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Abstract: An important feature of linear mixed models and generalized
linear mixed models is that the conditional mean of the response given
the random effects, after transformed by a link function, is linearly re-
lated to the fixed covariate effects and random effects. Therefore, it is of
practical importance to test the adequacy of this assumption, particularly
the assumption of linear covariate effects. In this paper, we review pro-
cedures that can be used for testing polynomial covariate effects in these
popular models. Specifically, four types of hypothesis testing approaches
are reviewed, i.e. R tests, likelihood ratio tests, score tests and residual-
based tests. Derivation and performance of each testing procedure will be
discussed, including a small simulation study for comparing the likelihood
ratio tests with the score tests.
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1. Introduction

Linear mixed models (LMMs) [16] and their extension, generalized linear mixed
models (GLMMs) [2; 28] are popular statistical models for analyzing correlated
data, including longitudinal and clustered data often arising in biomedical re-
search. An important feature of these models is that the conditional mean of
the response given covariates and random effects, after transformed by a link
function, is linearly related to the fixed covariate effects and random effects.
The correctness of such model specification, especially the one on parametric
linear covariate effects, has a significant impact on the validity of the subse-
quent statistical inference on the covariate effects. Therefore, it is of practical
importance to check the adequacy of the assumption for the parametric linear
covariate effects.

In order to evaluate the adequacy of a parametric covariate effect in a re-
gression model, one common approach is to cast the problem in the hypothesis
testing framework, where a broader class of models is selected as the alternatives.
Nonparametric regression models, due to their flexibility and robustness in mod-
eling the relationship between a response variable and explanatory variables, are
often chosen as such alternatives. In practice, however, one rarely directly uses
pure nonparametric regression models as alternatives because of the intrinsic in-
finite dimensional problem of nonparametric functions. To overcome such diffi-
culties, various smoothing techniques, such as kernel smoothing and (penalized)
spline smoothing, are often applied to estimate nonparametric functions, and
the resulting estimates are then used as the alternatives for testing the adequacy
of the parametric covariate effects. In doing so, the infinite dimensional alter-
natives are reduced to the ones with finite dimensions (or even one dimension
in some special cases), which significantly simplifies the testing problems. For
example, it is well-known that a nonparametric function estimated via penal-
ized splines or smoothing splines has a mixed effects representation [3; 29; 30].
An appealing feature of using the mixed effects representation is that one can
cast the hypothesis test of parametric against nonparametric covariate effects
as a variance component test, which in most cases is a simple one-dimensional
testing problem [30; 8]. The likelihood ratio and the score testing approaches
reviewed here are mainly based on this mixed effects representation.

Alternatively, testing the adequacy of parametric covariate effects in LMMs
and GLMMs can also be viewed as a goodness-of-fit problem. The residual based
tests proposed by Pan and Lin [22] take this view. Specifically, these tests are
“based on the cumulative sums of residuals over covariates or predicted values
of the response variable” [22]. The major advantage of this approach is that it
is valid against any alternatives that deviate from an assumed model.

For checking the adequacy of parametric covariate effects, we present here
an overview on four types of hypothesis testing approaches that receive sig-
nificant attention in the literature: R tests, likelihood ratio tests, score tests
and residual-based tests. For each test, the derivation and performance are de-
scribed first in the linear or generalized linear model framework, and then we
mainly focus on their extensions to mixed models. The paper is organized as
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follows. Section 2 briefly introduces the models to be considered in this review.
In Section 3, we review the four testing procedures. In Section 4, we present
the results from a small simulation study to compare the performance of two
popular testing procedures, the exact likelihood ratio test and the score test,
based on mixed effects representation of (penalized) smoothing spline estimates
of a nonparametric function. The paper is concluded in Section 5 with some
discussion.

2. Generalized linear mixed models

In this section, we briefly introduce the models to be considered and notations
to be used in this review. Since LMMs are special cases of GLMMs, we will only
introduce GLMMs for longitudinal/clustered data. Suppose there arem subjects
(or clusters) in a data set. For the ith subject (i = 1, 2, . . . , m), denote by yij
the jth measurement of the response variable (j = 1, 2, . . . , ni), and by zij , sij
and tij the jth measurements of the q-dimensional covariates z, p-dimensional
covariates s (not including the intercept) and a scalar covariate t. Given subject-
specific random effects bi and these covariate values, yij is assumed to be inde-
pendent and has a conditional density in an exponential family with conditional
mean µij = E(yij |bi) and conditional variance var(yij |bi) = ω−1

ij φv(µij), where
ωij is a prior weight, φ is the dispersion parameter and v(·) is the variance func-
tion. The conditional mean µij is assumed to be related to the covariates in the
following GLMM [2]

g(µij) = sTijδ +m(tij , γ) + zTijbi, (2.1)

where g(·) is a known monotone link function, δ are fixed effects of s, m(t, γ) =
γ0 + γ1t + · · · + γdt

d is the d-order (d is a non-negative integer) polynomial
covariate effect of t with coefficients γk’s, and the random effects bi are usually
assumed to have a multivariate normal distribution N{0, D(θ)} with θ being the
vector of unique parameters in the variance matrix of the random effects bi.

