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The aim of this paper is to connect the zeros of polynomials in two variables with the eigenvalues of a self-adjoint operator. This
is done by use of a functional-analytic method. The polynomials in two variables are assumed to satisfy a five-term recurrence
relation, similar to the three-term recurrence relation that the classical orthogonal polynomials satisfy.

1. Introduction

Orthogonal polynomials in two or more variables (also mul-
tivariate polynomials) constitute a very old subject and have
been investigated by many authors using various approaches.
The usefulness and applications of classical orthogonal poly-
nomials (COP) in one variable are very well-known and thus
on its own this is a very strong motivation for generalizing
several results of COP tomultivariate polynomials.Moreover,
the potential application of multivariate orthogonal polyno-
mials in approximation techniques and numerical methods is
another strong motivation.

For example, in numerical integration, the Gauss quadra-
ture formula

∫
𝛽

𝛼
𝑓 (𝑥) 𝜌 (𝑥) 𝑑𝑥 =

𝑁

∑
𝑖=0

𝑤𝑖𝑓 (𝑥𝑖) , (1)

where 𝑥𝑖 are the zeros of the polynomials 𝑃𝑁+1(𝑥) which
are orthogonal in [𝛼, 𝛽] with respect to 𝜌(𝑥), gives an
approximation of the integral on the left-hand side of (1).
It could be of interest to generalize (1) in two dimensions
having, instead of 𝑃𝑁+1(𝑥), the two variable polynomials
𝑃𝑁+1,𝑀+1(𝑥, 𝑦). Also, COP are used in the approximation of
functions of one variable by uniquely determined series of the
form

𝑔 (𝑥) = ∑
𝑖

𝑐𝑖𝑃𝑖 (𝑥) , (2)

where 𝑃𝑖(𝑥) is a sequence of COP. In a similar way, two-
variable functions could be approximated by similar double
series involving orthogonal bivariate polynomials 𝑃𝑖,𝑗(𝑥, 𝑦).
Moreover, an approximation of form (2) is at the “heart” of
pseudospectral numerical techniques, such as the Chebyshev
pseudospectral method, where 𝑃𝑖(𝑥) are the well-known
Chebyshev polynomials 𝑇𝑖(𝑥). Such techniques are used
for the numerical solution of one-dimensional boundary
value problems and the computation of the corresponding
solution is being done by evaluating the right-hand side
of (2) for 𝑃𝑖(𝑥) = 𝑇𝑖(𝑥) at specific grid points 𝑥𝑖 which
are the Gauss-Lobatto grid points. (See, e.g., [1].) It would
be interesting to extend all these in the case of bivariate
orthogonal polynomials satisfying a recurrence relation sim-
ilar to the recurrence relation satisfied by the COP, for the
straightforward numerical investigation of two-dimensional
problems.

There are various extensions in the literature of the COP
to polynomials of several variables or polynomials of com-
plex variables. For example, in [2], the system {1, 𝑦, 𝑥, 𝑦2,
𝑥𝑦, 𝑥2, . . .} was orthogonalized with respect to some region
𝑅 of the 𝑥𝑦-plane. In [3, 4], polynomials orthogonal with
respect to a positive linear functional were considered. In [5],
two variable analogues of classical orthogonal polynomials
were constructed and studied.

The techniques used for the study of multivariate poly-
nomials, orthogonal or not, constitute also a wide variety.
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In many cases the polynomials studied are constructed in
such a way or are eventually eigenfunctions of certain partial
differential operators. Furthermore, the properties of these
polynomials or these operators are investigated. This is done,
for example, in [6–22]. In other studies, as, for example, in
[23], weight functions are constructed for certain orthogonal
polynomials. Moreover, there exist several results which can
be considered as generalizations of the results for COP. Such
an example is [24], where a Rodrigues formula was intro-
duced for classical orthogonal polynomials of two variables.

The topic of multivariate polynomials is quite vast and
unfortunately there exist very few books. One such book
is [25], in which the majority of the results concerning
orthogonal polynomials in two variables until the publication
of this book are collected. Moreover, a concise history of the
development of the theory of orthogonal polynomials in two
variables up to then is given. Another book on the same
subject is [26], where the theory of orthogonal polynomials
of several variables is developed and presented. Especially
in Chapter 3 of [26], the general properties of orthogonal
polynomials in several variables are given including (a) a
three-term relation in matrix form that they satisfy, (b) a
theorem analogous to Favard’s theorem, (c) results on their
zeros, (d) their connection tomoment problems, and (e) their
connection with block Jacobi matrices.

As mentioned in [26, Section 3.3.2] “the three term
relation in several variables is not as strong as that in one
variable and as a consequence the analogous to Favard’s
theorem is not as strong.” Also, as mentioned in [27], “the
classical orthogonal polynomials have several extensions to
polynomials of two variables, depending on the geometric
region of the support set of the measure.”

An especially interesting subject is the zeros of multi-
variate polynomials. However, the zeros of, for example, a
polynomial in two variables are either single points or curves
in the plane.Thus, results for such zeros could not havemuch
in common with the results of the zeros of COP. However, if
common zeros are taken into consideration, then there are
many similarities with the one-dimensional case. Such a kind
of result can be found in [26, 28] and they are analogous
with the results stated and proved in Sections 3 and 4 of the
present paper. The locations of common zeros of orthogonal
polynomials in two variables were also studied in [29].

