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Abstract. Let X be a Banach space and τ a topology on X. We say that
X has the τ -fixed point property (τ -FPP) if every nonexpansive mapping T
defined from a bounded convex τ -sequentially compact subset C of X into
C has a fixed point. When τ satisfies certain regularity conditions, we show
that normal structure assures the τ -FPP and Goebel-Karlovitz’s Lemma still
holds. We use this results to study two geometrical properties which imply
the τ -FPP: the τ -GGLD and M(τ) properties. We show several examples
of spaces and topologies where these results can be applied, specially the
topology of convergence locally in measure in Lebesgue spaces. In the second
part we study the preservence of the τ -FPP under isomorphisms. In order
to do that we study some geometric constants for a Banach space X such
that the τ -FPP is shared by any isomorphic Banach space Y satisfying that
the Banach-Mazur distance between X and Y is less than some of these
constants.

1. Introduction

Let (M,d) be a metric space. We recall that a mapping T : M → M
is said to be nonexpansive if d(Tx, Ty) ≤ d(x, y) for every x, y ∈ M . We
say that a Banach space X has the fixed point property (FPP) if every
nonexpansive mapping T defined from a convex bounded closed subset C of
X into C has a fixed point. In 1965 Browder [5,6] and Kirk [33] proved that
X has the FPP if X is either a Hilbert space, or a uniformly convex space
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or a reflexive space with normal structure. From this starting point, many
authors have studied different geometric conditions on X, assuring the FPP.
(See, for instance, [19] and references therein). However, c0 is an easy ex-
ample of a Banach space without the FPP [25]. The failure of the FPP
in c0 is a consequence of the noncompactness of its unit ball in the weak
topology. This fact has originated that many authors study the existence of
fixed points for a nonexpansive mapping, under the stronger assumption: C
is a weakly compact convex subset of X. (See, for instance, [20] and refer-
ences therein). If every nonexpansive mapping T : C → C, C as above, has
a fixed point, we say that X has the weak fixed point property (w-FPP).
In several papers, the weak topology is replaced by some other topologies.
For instance, in [1,13,14,28,29,38,40,42] the existence of fixed points is stud-
ied when C is a weak� compact convex set of a dual space. In [3,36,37]
the same problem is studied for the topology of convergence in measure.
More general topologies are considered in [7,15,16,17,31,32,34,35]. In this
paper we consider that τ is any topology on X and C is a convex subset of
X which is sequentially compact for the topology τ . If every nonexpansive
mapping T : C → C has a fixed point, we say that X has the τ -FPP. Normal
structure and Goebel-Karlovitz’s lemma are the most usual tools to prove
the existence of fixed points for nonexpansive mappings. When τ satisfies
certain regularity conditions, we show that normal structure still assures
the τ -FPP and Goebel-Karlovitz’s lemma still holds. In Section 2, we use
these tools to study two geometrical properties which imply the τ -FPP: the
τ -GGLD and the M(τ) properties. We show several examples of spaces and
topologies where these results can be applied.

When X has the τ -FPP the following question can be interesting: If
Y is a Banach space isomorphic to X and the Banach-Mazur distance
d(X,Y ) is “small”, does Y have the τ -FPP? This problem, originated by
Bynum [8], has been widely studied for the weak topology (see, for instance,
[10,11,18,23,30,39]) and, occasionally, for the weak� topology [42]. However
we do not know any previous result for a general topology. According to the
assumptions on the topology τ , we can obtain a scale of stability bounds.
When τ is an arbitrary topology we can use the fixed point theory for uni-
formly Lipschitzian and asymptotically regular mappings to obtain stability
bounds for nonexpansive mappings by means of the coefficient κτ (X). We
show some classes of spaces and topologies where this coefficient is com-
puted. In particular, for L1(Ω) and the topology of locally convergence in
measure we obtain the best possible stability bound. When X is a separable
Banach space, τ is a linear topology and the norm is a τ -sequentially lower
semicontinuous (τ -slsc) function we define the coefficient τCS(X), which be-
comes Bynum’s weakly convergent sequences coefficient when τ is the weak
topology. However, we show that we cannot use a similar definition as that
given by Bynum. This coefficient is used, in two different ways, to obtain
stability bounds of the τ -FPP. In special classes of spaces, we compare these
bounds and those obtained using κτ (X). Finally, assuming stronger regu-
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larity properties of the norm we obtain better stability bounds using the
coefficient Mτ (X), inspired in [10]. In particular, if X = Lp(Ω), 1 ≤ p < ∞
and τ is the topology of convergence locally in measure, we obtain stability
bounds which are identical to those which appear in [10] for the FPP in
�p-spaces.

2. Geometric Conditions Implying the τ-FPP

Throughout this paper X will be a Banach space and τ an arbitrary
topology on X. In some theorems additional conditions will be assumed on
τ .

Definition 1. We say that X has the τ -FPP if every nonexpansive mapping
T defined from a convex norm-bounded τ -sequentially compact subset C of
X into C has a fixed point.

From the Eberlein-Smulian Theorem , it is clear that the τ -FPP is the
w-FPP when τ is the weak topology.

Definition 2. We say that X has normal structure with respect to τ (τ -
NS) if for every convex norm-bounded τ -sequentially compact C ⊂ X with
diamC > 0, there exists an element x ∈ C which is not diametral, i.e.
sup{‖x − y‖ : y ∈ C} <diam (C).

Theorem 1. Suppose that ‖ · ‖ is a τ -slsc function. If X has τ -NS then X
has the τ -FPP.

