dx) thus yielding P

[
M(D̃α) ≤ y

]
= P

[
M(D̃α) ≥ −y

]
.

The authors also hint at (2.33) as an alternative proof of the result. See also [36]
where similar arguments are used. In [72], the authors obtain the representation
P[M(D̃α) ≤ y] =

∫∞
0
h(x, y)dy in terms of a function h : R2 → R+ such that,

if α is symmetric about c = 0, then h(x, y) = h(x,−y) for any y ∈ R and this
obviously implies symmetry of q( · ;α). Finally, in [59] symmetry is proved by
showing that the characteristic function of M(D̃α) is real.

Recently, in [42] it has been proved that for any θ > 0 and σ ∈ (0, 1), one has

wθσ,θ(1−σ)M(D̃α)
d
= M(D̃α∗) (2.34)

where α ∈ Aθσ, α
∗ ∈ Aθ and wθσ,θ(1−σ) is a beta random variable with parame-

ters (θσ, θ(1− σ)) that is independent from M(D̃α). The distributional identity
in (2.34) is useful when the total mass of the Dirichlet process is less than one,
which is the most difficult case to handle. Indeed, if one fixes θ = 1 one has
that the random mean of a Dirichlet process with parameter σ ∈ (0, 1), rescaled
with an independent beta random variable, has the same distribution of the
mean of a Dirichlet process whose baseline measure has total mass 1. And the
latter can be determined via the results described in Section 2.2. Finally, distri-
butional connections between random Dirichlet means and generalized gamma
convolutions have been deeply investigated in [47].

2.5. Numerical results

In the previous Sections we have been dealing with exact results about random
Dirichlet means. However, as already highlighted at the beginning of Section 2.4,
the form of the density q( · ;α) can be quite complicated to handle for practical
purposes. Hence, it is also of interest to determine suitable approximations of
the law of M(D̃α). There have been various proposals in the literature which
we concisely recall.

An interesting approach we would like to account for is based on a remarkable
result obtained in [25]. Inspired by the distributional identity (2.31), they define
a recursive equation

P̃n = wn δXn + (1 −wn) P̃n−1 n ≥ 1 (2.35)

where P̃0 is an arbitrary probability measure on (X,X ), the random elements
P̃n−1, wn and Xn are mutually independent and {(wn, Xn)}∞n=1 forms a se-
quence of i.i.d. random variables with the same distribution as (w,X1) in (2.31).
It is apparent that (2.35) defines a Markov chain taking values in the space of
probability measures on (X,X ). Theorem 1 in [25] states that there is a unique
invariant measure for the sequence of random probability measures {P̃n}n≥0
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on (X,X ) defined by (2.35) and it coincides with D̃α. This finding leads to
study properties of the Markov chain {Mn}n≥0 with Mn =

∫
xP̃n(dx) and it

can be shown that, for α ∈ Aθ, {Mn}n≥0 is a Harris ergodic Markov chain
whose unique invariant distribution coincides with Q(·;α). See Theorem 1 in
[21] for a multidimensional extension of these results. Consequently, one may
try to devise a Markov chain Monte Carlo (MCMC) algorithm to draw a sample
having approximately probability distribution Q( · ;α). This goal has been pur-
sued in [29] where it is shown that the chain {Mn}n≥0 is geometrically ergodic if
∫
|x|α(dx) <∞. Such an integrability condition has been subsequently relaxed

in [48]. If it is further assumed that supp(α) is bounded, one has the stronger
property of uniform ergodicity. See Theorem 4 in [29]. Interestingly, the authors
are also able to determine upper bounds on the rate of convergence thus obtain-
ing an evaluation of the total variation distance between Q( · ;α) and the law of
the approximating mean Mn. As a subsequent development along these lines,
[30] formulate an algorithm which allows for perfect sampling from Q( · ;α). Re-
cently, a generalization of the Markov chain in (2.35) has been introduced and
investigated in [24].

Another simulation–based method has been proposed by [62]. The main idea
relies on truncating the series representation (2.3) of D̃α at some random point
N in such a way that the distance between D̃α and its truncated version is
(almost surely) below a certain threshold. Define the random variable Nǫ =
inf{m ≥ 1 :

∑m
i=1 p̃i < 1 − ǫ} and let r̃ǫ =

∑

i≥Nǫ+1 p̃i. Hence

P̃ǫ =

Nǫ∑

i=1

p̃i δYi + r̃ǫ δY0

with Y0 a random variable with probability distribution α/θ and independent
from the sequences of stick–breaking weights {Vn}n≥1 and from the random

variables {Yn}n≥1. In [62] P̃ǫ is termed ǫ–Dirichlet random probability. The
authors show that if dp denotes the Prokhorov distance between probability

distributions then dp(p̃ǫ, D̃α) ≤ ǫ, almost surely. Moreover, one can check that
Nǫ has a shifted Poisson distribution with parameter −θ log ǫ so that it is easy
to sample from P̃ǫ. In some cases it is possible to show that the closeness,
with respect to the Prokhorov distance, between P̃ǫ and D̃α induces closeness
between the probability distributions of

∫
x P̃ǫ(dx) and of M(D̃α).

As far as numerical methods for approximating Q( · ;α) are concerned, a first
application can be found in [83] and it is based on a numerical inversion of
the Laplace functional transform of the gamma process γ̃. Another possibility
consists in approximating the cumulative distribution function F( · ). Since the
expression in (2.24) can be evaluated, at least numerically, when the parameter
measure has finite support, in general, one might approximate F( · ) with the cu-
mulative distribution function of

∫
xdD̃αn, in symbols Fn( · ), where αn is finite

measure supported by {x1,n, . . . , xkn,n}. Given a prescribed error of approxima-
tion ǫ > 0, in [72] one can find a method for determining constants U < L and
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points x1,n, . . . , xkn,n in (U, L] such that

sup
y∈(U,L]

|F(y) − Fn(y)| < ǫ

When the support of α is bounded, U and L coincide with its upper and lower
bound, respectively. One can, then, evaluate a cumulative distribution function
which approximates, in the uniform metric, the actual cumulative distribution
function F( · ) on a sufficiently large interval of the real line.

3. Means of more general processes

The Dirichlet process has been the starting point for the development of Bayesian
nonparametric methods and it still is one of the most widely used nonparametric
priors. Nonetheless some of the properties featured by the Dirichlet process may
represent drawbacks in various inferential contexts. This has stimulated a strong
effort towards the definition of classes of nonparametric priors which extend the
Dirichlet process. Accordingly, one might try to generalize results known for
the Dirichlet case to random means of these more general random probability
measures. In the present Section we provide an overview of these contributions
which incidentally have interesting connections with other areas of research such
as the study of the excursions of stochastic processes, the investigation of fu-
gacity measures in physics and the analysis of option pricing in mathematical
finance. Section 3.1 illustrates a few recent distributional results involving linear
functionals of the two–parameter Poisson–Dirichlet process. Means of normal-
ized random measures with independent increments are the focus of Section 3.2,
whereas in Section 3.3 we deal with means of neutral to the right processes.

3.1. Two parameter Poisson-Dirichlet process

An important extension of the Dirichlet process has been proposed by Pitman
[65] as a two parameter exchangeable random partition on the set of integers
N. It is termed two–parameter Poisson–Dirichlet process since it is seen as a
generalization of the one–parameter Poisson–Dirichlet process introduced by
Kingman in [52] which identifies the probability distribution of the random
Dirichlet probabilities in the representation (2.3) ranked in an increasing order.

For our purposes, it is convenient to define the two–parameter Poisson–
Dirichlet process by means of a rescaling of the probability distribution of a
σ–stable CRM µ̃σ, with σ ∈ (0, 1) and base measure P0 being a probability
measure on (X,X ). This means that µ̃σ is a random element taking values
in the space (MX,MX) of boundedly finite measure on (X,X ) such that for
any measurable function f : X → R satisfying

∫
|f | dµ̃σ < ∞ (almost surely),

one has E
[
exp{−

∫
f dµ̃σ}

]
= exp{−

∫
fσ dα}. If P(σ,0) denotes the probability

distribution of µ̃σ, introduce P(σ,θ) on MX such that P(σ,θ) ≪ P(σ,0) and

dP
(σ,θ)

dP
(σ,0)

(µ) = [µ(X)]
−θ

(3.1)
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where θ > −σ. The random measure with probability distribution P(σ,θ) is
denoted by µ̃(σ,θ) and the random probability measure

P̃
(σ,θ)

d
=
µ̃(σ,θ)( · )
µ̃(σ,θ)(X)

(3.2)

is termed two–parameter Poisson–Dirichlet process and we will also use the
notation PD(σ, θ) when referring to it. Note that E

[
P̃

(σ,θ)
(B)
]

= P0(B) for
any B in X . Like the Dirichlet process, one can also provide a stick–breaking
construction of P̃

(σ,θ)
. Indeed, if {Wn}n≥1 is a sequence of independent random

variables with Wn ∼ beta(1 − σ, θ + nσ), and if one defines p̃1 = W1, p̃j =

Wj

∏j−1
i=1 (1 −Wi) for j ≥ 2, then

P̃
(σ,θ)

d
=
∑

j≥1

p̃j δYj (3.3)

where {Yn}n≥1 is a sequence of i.i.d. random variables with probability distribu-
tion P0. This construction has become very popular in Bayesian Nonparamet-
rics practice due to the fact it allows a simple scheme for simulating P̃

(σ,θ)
. The

Dirichlet process can be seen as a two–parameter Poisson–Dirichlet process: if

α has total mass θ > 0, then D̃α
d
= P̃

(0,θ)
.