Model (2.1) includes many popular models as special cases. When g(µ) = µ
and yij is assumed to have a conditional normal distribution given random
effects bi, the model (2.1) reduces to an LMM considered by Laird and Ware
[16]. Suppose we are confident about the parametric linear form sTijδ in model
(2.1) and are mainly concerned with the adequacy of m(t, γ), the polynomial
covariate effect of t. For this purpose, we consider the following semiparametric
additive mixed models (SAMMs) proposed by Zhang and Lin [30] as alternative
models to model (2.1)

g(µij) = sTijδ + f(tij ) + zTijbi, (2.2)

where f(t) is a smooth but arbitrary function.
Denote y = (y11, . . . , y1n1

, . . . , ym1, . . . , ymnm
)T , S = (s11, . . . , s1n1

, . . . ,
sm1 , . . . , smnm

)T , b = (b1, . . . , bm)T , Zi = (zTi1, . . . , z
T
ini

)T , Z = diag{Z1, . . . , Zm},
and µ = E(y|b). In the next section, we discuss four procedures for checking the
assumption that f(t) is adequately represented by a polynomial functionm(t, γ).
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3. Four testing procedures

3.1. R tests

The R tests, discussed by Hastie and Tibshirani [15], were originally developed
for testing smoothing parameters during the estimation of nonparametric func-
tions through smoothing techniques for independent data. The idea of the R
tests is analogous to the F statistic frequently used in linear regression models.
One of the advantages of the R tests is their easy implementation, as under
the null hypothesis the asymptotic distribution of the R statistic can be ap-
proximated by the chi-square distribution. However, the estimates of the de-
grees of freedom of chi-square distributions can be biased, and the resulting
approximated critical values might be inaccurate. Moreover, the finite-sample
distribution of the R statistic has not been studied [8].

A number of modifications on the original R tests have been made, including
the correction of the bias of nonparametric estimates, reconstruction of the
original test statistics and the corresponding distributions [1; 4; 8]. Here we
briefly describe a version of R statistics proposed by Hardle et al. [13] under
the generalized linear model (GLM) framework. They considered the following
generalized partially linear model, a special case of SAMMs (2.2) for independent
data (ni = 1):

g(µi) = sTi δ + f(ti). (3.1)

Here, no random effect is required as yi’s are independent, so the second sub-
script j (j = 1) can be dropped for the simplicity of the notation.

Denote by δ̃ and f̃ the estimates of δ and f(t) under the null parametric model

H0 : f(t) = m(t, γ), and by δ̂ and f̂ the estimates under the alternative model

Ha : f(t) 6= m(t, γ). Let µ̃i = g−1{sTi δ̃+ f̃(ti)} and µ̂i = g−1{sTi δ̂+ f̂(ti)}. The
proposed R statistic for testing H0 : f(t) = m(t; γ) versus Ha : f(t) 6= m(t; γ),
is defined as

R = −2
m∑

i=1

Q(µ̃i; µ̂i), (3.2)

where Q is the log quasi-likelihood function defined asQ(µi; yi) =
∫ µi

yi

ωi(yi−u)
v(u) du.

Note that here the non-parametric estimates are based on kernel smoothing
methods instead of spline methods as discussed below. As Hardle et al. [13]

pointed out, the usual likelihood ratio statistic L(f̂ , δ̂)−L(f̃ , δ̃), where L(f, δ) =∑m
i=1Q(µi; yi), is not appropriate in this case as δ and f(t) are estimated from

two different likelihood functions. Under the null hypothesis, Hardle et al. [13]
showed that the new R statistic has an asymptotic normal distribution, although
such approximation typically does not work well. Hence Hardle et al. [13] pro-
posed several sophisticated bootstrap-based approaches to obtain more accurate
critical values for the R tests.