Proof. It is an easy consequence of Theorem 1 in [34]. Indeed, let C be a
convex norm-bounded τ -sequentially compact subset of X and T : C → C a
nonexpansive mapping. Denote by S the family of all convex τ -sequentially
closed subsets of C. Then S is countably compact, stable under arbitrary
intersections, and normal (see definitions in [34]). Furthermore it is easy to
prove that the τ -sequential lower semicontinuity of the norm implies that
every closed ball B is τ -sequentially closed. Thus, S contains B∩C for every
closed ball B. Theorem 1 in [34] implies that T has a fixed point.

Definition 3. We shall say that X has the τ -GGLD property if

lim
n

‖xn‖ < lim
n,m;n �=m

‖xn − xm‖

for every norm-bounded τ -null sequence such that both limits exist and
limn ‖xn‖ �= 0.

Remark 1. If τ is the weak topology, the τ -GGLD property is implied
by the GGLD property [22], which implies weakly normal structure and
hence the w-FPP. Our main goal in this section is to prove an equivalent
result when τ is an arbitrary topology. The standard arguments to prove
that GGLD implies w-NS [22] are strongly based upon a well known fact:
Convex norm-closed subsets of X are weakly closed. This fact is not true
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for arbitrary topologies on X. For instance, we consider X = L1([0, 1])
endowed with the topology of convergence in measure and the sequence
fn = nχ[0, 1

n ] which converges to the null function in measure. However,
0 /∈ c̄o{fn} because ‖g‖1 = 1 for every g ∈ co{fn}.

Since the standard approach does not work when τ is not the weak topol-
ogy, we need to use different arguments.

Theorem 2. Let X be a separable Banach space and τ a linear topology on
X. If X has the τ -GGLD property then X has τ -NS.

Proof. Suppose that X fails to have τ -NS. Then, there exists a convex, norm-
bounded, τ -sequentially compact subset C with diam(C) = 1, which is a
diametral set. We shall find a sequence {xn} ⊂ C such that limn ‖xn−x‖ = 1
for every x ∈ C.

Let {yk} be a dense sequence in C. Inspired by [37] we are going to
construct, by induction, a sequence {xn} ⊂ C such that limn ‖xn − yk‖ = 1
for every k ∈ N.

Let x1 = y1 and suppose that we have found x2, . . . , xn−1 ∈ C such that
‖xm − yk‖ ≥ 1 − 1

m for k ≤ m, m = 1, . . . , n − 1.
Denote by b the geometric center of y1, y2, . . . , yn, that is:

b =
n∑

i=1

yi

n
.

Since C is a diametral set, there exists xn ∈ C such that ‖xn − b‖ ≥ 1− 1
n2 .

Then if k ≤ n we have

1 − 1
n2 ≤ ‖xn − b‖ =

∥∥∥∥∥
n∑

i=1

(xn

n
− yi

n

)∥∥∥∥∥
≤ 1

n
‖xn − yk‖ +

n∑
i=1;i �=k

1
n

‖xn − yi‖ ≤ 1
n

‖xn − yk‖ +
n − 1
n

,

which implies ‖xn − yk‖ ≥ 1 − 1
n for k = 1, . . . , n.

Consequently, for every k ∈ N we get

lim
n

(
1 − 1

n

)
≤ lim inf

n
‖xn − yk‖ ≤ lim sup

n
‖xn − yk‖ ≤ 1,

and therefore, {xn} satisfies the required condition.
Notice that if we define the functions ϕ1(x) = lim infn ‖xn − x‖, ϕ2(x) =

lim supn ‖xn − x‖, both are continuous and constant equal to 1 in a dense
subset of C. Thus, limn ‖xn − x‖ = 1 for every x ∈ C.

On the other hand, C is a τ -sequentially compact set. Hence, there exist
a subsequence {xnk

} ⊂ {xn} and a vector x ∈ C such that {xnk
} converges
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to x in the topology τ . We can also assume that limk,j;k �=j ‖xnk
− xnj

‖
exists (see [2, Theorem III.1.5]). Notice that the condition satisfied by {xn}
implies that this limit must be equal to 1. Finally, consider the sequence
yk = xnk

− x which converges to 0 in τ because τ is a linear topology.
Moreover, limk ‖yk‖ = 1 and limk,j;k �=j ‖yk − yj‖ = 1. Thus X does not
satisfy the τ -GGLD property.

The converse of Theorem 2 is not true even if τ is the weak topology.

Example 1. In the space L1([0, 1]) we introduce the equivalent norm

|||x|||2 = ‖x‖2
1 +

( ∞∑
k=1

|x(k)|
2k

)2

where x =
∞∑

k=1

x(k)ek, {ek} is a Schauder basis in L1([0, 1]) (for instance,

the Haar system) and ‖ · ‖1 is the usual norm on L1([0, 1]).
Since (L1([0, 1]), ‖ · ‖1) fails to have the w-FPP, it is known [22] that

L1[0, 1] does not have the w-GGLD property. Then, there exists a weakly
null sequence {xn} such that limn ‖xn‖1 = limn,m;n �=m ‖xn − xm‖1.

It is easy to check that if {xn} is a weakly null sequence then

lim
n

∞∑
k=1

|xn(k)|
2k

= 0.

Thus

limn,m;n �=m |||xn − xm|||2
limn |||xn|||2 =

limn,m;n �=m ‖xn − xm‖2
1

limn ‖xn‖2
1

= 1.

But (L1([0, 1]), ||| · |||) is U.C.E.D. [9, Corollary 6.9, page 66] and conse-
quently this space has the w-NS.

From Theorem 1 and 2 the following result is clear

Theorem 3. Let X be a separable Banach space and τ a linear topology on
X. If X has the τ -GGLD property and the norm is a τ -slsc function, then
X has the τ -FPP.