In order to evaluate the probability distribution of the random mean
M(P̃

(σ,θ)
) :=

∫

R
x P̃

(σ,θ)
(dx), we consider probability measures P0 such that

∫

|x|σ dP0 <∞ (3.4)

since the integrability of |x|σ with respect to P0 is a necessary and sufficient
condition for

∫
|x| P̃

(σ,θ)
(dx) < ∞ with probability one. See Proposition 1 in

[73]. Moreover, by virtue of Theorem 2.1 in [44], the probability distribution of
M(P̃

(σ,θ)
) is absolutely continuous with respect to the Lebesgue measure. We

denote the corresponding density function as q
(σ,θ)

. An important characteriza-
tion of q

(σ,θ)
has been first provided in [50] where it is shown that

Sθ
[

z;M(P̃
(σ,θ)

)
]

=

{∫

R

[z + x]σ P0(dx)

}−θ/σ
(3.5)

for any z ∈ C such that |arg(z)| < π, for any σ ∈ (0, 1) and θ > −σ. Alternative
proofs of the identity in (3.5) can be found in [84] and in [85].

The generalized Stieltjes transform in (3.5) can be taken as the starting point
for the determination of q

(σ,θ)
. Inspired by the work of [10], one can try to invert

Sθ and evaluate the probability distribution of M(P̃
(σ,θ)

). This goal has been
achieved in [44]. Before describing the representations one can obtain for the
density q

(σ,θ)
and the corresponding cumulative distribution function, we wish to

emphasize that the analysis of M(P̃
(σ,θ)

) is of interest also beyond the Bayesian
Nonparametrics. For example, it plays an important role in the analysis of the
excursions of skew Bessel bridges. To understand this connection, one can follow
[69] and let Y = {Yt : t ≥ 0} denote a real–valued process such that: (i) the zero
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set Z of Y is the range of a σ–stable subordinator and (ii) given |Y |, the signs
of excursions of Y away from zero are chosen independently of each other to be
positive with probability p and negative with probability 1−p. Examples of this
kind of process are: Brownian motion (σ = p = 1/2); skew Brownian motion
(σ = 1/2 and 0 < p < 1); symmetrized Bessel process of dimension 2−2σ; skew
Bessel process of dimension 2 − 2σ. Then for any random time T which is a
measurable function of |Y |

AT
T

=
1

T

∫ T

0

1(0,+∞)(Ys) ds
d
=

∫ 1

0

1(0,+∞)(Ys) ds = A1 (3.6)

with A1 representing the time spent positive by Y between t = 0 and t = 1.
Interestingly, from (4.b’) in [1] one has

Sσ[z;A1] =
1

(1 − p) zσ + p (1 + z)σ
= Sσ

[

z; P̃
(σ,σ)

(C)
]

with C ∈ X being such that P0(C) = p. This implies the remarkable distri-

butional identity A1
d
= P̃

(σ,σ)
(C). Let, now, P̃ ′

(σ,σ)
be a PD(σ, σ) process with

E
[
P̃

(σ,σ)
(B)
]

= pδ1(B) + (1 − p) δ0(B) for any B ∈ X . The determination of
the probability distribution of

P̃
(σ,σ)

(C) =

∫

xP̃ ′
(σ,σ)

(dx)

coincides with the problem of determining the probability distribution of A1.
P. Lévy in [55] has shown that the density function of A1 is uniform in the case
where p = σ = 1/2. The case where θ = 0 is also interesting since one has that
the probability distribution of P̃

(σ,0)
(C) coincides with the generalized arcsine

law determined in [54]. Another case for which the probability distribution of
P̃

(σ,θ)
is known corresponds to σ = 1/2, θ > 0 and p ∈ (0, 1) (see [5]).

In [44] one can find a general result, which holds for a large class of parameter
measures P0 including the one with point masses in 0 and 1 as above.

Theorem 3.1. Let P0 be a probability measure on R+ such that
∫

R+ x
σ P0(dx) <

∞ and let

∆(σ,θ)(t; λ) :=
1

2πi
lim
ǫ↓0

{

Sλ
[

−t − iǫ; M(P̃
(σ,θ)

)
]

− Sλ
[

−t + iǫ; M(P̃
(σ,θ)

)
] }

.

for any λ > 0, σ ∈ (0, 1) and θ > 0. Then

q
(σ,θ)

(y) = θ

∫ y

0

(y − t)θ−1 ∆(σ,θ)(t; θ+ 1) dt (3.7)

for any y in the convex hull of the support of P0.

If θ > 1 it is possible to integrate by parts in (3.7) thus obtaining

q
(σ,θ)

(y) = (θ − 1)

∫ y

0

(y − t)θ−2 ∆(σ,θ)(t; θ) dt. (3.8)
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For the special case where θ = 1, one uses the Perron–Stieltjes inversion formula
which yields q

(σ,1)
( · ) = ∆(σ,1)( · ; 1). Here below we illustrate a few examples

where the above result is applied.

Example 3.1. When θ = 0, then P̃
(σ,0)

reduces to the normalized σ–stable
subordinator [52]. Let C (P0) denote the convex hull of the support of P0 and
set Sσ(P0) = {y ∈ R+ :

∫

R+ |y − t|σ P0(dt) <∞} ∩ C (P0). Moreover, set

A
+
d [t, P0] :=

∫ ∞

t

(x− t)d P0(dx) and Ad[t, P0] :=

∫ t

0

(t − x)d P0(dx).

If the Lebesgue measure of the set R+ \ Sσ(P0) is zero, then one has

q
(σ,0)

(y) =
sin(σπ)

π

A +
σ [y;P0] Aσ−1[y;P0] + A

+
σ−1[y;P0] Aσ[y;P0]

{A +
σ [y;P0]}2 + 2 cos(σπ)A +

σ [y;P0]Aσ[y;P0] + {Aσ[y;P0]}2

for any y ∈ Sσ(P0). An expression for the cumulative distribution function
∫ y

0
q
(σ,0)

(x) dx can be found in [73]. See the next section for more details on this
point. If P0 = pδ1 + p̄δ0, with p̄ := 1 − p, then

q
(σ,0)

(y) =
sin(σπ)

π

pp̄yσ−1(1 − y)σ−1 1(0,1)(y)

p2(1 − y)2σ + 2 cos(σπ)pp̄yσ(1 − y)σ + p̄2y2σ

which corresponds with Lamperti’s generalized arcsine law. See [54].

Example 3.2. Introduce the following quantities

γd(t) = cos(dπ)Ad[t;P0] + A
+
d [t;P0], ζd(t) = sin(dπ)Ad[t;P0]

and

ρ
(σ,θ)

(t) =
θ

σ
arctan

ζσ(t)

γσ(t)
+
π θ

σ
1Γσ (t)

where Γσ := {t ∈ R+ : γσ(t) < 0}. Hence, if we set θ < 1, we can resort to
Theorem 5.3 in [44] which yields

∆(σ,θ)(t; θ + 1) =
γσ−1(t) sin

(
ρ

(σ,θ+σ)
(t)
)
− ζσ−1(t) cos

(
ρ

(σ,θ+σ)
(t)
)

π [ζ2
σ(t) + γ2

σ(t)]
(θ+σ)/(2σ)

.

Consider, again, P0 = pδ1 + (1 − p)δ0 and set σ = θ. Recall that p̄ = 1 − p and
one, then, has

γd(t) = cos(dπ){p(t − 1)d1[1,∞)(t) + p̄td1(0,1)(t)} + p̄|t|d1(−∞,0](t)

+ p(1 − t)d1(−∞,1](t)

ζd(t) = sin(dπ) {p(t− 1)d1[1,∞)(t) + p̄td1(0,1)(t)}
sin(ρσ,2σ(t)) = sin(2 arctan(ζσ(t)/γσ(t))) and cos(ρσ,2σ(t)) = cos(2 arctan(ζσ(t)/
γσ(t))). Hence, for any t ∈ (0, 1),

∆(σ,σ)(t; σ + 1) =
1

π

2γσ−1(t)ζσ(t)γσ(t) − γ2
σ(t)ζσ−1(t) + ζσ−1(t)ζ

2
σ(t)

[p̄2t2σ + p2(1 − t)2σ + 2 cos(σπ)pp̄tσ(1 − t)σ ]
2
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and a density function for the time A1 spent positive by a skew Bessel bridge,
as defined in (3.6), is

q
(σ,σ)

(y) =
σ

π

∫ y

0

(y − t)σ−1 2γσ−1(t)ζσ(t)γσ(t) − γ2
σ(t)ζσ−1(t) + ζσ−1(t)ζ

2
σ(t)

[p̄2t2σ + p2(1 − t)2σ + 2 cos(σπ)pp̄tσ(1 − t)σ ]
2 dt

for any y in (0, 1). See Corollary 6.2 in [44] for details. It is worth mentioning that
in [90] one can find an investigation on the behavior of q

(σ,σ)
in a neighbourhood

of y = 0. Choosing σ = 1/2 leads to some useful simplification since one has

∆(1/2,1/2)(t; 3/2) =
p̄

π

p2(1 + t) − p̄2t√
t {p̄2t+ p2(1 − t)}2

for any t in (0, 1). If it is further assumed that p = 1/2, then

∆(1/2,1/2)(t; 3/2) =
2

π
t−1/2

and from (3.7) it follows that q1/2,1/2(y) = 1(0,1)(y) which corresponds to the
result obtained by [55].