In this paper, a family of polynomials in two variables
(2D-polynomials) of degrees 𝑖 − 1 and 𝑗 − 1 with respect to 𝑥
and 𝑦, respectively, {𝑃𝑖,𝑗(𝑥, 𝑦)}𝑁,𝑀𝑖=0,𝑗=0, is considered satisfying
the recurrence relation:

𝛼𝑖,𝑗𝑃𝑖+1,𝑗 (𝑥, 𝑦) + 𝛼𝑖−1,𝑗𝑃𝑖−1,𝑗 (𝑥, 𝑦) + 𝛽𝑖,𝑗𝑃𝑖,𝑗 (𝑥, 𝑦)
+ 𝛿𝑖,𝑗𝑃𝑖,𝑗+1 (𝑥, 𝑦) + 𝛿𝑖,𝑗−1𝑃𝑖,𝑗−1 (𝑥, 𝑦)
+ 𝛾𝑖,𝑗𝑃𝑖,𝑗 (𝑥, 𝑦) = (𝑎𝑥 + 𝑏𝑦) 𝑃𝑖,𝑗 (𝑥, 𝑦) ,

(3)

for 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀, with

𝑃0,𝑗 (𝑥, 𝑦) ≡ 0,
𝑃𝑖,0 (𝑥, 𝑦) ≡ 0,
𝑃1,𝑗 (𝑥, 𝑦) = 𝑄𝑗 (𝑦) ,

(4)

for 𝑗 = 1, . . . ,𝑀, where𝑄𝑗(𝑦) are known polynomials of 𝑦 of
degree 𝑗 − 1 with 𝑄1(𝑦) ≡ 1 and 𝑄0(𝑦) ≡ 0.

Instead of (4) one may also use

𝑃0,𝑗 (𝑥, 𝑦) ≡ 0,
𝑃𝑖,0 (𝑥, 𝑦) ≡ 0,
𝑃𝑖,1 (𝑥, 𝑦) = 𝑅𝑖 (𝑥) ,

(5)

for 𝑖 = 1, . . . , 𝑁, where 𝑅𝑖(𝑥) are known polynomials of 𝑥 of
degree 𝑖−1with𝑅1(𝑥) ≡ 1 and𝑅0(𝑥) ≡ 0. Obviously, relations
(4) and (5) are analogous.

If one makes the conventions

(C1) 𝛼𝑖,𝑗 ≡ 𝛼𝑖, 𝛽𝑖,𝑗 ≡ 𝛽𝑖, 𝛾𝑖,𝑗 ≡ 0, 𝛿𝑖,𝑗 ≡ 0, 𝑎 = 1, 𝑏 = 0,
𝑃𝑖,𝑗(𝑥, 𝑦) = 𝑃𝑖(𝑥), 𝑃0(𝑥) ≡ 0, and 𝑃1(𝑥) ≡ 1 or

(C2) 𝛼𝑖,𝑗 ≡ 0, 𝛽𝑖,𝑗 ≡ 0, 𝛾𝑖,𝑗 ≡ 𝛾𝑗, 𝛿𝑖,𝑗 ≡ 𝛿𝑗, 𝑎 = 0, 𝑏 = 1,
𝑃𝑖,𝑗(𝑥, 𝑦) = 𝑃𝑗(𝑦), 𝑃0(𝑦) ≡ 0, and 𝑃1(𝑦) ≡ 1,

then (3), (4) or (3), (5) reduce to the well-known recurrence
relation for the COP of one variable:

𝛼𝑖𝑃𝑖+1 (𝑥) + 𝛼𝑖−1𝑃𝑖−1 (𝑥) + 𝛽𝑖𝑃𝑖 (𝑥) = 𝑥𝑃𝑖 (𝑥) ,
𝑃0 (𝑥) ≡ 0, 𝑃1 (𝑥) ≡ 1. (6)

Thus, in the rest of the paper it will be assumed that

(A1) 𝛼𝑖,𝑗 > 0, 𝛿𝑖,𝑗 > 0, 𝛽𝑖,𝑗, 𝛾𝑖,𝑗 ∈ R for all 𝑖, 𝑗, 𝑎, 𝑏 ∈ R not
simultaneously zero.

By making convention (C1) or (C2) the results of the present
paper are reduced to the corresponding results for the COP.
Also, it should be noted that although the terms 𝛽𝑖,𝑗𝑃𝑖,𝑗(𝑥, 𝑦)
and 𝛾𝑖,𝑗𝑃𝑖,𝑗(𝑥, 𝑦) can be combined in one, it is better to be kept
apart for reasons that will be made clear in Sections 3 and 4
and have to do with the similarity of (3) to (6). This is one
reason for studying (3).

Another motivation for considering (3) comes from the
notion of orthogonal basis. It is well-known (see, e.g., [30, p.
32]) that “if {𝜙𝑖(𝑠)}∞𝑖=1 is an orthonormal basis for 𝐿2[𝑎, 𝑏],
then Φ𝑖𝑗(𝑠, 𝑡) = 𝜙𝑖(𝑠)𝜙𝑗(𝑡), 𝑖, 𝑗 ≥ 1 forms an orthonormal
basis for 𝐿2([𝑎, 𝑏]× [𝑎, 𝑏]).” It is straightforward to prove that
“if {𝜙𝑖(𝑥)}∞𝑖=1 is an orthonormal basis for 𝐿2[𝑎, 𝑏]with respect
to the weight function 𝜌1(𝑥) and {𝜓𝑗(𝑥)}∞𝑗=1 is an orthonormal
basis for 𝐿2[𝑐, 𝑑] with respect to the weight function 𝜌2(𝑥),
then Φ𝑖𝑗(𝑥, 𝑦) = 𝜙𝑖(𝑥)𝜓𝑗(𝑦), 𝑖, 𝑗 ≥ 1 is an orthonormal basis
for 𝐿2([𝑎, 𝑏]×[𝑐, 𝑑])with respect to 𝜌1(𝑥)𝜌2(𝑦).” Examples of
such orthogonal basis are the COP satisfying (6).