Let {xn} be a τ -null sequence which is norm-bounded. The function

φ(xn)(x) = lim sup
n

‖x − xn‖

will be called a function of τ -null type. A basic tool in Fixed Point Theory
for nonexpansive mappings is Goebel-Karlovitz’s Lemma. Its proof is based
upon the weak lower semicontinuity of the functions of w-null type and
the following fact: if X does not have the w-FPP, there exists a convex
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weakly compact subset C of X and a fixed point free nonexpansive mapping
T : C → C such that C is minimal, i.e., if K is a nonempty weakly compact
convex subset of C which is invariant under T , then K = C.

In order to assure the existence of a minimal set in the setting of the τ -
FPP we need that τ -sequentially compact sets are τ -compact. This property
is not only satisfied by either the weak topology or a metric topology. In the
case that the Banach space X is separable, any topology τ which is weaker
than the norm topology also verifies that τ -sequentially compact sets are
τ -compact. Indeed, X is Lindelöf for the norm topology because there is a
countable basis of open sets and the same is true for the topology τ because
it is weaker than the norm topology. Thus τ -sequentially compact sets are
countably compact and Lindelöf, which implies that they are τ -compact.

On the other hand, if T is a nonexpansive mapping defined from a convex
norm-bounded subset C of X into C we can always find an approximated
fixed point sequence (a.f.p.s.) for T in C (i.e. lim ‖xn − Txn‖ = 0). For
that, we extend the mapping T , in a continuous way, to the set C̄‖·‖. This
extension is also a nonexpansive mapping. Hence, Banach’s Contractive
Mapping Principle let us find an a.f.p.s. for the extension of T in C̄‖·‖.
Finally, by an approximation argument, we can construct an a.f.p.s. for T
in C.

If we replace the weak topology by a linear topology τ on X such that
τ -sequentially compact sets are τ -compact and the functions of τ -null type
are τ -slsc, it is easy to prove that Goebel-Karlovitz’s Lemma still holds (see
[32,41]). Thus, we can state:

Lemma 1. Let X be a Banach space and τ a linear topology on X such
that τ -sequentially compact sets are τ -compact and the functions of τ -null
type are τ -slsc. Let C be a τ -sequentially compact convex set, T : C → C
a nonexpansive mapping and assume that C is minimal, i. e. if K is a
nonempty τ -sequentially compact convex subset of C which invariant under
T , then K = C. If {xn} is an approximated fixed point sequence for T in C
then limn ‖x − xn‖ = diam (C), for all x ∈ C.

Definition 4. A Banach space X is said to have the property M(τ) if the
functions of τ -null type are constant on the spheres, i.e.

φ(xn)(x) = φ(xn)(y)

whenever ‖x‖ = ‖y‖.
Remark 2. If τ is the weak topology, M(τ) is known as property M of
Kalton (see [26,27]), which implies the w-FPP [18]. We are going to prove
that property M(τ) implies the τ -FPP.

Lemma 2. Let X be a Banach space with the property M(τ) where τ is a
linear topology on X. Then the norm and the functions of τ -null type are
τ -slsc.
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Proof. We are going to prove that the unit ball BX is τ -sequentially closed
which easily implies that the norm is τ -slsc. Let {xn} be a sequence in
BX which is τ -convergent to x0. Since {xn − x0} is τ -null we obtain from
property M(τ)

1 ≥ lim sup
n

‖xn‖ = lim sup
n

‖xn − x0 + x0‖ = lim sup
n

‖xn − 2x0‖.
Hence,

‖2x0‖ ≤ lim sup
n

‖xn − 2x0‖ + lim sup
n

‖xn‖ ≤ 2

and we obtain that x0 ∈ BX .
To prove the second assertion, we shall first prove that functions of τ -

null type are nondecreasing with respect to ‖x‖. Bearing in mind that X
satisfies property M(τ) we only need prove that φ(xn)(tx) is a nondecreasing
function with respect to t in [0, ∞). Indeed, assume 0 < t1 < t2. Then,
there exists β ∈ (0, 1) such that

t1x = β(−t2)x + (1 − β)t2x.

The convexity of φ(xn) implies

φ(xn)(t1x) ≤ βφ(xn)(−t2x) + (1 − β)φ(xn)(t2x) (∗)
From property M(τ) we derive

φ(xn)(−t2x) = φ(xn)(t2x) (∗∗)
and (*) and (**) imply that φ(xn)(t1x) ≤ φ(xn)(t2x).

Now, we are going to prove that for every α > 0 the set

Aα := {x ∈ X : φ(xn)(x) ≤ α}
is τ -sequentially closed, which will imply that functions of τ -null type are τ -
slsc. Assume that {ym} is a sequence in Aα which is τ -convergent to y ∈ X.
Since

‖ym‖ − φ(xn)(0) ≤ φ(xn)(ym) ≤ α

we know that {ym} is bounded by α + φ(xn)(0). The τ -sequential lower
semicontinuity of the norm implies ‖y‖ ≤ lim infm ‖ym‖. Thus, given ε > 1
there exists m0 ∈ N such that ‖y‖ ≤ ε‖ym0‖, which implies

φ(xn)(y) ≤ φ(xn) (εym0) .

Hence, we have

φ(xn) (εym0) ≤ lim sup
n

‖xn−ym0‖+(ε−1)‖ym0‖ = φ(xn)(ym0)+(ε−1)‖ym0‖

and
φ(xn)(y) ≤ α + (ε − 1)(α + φ(xn)(0)).

Taking limits as ε goes to 1 we obtain the result.

From Lemma 1 we can prove the following Proposition. For the weak
topology the proof can be found in [24, Proof of Theorem 1].
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Proposition 1. Assume that X, T and C are as in Lemma 1 and that T
has no fixed point in C. If diam(C) = 1, {xn} is a τ -null approximated fixed
point sequence in C, for every ε > 0 and t ∈ [0, 1] there exists a sequence
{zn} in C such that

(a.-) {zn} is τ−convergent, say to z ∈ C.
(b.-) ‖zn‖ > 1 − ε for any positive integer n.
(c.-) lim supn lim supm ‖zn − zm‖ ≤ t.
(d.-) lim supn ‖zn − xn‖ ≤ 1 − t.