The two examples we have been considering assume that P0 is a Bernoulli
probability distribution. One can obviously consider more general probability
distributions given the kind of result provided by Theorem 3.1. For additional
explicit formulae check Section 6 in [44].

Up to now we have mentioned an approach to the determination of q
(σ,θ)

which makes use of an inversion formula for its Stieltjes transform. One can,
however, rely on other tools to recover q

(σ,θ)
. For example, from (3.3) one notes

that P̃
(σ,θ)

d
= W δY + (1 − W )

∑

j≥1 p̃
∗
j δYj∗, where the p̃∗j are determined

via a stick–breaking procedure involving a sequence of independent random
variables {Wn}n≥1 with Wn being beta–distributed with parameters (1−σ, θ+
σ + nσ). Moreover W ∼ beta(1 − σ, θ + σ) and Y, Y ∗

1 , Y
∗
2 , . . . are i.i.d. random

variables with common probability distribution P0 on R+ such that
∫
xdP0 <∞.

Accordingly, one has

M(P̃
(σ,θ)

)
d
= W Y + (1 −W )M(P̃

(σ,θ+σ)
). (3.9)

This turns out to be useful when θ = 1 − σ, in which case (3.9) reduces to

M(P̃
(σ,1−σ)

)
d
= W Y + (1 −W )M(P̃

(σ,1)
)

and W ∼ beta(1 − σ, 1). From Theorem 3.1 one obtains

q
(σ,1)

(y) = ∆(σ,1)(y; 1) =
sin
(

1
σ

arctan ζσ(y)
γσ(y)

+ π
σ
1Γσ (y)

)

π [ζ2
σ(y) + γ2

σ(y)]
1
2σ

(3.10)

for any y in Sσ(P0) and this can be used to recover q
(σ,1−σ)

.
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Example 3.3. Let P0 = pδ1 + p̄δ0 so that the random mean M(P̃
(σ,1−σ)

)
coincides in distribution with a limiting random variable arising in phylogenetic
trees as stated in Theorem 20 of [32]. An expression for its probability density
function can be deduced as follows

q
(σ,1−σ)

(y) = 1(0,1)(y) (1 − σ)

∫

R

∫ 1

0

w−σ q
(σ,1)

(
y −wx

1 − w

)

dw P0(dx)

where q
(σ,1)

is the density function described in (3.10). The expression simplifies
considerably when σ = 1/2, since from (3.10) one would deduce

q
(1/2,1)

(y) =
2pp̄

√

y(1 − y)

π{p2(1 − y) + p̄2y}2
1(0,1)(y)

and a density function for M(P̃
(σ,1−σ)

) is

q
(1/2,1/2)

(y) =
p

2

∫ 1

0

1√
w
q
(1/2,1)

(
y −w

1− w

)

dw+
p̄

2

∫ 1

0

1√
w
q
(1/2,1)

(
y

1 −w

)

dw

for any y in (0, 1). Suitable change of variables in the two integrals lead to

q
(1/2,1/2)

(y) =
p(1 − y)

2π

∫ y

0

1√
y − w (1 − w)3/2

2pp̄
√

w(1 − w)

{p2 − (2p− 1)w}2 dw 1(0,1)(y)

+
p̄y

2π

∫ 1

y

1√
w − y w3/2

2pp̄
√

w(1 −w)

{p2 − (2p− 1)w}2 dw 1(0,1)(y).

If one assumes that p ∈ (
√

2 − 1, 1), so that (2p − 1)/p2 < 1, a power series
expansion of the above integrands allows to obtain a new completely explicit
expression for this case

q
(1/2,1/2)

(y) = 1(0,1)(y)
p̄ y(1 − y)

2p2

∑

n,m≥0

(
3
2

)

n+m
(2)n

n!(2)n+m

(
(2p− 1)y

p2

)n

ym+

+ 1(0,1)(y)
pp̄2 y(1 − y)

2(2p2 + 2p− 1)
×

×
∑

n,m≥0

(
3
2

)

n+m
(2)n

n!(2)n+m

(
(2p− 1)(1 − y)

2p2 + 2p− 1

)n

(1 − y)m

= 1(0,1)(y)
p̄ y(1 − y)

2p2
F1

(
3

2
, 2, 2; 2;

(2p− 1)y

p2
, y

)

+

+ 1(0,1)(y)
pp̄2 y(1 − y)

2(2p2 + 2p− 1)
F1

(
3

2
, 2, 2; 2;

(2p− 1)(1 − y)

2p2 + 2p− 1
, 1 − y

)

where F1 is the first Appell hypergeometric function. See definition in Section 4
of [23].
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We finally remark that there is a nice distributional connection between
M(P̃

(σ,θ)
) and random Dirichlet means examined in Section 2.2. Indeed, if P0

is a probability distribution on R+ such that
∫
xσdP0 <∞ and P

(σ,0)
stands for

the probability distribution of M(P̃
(σ,0)

), with E
[
P̃

(σ,0)

]
= P0 then

M(P̃
(σ,θ)

)
d
= M(D̃α)

where α = θ P
(σ,0)

. See Theorem 2.1 in [44]. Hence, one can also try to resort to
expressions for the probability distributions described in Section 2.2 to obtain
a representation for the density function q

(σ,θ)
.

3.2. NRMI

Another interesting family of random probability measures, which includes the
Dirichlet process as a special case, is represented by the class of normalized
random measures with independent increments (NRMI). These were introduced
in [73] by drawing inspiration from Ferguson’s [26] construction of the Dirichlet
process as normalized gamma process and from Kingman’s [52] definition of a
normalized stable process. Such random probability measures have shown to be
a useful tool for inferential purposes: see, for instance, [45] for a comprehensive
Bayesian analysis and [58] for an application to mixture modeling.

A NRMI on a Polish space X can be defined as

P̃( · ) =
µ̃( · )
µ̃(X)

(3.11)

where µ̃ is a CRM on X such that 0 < µ̃(X) <∞ almost surely.
Since a CRM is identified by the corresponding Poisson intensity ν , which

satisfies (A.3), it is natural to express both the finiteness and positiveness con-
ditions of µ̃(X) in terms of ν as defined in (A.5). Finiteness of µ̃(X) corresponds
to requiring its Laplace exponent

∫

X×R+(1 − e−λv)ρx(dv)α(dx) to be finite for
any λ ≥ 0; if ν is homogeneous, the previous condition is equivalent to asking
for θ := α(X) <∞. Positiveness is ensured by requiring the existence of a set A
such that α(A) > 0 and

∫

A ρx(R
+)α(dx) = ∞; if ν is homogeneous, it reduces

to ρ(R+) = ∞, which is equivalent to requiring that the CRM µ̃ has infinitely
many jumps on any bounded set. Such a property is often called infinite activ-
ity of µ̃. See [73] for details. In the following NRMIs are termed homogeneous
or non–homogeneous according as to whether they are based on homogeneous
or non–homogeneous CRMs. As recalled in (2.1) the Dirichlet process can be
seen as a gamma NRMI. Moreover, the two extreme cases of the two–parameter
Poisson–Dirichlet process identified by the pairs (0, θ) and (σ, 0), with θ > 0 and
σ ∈ (0, 1), are NRMIs: they coincide with the Dirichlet process and the stable
NRMI, respectively, where the latter corresponds to (3.11) with µ̃ being a stable
CRM. On the other hand, the P̃

(σ,θ)
process with other choices of pairs (σ, θ)

does not belong to the class of NRMIs, although they are closely connected.
See [67].
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When studying the distributional properties of a linear functional of P̃ , i.e.
∫

X
f(x)P̃(dx) with f : X → R, one first has to determine conditions which

ensure its finiteness. According to Proposition 1 in [73], for any NRMI P̃ one
has that

P

{∫

X

|f(x)|P̃(dx) <∞
}

= 1

if and only if
∫

X×R+

(1 − e−λv |f(x)|)ρx(dv)α(dx) <∞ for every λ > 0. (3.12)

Analogously to the Dirichlet and two–parameter Poisson–Dirichlet cases, one
may confine the analysis, without loss of generality, to studying a simple mean
M(P̃) :=

∫

R
xP̃(dx). Indeed, letting P̃ be a NRMI with intensity ρx(dv)α(dx)

and αf = α ◦ f−1 denote the image measure of α through f , one has

∫

X

f(x) P̃(dx)
d
=

∫

R

x P̃
′(dx),

where P̃ ′ is a NRMI with Poisson intensity ρx(dv)αf (dx).
We start by briefly discussing two interesting distributional properties already

presented for random Dirichlet means, which hold true also for homogeneous
NRMIs. The first property is related to the Cauchy distribution: as shown in
Example 2.4, P0 = α/θ has the same distribution of M(D̃α) if P0 is Cauchy
and, indeed, the same applies to homogeneous NRMI means M(P̃). The sec-
ond property is represented by the symmetry of the distribution of the mean
discussed at the end of Section 2.4 for Dirichlet means: we have that, if M(P̃)
is a homogeneous NRMI mean, then its distribution is symmetric about c ∈ R if
P0 is symmetric about c ∈ R. These facts, noted in [46], can be shown by simply
mimicking known proofs for the Dirichlet case. Indeed, such properties hold for
an even larger class of models, namely species sampling models (see [66]) which
include, besides homogeneous NRMIs, also the two–parameter Poisson–Dirichlet
process as noteworthy examples.