Suppose two families of COP 𝑃𝑖(𝑥) and 𝑇𝑗(𝑦) satisfying
(6) with coefficients 𝛼𝑖, 𝛽𝑖 and 𝛿𝑗, 𝛾𝑗, respectively. Then the
polynomials 𝑆𝑖,𝑗(𝑥, 𝑦) = 𝑃𝑖(𝑥)𝑇𝑗(𝑦) are also orthogonal and
satisfy the recurrence relation

𝛼𝑖𝑆𝑖+1,𝑗 (𝑥, 𝑦) + 𝛼𝑖−1𝑆𝑖−1,𝑗 (𝑥, 𝑦) + 𝛽𝑖𝑆𝑖,𝑗 (𝑥, 𝑦)
+ 𝛿𝑗𝑆𝑖,𝑗+1 (𝑥, 𝑦) + 𝛿𝑗−1𝑆𝑖,𝑗−1 (𝑥, 𝑦) + 𝛾𝑗𝑆𝑖,𝑗 (𝑥, 𝑦)

= (𝑥 + 𝑦) 𝑆𝑖,𝑗 (𝑥, 𝑦)
(7)

which is a special case of (3).
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For the study of the zeros of the polynomials 𝑃𝑖,𝑗(𝑥, 𝑦)
satisfying (3) a functional-analytic approachwill be used.This
approach is a generalization of the method used for COP
by Ifantis, Siafarikas, and their collaborators which include
the authors. Ifantis and Siafarikas introduced this technique
for the study of COP in [31] and used it in a series of
papers. The main idea of this method is the connection of
the zeros of 𝑃𝑛(𝑥) satisfying (6) with the eigenvalues of a self-
adjoint tridiagonal operator in an abstract finite dimensional
Hilbert space. The main advantage of this approach is that
in order to study the zeros of 𝑃𝑛(𝑥) it is not needed to
take into consideration the orthogonality of 𝑃𝑛(𝑥) or the
ordinary differential equation that they satisfy, but only the
corresponding recurrence relation.

Following this philosophy, the zeros of𝑃𝑖,𝑗(𝑥, 𝑦) satisfying
(3) will be connected with the eigenvalues of a self-adjoint
operator which is the sum of two tridiagonal operators.
This is also the reason for keeping the terms 𝛽𝑖,𝑗𝑃𝑖,𝑗(𝑥, 𝑦)
and 𝛾𝑖,𝑗𝑃𝑖,𝑗(𝑥, 𝑦) apart and not combining them in one.
An immediate consequence of this connection is a rough
estimate of the region in which the zeros lie (see Corollary 4).

The authors believe that many interesting questions for
the polynomials 𝑃𝑖,𝑗(𝑥, 𝑦) satisfying (3) arise which could be
the aim of future study. For example, could they be orthog-
onal? Do they satisfy a specific type of partial differential
equation?

The rest of the paper is organized as follows: In Section 2
the method of [31] is briefly presented and generalized in
two dimensions. In Section 3, the common zeros of the
polynomials 𝑃𝑖,𝑀+1(𝑥, 𝑦), 𝑖 = 1, . . . , 𝑁, and 𝑃𝑁+1,𝑗(𝑥, 𝑗), 𝑗 =
1, . . . ,𝑀, are connected with the eigenvalues of a self-adjoint
operator in an abstract finite dimensional Hilbert space. As a
consequence, several basic results regarding the eigenvalues
of this operator are “translated” as results on the previously
mentioned common zeros. These results are summarized
in Corollary 4. Finally, in Section 4, the common zeros of
𝑃𝑖,𝑀+1(𝑥, 𝑦), 𝑖 = 1, . . . , 𝑁, and 𝑃𝑁+1,𝑗(𝑥, 𝑗), 𝑗 = 1, . . . ,𝑀,
are again treated, but now they are connected with the
eigenvalues of a block matrix. Several remarks in this section
make a correlation between the results of Sections 3 and 4.

2. The Method

Consider a finite dimensional Hilbert space𝐻𝑁 over the real
field with orthonormal basis {𝑒̃𝑖}𝑁𝑖=1. Let 𝑉 be the truncated
shift operator:

𝑉𝑒̃𝑖 = 𝑒̃𝑖+1, 𝑖 = 1, . . . , 𝑁 − 1,
𝑉𝑒̃𝑁 = 0. (8)

Then its adjoint 𝑉∗ is proved to be the operator defined by

𝑉∗𝑒̃𝑖 = 𝑒̃𝑖−1, 𝑖 = 2, . . . , 𝑁,
𝑉∗𝑒̃1 = 0. (9)

It is well-known that the zeros of the polynomials𝑃𝑁+1(𝑥)
defined by (6) are the same as the eigenvalues of a symmetric,
tridiagonal, Jacobi matrix (see, e.g., [32]). In [31], a somewhat

different decomposition of this Jacobi matrix was used,
namely, the tridiagonal operator 𝑇̃ = 𝐴̃𝑉∗ + 𝑉𝐴̃ + 𝐵̃, where
𝐴̃, 𝐵̃ are the diagonal operators defined by

𝐴̃𝑒̃𝑖 = 𝑎𝑖𝑒̃𝑖,
𝐵̃𝑒̃𝑖 = 𝛽𝑖𝑒̃𝑖,

𝑖 = 1, . . . , 𝑁.
(10)

More precisely this classical result was formulated as follows.

Theorem 1. The zeros 𝜆𝑖 of the polynomials 𝑃𝑁+1(𝑥) defined
by (6), in the case where 𝑎𝑖, 𝛽𝑖 are real with 𝑎𝑖 > 0, are the
eigenvalues of the operator 𝑇̃ with corresponding eigenvector
𝑓̃ = ∑𝑁𝑖=1 𝑃𝑖(𝜆𝑖)𝑒̃𝑖 and vice versa.

In order to generalize this in two dimensions, consider
the finite dimensional Hilbert space 𝐻𝑁𝑀 over the real field
with orthonormal basis {𝑒𝑖,𝑗}𝑁,𝑀𝑖=1,𝑗=1 and inner product and
norm induced by this inner product denoted as usual by (⋅, ⋅)
and ‖ ⋅ ‖, respectively. Then, any element 𝑓 ∈ 𝐻𝑁𝑀 can be
represented by 𝑓 = ∑𝑁𝑖=1∑𝑀𝑗=1(𝑓, 𝑒𝑖,𝑗)𝑒𝑖,𝑗.