Sperlich and Lombardia [21] extended the above R statistic to test H0 :
f(t) = m(t; γ) for a special SAMM with a random intercept only (i.e., zij = 1).
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The test statistic they proposed takes the following form:

R1w =

m∑

i=1

ni∑

j=1

H{f̂(tij), δ̂}{f̂(tij) − f̃(tij) + sTij(δ̂ − δ̃)}2π(tij), (3.3)

where π(.) is a weight function which could be chosen empirically and

H{f(tij), δ} =
∂

∂f
l(yij ; f, δ)

2,

with l(yij ; f, δ) = logf(yij |t, s, f, δ), the log density of yij . The R1w statistic
is based on “direct comparison” between estimates from nonparametric alter-
natives and estimates from null parametric models. Furthermore, Sperlich and
Lombardia [21] showed that the theory of the asymptotic normal distribution
from Hardle et al. [13] can be carried over to the test statistic R1w. However,
the asymptotic approximations often depart from the real finite sample distribu-
tions of the test statistics, which can lead to poor estimates of the critical values.
Therefore, a number of bootstrap procedures were suggested to approximate the
null distribution of the test statistic R1w.

It can be immediately seen that construction of the R test statistic and its
extension R1w for SAMMs involves the estimation of both the null and alter-
native models. Estimation of the null model may be relatively straightforward,
however the model estimation under alternatives can be computationally inten-
sive and sometimes challenging. The bootstrap procedure used to calculate the
null distribution of the test statistics also requires significant computation time,
which may limit the application scope of this testing approach.

3.2. Likelihood ratio tests

For testing a parametric versus nonparametric covariate effect, the likelihood
ratio test (LRT) is a natural choice. The LRT has been popular in situations
where we need to compare two nested models. However, extending the LRT
to testing the adequacy of a parametric covariate effect is not straightforward.
A considerable amount of work has been done in constructing likelihood ratio
based test statistics for comparing parametric versus nonparametric covariate
effects. Depending on how the nonparametric alternatives were specified and
what types of smoothing techniques were used, a number of versions of likelihood
ratio based testing procedures have been proposed. In this section, we review
the LRTs based on the mixed model representation of a nonparametric function
estimated using a (penalized) smoothing spline.

Crainiceanu and Ruppert [7] considered the exact LRT and restricted like-
lihood ratio test (RLRT) for testing whether the nonparametric function is a
certain degree polynomial in the following partially linear model, which is a
special case of SAMMs (2.2) and generalized partially linear models (3.1),

yi = sTi δ + f(ti) + ǫi, (3.4)
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where δ and f(t) have the same definitions as before, ǫi are i.i.d. from N(0, σ2
ǫ )

and are assumed to be independent of si and ti. The nonparametric function
f(t) can be approximated through a penalized smoothing spline by the following
spline function

f(t) = γ0 + γ1t+ · · ·+ γdt
d +

K∑

k=1

ak(t− ξk)
d
+, (3.5)

where K is a non-negative integer, γ = (γ0 , · · ·, γd)
T , a = (a1, · · ·, aK)T are two

sets of parameters, (t)d+ = td for t > 0 and zero otherwise, ξ1 < · · · < ξK are
fixed knots, and ξk could be defined as the k/(K+1)th sample quantile of t′s. In
order for (3.5) to be a good approximation,K is usually chosen to be large (such
as 20), in which case it is not desirable to estimate γ and a directly. A penalized
spline estimate of f(t) is obtained by minimizing the following penalized least
square equation

m∑

i=1

{yi − f(ti) − sTi δ}
2

+
1

λ
aTΣ−1a, (3.6)

where λ is the smoothing parameter and Σ is a pre-specified roughness penalty
matrix, usually taken to be the identity matrix Σ = IK×K .

Let A be the m×(d+1) matrix with the ith row Ai = (1, ti, · · ·, t
d
i ) and B be

the m×K matrix with the ith row Bi = [(ti−ξ1)
d
+, ···, (ti−ξK )d+]. The penalized

least square equation (3.6) suggests that f(t) has a mixed effects representation
f = Aγ + Ba, where f = {f(t1), f(t2), . . . , f(tm)}T , γ is considered as fixed
effects and a is regarded as random effects having the distribution a ∼ N(0, σ2

a)
with σ2

a = λσ2
ǫ . Denote β = (δT , γT )T and X = [S|A] where S is the m × p

matrix with the ith row sTi . Then the original partially linear model has the
equivalent linear mixed model representation

Y = Xβ +Ba + ǫ. (3.7)