Proof. From Lemma 1 we know that limn ‖wn‖ = 1 if {wn} is an a.f.p.s.
in C. Then, for every ε > 0 there exists δ(ε) > 0 such that ‖x‖ > 1 − ε if
x ∈ C and ‖Tx − x‖ < δ(ε). Indeed, otherwise, there exists ε0 > 0 such
that we can find xn ∈ C with ‖Txn − xn‖ < 1

n and ‖xn‖ ≤ 1 − ε0 for every
n ∈ N. Then, the sequence {xn} is an approximated fixed point sequence in
C, but lim supn ‖xn‖ ≤ 1 − ε0.

Let ε > 0 and t ∈ [0, 1]. Choose γ > 0 such that γ < min{1, δ(ε)} and a
null decreasing sequence {ηn} with γ + ηn < min{1, δ(ε)} for every n ∈ N.

For every n ∈ N we define the contractive mapping Sn : C̄‖·‖ → C̄‖·‖ by

Sn(x) = (1 − γ)T̄ x + γtxn for every x ∈ C̄‖·‖

where T̄ is the unique nonexpansive extension of T to the set C̄‖·‖. Using
Banach’s Contractive Mapping Principle, there exists yn ∈ C̄‖·‖ such that
yn = (1 − γ)T̄ yn + γtxn. Since T̄ yn is defined as the limit of the images
under T of any sequence in C which converges to the vector yn we can find
zn ∈ C with

‖zn − (1 − γ)Tzn − γtxn‖ < ηn.

In addition, from the τ -sequential compactness of C we can assume that the
sequence {zn} τ -converges to a vector z ∈ C. Following now the arguments
in the proof of Theorem 1 in [24] we obtain the proposition.

Theorem 4. Let X be a Banach space which satisfies the property M(τ)
where τ is a linear topology on X such that τ -sequentially compact sets
are τ -compact and the functions of τ -null type are τ -slsc. Then X has the
τ−FPP.

Proof. Assume that X does not satisfy the τ -FPP. Using standard argu-
ments we can prove that there exist a τ -sequentially compact norm-bounded
convex subset K of X with diam(K) = 1 and a fixed point free nonexpansive
mapping T : K → K such that K is minimal and contains a τ -null approx-
imated fixed point sequence {xn}. For ε ∈ (0, 1/3) and t = 1/2 + ε/2, we
can construct {zn} as in Proposition 1. Notice that the choice of ε and t
implies t < 1 − ε and 1 − t = t − ε. Since the norm is τ -slsc (Lemma 2) we
have

‖z‖ ≤ lim inf
n

‖zn − xn‖ ≤ 1 − t.
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On the other hand, let η be a positive number such that t+η < 1−ε. Since
lim supn lim supm ‖zn − zm‖ ≤ t we can assume lim supn ‖zn − zm‖ ≤ t + η
for n large enough. Again, using that the norm is τ -slsc we obtain

lim sup
n

‖zn − z‖ ≤ lim sup
n

lim inf
m

‖zn − zm‖ ≤ t + η < 1 − ε.

This implies that lim supn ‖zn − z‖ ≥ t− ε because otherwise we obtain the
contradiction

1 − ε ≤ lim sup
n

‖zn‖ ≤ lim sup
n

‖zn − z‖ + ‖z‖ < t − ε + 1 − t = 1 − ε

Let d = lim supn ‖zn − z‖. Then

‖z‖ ≤ 1 − t = t − ε ≤ lim sup
n

‖zn − z‖ = d

Consider the sequence yn := (z − zn)/d. This sequence is τ -null and
lim supn ‖yn‖ = 1. Since ‖z/d‖ ≤ 1, we have for any m

φ(yn)(z/d) ≤ φ(yn)(ym/‖ym‖) ≤ φ(yn)(ym) + |‖ym‖ − 1|

which implies

φ(yn)(z/d) ≤ lim sup
m

φ(yn)(ym) = lim sup
m

lim sup
n

‖ym − yn‖.

Thus, we obtain the contradiction

1 − ε ≤ lim sup ‖zn‖ ≤ d lim sup ‖(zn − z)/d + z/d‖

= dφ(yn)(z/d) ≤ lim sup
m

lim sup
n

‖zn − zm‖ ≤ t.

We are going to show some examples, inspired from [31], where the above
results can be applied. In fact, these examples satisfy the following stronger
property than M(τ).

Definition 5. Let X be a Banach space and τ a topology on X. We say that
X satisfies the property L(τ) if there exists a function δ : [0,∞) × [0,∞) →
[0,∞) satisfying

(1).- δ is continuous
(2).- δ(., s) is nondecreasing.
(3).- δ(r, .) is nondecreasing
(4).- δ(lim supn ‖xn‖, ‖y‖) = lim supn ‖xn −y‖ for every y ∈ X and every

τ -null sequence.

It is clear that L(τ) implies M(τ).
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Example 2. Let (Ω,Σ, µ) be a positive σ-finite measure space. For every
1 ≤ p < +∞, consider the Banach space Lp(Ω) with the usual norm. Let
(Ωk)∞

k=1 be a σ-finite partition of Ω. We consider τ as the topology generated
by the metric:

d(f, g) =
+∞∑
k=1

1
2k

1
µ(Ωk)

∫
Ωk

|f − g|
1 + |f − g|dµ for all f, g ∈ Lp(µ).