In this space, analogously to 𝑉 the truncated linear shift
operators 𝑉1 and 𝑉2 can be defined by

𝑉1𝑒𝑖,𝑗 = 𝑒𝑖+1,𝑗, 𝑖 = 1, . . . , 𝑁 − 1, 𝑗 = 1, . . . ,𝑀,
𝑉1𝑒𝑁,𝑗 = 0, 𝑗 = 1, . . . ,𝑀,
𝑉2𝑒𝑖,𝑗 = 𝑒𝑖,𝑗+1, 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀 − 1,
𝑉2𝑒𝑖,𝑀 = 0, 𝑖 = 1, . . . , 𝑁.

(11)

It can be easily proved that the adjoint operators of𝑉1 and𝑉2
are the linear operators 𝑉∗1 and 𝑉∗2 defined by

𝑉∗1 𝑒𝑖,𝑗 = 𝑒𝑖−1,𝑗, 𝑖 = 2, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀,
𝑉∗1 𝑒1,𝑗 = 0, 𝑗 = 1, . . . ,𝑀,
𝑉∗2 𝑒𝑖,𝑗 = 𝑒𝑖,𝑗−1, 𝑖 = 1, . . . , 𝑁, 𝑗 = 2, . . . ,𝑀,
𝑉∗2 𝑒𝑖,1 = 0, 𝑖 = 1, . . . , 𝑁,

(12)

and that their norms are equal to 1.
Analogously to the operator 𝑇̃, the operator

𝑇 = 𝐴𝑉∗1 + 𝑉1𝐴 + 𝐵 + Δ𝑉∗2 + 𝑉2Δ + Γ, (13)

where 𝐴, 𝐵, Γ, and Δ are the diagonal operators defined by

𝐴𝑒𝑖,𝑗 = 𝛼𝑖,𝑗𝑒𝑖,𝑗,
𝐵𝑒𝑖,𝑗 = 𝛽𝑖,𝑗𝑒𝑖,𝑗,
Γ𝑒𝑖,𝑗 = 𝛾𝑖,𝑗𝑒𝑖,𝑗,
Δ𝑒𝑖,𝑗 = 𝛿𝑖,𝑗𝑒𝑖,𝑗

(14)

with 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀, plays a central role in our
approach.
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Obviously, 𝑇 can be considered as the sum of the two
tridiagonal operators𝑇1 = 𝐴𝑉∗1 +𝑉1𝐴+𝐵, 𝑇2 = Δ𝑉∗2 +𝑉2Δ+Γ.
Moreover, when 𝛼𝑖,𝑗, 𝛽𝑖,𝑗, 𝛾𝑖,𝑗, and 𝛿𝑖,𝑗 are real, as assumed
in the present paper, 𝑇 is self-adjoint. In addition, since 𝑇
is a linear operator defined on a finite dimensional Hilbert
space, it is also bounded and compact. As a consequence,
several results are known for the spectrum of 𝑇 the more
characteristics of which are as follows:

(i) The spectrumof𝑇 is finite and coincideswith its point
spectrum.

(ii) The eigenvalues of 𝑇 are real.
(iii) 𝑇 has a complete system of eigenvectors.

3. Operator Approach: Connection of
Zeros of 2D-Polynomials with Eigenvalues
of an Operator

In this section, the zeros (𝜆1, 𝜆2) of the polynomials
𝑃𝑖,𝑀+1(𝑥, 𝑦), 𝑖 = 1, . . . , 𝑁, and 𝑃𝑁+1,𝑗(𝑥, 𝑦), 𝑗 = 1, . . . ,𝑀, will
be connected with the eigenvalues of the operator 𝑇. More
precisely, the following holds.

Theorem 2. Consider the 2D-polynomials defined by (3) and
(4) or (5) under assumption (A1).

(a) If the pair (𝜆1, 𝜆2) satisfies the system
𝑃𝑖,𝑀+1 (𝑥, 𝑦) = 0, 𝑖 = 1, . . . , 𝑁,
𝑃𝑁+1,𝑗 (𝑥, 𝑦) = 0, 𝑗 = 1, . . . ,𝑀, (15)

then 𝑎𝜆1 + 𝑏𝜆2 is an eigenvalue of the operator

𝑇 = 𝐴𝑉∗1 + 𝑉1𝐴 + 𝐵 + Δ𝑉∗2 + 𝑉2Δ + Γ (16)

with corresponding eigenvector

𝑓 =
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝑃𝑖,𝑗 (𝜆1, 𝜆2) 𝑒𝑖,𝑗 ∈ 𝐻𝑁𝑀; (17)

that is,

𝑇𝑓 = (𝑎𝜆1 + 𝑏𝜆2) 𝑓. (18)

(b) Conversely, if 𝑎𝜆1+𝑏𝜆2 is an eigenvalue of the operator𝑇, then the corresponding eigenvector is the element 𝑓
defined by (17) and the pair (𝜆1, 𝜆2) satisfies system
(15), provided that

(A2) 𝛼𝑖,𝑀 and 𝛿𝑖,𝑀 are linearly independent for all 𝑖 =
1, 2, . . . , 𝑁.

Remark 3. By repeating the proof of Theorem 2 under con-
vention (C1) in 𝐻𝑁, it follows that if 𝜆1 satisfies 𝑃𝑁+1(𝑥) =
0, then 𝜆1 is an eigenvalue of 𝑇̃ = 𝐴̃𝑉∗ + 𝑉𝐴̃ + 𝐵̃ with
corresponding eigenvector 𝑓̃ = ∑𝑁𝑖=1 𝑃𝑖(𝜆1)𝑒̃𝑖 ∈ 𝐻𝑁 and
vice versa. Obviously, a similar result holds under convention
(C2). This result is a classical result regarding the zeros of the
COPand can be found in this operator approach, for example,
in [31] (see also the references therein).