It can be clearly seen from the penalized spline expression (3.5) that generally
f(t) is a polynomial of degree d−h (h = 0, 1, . . . , d) if γd−h+1 = · · · = γd = 0 and
a1 = · · · = aK = 0, which is equivalent to γd−h+1 = · · · = γd = 0 and σ2

a = 0 (or
λ = 0) using the linear mixed model representation. Therefore, testing whether
the covariate effect of t is a (d − h)-degree polynomial is equivalent to testing
H0 : γd−h+1 = · · · = γd = 0, σ2

a = 0 (λ = 0) versus Ha : γd−h+1 6= 0 or · · ·
or γd 6= 0 or σ2

a > 0 (λ > 0) if the mixed model representation of a penalized
smoothing spline is used. One approach proposed by Crainiceanu and Ruppert
[7] for testing this hypothesis is the LRT using the log-likelihood of β, σ2

a and
σ2
ǫ from the mixed model representation (3.7)

ℓ(β, σ2
a, σ

2
ǫ ; Y ) = −

1

2
log |V | −

1

2
(Y −Xβ)T V −1(Y −Xβ),

where V = σ2
aBB

T + σ2
ǫ Im×m is the marginal variance of Y under the model

(3.7). In the case where h = 0, the testing problem becomes a variance compo-
nent test, i.e. H0 : σ2

a = 0 versus Ha : σ2
a > 0. Besides the LRT, an alternative
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choice for testing this particular hypothesis is to use the following REML func-
tion

ℓR(σ2
a, σ

2
ǫ ; Y ) = −

1

2
log |V | −

1

2
log |XT V −1X| −

1

2
(Y −Xβ̂)TV −1(Y −Xβ̂),

where β̂ = (XT V −1X)−1XT V −1Y . This method is abbreviated by RLRT.
As pointed out by Crainiceanu and Ruppert [7], under H0 the LRT or RLRT

asymptotically does not follow a 0.5χ2
0 + 0.5χ2

1 mixture chi-square distribution
as suggested by Self and Liang [23] and Stram and Lee [25]. Instead, the LRT
or RLRT asymptotically follows a mixture of χ2

0 and χ2
1 with a much heavier

mass on χ2
0. A simple and fast algorithm was also proposed to sample the exact

null distribution of the LRT or RLRT, which is summarized as follows [7]:

Step 1: Generate a grid of λ values where 0 = λ1 < λ2 < · · · < λn.
Step 2: Simulate K independent random variables w2

1, · · ·, w
2
K from the

χ2
1. Let SK =

∑K
s=1 w

2
s.

Step 3: Independently simulate Xm,K,d =
∑m−p−d−1

s=K+1 w2
s with w2

s ∼ χ2
1.

Step 4: When h 6= 0, independently simulate Xh =
∑h

s=1 u
2
s with u2

s ∼ χ2
1.

Step 5: For every grid point λi calculate

Nm(λi) =

K∑

s=1

λiµs,m
1 + λiµs,m

w2
s

Dm(λi) =

K∑

s=1

w2
s

1 + λiµs,m
+Xm,K,d.

Step 6: Obtain λmax that maximizes fm(λi) over λ1, · · ·, λn, where

fm(λ) = m log

{
1 +

Nm(λ)

Dm(λ)

}
−

K∑

s=1

log(1 + λζs,m).

Step 7: Compute the LRT statistic LRTm = fm(λmax)+m log(1+ Xh

SK+Xm,K,d
),

or LRTm = fm(λmax) if h = 0. For the case of RLRT, compute

RLRTm = sup
λ≥0

[
(m− p− d− 1) log

{
1 +

Nm(λ)

Dm(λ)

}
−

K∑

s=1

log(1 + λµs,m)

]
.

Step 8: Repeat steps 2–7.

Here µs,m and ζs,m are defined to be the K eigenvalues of the K ×K matrices
ZTP0Z and ZTZ respectively, where P0 = Im −X(XTX)−1XT .

In a recent (unpublished) paper, Claeskens et al. [5] adapted the idea of
Crainiceanu and Ruppert [7] and explored the advantages of wavelets for es-
timating nonparametric smooth functions over the use of penalized splines in
partially linear models for independent data. Two asymptotic distribution the-
orems were developed for the test statistics proposed therein, and simulation
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results showed that the wavelet-based test has better performance than the pe-
nalized spline based test in some situations. They also extended the wavelet
based test to the cases of simultaneously testing several polynomial covariate
effects.