Now we turn attention to the problem of the determination of the distribution
of a random NRMI mean. In view of the following treatment it is useful to stick
with the general formulation in terms of

∫

X
f(x) P̃(dx) rather than of M(P̃).

We will also assume throughout that (3.12) is satisfied. A key step consists in
noting that

F(y; f) := P

[∫

X

f(x)P̃ (dx) ≤ y

]

= P

[∫

X

[f(x) − y]µ̃(dx) ≤ 0

]

, (3.13)

an idea first employed in [33] for studying Dirichlet means and recalled in (2.22),
which clearly applies to NRMIs since it makes use of the representation of the
Dirichlet process as normalized gamma process. By virtue of (3.13) the problem
of studying a linear functional of a NRMI is reduced to the problem of studying
a linear functional of a CRM. And, importantly, the characteristic functions of



A. Lijoi and I. Prünster/Random means 73

linear functionals of CRMs are known and have an elegant Lévy–Khinchine type
representation in terms of the underlying Poisson intensity measure. Therefore,
by using a suitable inversion formula for characteristic functions one obtains a
representation for the probability distribution of

∫

X
f(x)P̃(dx). In particular,

by resorting to Gurland’s inversion formula (see Appendix B for details) one
obtains

1

2
{F(y; f) + F(y − 0; f)} (3.14)

=
1

2
− 1

π
lim

ǫ↓0,T↑+∞

∫ T

ǫ

1

t
ImE

[

exp

{

it

∫

X

[f(x) − y]µ̃(dx)

}]

dt

=
1

2
− 1

π
lim

ǫ↓0,T↑+∞

∫ T

ǫ

1

t
Im exp

{

−
∫

X×R+

[1 − eitv (f(x)−y)]ρx(dv)α(dx)

}

dt

where Im z stands for the imaginary part of z ∈ C. This line of reasoning together
with the proof of the absolute integrability in the origin of the integrand in (3.14)
led [73] to establish the following result.

Theorem 3.2. Let P̃ be a NRMI. Then, for every y ∈ R one has

1

2
{F(y; f) + F(y − 0; f)}

=
1

2
− 1

π
lim
T↑+∞

∫ T

0

1

t
exp

{∫

X×R+

[cos(tv[f(x) − y]) − 1]ρx(dv)α(dx)

}

× sin

(∫

X×R+

sin(tv[f(x) − y])ρx(dv)α(dx)

)

dt.

Now we present three examples, which show how the expression can be sim-
plified for particular choices of NRMIs.

Example 3.4. The first NRMI we consider is the normalized stable process
[52], which is obtained by normalizing a stable CRM, i.e. a CRM having Poisson
intensity of the form ρ(dv)α(dx) = σv−σ−1 dv/Γ(1 − σ)α(dx) with σ ∈ (0, 1)
and α a finite measure. A mean of such a random probability measure is finite
if and only if

∫
|f(x)|σ α(dx) < ∞, which coincides with the condition (3.4)

required for a general P̃
(σ,θ)

mean to be finite. As shown in [73], application of
Theorem 3.2 leads to

F(y; f) =
1

2
− 1

πσ
arctan

(∫

X
sgn(f(x) − y)|f(x) − y|σα(dx)

∫

X
|f(x) − y|σα(dx)

tan
πσ

2

)

(3.15)

where sgn stands for the sign function. Such a distribution turns out to be im-
portant for the study of the zero–range process introduced in [80]: the zero–range
process is a popular model in physics used for describing interacting particles
which jump between the sites of a lattice with a rate depending on the occu-
pancy of the departure site. See [22] for a recent review. An interesting case
corresponds to the one–dimensional zero–range process acting in a symmetric
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medium and the inverse of the particle rates are in the domain of attraction
of a strictly σ–stable distribution. Under these assumptions, in [70] it is shown
that the associated sequence of fugacity processes weakly converges to a process
whose marginal distribution, at index point z ∈ (0, 1), is described by (3.15)
with f(x) = 1(−∞,z](x) and y − v/(u − v) replacing y for u > v. It should also
be mentioned that Theorem 1 in [70] provides an expression for the moments of
P̃((−∞, z]) when P̃ is a normalized σ–stable process. In a similar fashion as
for the Dirichlet case examined in Section 2.4, one has an expression involving
a sum over a space of partitions of {1, . . . , n} if the n–th moment is to be com-
puted. See also [38] for a general structural expression for moments of means of
species sampling models.

Since the σ–stable NRMI is a PD(σ, 0) process, the considerations in Sec-
tion 3.1 establish interesting connections of formula (3.15) with occupation time
phenomena for the Brownian motion and more general Bessel processes. In par-
ticular, if f(x) = 1C(x) for some set C in X such that α(C)[α(X)]−1 = p ∈
(0, 1), then the probability distribution of P̃(C) coincides with the generalized
arcsine laws, originally determined by [54]. It also represents the probability dis-
tribution of the time spent positive by a skew Bessel process of dimension 2−2σ
(see, e.g., [68, 69]). It then follows immediately from (3.15) that the cumulative
distribution function of Lamperti’s generalized arcsine laws can be represented
as

F(y; 1C ) =
1

2
− 1

πσ
arctan

(
(1 − y)σp− yσ p̄

(1 − y)σp+ yσ p̄
tan

πσ

2

)

. (3.16)

for any y ∈ (0, 1). See Example 4.1 in [44] for a different representation of (3.16).
By further assuming σ = 1/2 and some algebra, (3.16) can be further simplified
to

F(y; 1C ) =
2

π
arcsin

( √
yp̄

√

(1 − y)p2 + yp̄2

)

.

It is then evident that, if also p = 1/2, the previous expression coincides with
2 π−1 arcsin(

√
y), which is the famous Lévy’s arcsine formula for the Brownian

motion [55].

Example 3.5. An important family of NRMIs, considered in [40, 67, 58], is
obtained by setting µ̃ as a generalized gamma CRM, which is characterized by
a Poisson intensity of the type ρ(dv)α(dx) = σ[Γ(1− σ)]−1 v−1−σe−τv dv α(dx)
with σ ∈ (0, 1), τ > 0 and α a boundedly finite measure on X (see Example A.2
in Appendix A for details). Given that ρ(R+) = ∞ and that, for any λ > 0,

∫

X×R+

(1 − e−λv)ρx(dv)α(dx) = (τ + λ)σα(X) − τσα(X),

the normalization procedure leads to a well–defined random probability measure
if and only if α is a finite measure. The Dirichlet process is recovered by letting
σ → 0, whereas the normalized σ–stable process [52] arises if τ = 0. Moreover,
the resulting NRMI is a normalized inverse Gaussian CRM [56] if σ = 1/2.
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For a generalized gamma NRMI mean, the finiteness condition (3.12) reduces
to
∫

X
(τ + |f(x)|)σα(dx) < ∞. Note that the Feigin and Tweedie condition

(2.4) for the Dirichlet case is recovered by letting σ → 0. One can then use
Theorem 3.2 for determining also the distribution of such a mean as done in [46].
Recall that α( · ) = θP0( · ) and set β = θτσ > 0. Then, its expression is given
by

F(y; f) =
1

2
− eβ

π

∫ ∞

0

1

t
e− β Ay(t) sin(β By(t)) dt, (3.17)

where

Ay(t)=

∫

X

[
1 + t2(f(x)−y)2

] σ
2 cos {σ arctan [t(f(x)−y]}P0(dx)

By(t)=

∫

X

[
1 + t2(f(x)−y)2

] σ
2 sin {σ arctan [t(f(x)−y)]}P0(dx)

Example 3.6. Another interesting NRMI is the normalized extended gamma
CRM, which is obtained by normalizing a CRM with intensity ν(dv, dx) =
e−β(x)v v−1 dv α(dx) with β a positive real valued function and α a boundedly
finite measure on X (see Example A.3 for details). Being an infinite activity
process, the NRMI is well defined for any combination of β and α satisfying
∫

X
log[1 + (β(x))−1 ]α(dx) < ∞. In contrast to the previous two examples, the

extended gamma NRMI is non–homogeneous: its random probability masses
depend on the locations where they are concentrated. As for means of extended
gamma NRMIs, the necessary and sufficient condition for finiteness (3.12) be-
comes ∫

X

log{1 + |f(x)| (β(x))−1}α(dx) <∞.