Corollary 4. Assume that (A1) and (A2) hold. Then

(i) there exist common zeros of 𝑃𝑖,𝑀+1(𝑥, 𝑦) and
𝑃𝑁+1,𝑗(𝑥, 𝑦),

(ii) 𝑎𝜆1 + 𝑏𝜆2 is real,
(iii) the following inequality holds:

󵄨󵄨󵄨󵄨𝑎𝜆1 + 𝑏𝜆2󵄨󵄨󵄨󵄨 ≤ 2sup
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨𝛼𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨 + 2sup
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨𝛿𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨 + sup
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨𝛽𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨

+ sup
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨𝛾𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨 ,

(19)

where (𝜆1, 𝜆2) is a common zero of 𝑃𝑖,𝑀+1(𝑥, 𝑦) and𝑃𝑁+1,𝑗(𝑥, 𝑦), with 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀.

Proof. (i) It follows from the fact that ‖𝑇‖ or −‖𝑇‖ are
eigenvalues of the self-adjoint, bounded operator 𝑇. (ii) It
follows from the fact that𝑇 is self-adjoint. (iii) It follows from
(18) and Schwarz’s inequality.

Proof of Theorem 2. (a) First of all 𝑓 = ∑𝑁𝑖=1∑𝑀𝑗=1 𝑃𝑖,𝑗(𝜆1,𝜆2)𝑒𝑖,𝑗 ̸= 0, since, for example, 𝑃1,1(𝜆1, 𝜆2) ≡ 1 ̸= 0. In order
for𝑓 to be an eigenvector of𝑇with corresponding eigenvalue
𝑎𝜆1 + 𝑏𝜆2, it suffices to show that (18) holds.

Indeed it is

𝑇𝑓 = 𝐴𝑉∗1 𝑓 + 𝑉1𝐴𝑓 + 𝐵𝑓 + Δ𝑉∗2 𝑓 + 𝑉2Δ𝑓 + Γ𝑓

=
𝑁

∑
𝑖=2

𝑀

∑
𝑗=1

𝛼𝑖−1,𝑗𝑃𝑖,𝑗 (𝜆1, 𝜆2) 𝑒𝑖−1,𝑗

+
𝑁−1

∑
𝑖=1

𝑀

∑
𝑗=1

𝛼𝑖,𝑗𝑃𝑖,𝑗 (𝜆1, 𝜆2) 𝑒𝑖+1,𝑗

+
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝛽𝑖,𝑗𝑃𝑖,𝑗 (𝜆1, 𝜆2) 𝑒𝑖,𝑗

+
𝑁

∑
𝑖=1

𝑀

∑
𝑗=2

𝛿𝑖,𝑗−1𝑃𝑖,𝑗 (𝜆1, 𝜆2) 𝑒𝑖,𝑗−1

+
𝑁

∑
𝑖=1

𝑀−1

∑
𝑗=1

𝛿𝑖,𝑗𝑃𝑖,𝑗 (𝜆1, 𝜆2) 𝑒𝑖,𝑗+1

+
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝛾𝑖,𝑗𝑃𝑖,𝑗 (𝜆1, 𝜆2) 𝑒𝑖,𝑗

=
𝑁−1

∑
𝑖=1

𝑀

∑
𝑗=1

𝛼𝑖,𝑗𝑃𝑖+1,𝑗 (𝜆1, 𝜆2) 𝑒𝑖,𝑗

+
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝛼𝑖−1,𝑗𝑃𝑖−1,𝑗 (𝜆1, 𝜆2) 𝑒𝑖,𝑗

+
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝛽𝑖,𝑗𝑃𝑖,𝑗 (𝜆1, 𝜆2) 𝑒𝑖,𝑗
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+
𝑁

∑
𝑖=1

𝑀−1

∑
𝑗=1

𝛿𝑖,𝑗𝑃𝑖,𝑗+1 (𝜆1, 𝜆2) 𝑒𝑖,𝑗

+
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝛿𝑖,𝑗−1𝑃𝑖,𝑗−1 (𝜆1, 𝜆2) (𝑥, 𝑦) 𝑒𝑖,𝑗

+
𝑁

∑
𝑖=1

𝑀

∑
𝑗=1

𝛾𝑖,𝑗𝑃𝑖,𝑗 (𝜆1, 𝜆2) 𝑒𝑖,𝑗
(20)

since 𝑃0,𝑗(𝑥, 𝑦) ≡ 0, 𝑃𝑖,0(𝑥, 𝑦) ≡ 0, or taking into
consideration (3)

𝑇𝑓 = (𝑎𝜆1 + 𝑏𝜆2) 𝑓 −
𝑀

∑
𝑗=1

𝛼𝑁,𝑗𝑃𝑁+1,𝑗 (𝜆1, 𝜆2) 𝑒𝑁,𝑗

−
𝑁

∑
𝑖=1

𝛿𝑖,𝑗𝑃𝑖,𝑀+1 (𝜆1, 𝜆2) 𝑒𝑖,𝑀,
(21)

from which (18) follows if (15) holds, since 𝛼𝑖,𝑗 ̸= 0 and 𝛿𝑖,𝑗 ̸=
0, for all 𝑖, 𝑗.

(b) Suppose 𝑎𝜆1 + 𝑏𝜆2 is an eigenvalue of 𝑇. Then, there
exists an element of 𝐻𝑁𝑀, 𝑓 = ∑𝑁𝑖=1∑𝑀𝑗=1(𝑓, 𝑒𝑖,𝑗)𝑒𝑖,𝑗 not
identically equal to 0, such that

𝐴𝑉∗1 𝑓 + 𝑉1𝐴𝑓 + 𝐵𝑓 + Δ𝑉∗2 𝑓 + 𝑉2Δ𝑓 + Γ𝑓
= (𝑎𝜆1 + 𝑏𝜆2) 𝑓.