This topology is known as the topology of the convergence locally in measure
(clm). It is clear that Lp(Ω) endowed with the clm topology is a topological
vector space and this topology is weaker than the norm topology. The
following result can be derived from [4], because every clm-null sequence
{fn} has a subsequence convergent to the null function a.e.: If {fn} is a
clm-null sequence in Lp(Ω), 1 ≤ p < ∞, and f is a function in Lp(Ω), then

lim sup
n

‖fn − f‖p
p = ‖f‖p

p + lim sup
n

‖fn‖p
p.

Thus Lp(Ω) endowed with the clm topology satisfies the property L(τ) with
δ(r, s) = (rp + sp)1/p. In particular, if Ω is N with the cardinal measure
and p > 1 we obtain �p with the weak topology. For �1, the clm-topology is
generated by the metric

d(x, 0) =
∞∑

k=1

1
2k

|x(k)|
1 + |x(k)|

where x denotes the vector x = {x(k)}k≥1 in �1. It is an easy exercise to
check that the clm topology coincides with the weak� topology in norm-
bounded subsets of �1 = c�

0. (We should note that this equivalence is not
true for unbounded sets. Indeed, consider the sequence xn = nen where en

denotes the basic vector. For this sequence

d(xn, 0) =
1
2n

n

1 + n
→n→∞ 0.

However, considering the vector y = { 1
k}k≥1 ∈ c0, we have y(xn) = 1 for all

n ∈ N. Thus {xn} does not converge to zero in the weak�-topology).

Example 3. Consider the weak topology in c0. If {xn} is weakly null, it is
easy to prove that

lim sup
n

‖xn − y‖∞ = max{lim sup
n

‖xn‖∞, ‖y‖∞}

for every y ∈ c0. Thus c0 satisfies the property L(w) with δ(r, s) = max{r, s}.
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Example 4. Assume that X is a reflexive Banach space with a duality
mapping Jφ which is weakly sequentially continuous, associated to a contin-
uous increasing function φ which satisfies φ(0) = 0, limt→∞ φ(t) = ∞. Let
ϕ(t) =

∫ t

0 φ(x)dx. Then,

ϕ(‖x + y‖) = ϕ(‖x‖) +
∫ 1

0
< y, Jφ(x + ty) > dt

for every x, y ∈ X. If {xn} is a weakly null sequence and x ∈ X, we have

ϕ(lim sup
n

‖xn + x‖) = ϕ(lim sup
n

‖xn‖) + ϕ(‖x‖)

Thus X satisfies the property L(w) with δ(r, s) = ϕ−1(ϕ(r) + ϕ(s)).

3.Stability of the τ-FPP

For a general topology τ we can obtain stability results by using some
fixed point results for asymptotically regular and uniformly Lipschitzian
mappings. We recall a definition

Definition 6. Let M be a bounded convex subset of X.
(i) A number b ≥ 0 is said to have the property (Pτ ) with respect to M if

there exists a > 1 such that for all x, y ∈ M and r > 0 with ‖x−y‖ ≥ r and
each τ -convergent sequence {ξn} ⊂ M for which lim supn ‖ξn −x‖ ≤ ar and
lim supn ‖ξn−y‖ ≤ br, there exists some z ∈ M such that lim infn ‖ξn−z‖ ≤
r.

(ii) κτ (M) = sup{b > 0 : b has property (Pτ ) with respect to M}.
(iii) κτ (X) = inf{κτ (M) : M is as above }.

Theorem 5. Let (X, ‖ · ‖) be a Banach space, τ an arbitrary topology on
X. Assume that | · | is an equivalent norm on X such that

|x| ≤ ‖x‖ ≤ d|x|

for every x ∈ X and some d < κτ (X). Then Y = (X, | · |) has the τ -FPP.

Proof. Let C be a τ -sequentially compact norm-bounded convex subset of
X, and T : C → C a | · |-nonexpansive mapping. By [19, Theorem 9.4] we
know that S = (I + T )/2 is a | · |-nonexpansive and asymptotically regular
mapping from C into C. It is easy to check that S is d-uniformly Lipschitzian
for the norm ‖ · ‖. By [12, Theorem 3.1], S has a fixed point which is also a
fixed point of T .

Remark 3. The definition of κτ (X) makes difficult its computation. In
some classes of spaces we can use an easier definition. We recall that X is
said to satisfy the τ -uniform Opial condition if for every c > 0 there exists
r > 0 such that lim infn ‖x+xn‖ ≥ 1+ r for every x ∈ X such that ‖x‖ > c
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and every τ -null sequence {xn} in X such that lim infn ‖xn‖ ≥ 1. It is easy
to check that this condition is satisfied, for instance, if X verifies property
L(τ) and δ(1, ·) is an increasing function. This happens in Example 2 and
4. Using Theorem 2.1 and Remark 2.2 in [12] we can deduce that

κτ (M) = sup{b > 0 : ∀z, y ∈ M,∀r > 0 with ‖z − y‖ ≥ r and every

sequence {ξn} ⊂ M τ -convergent to z ∈ M such

that lim sup
n

‖ξn − y‖ ≤ br, we have lim inf
n

‖ξn − z‖ ≤ r}

when the norm is τ -slsc and X satisfies the τ -uniform Opial condition.

Lemma 3. Assume that τ is a linear topology and X satisfies property L(τ)
and the τ -uniform Opial property. Then κτ (X) ≥ δ(1, 1). If, in addition,
there exists a τ -null sequence which is not norm-convergent, then κτ (X) =
δ(1, 1)

Proof. By multiplication and translation we can assume that r = 1 and
z = 0 in the equivalent definition of κτ (M) in Remark 3. Assume b < δ(1, 1).
If {ξn} is τ -null sequence, ‖y‖ ≥ 1 and lim supn ‖ξn − y‖ ≤ b we have
lim supn ‖ξn‖ ≤ 1, because otherwise we obtain the contradiction

b ≥ lim sup ‖ξn − y‖ = δ(lim sup
n

‖ξn‖, ‖y‖) ≥ δ(1, 1).