One obtains the Feigin and Tweedie condition (2.4) for the Dirichlet case by
setting β equal to a constant. As far as the cumulative distribution function of
an extended gamma NRMI mean is concerned, note that

F(y; f) = P

[∫

R

[f(x) − y] µ̃(dx) ≤ 0

]

= P

[∫

R

f(x) − y

β(x)
γ̃(dx) ≤ 0

]

where µ̃ and γ̃ are extended gamma and gamma CRMs, respectively. The latter
equality displayed above follows from arguments similar to those in Proposition 3
in [63]. This means that the desired distribution is obtained by inverting the
characteristic function of a linear functional of a gamma process, which is exactly
the same situation as for the Dirichlet process. Hence, Theorem 3.2 leads to a
similar expression to the one given in Theorem 2.4, namely

F(y; f) =
1

2
+

1

π

∫ ∞

0

1

t
e
− 1

2

∫

X

log

[

1+t2
(

f(x)−y

β(x)

)2
]

α(dx)
×

× sin

(∫

X

arctan

[

t
f(x) − y

β(x)

]

α(dx)

)

dt. (3.18)
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Another example of NRMI, where explicit expressions can be obtained, is
represented by a generalization of the Dirichlet process obtained by normalizing
superposed gamma processes with different scale parameters. See [73] for details.

As for the computation of moments of means of NRMIs, it is possible to
obtain a generalization of the formula displayed in (2.30). In order to do so we
introduce the following quantity

Π
(n)
k (n1, . . . , nk; f) =

1

Γ(n)

∫ ∞

0

un−1 e
−
∫

X×R+
(1−e−us)ρx(ds)α(dx) ×

×
k∏

i=1

{∫

X

α(dx) fni(x)

∫ ∞

0

snie−usρx(ds)

}

du (3.19)

which is defined one the set of positive integers {n = (n1, . . . , nk) : ni ≥ 1, |n| =
n}, where |n| =

∑k
i=1 ni. Note that when f ≡ 1, then Π

(n)
k (n1, . . . , nk; f) =

Π
(n)
k (n1, . . . , nk) describes the so-called exchangeable partition probability func-

tion induced by a NRMI and derived in [45]. Hence, one has the following
statement

Theorem 3.3. Let P̃ be a NRMI. If f : X → R is a measurable function for
which (3.12) holds true and if the n–th moment of

∫
f dP̃ is finite, then

E

[(∫

X

f(x) P̃(dx)

)n]

=

n∑

k=1

∑

(m1,...,mn)∈Z(n,k)

n!
∏n
j=1(j!)

mjmj !
×

× Π
(n)
k (1, . . . , 1
︸ ︷︷ ︸

m1

, 2, . . . , 2
︸ ︷︷ ︸

m2

, . . . , n, . . . , n
︸ ︷︷ ︸

mn

; f), (3.20)

where the set Z(n, k) is defined in (2.12).

Note that when the NRMI P̃ is generated by normalizing a homogeneous CRM,
i.e. ρx = ρ for any x in X, then the formula above reduces to

E

[(∫

X

f(x) P̃(dx)

)n]

=

n∑

k=1

∑

(m1,...,mn)∈Z(n,k)

n!
∏n
j=1(j!)

mjmj !
×

× Π
(n)
k (1, . . . , 1
︸ ︷︷ ︸

m1

, 2, . . . , 2
︸ ︷︷ ︸

m2

, . . . , n, . . . , n
︸ ︷︷ ︸

mn

)

n∏

i=1

(∫

X

f i(x)α(dx)

)mi

. (3.21)

Since homogeneous NRMI are a subclass of special sampling models [66], (3.21)
is an instance of where the structural representation for the moments of species
sampling means, derived in [38], can be made explicit. The result above is in
the spirit of Lo’s treatment of mixtures of the Dirichlet process in [60]. See also
[40]. The following examples show how (3.20) can be easily applied, even if the
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concrete evaluation of the n–th moment is a challenging task since one has to
deal with sums over spaces of partitions.

Example 3.7. Since the Dirichlet process is a special case of homogeneous
NRMI, one can recover (2.30) from (3.21). Suppose α = θP0 and note that in
this case ρx(ds) = ρ(ds) = e−ss−1 ds. Hence

Π
(n)
k (n1, . . . , nk) =

θk

(θ)n

k∏

i=1

(ni − 1)!

will yield to the representation in terms of partial exponential Bell polynomials
as recalled in Theorem 2.5.

Example 3.8. Suppose P̃ is a stable NRMI already considered in Example 3.4.
Without loss of generality, let α be a probability measure on X. In this case

Π
(n)
k (n1, . . . , nk) =

σk−1Γ(k)

Γ(n)

k∏

i=1

(1 − σ)ni−1

so that the n–th moment of
∫

X
f(x) P̃(dx) coincides with

E

[(∫

X

f(x) P̃(dx)

)n]

= (n − 1)

n∑

k=1

Γ(k)σk−1
∑

(m1,...,mn)∈Z(n,k)

1
∏n
j=1(j!)

mj mj !

n∏

i=1

((1 − σ)i−1 ri,α)mi

=

n∑

k=1

Γ(k)

Γ(n)
σk−1 Bn,k(r1,α, (1 − σ)2−1 r2,α, . . . , (1 − σ)n−k rn−k+1,α).

If in the previous expression one sets f = 1(−∞,x] and α is a probability measure
on (0, 1), then one obtains the formula described in Theorem 1 of [70].

Having determined the probability distribution of
∫
f dP̃ , a Bayesian is in-

terested in the evaluation of the posterior distribution, given a sample of n
observations. In the Dirichlet case, the determination of the prior distribution
of M(D̃α) is enough to solve the issue because of conjugacy D̃α. Hence the pos-
terior distribution of M(D̃α), given X1, . . . , Xn, coincides with the distribution
of M(D̃α∗), with α∗ = α+

∑n
i=1 δXi . If the prior is not conjugate, further efforts

are needed for determining the posterior distribution of a linear functional. This
is the case of NRMIs different from the Dirichlet process: indeed, as shown in
[43] they are not conjugate. Nonetheless, for NRMIs a full description of the
posterior distribution can be provided. Here, we briefly summarize the results
achieved in [73, 46].

Assume (Xn)n≥1 to be a sequence of exchangeable observations, defined on

(Ω,F ,P) and with values in X, such that, given a NRMI P̃ , the Xi’s are i.i.d.
with distribution P̃ , i.e. for any Bi ∈ X , i = 1, . . . , n and n ≥ 1

P

[

X1 ∈ B1, . . . , Xn ∈ Bn

∣
∣
∣
∣
P̃

]

=

n∏

i=1

P̃(Bi).
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Since a NRMI selects a.s. discrete distributions, ties in the observations will
appear with positive probability. Set X = (X1, . . . , Xn) and clearly one can
always represent X as (X

∗

,π), where X
∗

= (X
∗

1 , . . . , X
∗

n(π)) denotes the dis-

tinct observations within the sample and π = {C1, . . . , Cn(π)} stands for the
corresponding partition of the integers {1, . . . , n} recording which observations
within the sample are equal, that is Cj = {i : Xi = X

∗

j }. The number of ele-
ments in the j-th set of the partition is indicated by nj, for j = 1, . . . , n(π), so

that
∑n(π)
j=1 nj = n. For the remainder of the section we will deal with NRMIs

derived from CRMs with non–atomic base measure α in (A.5).
Before dealing with functionals of a NRMIs, it is useful to first recall their

posterior characterization given in [45]. For any pair of random elements Z
and W defined on (Ω,F ,P), we use the symbol Z(W) to denote a random
element on (Ω,F ,P) whose distribution coincides with a regular conditional
distribution of Z, givenW . Moreover, denote the Laplace exponent of a CRM by
ψ(f) :=

∫

R+×X
[1− e−v f(x)]ρx(dv)α(dx) for any measurable function f : X → R

for which the integrability condition (3.12) holds true. Introduce now a latent
variable, denoted by Un, whose conditional distribution, given X, admits a
density function (with respect to the Lebesgue measure on R) coinciding with

f
X

Un
(u) ∝ un−1

n(π)
∏

i=1

τni(u|X
∗

i ) e−ψ(u1) (3.22)

where 1(x) = 1, for any x ∈ X, and

τni(u|X
∗

i ) =

∫

R+

sni e−us ρX∗

i
(ds) (3.23)

for i = 1, . . . , n(π). Indeed, the posterior distribution, given X, of the CRM
µ̃ defining a NRMI is a mixture with respect to the distribution of the latent
variable Un. Specifically,

µ̃(Un,X) d
= µ̃(Un) +

n(π)
∑

i=1

J
(Un,X)
i δX∗

i

where: µ̃(Un) is a CRM with intensity

ν(Un)(ds, dx) = e−Uns ρx(ds)α(dx); (3.24)

the X
∗

i ’s are the fixed points of discontinuity; the J
(Un,X)
i ’s are the correspond-

ing jumps, which are mutually independent and independent from µ̃(Un), and
whose density is given by

f
(Un,X)

Ji
(s) ∝ snie−UnsρX∗

i
(ds). (3.25)

See [45, Theorem 1] for details. Finally, denote by ψ
(u)

and J
(u,X)
r the Laplace

exponent of the CRM defined by (3.24) and the jumps whose density is given
by (3.25), respectively, with Un = u.
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Now we are in a position to provide a description of the exact posterior
distribution of a linear functional of a general NRMI. First of all, it is to be noted
that such a distribution is always absolutely continuous w.r.t. the Lebesgue
measure R.