(22)

Suppose at first that (𝑓, 𝑒1,𝑗) = 0, for all 𝑗 = 1, . . . ,𝑀.Then, by
taking the inner product of both hand sides of (22) with 𝑒1,𝑗 it
follows that (𝑓, 𝑒2,𝑗) = 0, for all 𝑗 = 1, . . . ,𝑀. By induction, it
can be easily proved that (𝑓, 𝑒𝑖,𝑗) = 0, for all 𝑗 = 1, . . . ,𝑀
and all 𝑖 = 1, . . . , 𝑁. As a consequence 𝑓 ≡ 0 which is
a contradiction, since 𝑓 is an eigenvector of 𝑇. Thus, there
exists 𝑗0 such that (𝑓, 𝑒1,𝑗0) ̸= 0. Without loss of generality it
can be assumed that 𝑗0 = 1 and that (𝑓, 𝑒1,1) = 1. For the rest
of the coefficients (𝑓, 𝑒1,𝑗), it is assumed that they constitute
a sequence of 𝑗 depending, generally speaking, on 𝜆1, 𝜆2,
which will be denoted by 𝑃1,𝑗(𝜆1, 𝜆2).

In order to compute all the coefficients (𝑓, 𝑒𝑖,𝑗), the inner
product of both hand sides of (22) with the elements 𝑒𝑖,𝑗 will
be considered, as well as recurrence relations (3)-(4). To begin
with, by taking the inner product of both hand sides of (22)
with 𝑒1,𝑗 it follows that

(i) For 𝑗 = 1
𝛼1,1 (𝑓, 𝑒2,1) + 𝛽1,1 (𝑓, 𝑒1,1) + 𝛿1,1 (𝑓, 𝑒1,2)

+ 𝛾1,1 (𝑓, 𝑒1,1) = (𝛼𝜆1 + 𝛽𝜆2) (𝑓, 𝑒1,1) 󳨐⇒
𝛼1,1 (𝑓, 𝑒2,1) + 𝛽1,1 + 𝛿1,1𝑃1,2 (𝜆1, 𝜆2) + 𝛾1,1 = 𝛼𝜆1

+ 𝛽𝜆2.

(23)

Moreover, for 𝑖 = 1 = 𝑗 and 𝑥 = 𝜆1, 𝑦 = 𝜆2, it is deduced
from (3)-(4) that

𝛼1,1𝑃2,1 (𝜆1, 𝜆2) + 𝛽1,1 + 𝛿1,1𝑃1,2 (𝜆1, 𝜆2) + 𝛾1,1
= 𝛼𝜆1 + 𝛽𝜆2.

(24)

Thus,

(𝑓, 𝑒2,1) = 𝑃2,1 (𝜆1, 𝜆2) . (25)

(ii) For 𝑗 = 2, . . . ,𝑀 − 1
𝛼1,𝑗 (𝑓, 𝑒2,𝑗) + 𝛽1,𝑗 (𝑓, 𝑒1,𝑗) + 𝛿1,𝑗 (𝑓, 𝑒1,𝑗+1)

+ 𝛿1,𝑗−1 (𝑓, 𝑒1,𝑗−1) + 𝛾1,𝑗 (𝑓, 𝑒1,𝑗)
= (𝛼𝜆1 + 𝛽𝜆2) (𝑓, 𝑒1,𝑗) 󳨐⇒

𝛼1,𝑗 (𝑓, 𝑒2,𝑗) + 𝛽1,𝑗𝑃1,𝑗 (𝜆1, 𝜆2) + 𝛿1,𝑗𝑃1,𝑗+1 (𝜆1, 𝜆2)
+ 𝛿1,𝑗−1𝑃1,𝑗−1 (𝜆1, 𝜆2) + 𝛾1,𝑗𝑃1,𝑗 (𝜆1, 𝜆2)
= (𝛼𝜆1 + 𝛽𝜆2) 𝑃1,𝑗 (𝜆1, 𝜆2) .

(26)

Moreover, for 𝑖 = 1 and 𝑥 = 𝜆1, 𝑦 = 𝜆2, it is deduced from
(3)-(4) that

𝛼1,𝑗𝑃2,𝑗 (𝜆1, 𝜆2) + 𝛽1,𝑗𝑃1,𝑗 (𝜆1, 𝜆2)
+ 𝛿1,𝑗𝑃1,𝑗+1 (𝜆1, 𝜆2) + 𝛿1,𝑗−1𝑃1,𝑗−1 (𝜆1, 𝜆2)
+ 𝛾1,𝑗𝑃1,𝑗 (𝜆1, 𝜆2) = (𝛼𝜆1 + 𝛽𝜆2) 𝑃1,𝑗 (𝜆1, 𝜆2) .

(27)

Thus,

(𝑓, 𝑒2,𝑗) = 𝑃2,𝑗 (𝜆1, 𝜆2) , for 𝑗 = 1, . . . ,𝑀 − 1. (28)

(iii) For 𝑗 = 𝑀
𝛼1,𝑀 (𝑓, 𝑒2,𝑀) + 𝛽1,𝑀 (𝑓, 𝑒1,𝑀) + 𝛿1,𝑀−1 (𝑓, 𝑒1,𝑀−1)

+ 𝛾1,𝑀 (𝑓, 𝑒1,𝑀) = (𝛼𝜆1 + 𝛽𝜆2) (𝑓, 𝑒1,𝑀) 󳨐⇒
𝛼1,𝑀 (𝑓, 𝑒2,𝑀) + 𝛽1,𝑀𝑃1,𝑀 (𝜆1, 𝜆2)

+ 𝛿1,𝑀−1𝑃1,𝑀−1 (𝜆1, 𝜆2) + 𝛾1,𝑀𝑃1,𝑀 (𝜆1, 𝜆2)
= (𝛼𝜆1 + 𝛽𝜆2) 𝑃1,𝑀 (𝜆1, 𝜆2) .