For testing generalized linear models with a single covariate t for independent
discrete data, Liu et al. [20] proposed three methods which are “based on the
connection between smoothing spline models and Bayesian models”, assuming
f(t) in model (3.1) to have the following Bayesian expression

f(t) = γ0 + γ1t + · · ·+ γdt
d + τ1/2W (t),

where γ0, γ1, . . . , γd have flat prior, and W (t) is the d-order Wiener process.
Under this Bayesian model, they extended the generalized maximum likelihood
ratio (GML) test of Wahba [27] to test the adequacy of a generalized linear
model, which is equivalent to H0 : τ = 0. The test statistic of the GML test
proposed by Liu et al. [20] is constructed as

tGML =
supφL(0, φ|y)

supτ,φL(τ, φ|y)
, (3.8)

where L(τ, φ|y) denotes the marginal density of y under this Bayesian model.
Obviously, under the mixed model representation of a smoothing spline estimate
of a nonparametric function tGML is essentially a LRT.

One difficulty with the GML test is that there is no closed form expression
for L(τ, φ|y), and the test statistic can only be approximated numerically [20].
Secondly, it is nearly impossible to analytically derive the null distribution of
the test statistic as its distribution depends on some unknown parameters. To
overcome this difficulty, Liu et al. [20] suggested two approaches to approximat-
ing the exact null distribution of the test statistic. One is the usual bootstrap
procedure which is computationally intensive. The other approach is the so
called empirical approximation method, which was considered superior to the
bootstrap-based method.

It should be noted that the testing procedures based on the likelihood ra-
tio are all proposed for models for independent data. Although conceptually
they can be extended to SAMMs for longitudinal/clustered data, there are at
least two major obstacles. First the calculation of the likelihood is even more
complicated under the alternative using the mixed model representation of a
(penalized) smoothing spline estimate of a nonparametric function. Secondly, it
may not be easy to extend the algorithm of Crainiceanu and Ruppert [7], orig-
inally proposed for simulating the exact distribution of the LRT in a partially
linear model, to SAMMs or even LMMs for longitudinal/clustered data. More
future research is needed in this area.

3.3. Score tests

In generalized linear models, score tests have been used for testing the overdis-
persion and heterogeneity of outcomes [10; 24]. Lin [19] extended score tests to
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GLMMs, in which a global score test as well as individual score tests were pro-
posed to test the null hypotheses of all zero random-effect variance components
and individual zero random-effect variance components respectively.

Zhang and Lin [30] considered the problem of testing the nonparametric func-
tion f(t) in model (2.2) being a d-order polynomial. They first estimated f(t) by
a d-order smoothing spline and expressed f with a mixed effects representation,
similar to the one in Section 3.2 for a penalized smoothing spline

f = Tγ + Σa, (3.9)

where f = f(t0), t0 is the vector formed by distinct {tij}’s, T is a matrix formed
by zero to the dth polynomials of t0 with corresponding coefficients γ, Σ is a
smoothing matrix, and a ∼ N(0, τI). Note that this mixed effects representation
is basically the same as the Bayesian expression presented in Section 3.2.

Denote by N the incidence matrix mapping t0 to {tij}’s, and define X =
(NT, S), B = NΣ. Then under the mixed effects representation (3.9), SAMM
(2.2) becomes the following GLMM

g(µ) = Xβ +Ba + Zb, (3.10)

where β = (γT , δT )T are the new fixed effects and (a, b) are the new random
effects.

As described in the earlier sections, testing f(t) in SAMM (2.2) being a d-
order polynomial is equivalent to testing H0 : τ = 0 in the induced GLMM
(3.10). Zhang and Lin [30] adapted the idea of Lin’s [19] variance component
score tests to test H0 : τ = 0. However, they pointed out that the score tests
proposed by Lin [19] for testing zero variance components in GLMMs cannot
be used directly for testing H0 : τ = 0. They proposed a scaled chi-squared
approximation to the test statistic.

Denote by ψ = (θT , φ) the nuisance parameter vector, and by ℓM (τ, ψ) the
marginal log-likelihood function of τ and ψ (by integrating out random effects
a, b and fixed effects β). Then under the induced GLMM (3.10), the score Uτ
for testing H0 : τ = 0 takes the following form

Uτ (ψ̂) =
∂ℓM (τ, ψ; y)

∂τ

∣∣∣∣
τ=0,ψ̂

(3.11)

≈
1

2
{(Y −Xβ)T V −1NΣNTV −1(Y −Xβ) − tr(PNΣNT )}

∣∣∣∣
β̂,ψ̂

,

where β̂ is the MLE of β and ψ̂ is the REML-type of estimate of ψ under the
following null GLMM (3.12), and Y = Xβ+Zb+∆(y−µ) is the working vector
from the null GLMM

g(µ) = Xβ + Zb, (3.12)

where P = V −1 − V −1X(XT V −1X)−1XT , V = W−1 + ZGZT , G = diag{D,
. . . , D}, ∆ = diag{g′(µij)},W = diag{wij} andwij = {φω−1

ij v(µij)[g
′(µij)]