Theorem 3.4. Let P̃ be a NRMI. Then, the posterior density function of
∫

X
f(x)P̃(dx), given X, is of the form

̺
X

(y; f) =







∫ ∞

0

Re {χf (t, y) } dt if n = 1

(−1)p+1

∫ y

−∞

∫ ∞

0

[(y − z) t]n−1Im {χf(t, z) } dt dz if n = 2p

(−1)p
∫ y

−∞

∫ ∞

0

[(y− z) t]n−1Re {χf (t, z) }dt dz if n = 2p+ 1

where p ≥ 1

χf(t, z) =
e−ψ(−it(f−z1))

∏n(π)
j=1 κnj

(
it
[
f(X

∗

j ) − z
] ∣
∣X

∗

j

)

π
∫+∞
0

un−1
[
∏n(π)
j=1 τnj(u|X

∗

j )
]

e−ψ(u1) du
,

κnj(it[f(X
∗

j ) − z]|X∗

j ) =
∫+∞
0

vnj e itv(f(X
∗

j )−z)ρX∗

j
(dv) and τnj(u|X

∗

j ) is as in

(3.23), for j = 1, . . . , n(π). Moreover, the posterior cumulative distribution func-
tion of

∫

X
f(x)P̃(dx), given X, can be expressed as

F
X

(y; f) =
1

2
− 1

π
lim

T→+∞

∫ T

0

1

t

∫ +∞

0

ζf (y; u, t) f
X

Un
(u) du dt

where

ζf (y; u, t) := Im

{

e−ψ
(u)

(−it(f−y1))
E

[

eit
∑n(π)

r=1
(f(X

∗

r )−y)J(u,X)
r

]}

,

and f
X

Un
is the density of the latent variable Un given in (3.22).

The proof of this result heavily relies on the useful and powerful techniques and
tools developed in [74]. As for the determination of the posterior density, the
starting point is given by its exact representation in the case of NRMIs with α in
(A.5) having finite support [73], which, loosely speaking, handles observations as
derivatives of the characteristic function. In order to achieve the representation
presented above, one needs to exploit the fact that α is non–atomic in connection
with a martingale convergence argument. The cumulative distribution function,
instead, arises by combining Theorem 3.2 with the posterior representation of
NRMIs.

The reader is referred to [73, 46, 57] for expressions of the posterior distribu-
tion of functionals based on particular NRMIs. Here, we just point out that, by
the application of the previous results, in [73] a particularly simple formula for
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the density of Dirichlet means has been obtained. Indeed, provided there exists
an x such that α({x}) ≥ 1, one has

̺(y, f) =
α(X) − 1

π

∫ +∞

0

Re(e
−
∫

X

log(1−it(f(x)−y))α(dx)
)dt.

We close this section by considering linear functionals of hierarchical mixture
models, which is nowadays the most common use of Bayesian nonparametric
procedures. Letting Y be a Polish space equipped with the Borel σ-algebra Y ,
one defines a random density (absolutely continuous with respect to some σ-
finite measure λ on Y) driven by a random discrete distribution i.e.

p̃(y) =

∫

X

k(y, x) P̃(dx) (3.26)

where k is a density function on Y indexed by some parameter with values in
X. A typical choice for k is represented by the density function of normal distri-
bution: in such a case P̃ controls the means (and possibly also the variances)
of the random mixture density. This approach is due to Lo [60] who defined
a random density as in (3.26) with P̃ being the Dirichlet process: this model
is now commonly referred to as mixture of Dirichlet process (MDP). One can
obviously replace the Dirichlet process with any NRMI: interesting behaviours
especially in terms of the induced clustering mechanism appear for particular
choices of NRMIs. See, e.g., [56, 58, 57]. The study of mean functionals of such
models has been addressed in [63, 46]. The first thing to note is that, as far as
the prior distribution is concerned, the problem of studying a linear functional
of a NRMI mixture can be reduced to studying (different) linear functional
of a simple NRMI. Indeed, for a NRMI mixture density p̃ with P̃ being the
corresponding NRMI, one has

∫

Y

f(y) p̃(y)λ(dy) =

∫

X

g(x) P̃(dx) (3.27)

where g(x) =
∫

Y
f(y)k(y, x)λ(dy). Hence, as shown in [63], a necessary and

sufficient condition for
∫

Y
f(y) p̃(y)λ(dy) being a.s. finite becomes

∫

X×R+

(

1− e−tvg
∗(x)
)

ρx(dv)α(dx) < +∞ ∀t > 0, (3.28)

with g∗(x) =
∫

Y
|f(y)|k(y, x)λ(dy). For instance, in the MDP case (3.28) reduces

to ∫

X

log[1 + g∗(x)]α(dx) < +∞. (3.29)

From (3.27), it follows the prior distribution of the mean of a mixture can be
evaluated by applying Theorem 3.2. As far as the posterior distribution of
NRMI mixtures is concerned, general expressions for their density and cumu-
lative distribution function can be found in [46]. For the popular MDP case,
which is also not conjugate, an expression for the posterior density function has
been first obtained in [63].
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Theorem 3.5. Let p̃ be a random density defined as in (3.26) with P̃ = D̃α

and f be a measurable function satisfying (3.29). Then the posterior density
function of a mean

∫
f(y)p̃(y)λ(dy), given Y , is of the form

̺
Y

(y, f) =

∑

π

∏n(π)
j=1 (nj−1)!

∫

Xn(π) ̺
n(y, f)

∏

i∈Cj
k(Yi, xj)α(dxj)

∑

π

∏n(π)
j=1 (nj−1)!

∫

X

∏

i∈Cj
k(Yi, x)α(dx)

,

where

̺n(y, f) =
α(X) + n− 1

π

∫

R+

Re{e−
∫

X

log(1−it(g(x)−y))αX

n (ds)}dt

with α
X

n ( · ) = α( · ) +
∑n(π)

j=1 njδxj and g(x) =
∫

Y
f(y)k(y, x)λ(dy).

See [63, 46] for further details and various examples.
Finally, an alternative use of discrete nonparametric priors, such as NRMI,

for inference with continuous data is represented by histogram smoothing. Such
a problem can be handled by exploiting the so–called “filtered-variate” random
probability measures as defined by [16], which essentially coincide with suitable
means of random probability measures.

3.3. Means of neutral to the right priors

A first remarkable generalization of the Dirichlet process that has appeared
in the literature is due to Doksum [17]. A random distribution function F̃ =
{F̃ (t) : t ≥ 0} on R+ is said neutral to the right (NTR) if, for any choice of
points 0 < t1 < t2 < · · · < tn <∞ and for any n ≥ 1, the random variables

F̃ (t1),
F̃ (t2) − F̃ (t1)

1 − F̃ (t1)
, . . . ,

F̃ (tn) − F̃ (tn−1)

1 − F̃ (tn−1)

are independent. An important characterization is given in Theorem 3.1 of [17]
where it is shown that F̃ is NTR if and only if there exists a CRM µ̃ on R+

with limt→∞ µ̃((0, t]) = ∞ almost surely such that F̃ = {F̃ (t) : t ≥ 0} coincides
in distribution with {1− e−µ̃((0,t]) : t ≥ 0}.
Example 3.9. As recalled in Section 2, the Dirichlet process can also be seen as
a neutral to the right process. Indeed, let µ̃ be a CRM with Laplace transform

E

[

e−λ µ̃((0,t])
]

= exp

{

−
∫ t

0

∫ ∞

0

[
1 − e−λs

] e−s α((x,∞))

1 − e−s
dsα(dx)

}

(3.30)

= exp

{

−
∫ ∞

0

[
1 − e−λs

] (1 − e−s α((0,t])) e−α((x,∞))s

(1 − e−s) s
ds

}

for some finite measure α and for any λ > 0. The random probability measure
whose distribution function is defined by F̃ (t) = 1 − e−µ̃((0,t]) coincides with
D̃α. See [27].
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Since
∫

R+ x dF̃ (x) =
∫∞
0

[

1 − F̃ (t)
]

dt, one has that, if F̃ is NTR, then

∫

R+

x dF̃ (x)
d
=

∫ ∞

0

e−µ̃((0,t]) dt. (3.31)

The random quantity appearing on the right–hand–side of (3.31) is known as
exponential functional and it has attracted great interest in probability and
finance. Indeed, it appears in risk theory and in models for the pricing of Asian
options and for the determination of the law of a perpetuity. In mathematical
physics it represents a key quantity for the analysis of one–dimensional diffusion
in a random Lévy environment. See [2] for a comprehensive review and relevant
references.

The analysis of distributional properties of
∫∞
0

e−µ̃((0,t]) dt is a demanding
task. There are still many open problems in this area that certainly deserve a
considerable amount of work. Here we confine ourselves to recalling some known
results concerning the existence of means of neutral to the right processes and
some interesting distributional characterizations. Moreover, we confine ourselves
to considering the case where µ̃ does not have fixed points of discontinuity.