Thus κτ (X) ≥ δ(1, 1). To prove the second assertion, let {xn} be a τ -null
normalized sequence and M = co({xn}∪{0}). Consider y = x1 and ξn = xn,
n ≥ 2. Then ‖y‖ = 1, lim supn ‖ξn − y‖ = δ(1, 1) and lim infn ‖ξn‖ = 1.
Thus κτ (X) ≤ δ(1, 1).

As a consequence of Theorem 5 and Lemma 3 we have:

Corollary 1. Assume that Y is a Banach space isomorphic to Lp(Ω) , p ≥ 1
such that d(Y, Lp(Ω)) < 21/p. Then Y has the clm-FPP.

Remark 4. In particular, from Corollary 1 we deduce the following: If Y is
any Banach space isomorphic to �1 and d(Y, �1) < 2, then Y has the τ -FPP
where τ is the σ(�1, c0)-topology. Notice that this result was proved in [42]
whenever Y is a dual space isomorphic to �1.

On the other hand, it must be noted that 2 is the best possible stability
bound for �1 with respect to the σ(�1, c0)-topology (and so, for L1(Ω) with
respect to the clm topology). Indeed, in [38] it is shown that there exists
a nonexpansive fixed point free mapping defined from a weakly� compact
convex subset K of the Bynum’s space �1,∞ into K and the Banach-Mazur
distance between �1 and �1,∞ is 2.

To study the stability of the fixed point property, Bynum [8] defined some
normal structure coefficients. In particular, the weakly convergent sequence
coefficient is defined by

WCS(X) = sup {M ≥ 1 : M · ra({xn}) ≤ diama({xn})}
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where the supremum is taken over all the sequences {xn} in X which are
weakly convergent, ra({xn}) = inf{lim supn ‖xn − y‖ : y ∈ co({xn})} and
diama({xn}) = limk sup{‖xn − xm‖ : n,m ≥ k}.

For an arbitrary topology τ we shall consider a different definition.

Definition 7. Let X be a Banach space and τ a topology on X and assume
that there exists a τ -null sequence which is not norm-convergent. Then, we
define the following coefficient:

τCS(X) = inf
{

limn,m;n �=m ‖xn − xm‖
limn ‖xn‖

}
where the infimum is taken over all norm-bounded sequences which converge
to 0 in τ , both limits exist and limn ‖xn‖ �= 0.

It must be noted that we can always suppose that the Banach space X has
τ -convergent sequences which are not norm-convergent because otherwise X
has the τ -FPP. Indeed, if T is a nonexpansive mapping defined from a convex
norm-bounded τ -sequentially compact subset C of X into C we consider an
a.f.p.s. {xn} for T in C. In addition, due to the τ -sequential compactness
of C we can assume that {xn} is τ -convergent, say to x ∈ C. If {xn} were
also norm-convergent, x would be a fixed point for T in C.

Remark 5. If τ is the weak topology then τCS(X) coincides to the weakly
convergent sequence coefficient WCS(X) (see [2, Lemma VI.3.8]). In spite
of this coincidence for the weak topology, when we extend the definition of
WCS(X) to an arbitrary topology, it is more useful to consider Definition 7
instead of the straightforward extension of WCS(X). Indeed, consider the
space L1([0, 1]) endowed with the convergence in measure topology. Take
the sequence fn = nχ[0,1/n] in L1([0, 1]) which converges to zero in measure.
Since ‖fn − fm‖ = 2 − 2m

n for every nonnegative integers n,m;n > m, we
have diama({fn}) = 2. On the other hand, let f be a mapping in co({fn}),
say f =

∑m
k=1 αkfk, , αk ≥ 0 , k = 1, ...,m ;

∑m
k=1 αk = 1. If n > m, it is

easy to check that ‖f − fn‖ = 2 − 2
m∑

k=1

αk
k

n
. Thus lim supn ‖f − fn‖ = 2

and ra({fn}) = 2. Hence, the straightforward extension would lead to
a τ -convergent sequence coefficient value of 1. However, we will show in
Corollary 2 that using our definition, τCS(L1([0, 1])) = 2 when τ is the
convergence in the measure topology.

The coefficient WCS(X) produces stability of the w-FPP in the following
sense: Assume that X, Y are isomorphic Banach spaces with d(X,Y ) <
WCS(X), where d(X,Y ) is the Banach-Mazur distance. Then Y has the
w-FPP [8]. Since it is clear that a Banach space X has the τ -GGLD property
if τCS(X) > 1, from Theorem 3 we obtain a similar stability result for the τ -
FPP. Notice that if X and Y are isomorphic Banach spaces, we can consider
that Y is X endowed with an equivalent norm and it is easy to check that
τCS(X) ≤ d(X,Y )τCS(Y )
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Theorem 6. Let X be a separable Banach space and τ a linear topology on
X. Assume that | · | is a norm defined on X such that

|x| ≤ ‖x‖ ≤ d|x|

for every x ∈ X. Let Y = (X, | · |). Then Y has the τ -FPP if | · | is a τ -slsc
function and d < τCS(X).

We do not know a general relationship between κτ (X) and τCS(X).
However, in some classes of spaces and topologies we can compare both co-
efficients. When τ is the weak topology, it is known [2, Theorem IX.2.7] that
κω(X) ≤ WCS(X) (it must be noted [2, Example IX.2]) that this inequality
can be strict) and the arguments in the proof of the above inequality equally
work when the functions of τ -null type are τ -slsc. In particular we have that
κτ (X) ≤ τCS(X) when X satisfies property M(τ). When X satisfies the
τ -uniform Opial condition we have the same result.

Proposition 2. (1) Assume that X satisfies the τ -uniform Opial condition.
Then κτ (X) ≤ τCS(X).