2}−1.
Note that model (3.12) is the matrix representation of the original GLMM (2.1).
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Because of the special structure of Σ, Zhang and Lin [30] found that the

score Uτ (ψ̂) does not follow an asymptotic normal distribution. Write Uτ (ψ)
as Uτ (ψ) = Uτ (y;ψ) − e(ψ), where Uτ (y;ψ) and e(ψ) denote the first and the
second terms of the above score, and define ψ0 as the true value of ψ under
H0 : τ = 0. Zhang and Lin [30] showed that the null distribution of Uτ (y;ψ0)
is approximately equal to the one of weighted chi-squared random variables
and can be well approximated by a scaled chi-squared distribution. Since the
expectation of Uτ (ψ) is an increasing function of τ , larger values of Uτ (ψ̂) give
more evidence against H0, which indicates that the score test should be one-
sided.

Compared with the LRTs, one major advantage of using the score test statis-
tic Uτ (y; ψ̂) is its easy implementation, as it can be calculated directly by fit-
ting a GLMM (under the null hypothesis) rather than a SAMM. In addition,
the critical values can be directly approximated from the regular chi-square dis-
tribution. Therefore, it is not necessary to derive the distribution of the test
statistics under the null hypothesis as often required by the LRTs. Secondly, as
SAMMs encompass a broad class of statistical models, the above score test can
be applied in many situations, such as independent Gaussian data [6], clustered
Gaussian or binary data, etc. For clustered data, the implementation of the
LRTs can be very difficult as expensive computation is needed to approximate
the null distribution of the test statistics.

The simulation results showed that the score test statistic above performs
very well for Gaussian outcomes, less so for binary data due to the poor approx-
imation of the Laplace method in calculating the score statistic, but improves
rapidly as the binomial denominator increases [30].

3.4. Residual based tests

Inspired by the idea of residual plots for checking the goodness-of-fit of regres-
sion models, recently Pan and Lin [22] introduced a graphical and numerical
approach to assess the adequacy of GLMMs. These methods are “based on the
cumulative sums of residuals over covariates or predicted values of the response
variable” [22] and are the further extensions of the work by Su and Wei [26] and
Lin et al. [18].

Denote by µij(β, θ, φ) = E(yij), the marginal mean of yij and define residual

eij as eij = yij − µ̂ij, where µ̂ij = µij(β̂, θ̂, φ̂), and β̂, θ̂, φ̂ are the estimates of
the corresponding parameters under the original GLMM (2.1) or model (3.12) in
the matrix notation. Pan and Lin [22] then considered the following two classes
of stochastic processes

W (x) = m−1/2
m∑

i=1

ni∑

j=1

I(xij ≤ x)eij ,

Wg(r) = m−1/2
m∑

i=1

ni∑

j=1

I(µ̂ij ≤ r)eij,
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where x = (x1, · · ·, xp)
T , r ∈ R, I(xij ≤ x) = I(x1ij ≤ x1, · · ·, xpij ≤ xp), and

xkij is the kth component of xij.
Under the assumed GLMM, these stochastic processes converge in distribu-

tion to zero-mean Gaussian processes, which can be simulated through Monte
Carlo techniques. Each observed cumulative-sum process W (x) or Wg(r) can
then be compared, both visually and analytically, to a certain zero-mean Gaus-
sian process. If the assumed GLMM is a reasonable model for the given data, the
cumulative-sum processes would behave like white noise. Therefore, any abnor-
mal departure of W (x) or Wg(r) from the zero-mean Gaussian processes would
be an indication of model mis-specification. The main advantage of this testing
approach is that there is no need to specify the alternatives, therefore it can be
used to test whether or not f(t) in SAMM (2.2) can be adequately represented
by a polynomial function. Nevertheless this test may be less powerful compared
to the other procedures specifically designed for testing f(t).