As far as the first issue is concerned, according to Theorem 1 of [2] the con-
dition P[limt→∞ µ̃((0, t]) = ∞] = 1 is equivalent to almost sure finiteness of
∫∞
0

e−µ̃((0,t]) dt when µ̃ is a CRM with intensity measure ν(ds, dx) = dx ρ(ds).
We are not aware of necessary and sufficient condition for the existence of
∫∞
0

e−µ̃((0,t]) dt for a general CRM µ̃. In [20], for the case of a homogeneous
µ̃, a sufficient condition for its existence is given in terms of the Lévy intensity.
For a non–homogeneous CRM, finiteness of the mean can be guaranteed by
assuming the finiteness of its first moment.

An early contribution to the determination of moments of any order of
∫∞
0

e−µ̃((0,t]) dt is contained in [9] and it is related to a random Dirichlet distri-

bution function F̃ . Indeed, observe that

(∫ ∞

0

e−µ̃((0,t]) dt

)n

=

{∫ ∞

0

[1 − F̃ (s)] ds

}n

=

= n!

∫ ∞

0

dx1

∫ ∞

x1

dx2 · · ·
∫ ∞

xn−1

dxn

n∏

j=1

[

1 − F̃ (xj)
]

and F̃ (x1) ≤ · · · ≤ F̃ (xn). Consequently, the random vector (F̃ (x1), F̃ (x2) −
F̃ (x1), . . . , F̃ (xn) − F̃ (xn−1)) has an n–variate Dirichlet distribution with pa-
rameters (α1, . . . , αn+1), with αj = α((xj−1, xj]) for any j = 1, . . . , n and
αn+1 = α((xn,∞)), and

E

[
n∏

j=1

(

1 − F̃ (xj)
)
]

=

∏n
j=1 {α((xj∞)) + n − j}

(θ)n

where θ = α1 + · · · + αn+1. The same line of reasoning can be adapted to a
general neutral to the right prior, even if the finite–dimensional distributions of



A. Lijoi and I. Prünster/Random means 83

F̃ are not known. Suppose µ̃ is a CRM with intensity ν(ds, dx) = α(dx) ρx(ds)
and let F̃ (t) = 1 − e−µ̃((0,t]). As shown in [20], in this more general case a
sufficient condition for the existence of the n–th moment of the mean is

∫ ∞

0

exp

{

−
∫ t1/n

0

α(dx)

∫ ∞

0

[1 − e−s] ρx(ds)

}

dt <∞

and

E

[(∫ ∞

0

e−µ̃((0,t]) dt

)n]

= n!

∫ ∞

0

· · ·
∫ ∞

xn−1

e
−
∑n

j=1
Φ(xj) dx1 . . . dxn (3.32)

where Φ(xj) =
∫

(0,xj)
α(dx)

∫∞
0

[1 − e−s] e−(n−j)s ρx(ds). Note that if ρx = ρ

and α(dx) = dx, then

E

[(∫ ∞

0

e−µ̃((0,t]) dt

)n]

=
n!

∏n
j=1

∫∞
0

[1− e−js] ρ(ds)

which coincides with a result proved in [6].

Example 3.10. A popular neutral to the right process is given by the beta-
Stacy process introduced in [86], which, from a Bayesian point of view, has
the appealing feature of being conjugate with respect to both exact and right–
censored observations. The CRM corresponding to such a process via the expo-
nential transformation is the log–beta CRM, whose Poisson intensity measure
is of the form

ν(ds, dx) =
1

1 − e−s
e−sβ(x) dsα(dx)

where β is a positive function, α is a measure concentrated on R+ which is abso-
lutely continuous with respect to the Lebesgue measure and

∫∞
0

(β(x))−1 α(dx) =
+∞. The assumption of absolute continuity of α is equivalent to assuming
no fixed points of discontinuity. Clearly, if α is a finite measure and β(x) =
α((x,+∞)), we recover the process (3.30), which corresponds to the Dirichlet
process.

For the mean of a beta–Stacy process the condition for the existence of the
moment of order n reduces to

∫

(0,+∞)

exp

{

−
∫

(0,t1/n)

{β(s)}−1 α(ds)

}

dt < +∞

and the moment of order n of the mean is

n!

∫ +∞

0

· · ·
∫ +∞

tn−1

n∏

j=1

exp

(

−
∫

(0,tj)

α(ds)

β(s) + n− j

)

dtn · · ·dt1.

Given the conjugacy property of the beta-Stacy process, one can also obtain
moments of the posterior mean. In fact, let Y1, . . . , YN denote exchangeable
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observations and S1, . . . , Sr be the r ≤ N exact observations among the Yj ’s,
the others being right–censored. For simplicity, assume that the observations
are all distinct. The posterior distribution of the beta–Stacy process is still a
beta–Stacy process. In particular, the corresponding CRM is a log–beta process
with fixed points of discontinuities, whose Laplace transform is

E(e−λ µ̃((0,t])) = exp

{

−
∫ t

0

∫ ∞

0

(1 − e−λs)ν∗(ds, dx)

}
∏

{k: Sk≤t}
E
(
e−λJk

)
,

(3.33)
with

ν∗(ds, dx) =
1

1 − e−s
e−s{β(x)+M(x)} dsα(dx),

where M( · ) :=
∑N

i=1 1[ · ,+∞)(Yi). Moreover, S1, . . . , Sr are the fixed points
of discontinuity corresponding to the exact observations, the random jump Ji
being exponentially distributed with parameter τi := β(Si) + M(Si) − 1 for
i = 1, . . . , r. See [86] for details.

Hence, as an expression for the posterior moments of the mean of a beta–
Stacy process one obtains

n!

∫ +∞

0

∫ +∞

t1

· · ·
∫ +∞

tn−1

n∏

j=1

exp

(

−
∫

(0,tj)

α(dx)

β(x) +M(x) + n − j

)

× (3.34)

×




∏

{i:Si≤tj}

τi + n− j

τi + n− j + 1



 dtn · · ·dt1

with the proviso that, if {i : Si ≤ tj} = ∅ for some j, then
∏

∅ := 1.

Unlike other means of random probability measures discussed so far, the
problem of determining the distribution of a mean of a neutral to the right
process has not found a solution with the exception of the Dirichlet process;
however, it is to be noted that in order to achieve these results representations
of the Dirichlet process different from the one recalled in Example 3.9 were
used. The only available characterization has been given in [6] and it can be
summarized in the following theorem.

Theorem 3.6. Suppose µ̃ is a CRM with Lévy intensity ν(ds, dx) = dx ρ(ds)
such that

∫∞
0
ρ((s,∞)) ds <∞. Then the probability distribution of

∫∞
0

e−µ̃((0,t])dt
is absolutely continuous with respect to the Lebesgue measure with density q solv-
ing the integral equation

q(y) =

∫ ∞

y

dz

∫ ∞

log(z/y)

ρ(ds) q(z). (3.35)

Unfortunately, so far a solution for the integral equation (3.35) is not known
and so the determination of the density q still remains an open problem.
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4. Concluding remarks

In this paper we have tried to give a broad account on distributional proper-
ties of means of random probability measures and to relate contributions from
different areas. There are still several interesting open issues about means and
among them we mention: the study of relation between the distribution of the
random mean and the expected value of the corresponding random probabil-
ity measure for processes different from the Dirichlet process such as, e.g., the
normalized stable process; the determination of the posterior distribution of
means of processes different from NRMI and, most notably, of the two param-
eter Poisson–Dirichlet process; the derivation of closed form expressions for the
density of means of neutral to the right processes, at least in some specific cases;
the derivation of analogues of the Cifarelli–Regazzini identity for processes dif-
ferent than the two parameter Poisson–Dirichlet process; further investigations
of the interplay between means and excursion theory, combinatorics and special
functions.

The obvious and important following step consists in studying non–linear
functionals of random probability measures. As for quadratic functionals, var-
ious preliminary results are already available for the variance functional of
a Dirichlet process V (D̃α) =

∫
x2D̃α(dx) − [

∫
xD̃α(dx)]2: the moments and

Laplace transform of V (D̃α) have been obtained in [7], expressions for its cumu-
lative distribution function and density function are given in [72], an alternative
representation of its Laplace transform has been derived in [59], whereas in [19]
a stochastic equation for V (D̃α) is derived. It is to be mentioned that, in the
above papers, the variance functional is treated as a linear combination of the
coordinates of the vector of means (

∫
x2P̃(dx),

∫
xP̃(dx)): hence, the deter-

mination of distributional properties of genuinely quadratic functionals such as,
e.g., the mean difference

∫
|x−y|P̃(dx)P̃(dy), is still an open problem. Results

for non–linear functionals such as the quantiles are provided, for the Dirichlet
case, in [35, 37]. Finally, representations for square integrable functionals of the
Dirichlet process in terms of an infinite orthogonal sum of multiple integrals of
increasing order are derived in [64].

Appendix A: Completely random measures

In this Appendix we provide a concise account on completely random measures,
a concept introduced by Kingman [51], which allows to unify in an elegant way
the classes of random probability measures dealt with in the previous sections:
indeed, all of them can be derived as suitable transformations of completely
random measures.