(2) Assume that X satisfies property L(τ). Then τCS(X) = δ(1, 1).

Proof. (1) Let ε be an arbitrary positive number and {xn} a normalized τ -
null sequence such that limn,m;n �=m ‖xn−xm‖ < τCS(X)+ε. Choose k large
enough such that lim supn ‖xn −xk‖ ≤ τCS(X)+2ε. Denote yn = (1+ε)xn

and consider the set M = co({yn} ∪ {0}). The conditions lim supn ‖yk −
yn‖ ≤ (τCS(X) + 2ε)(1 + ε) , ‖yk‖ = 1 + ε and lim inf ‖yn‖ = 1 + ε imply
κτ (M) ≤ (1 + ε)(τCS(X) + 2ε). Since ε is arbitrary we obtain κτ (X) ≤
τCS(X).

(2) If X satisfies property L(τ) and {xn} is a τ -null sequence such that
limn,m;n �=m ‖xn − xm‖ exists and limn ‖xn‖ = 1, it is clear that
limn,m;n �=m ‖xn − xm‖ = δ(1, 1), which implies the result.

Corollary 2. Let (Ω,Σ, µ) as in Example 2. For p ≥ 1 we have

(clm)CS(Lp(Ω)) = 21/p.

The following example will show that Theorem 6 can give a stronger
stability result than Theorem 5.

Example 5. Let (Ω,Σ, µ) be as in Example 2, and assume that Ω1 is an
atom. For p > 1 consider in L1(Ω) the equivalent norm

|||f ||| =
{(∫

Ω1

|f |
)p

+
(∫

Ω−Ω1

|f |
)p}1/p

.

If {fn} is clm-null we have that
∫

Ω1
|fn| → 0. From Corollary 2 we can easily

deduce that (clm)CS(X) = 2 if X = (L1(Ω), |||·|||). However, we shall prove
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that κclm(X) ≤ 21/p. Indeed, consider the functions fn = χΩn
/µ(Ωn), n ≥ 2

and f = χΩ1/µ(Ω1). Then {fn} is a clm-null sequence, |||fn − f ||| = 21/p

and |||fn||| = 1 for any n ≥ 2, and |||f ||| = 1 . If b > 21/p and r = 21/p/b we
have |||f ||| > r, |||fn − f ||| = br but |||fn||| > r. Since X satisfies the clm-
uniform Opial condition, we deduce from Remark 3 that κclm(X) ≤ 21/p.
In fact, it can be proved that κclm(X) = 21/p.

The main limitation of Theorem 6 is that we only obtain stability for
norms which are τ -slsc. However, the following example shows that this
condition is not preserved by isomorphisms.

Example 6. Consider in R2 the vectors e1 = (1, 0) and e2 = (−a,
√

1 − a2)
where a ∈ (0, 1). Define ‖(x1, x2)‖e = ‖x1e1 + x2e2‖2, where ‖ · ‖2 denotes
the euclidean norm.

In �1 we define the norm

|x| =

∥∥∥∥∥
(

|x(1)|,
+∞∑
n=2

|x(n)|
)∥∥∥∥∥

e

.

It is clear that this norm is equivalent to the usual norm in �1. In fact,
the Banach-Mazur distance between the two spaces is close to

√
2 if a is

small enough. Consider the sequence xn = e1 + aen, where {en} denotes
the basis sequence in �1. Then xn → e1 in the σ(�1, c0) topology, but
|xn| = ‖(1, a)‖e =

√
1 − a2 < 1 = |e1|. From this, the norm | · | is not a

σ(�1, c0)-slsc function.

In [12, Theorem 3.2], it is proved that a k- uniformly Lipschitzian asymp-
totically regular mapping T : C → C has a fixed point if C is a weakly
compact convex set and k <

√
WCS(X). Since the arguments in the proof

equally work for τCS(X) if τ is a topology weaker than the norm topology
and the norm is τ -slsc, we can state the following theorem.

Theorem 7. Let X be a Banach space and τ a linear topology on X such
that τ is weaker than the norm topology and the norm is τ -slsc. If Y is an
isomorphic Banach space and d(X,Y ) <

√
τCS(X), then Y has the τ -FPP.

Example 5 and the following Example 7 show the different scopes of
Theorems 5, 6 and 7.

Example 7. Consider the Banach space X = R × L1[0, 1] equipped with
the norm

‖(λ, f)‖X = (|λ|p + ‖f‖p
1)

1/p with p > 2

where ‖·‖1 denotes the usual norm in L1[0, 1]. Let τ be the product topology
of the usual topology on R and the topology of the convergence in measure
on L1[0, 1]. It is easy to check that τCS(X) = 2 and κτ (X) = 21/p.

Having chosen a ∈ (0, 1), we define the Banach space Y = (X, ‖ · ‖Y )
where ‖ · ‖Y is the following equivalent norm on X:

‖(λ, f)‖Y = (|λ|p + |||f |||p)1/p
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with |||f ||| = ‖(∫ 1/2
0 |f |, ∫ 1

1/2 |f |)‖m and ‖(·, ·)‖m is the norm on R
2 whose

unit ball is the balanced convex hull of the set {(0, 1), (1 + a, a)}. Trivially,
the norm ‖·‖X is τ -slsc, however, we shall check that ‖·‖Y is not τ -slsc. For
that, we consider the sequence {(0, fn)} ⊂ Y with fn = 2χ[0,1/2]+anχ[ n−1

n ,1].
Then (0, fn) →n (0, 2χ[0, 1

2 ]) in the topology τ but

‖(0, fn)‖Y = ‖(1, a)‖m =
a2 + 1
1 + a

< 1 = ‖(1, 0)‖m = ‖(0, 2χ[0,1/2])‖Y .