Introduced by Fan and Huang [11], another residual based test is the so
called “adaptive Neyman test”. Although the test statistic is constructed in a
completely different way, the basic idea is similar to the one described above,
i.e. if a parametric model fits data well, the residuals should fluctuate around
0. They focused on the classical nonparametric model, which is y = f(x) + ǫ
with ǫ ∼ N(0, σ2). Under the null hypothesis f(·) = m(·, γ) for some γ, where
m(·, γ) belongs to a given parametric family, the resulting residuals are given as
ǫ̂i = yi −m(xi, γ̂), i = 1, · · ·, n, where γ̂ is the estimate of γ under the assumed
model. Denote ǫ̂ = (ǫ̂1, . . . , ǫ̂n), then ǫ̂ is nearly independently and normally
distributed with mean vector η = (η1, · · ·, ηn)

T , where ηi = f(xi)−m(xi, γ0) and
γ0 is the convergent limit of γ̂. Thus, the testing problem can be constructed as
H0 : η = 0 versus Ha : η 6= 0. Fan and Huang [11] adopted the adaptive Neyman
test to this testing problem. The adaptive Neyman test statistic is constructed
based on the Fourier transform of the residuals ǫ̂ with its exact null distribution
being generated through simulations.

As mentioned earlier, the adaptive Neyman test has only been studied in
partially linear models. So, extending it to LMMs or GLMMs could potentially
be a future research direction.

4. Comparison between the exact likelihood ratio and the score tests

In this paper, we provided an overview of the four types of testing approaches.
Among them, likelihood ratio and score tests have been widely used in a vari-
ety of hypothesis testing problems. To our knowledge, however, no comparison
between these two tests has been investigated for the current situation, i.e. test-
ing a parametric covariate effect against a nonparametric covariate effect. Here,
we conduct a small simulation study to evaluate and compare the performance
of these two popular testing procedures. For illustration purposes, we consider
testing the linearity of covariate effects under the partially linear model frame-
work, i.e. whether f(t) is a linear function of t in model (3.4). Following the
penalized spline, we formulate the exact LRT (named as LRT1), RLRT and the
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score test as variance component tests based on the mixed model representation
(3.7) as discussed above. In additon, for testing the same null hypothesis, we
also formulate the exact LRT in a different way (named as LRT2) by modeling
the alternative through a quadratic spline. In the latter case, we are testing
whether f(t) is a (d− h)-degree polynomial of t with d = 2 and h = 1.

Since no exact LRT or RLRT has been developed for mixed models for longi-
tudinal/clustered data, we only consider partially linear models for independent
data even though Zhang and Lin’s [30] procedure is applicable to more compli-
cated models.

Data in this simulation are generated from the following partially linear model

yi = si1β1 + si2β2 + f(ti) + ǫi, i = 1, 2, . . . , m

where si1 is generated from N(0, 0.3), si2 is generated from N(0, 0.4), ti’s are
equally spaced distinct points in [0,1], and ǫi ∼ N(0, σ2). The true values of β1

and β2 are set to be 1.3 and 0.45 respectively. The values of σ are 0.25 and
0.5, and the sample size m is taken to be 50 and 100. A total of five different
functions of f(t) are considered, i.e., fc(t) = (0.25c)t · exp(2 − 2t) − t + 0.5,
for c = (0, 1, 2, 3, 4) [30]. Note that when c = 0, fc(t) is a linear function of t
and fc(t) deviates further from linearity with increasing c. We apply the exact
LRT1, LRT2, RLRT and the score testing procedures to each simulated data
set. The simulation results are based on 1000 Monte Carlo simulation runs.

For testing the null hypothesis that f(t) is a linear function of t, the size
and power of each testing procedure are calculated by setting c = 0 and c 6= 0
respectively. When a penalized spline is used to estimate f(t) as in the LRT
or RLRT, the number of knots for the penalized spline is set to be 20. For the
score testing procedure, the smoothing matrix Σ is from a natural smoothing
spline.

The simulation results are presented in the Table 1 (m = 50) and Table 2
(m = 100), where the nominal levels are set to be 0.05 and 0.1. Regarding the
empirical size, our simulation results show that the exact LRT2, RLRT and the
score test are all close to the nominal levels. The empirical size of the LRT1,
however, stays unchanged even if the nominal level increases from 0.05 to 0.1.
Overall the increased sample size brings the empirical sizes of all these tests
closer to the nominal levels, whereas the error noise seems to have not much
influence on them. With respect to the power, all tests show decreased power
as the error variance increases. As expected, the increased sample size improves
the overall power. Note that the powers of the LRT1 are also unchanged as the
nominal level increases, which implies that the simulated critical values for the
LRT1 may not be accurate with a moderate number of Monte Carlo simulation
runs. In general, our simulation indicates that the LRT2, RLRT and score test
are more powerful than the LRT1, with the score test slightly out-performing
the exact LRT2 and RLRT.