Let (X,X ) be a Polish space equipped with the corresponding Borel σ–field
and recall that a measure µ on X is said to be boundedly finite if µ(A) < +∞ for
every bounded measurable set A. Denote by (MX,MX) the space of boundedly
finite measures endowed with the corresponding Borel σ–algebra. See [14] for
an exhaustive account. Let now µ̃ be a measurable mapping from (Ω,F ,P) into
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(MX,MX) and such that for any A1, . . . , An in X , with Ai ∩Aj = ∅ for i 6= j,
the random variables µ̃(A1), . . . , µ̃(An) are mutually independent. Then µ̃ is
termed completely random measure (CRM).

The reader is referred to [53] for a detailed treatment of the subject. Here,
we confine ourselves to highlighting some aspects of CRMs, which are essential
for the study of mean functionals. A CRM on X can always be represented as
the sum of two components: a proper CRM µ̃c =

∑∞
i=1 JiδYi , where both the

positive jumps Ji’s and the X–valued locations Yi’s are random, and a measure
with random masses at fixed locations in X. Accordingly

µ̃ = µ̃c +

M∑

i=1

Vi δzi (A.1)

where the fixed jump points z1, . . . , zM , with M ∈ {1, 2, . . . ,+∞}, are in X, the
(non–negative) random jumps V1, . . . , VM are mutually independent and they
are independent from µ̃c. Finally, µ̃c is characterized by the Laplace functional

E

[

e
−
∫

X

f(x) µ̃c(dx)
]

= exp

{

−
∫

R+×X

[
1 − e−sf(x)

]
ν(ds, dx)

}

(A.2)

where f : X → R is a measurable function such that
∫
|f | dµ̃c < ∞ (almost

surely) and ν is a measure on R+ × X such that

∫

B

∫

R+

min{s, 1} ν(ds, dx) <∞ (A.3)

for any B in X . From (A.2), which provides a Lévy-Khintchine representation
of CRMs, it is apparent that they are closely connected to Poisson processes.
Indeed, µ̃c can be represented as a linear functional of a Poisson process M̃ on
R+ × X with mean measure ν . To state this precisely, M̃ is a random subset
of R+ × X and if Ñ(A) = card(M̃ ∩ A) for any A ⊂ B(R+) ⊗ X such that
ν(A) <∞, then

P[Ñ(A) = k] =
(ν(A))k e−ν(A)

k!
k = 0, 1, 2, . . . .

It can then be shown that

µ̃c(A) =

∫

A

∫

R+

s Ñ(ds, dx) ∀A ∈ X . (A.4)

The measure ν characterizing µ̃c is referred to as the Lévy or Poisson intensity
of µ̃c: it contains all the information about the distributions of the jumps and
locations of µ̃c. It is often useful to separate the jump and location part of ν by
writing it as

ν(ds, dx) = ρx(ds)α(dx) (A.5)

where α is a measure on (X,X ) and ρ a transition kernel on X × B(R+),
i.e. x 7→ ρx(A) is X –measurable for any A in B(R+) and ρx is a measure
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on (R+,B(R+)) for any x in X. If ρx = ρ for any x, then the distribution of
the jumps of µ̃c is independent of their location and both ν and µ̃c are termed
homogeneous. Otherwise, ν and µ̃c are termed non–homogeneous.

Another important property of CRMs is their almost sure discreteness [53],
which means that their realizations are discrete measures with probability 1.
This fact essentially entails discreteness of random probability measures ob-
tained as transformations of CRMs. It is worth noting that almost sure dis-
creteness of the Dirichlet process was first shown in [3].

Finally, note that, if µ̃ is defined on X = R, one can also consider the càdlàg
random distribution function induced by µ̃, namely {µ̃((−∞, x]) : x ∈ R}. Such
a random function defines an increasing additive process, that is a process whose
increments are non–negative, independent and possibly not stationary. See [77]
for an exhaustive account. We close this section by introducing three noteworthy
examples of CRMs.

Example A.1. (The gamma CRM). A homogeneous CRM γ̃ whose Lévy in-
tensity is given by

ν(ds, dx) =
e−s

s
dsα(dx) (A.6)

is a gamma process with parameter measure α on X. It is characterized by its
Laplace functional which is given by

E

[

e−
∫
f dγ̃
]

= e−
∫

log(1+f) dα (A.7)

for any measurable function f : X → R such that
∫

log(1 + |f |) dα < ∞. Now
set f = λ1B with λ > 0, B ∈ X such that α(B) < ∞ and 1B denoting the
indicator function of set B. In this case one obtains

E

[

e−λ γ̃(B)
]

= [1 + λ]−α(B),

from which it is apparent that γ̃(B) has a gamma distribution with scale and
shape parameter equal to 1 and α(B), respectively.

Example A.2. (The generalized gamma CRM). Let σ ∈ (0, 1), τ > 0, α be
a boundedly finite measure on X and consider a CRM µ̃ with Lévy intensity
defined by

ν(dv, dx) =
σ

Γ(1 − σ)

e−τv

v1+σ
dv α(dx). (A.8)

Such CRMs [4] are known as the family of generalized gamma CRMs and can
be characterized as the exponential family generated by the positive stable laws
(see [4, 67]). It includes, as special cases, the σ–stable CRM for τ = 0, the inverse
Gaussian CRM for σ = 1/2 and the gamma CRM as σ → 0. The generalized
gamma CRM has Laplace functional of the form

E

[

e−
∫
f dµ̃

]

= e−
∫

(τ+f)σ dα−τσα(X) (A.9)
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for any measurable function f : X → R such that
∫

(τ + |f |)σdα < ∞. For
instance, if σ = 1/2 and f = λ1B with λ > 0, B ∈ X such that α(B) <∞ one
obtains

E

[

e−λ µ̃(B)
]

= e−α(B)
√
τ+λ−√

τ ,

which means that µ̃(B) has an inverse Gaussian distribution with parameters τ
and α(B).

Example A.3. (The extended gamma CRM). Another interesting CRM, in-
troduced in [18], is the extended gamma CRM (also known as weighted gamma
CRM according to the terminology of [61]). It differs from the two previous
examples in that it is a non–homogeneous CRM or in other words the distribu-
tion of the jumps depends on their location. Letting β be a positive real valued
function and α be a boundedly finite measure on X, an extended gamma CRM
is characterized by the Lévy intensity

ν(dv, dx) =
e−β(x)v

v
dv α(dx). (A.10)

The corresponding Laplace functional is given by

E

[

e−
∫
f dµ̃
]

= e−
∫

log(1+f β−1)dα (A.11)

for any measurable function f : X → R such that
∫

log(1 + |f | β−1)dα < +∞.
Infinitesimally speaking, one has that µ̃(dx) is gamma distributed with scale
parameter β(x) and shape parameter α(dx).

Appendix B: Transforms and inversion formulae

Most of the results presented in Sections 2.2, 3.1 and 3.2 depend on the inversion
of integral transforms. Here we provide a few details on their definition and the
inversion formulae one resorts to in order to obtain the results we have been
describing.

B.1. Generalized Stieltjes transform

Let X be a non–negative random variable whose probability distribution is abso-
lutely continuous with respect to the Lebesgue measure with density function g.
The generalized Stieltjes transform of order p > 0 of X, or of the corresponding
density g, is defined by

Sp[z;X] =

∫ ∞

0

g(x)

(x+ z)p
dx

for any z ∈ C such that | arg(z)| < π. A special case occurs when p = 1 so that
the Stieltjes transform is, at least formally, an iterated Laplace transform

S1[z;X] =

∫ ∞

0

e−uz
∫ ∞

0

e−ux g(x) dx du.
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Moreover, the inversion formula which allows to recover g from S1[ · ;X] is simple
since it yields

g(x) = lim
ǫ↓0

1

2πi
{S1[−x− iǫ;X]− S1[−x+ iǫ;X]} .

Stieltjes transforms of order p = 1 are also very useful for proving infinite
divisibility of probability distributions. See, e.g., [39].

The inversion formula becomes more complicated when p 6= 1. Different ver-
sions of it can be found in the literature. See, e.g, [82] and [79]. Here we refer
to the result contained in the latter contribution. Under suitable conditions, for
example Sp[ · ;X] is holomorphic on {z ∈ C : | arg(z)| < π} and |zβ Sp[z;X]| is
bounded at infinity for some β > 0, one has

g(x) = − xp

2πi

∫

Γ

(1 +w)p−1 S′
p[xw;X] dw (B.1)

where Γ is a contour in the complex plane starting and ending at the point
w = −1 and enclosing the origin in a counterclockwise sense. If p < 1, then one
can integrate by parts the expression above thus obtaining

g(x) =
p− 1

2πi
xp−1

∫

Γ

(1 + w)p−2 Sp[xw;X] dw. (B.2)

B.2. Characteristic functions

In order to determine prior and posterior distributions of means of NRMIs we
have applied an inversion formula for characteristics functions provided in Gur-
land [31]. The formula is useful when one is interested in determining the prob-
ability distribution of ratios of random variables. And this is the case for means
of NRMIs. If F is a distribution functions and φ the corresponding characteristic
function, then

F (x) − F (x−) = 1 − 1

πi
lim

ǫ↓0, T↑∞

(
∫ −ǫ

−T
+

∫ T

ǫ

)

e−ixt φ(t)

t
dt

= 1 − 2

π
lim

ǫ↓0, T↑∞

∫ T

ǫ

1

t
Im
[
e−ixt φ(t)

]
dt.

If one sets x = 0, the expression in (3.14) is easily obtained.
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