(29)

Moreover, for 𝑖 = 1, 𝑗 = 𝑀 and 𝑥 = 𝜆1, 𝑦 = 𝜆2, it is deduced
from (3)-(4) that

𝛼1,𝑀𝑃2,𝑀 (𝜆1, 𝜆2) + 𝛽1,𝑀𝑃1,𝑀 (𝜆1, 𝜆2)
+ 𝛿1,𝑀−1𝑃1,𝑀−1 (𝜆1, 𝜆2) + 𝛾1,𝑀𝑃1,𝑀 (𝜆1, 𝜆2)

= (𝛼𝜆1 + 𝛽𝜆2) 𝑃1,𝑀 (𝜆1, 𝜆2) .
(30)

Thus,

𝑎1,𝑀 [(𝑓, 𝑒2,𝑀) − 𝑃2,𝑀 (𝜆1, 𝜆2)] − 𝛿1,𝑀𝑃1,𝑀+1 (𝜆1, 𝜆2)
= 0 (31)

or since 𝛼1,𝑀 and 𝛿1,𝑀 are linearly independent

(𝑓, 𝑒2,𝑀) = 𝑃2,𝑀 (𝜆1, 𝜆2) ,
𝑃1,𝑀+1 (𝜆1, 𝜆2) = 0. (32)
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By induction it can be proved that for all 𝑖 = 1, . . . , 𝑁 − 2
(𝑓, 𝑒𝑖,𝑗) = 𝑃𝑖,𝑗 (𝜆1, 𝜆2) , for 𝑗 = 1, . . . ,𝑀,

𝑃𝑖,𝑀+1 (𝜆1, 𝜆2) = 0.
(33)

Moreover, proceeding as before and taking the inner product
of both hand sides of (22) with 𝑒𝑁−2,𝑗 and then with 𝑒𝑁−1,𝑗 it
follows again that

(𝑓, 𝑒𝑁−1,𝑗) = 𝑃𝑁−1,𝑗 (𝜆1, 𝜆2) ,
(𝑓, 𝑒𝑁,𝑗) = 𝑃𝑁,𝑗 (𝜆1, 𝜆2) ,

for 𝑗 = 1, . . . ,𝑀,
𝑃𝑁−2,𝑀+1 (𝜆1, 𝜆2) = 0,
𝑃𝑁−1,𝑀+1 (𝜆1, 𝜆2) = 0.

(34)

Finally, by taking the inner product of both hand sides of (22)
with 𝑒𝑁,𝑗 it follows that

𝑃𝑁+1,𝑗 (𝜆1, 𝜆2) = 0, ∀𝑗 = 1, . . . ,𝑀,
𝑃𝑁,𝑀+1 (𝜆1, 𝜆2) = 0.

(35)

Analogously, one may choose (𝑓, 𝑒1,1) = 1 and (𝑓, 𝑒𝑖,1) a
known sequence of 𝑖 depending, generally speaking, on 𝜆1,𝜆2, denoted by𝑃𝑖,1(𝜆1, 𝜆2). In this case the coefficients (𝑓, 𝑒𝑖,𝑗)
will again be calculated by taking as before the inner product
of both hand sides of (22) with the elements 𝑒𝑖,1, 𝑒𝑖,2, . . . , 𝑒𝑖,𝑀
for all 𝑖 and considering also recurrence relations (3), (5).

4. Matrix Approach: Connection of
Zeros of 2D-Polynomials with Eigenvalues
of a Block Matrix

In this section, the zeros (𝜆1, 𝜆2) of the polynomials
𝑃𝑖,𝑀+1(𝑥, 𝑦), 𝑖 = 1, . . . , 𝑁, and 𝑃𝑁+1,𝑗(𝑥, 𝑦), 𝑗 = 1, . . . ,𝑀, will
be connected with the eigenvalues of a block matrix. More
precisely, for 𝑥 = 𝜆1 and 𝑦 = 𝜆2, recurrence relations (3), (4)
can be rewritten in matrix form for the values of 𝑖 as

𝑖 = 1: 𝑇1𝜙1 + 𝐴1𝜙2 + 𝑦1 = (𝑎𝜆1 + 𝑏𝜆2)𝜙1
𝑖 = 2: 𝑇2𝜙2 + 𝐴1𝜙1 + 𝐴2𝜙3 + 𝑦2 = (𝑎𝜆1 + 𝑏𝜆2)𝜙2
𝑖 = 3: 𝑇3𝜙3 + 𝐴3𝜙4 + 𝐴2𝜙2 + 𝑦3 = (𝑎𝜆1 + 𝑏𝜆2)𝜙3

...
𝑖 = 𝑁−2:𝑇𝑁−2𝜙𝑁−2+𝐴𝑁−2𝜙𝑁−1+𝐴𝑁−3𝜙𝑁−3+𝑦𝑁−2 =(𝑎𝜆1 + 𝑏𝜆2)𝜙𝑁−2
𝑖 = 𝑁−1: 𝑇𝑁−1𝜙𝑁−1 +𝐴𝑁−1𝜙𝑁 +𝐴𝑁−2𝜙𝑁−2 +𝑦𝑁−1 =(𝑎𝜆1 + 𝑏𝜆2)𝜙𝑁−1
𝑖 = 𝑁: 𝑇𝑁𝜙𝑁 + 𝐴𝑁𝜙𝑁+1 + 𝐴𝑁−1𝜙𝑁−1 + 𝑦𝑁 = (𝑎𝜆1 +𝑏𝜆2)𝜙𝑁,

where 𝜙𝑖, 𝑦𝑖 are the𝑀× 1matrices:

𝜙𝑖 =
(((((((((

(

𝑃𝑖,1 (𝜆1, 𝜆2)
𝑃𝑖,2 (𝜆1, 𝜆2)
𝑃𝑖,3 (𝜆1, 𝜆2)

...
𝑃𝑖,𝑀−2 (𝜆1, 𝜆2)
𝑃𝑖,𝑀−1 (𝜆1, 𝜆2)
𝑃𝑖,𝑀 (𝜆1, 𝜆2)

)))))))))

)

,

𝑦𝑖 =
(((((((((

(

0
0
0
...
0
0

𝛿𝑖,𝑀𝑃𝑖,𝑀+1 (𝜆1, 𝜆2)