It is not difficult to prove that d(X,Y ) = 1 + 2a. Then, when a tends to
0, d(X,Y ) tends to 1. Therefore, there does not exist, in general, an upper
bound of the Banach-Mazur distance between two isomorphic Banach spaces
such that the norm on Y is τ -slsc if the norm on X is τ -slsc and d(X,Y ) is
less than that bound.

Since ‖ · ‖Y is not τ -slsc we cannot apply Theorem 6 to assure the τ -FPP
in Y . However, we can deduce from Theorem 7 that Y has the τ -FPP if
1 + 2a <

√
2. It must be noted that we cannot apply Theorem 6 either if

21/p ≤ 1 + 2a.

For topologies such that the functions of τ -null type are τ -slsc we can
obtain better stability results using a coefficient inspired in the definition of
M(X) in [10].

Definition 8. Let X be a Banach space and τ a topology on X. For any
nonnegative number a we define the coefficient

Rτ (a,X) = sup{lim inf ‖xn + x‖}

where the supremum is taken over all x ∈ X with ‖x‖ ≤ a and all τ -null
sequences in the unit ball such that limn,m;n �=m ‖xn − xm‖ ≤ 1. We define
the coefficient Mτ (X) as

sup
{

1 + a

Rτ (a,X)
: a ≥ 0

}
.

Theorem 8. Let X be a Banach space and τ a linear topology such that
τ -sequentially compact sets are τ -compact. Let | · | be an equivalent norm on
X such that

|x| ≤ ‖x‖ ≤ d|x|
for every x ∈ X, and let Y = (X, | · |). If d < Mτ (X) and the functions of
τ -null type are τ -slsc in Y , then Y has the τ -FPP.

Proof. We shall use Proposition 1 to give an elemental proof. Since d <
Mτ (X) there exists a ≥ 0 such that dRτ (a,X) < 1 + a. Since Rτ (·, X) is a
continuous function we can assume that a > 0. Let t = (1 + a)−1 ∈ (0, 1)
and choose a positive ε < 1 − (1 + a)−1dRτ (a,X). If Y does not have
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the τ -FPP, a standard argument proves that there exist T and C as in
Proposition 1. Consider the sequence there defined. Taking a subsequence,
if necessary, we can assume that limn,m , n �=m ‖zn − zm‖ exists and {zn} is
τ -convergent, say to z. Furthermore, limn,m , n �=m ‖zn − zm‖ ≤ dt because
lim supn lim supm |zn − zm| ≤ t and ‖z‖ ≤ d(1 − t) because |z| ≤ 1 − t. Let
0 < η < (1 − ε)/Rτ (a,X) − dt. Then we can assume that the sequence
{(zn − z)/(dt + η)} belongs to the unit ball in Y . Thus, we obtain the
contradiction

1 − ε

dt + η
<

|zn|
dt + η

≤
∣∣∣∣zn − z

dt + η
+

z

dt + η

∣∣∣∣ ≤ Rτ (a,X).

Theorem 8 is of special interest when every τ -convergent sequence is
weakly convergent, because in this case the functions of τ -null type are
τ -slsc and this condition is preserved under isomorphisms. That happens
for Lp(Ω), p > 1, if τ is the clm topology (see, for instance, [21], page
207). If p > 1 we know that Lp(Ω) has the clm-FPP, because every convex,
norm-bounded, clm-compact subset of Lp(Ω) is weakly compact and it is
well known that Lp(Ω) has the w-FPP if p > 1. In fact, it is known that
WCS(Lp(Ω)) ≥ min{21/p, 21−1/p}. (The equality holds if either p > 2 or µ
is not purely atomic [2, Theorem VI.6.3]). However, better stability bounds
can be obtained when the clm-FPP is considered.

Theorem 9. Let X be a Banach space. Assume that τ is a linear topology
such that τ -sequentially compact sets are τ -compact. Assume that τ is se-
quentially stronger than the weak topology and X satisfies L(τ). If Y is an
isomorphic Banach space and

d(X,Y ) < sup


 1 + a

δ
(

1
δ(1,1) , a

) : a ≥ 0




then Y has the τ -FPP. In particular, Y has the τ -FPP if d(X,Y ) < (1 +√
5)/2.

Proof. We can assume that there exists a norm-bounded τ -null sequence
which is not norm-convergent, because otherwise it is clear that Y has the
τ -FPP. Using property L(τ) we can easily deduce that

Rτ (a,X) = δ

(
1

τCS(X)
, a

)
= δ

(
1

δ(1, 1)
, a

)
.

Since δ is an homogeneous function, if we choose a = 1/δ(1, 1) we obtain
Mτ (X) ≥ 1 + (1/δ(1, 1)). For a = 0 we also know that Mτ (X) ≥ δ(1, 1).
Noting that

max
{

1 +
1

δ(1, 1)
, δ(1, 1)

}
≥ 1 +

√
5

2
we obtain the result.

From Theorem 9, we can obtain stability bounds in Lp(Ω) for the clm-
FPP, which are identical to those obtained in [10] for the FPP in �p-spaces.
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Corollary 3. Let (Ω,Σ, µ) be a positive σ-finite measure space and | · | a
norm on Lp(Ω) , p > 1 which satisfies

|f | ≤ ‖f‖p ≤ d|f |

for every f ∈ Lp(Ω). Let X = (Lp(Ω), | · |). If

d <
(
1 + 2

1
p−1

) p−1
p

,

then X has the clm-FPP.

Proof. A standard argument proves that

sup
{

(1 + a)
(ap + 1/2)1/p

: a ≥ 0
}

=
(
1 + 2

1
p−1

) p−1
p

.
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Basel, 1997..

3. M. Besbes, Points fixes des contractions definies sur un convexe L0-fermé de L1, C.
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