In comparing to likelihood ratio based tests, the score test has at least two
main advantages. First the exact LRT (LRT1 and LRT2) and RLRT are com-
putationally much more intensive than the score test, as deriving the null dis-
tributions of the LRT and RLRT statistics requires simulation in each run. The
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Table 1

Empirical sizes and powers of the four tests in testing the linearity of covariate effects in
model (3.4) where m = 50

nominal σ Test Size Power
level c = 0 c = 1 c = 2 c = 3 c = 4
0.05 0.25 LRT1 0.032 0.152 0.696 0.991 1.000

LRT2 0.049 0.419 0.935 0.999 1.000
RLRT 0.067 0.419 0.927 1.000 1.000
Score 0.066 0.443 0.948 1.000 1.000

0.5 LRT1 0.066 0.094 0.224 0.473 0.782
LRT2 0.047 0.135 0.412 0.737 0.923
RLRT 0.050 0.123 0.404 0.720 0.915
Score 0.060 0.158 0.448 0.762 0.936

0.1 0.25 LRT1 0.032 0.152 0.696 0.991 1.000
LRT2 0.115 0.548 0.962 0.999 1.000
RLRT 0.138 0.545 0.970 0.999 1.000
Score 0.124 0.560 0.972 1.000 1.000

0.5 LRT1 0.066 0.094 0.224 0.473 0.782
LRT2 0.093 0.230 0.545 0.838 0.961
RLRT 0.103 0.213 0.531 0.832 0.960
Score 0.104 0.242 0.565 0.859 0.970

Table 2

Empirical sizes and powers of the four tests in testing the linearity of covariate effects in
model (3.4) where m = 100

nominal σ Test Size Power
level c = 0 c = 1 c = 2 c = 3 c = 4
0.05 0.25 LRT1 0.044 0.217 0.950 1.000 1.000

LRT2 0.053 0.675 0.994 1.000 1.000
RLRT 0.052 0.661 0.995 1.000 1.000
Score 0.052 0.691 0.997 1.000 1.000

0.5 LRT1 0.068 0.115 0.364 0.810 0.988
LRT2 0.059 0.240 0.681 0.956 0.999
RLRT 0.054 0.221 0.670 0.959 0.999
Score 0.062 0.249 0.697 0.963 0.999

0.1 0.25 LRT1 0.044 0.217 0.950 1.000 1.000
LRT2 0.109 0.778 0.998 1.000 1.000
RLRT 0.102 0.762 0.999 1.000 1.000
Score 0.107 0.779 1.000 1.000 1.000

0.5 LRT1 0.068 0.115 0.364 0.810 0.988
LRT2 0.103 0.353 0.781 0.975 1.000
RLRT 0.112 0.336 0.777 0.982 1.000
Score 0.111 0.363 0.798 0.983 1.000

computing time of the exact LRT and RLRT in this simulation is 50 times more
than that of the score test. Secondly, the exact LRT and RLRT have not yet been
developed for more complicated models such as LMMs and GLMMs, whereas
the score testing procedure is flexible and can be adapted to many modeling
situations. For simplicity, only the linearity test is considered in the current
simulation; however in practice, one might be interested in testing higher-order
polynomial covariate effects (i.e. d > 1), which can be easily carried out by
using a different d. Overall we consider the score test is a better choice than the
LRT and RLRT.
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5. Summary

We overview the main development of the four types of testing approaches used
for testing a parametric covariate effect versus a nonparametric covariate effect.
A considerable amount of work has been done with the LRTs under linear
or generalized linear models. The likelihood based tests perform very well for
independent data in finite sample situations. However, these test statistics can
be difficult to compute in a more complex model, as both the parametric and
nonparametric models need to be estimated.

In addition, deriving the null distributions of those test statistics can be
challenging. Therefore, it is not straightforward to extend the existing LRTs
or RLRTs to LMMs and GLMMs. Compared to the LRTs or RLRTs, the score
statistics are easy to compute, usually show good performance and are applicable
to both LMMs and GLMMs. Further study may be needed to investigate the
properties of the score tests for small samples. The R tests are likelihood-ratio-
based tests, hence they share the same advantages and disadvantages as the
LRTs. The recently developed residual-based test [22] can be considered as an
omnibus test for detecting model mis-specification and can be used to test the
adequacy of a polynomial covariate effect. Since no alternative models need to
be specified, the residual-based test is applicable in many situations including
LMMs and GLMMs. However, it may be less powerful than the other testing
procedures that are specifically designed for testing a particular covariate effect.
Comparison of the residual-based tests with the score tests in mixed models
could be of future interest.
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