)))))))))

)

,

𝑖 = 1, . . . , 𝑁,

(36)

𝐴 𝑖 are the diagonal𝑀×𝑀matrices

𝐴 𝑖 = diag (𝛼𝑖,1, 𝛼𝑖,2, . . . , 𝛼𝑖,𝑀) , (37)

and 𝑇𝑖 are the tridiagonal𝑀×𝑀matrices with

(i) diagonal elements 𝑏𝑖,1 + 𝛾𝑖,1, 𝑏𝑖,2 + 𝛾𝑖,2, . . . , 𝑏𝑖,𝑀 + 𝛾𝑖,𝑀,
(ii) elements above the diagonal 𝛿𝑖,1, 𝛿𝑖,2, . . . , 𝛿𝑖,𝑀−1,
(iii) elements below the diagonal 𝛿𝑖,1, 𝛿𝑖,2, . . . , 𝛿𝑖,𝑀−1.

For example,

𝑇1 =
(((((((((

(

𝛽1,1 + 𝛾1,1 𝛿1,1 0 ⋅ ⋅ ⋅ 0 0
𝛿1,1 𝛽1,2 + 𝛾1,2 𝛿1,2 ⋅ ⋅ ⋅ 0 0
0 𝛿1,2 𝛽1,3 + 𝛾1,3 ⋅ ⋅ ⋅ 0 0
... ... ... ... ... ...
0 0 0 ⋅ ⋅ ⋅ 𝛿1,𝑀−2 0
0 0 0 ⋅ ⋅ ⋅ 𝛽1,𝑀−1 + 𝛾1,𝑀−1 𝛿1,𝑀−1
0 0 0 ⋅ ⋅ ⋅ 𝛿1,𝑀−1 𝛽1,𝑀 + 𝛾1,𝑀

)))))))))

)

. (38)
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All the above relations can be rewritten in block-matrices
form as

((((((

(

𝑇1 𝐴1 𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂 𝑂
𝐴1 𝑇2 𝐴2 𝑂 ⋅ ⋅ ⋅ 𝑂 𝑂
𝑂 𝐴2 𝑇3 𝐴3 ⋅ ⋅ ⋅ 𝑂 𝑂
... ... ... ... ... ... ...
𝑂 𝑂 𝑂 ⋅ ⋅ ⋅ 𝐴𝑁−2 𝑇𝑁−1 𝐴𝑁−1
𝑂 𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂 𝐴𝑁−1 𝑇𝑁

))))))

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
T

((((((

(

𝜙1
𝜙2
𝜙3
...

𝜙𝑁−1
𝜙𝑁

))))))

)

+
((((((

(

𝑦1
𝑦2
𝑦3
...

𝑦𝑁−1
𝑦𝑁

))))))

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Y

+
((((((

(

𝑂 𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂 𝑂
𝑂 𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂 𝑂
𝑂 𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂 𝑂
... ... ... ... ... ...
𝑂 𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂 𝑂
𝑂 𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂 𝐴𝑁

))))))

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A

((((((

(

𝑂
𝑂
𝑂
...
𝑂

𝜙𝑁+1

))))))

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
W

= (𝑎𝜆1 + 𝑏𝜆2)
((((((

(

𝜙1
𝜙2
𝜙3
...

𝜙𝑁−1
𝜙𝑁

))))))

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
V

󳨐⇒

TV + Y + AW = (𝑎𝜆1 + 𝑏𝜆2)V ,

(39)

where 𝑂 is the zero matrix.
From (39), the following theorem is obvious.

Theorem 5. Consider the 2D-polynomials defined by (3) and
(4) or (5) under assumption (A1).

(a) If the pair (𝜆1, 𝜆2) satisfies system (15), then 𝑎𝜆1 +𝑏𝜆2 is an “eigenvalue” of the block matrix T with
corresponding “eigenvector” V , in the sense that

TV = (𝑎𝜆1 + 𝑏𝜆2)V . (40)

(b) Conversely, if (40) is satisfied, then the pair (𝜆1, 𝜆2)
satisfies system (15), provided that the sequences 𝛼𝑁,𝑀
and 𝛿𝑁,𝑀 are linearly independent.

Remark 6. (a) Notice that, in the case where 𝑁 = 𝑀, 𝑎𝜆1 +𝑏𝜆2 is an eigenvalue of the blockmatrix T with corresponding
eigenvectorV , in the usual sense. (b)The blockmatrix T is the
matrix representation of the operator 𝑇 defined by (16) with
respect to the basis {𝑒𝑖,𝑗} of the abstract Hilbert space 𝐻𝑁𝑀.
(c) The analogies with the corresponding well-known results
in the case of the COP are obvious.

Remark 7. By comparingTheorems 2 and 5 one immediately
notices the following: (i) part (a) of Theorem 2 is analogous
to part (a) of Theorem 5; (ii) for part (b) of Theorem 2 it
is necessary to assume that the sequences 𝛼𝑖,𝑀 and 𝛿𝑖,𝑀 are
linearly independent for all 𝑖 = 1, 2, . . . , 𝑁, whereas for
part (b) of Theorem 5 it is necessary to assume that only the
sequences 𝛼𝑁,𝑀 and 𝛿𝑁,𝑀 are linearly independent. However,
this is a natural consequence of the different but similar
approaches used. More precisely, in the matrix approach it is
obtained immediately from recurrence relations (3) and (4)
that the components of the eigenvector V are the polynomials
𝑃𝑖,𝑗(𝜆1, 𝜆2), 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀. However, in
the operator approach, the components of the eigenvector
𝑓 are not immediately deduced but are proved to be the
polynomials 𝑃𝑖,𝑗(𝜆1, 𝜆2), 𝑖 = 1, . . . , 𝑁, 𝑗 = 1, . . . ,𝑀, and in
the proof it is necessary to assume that the sequences 𝛼𝑖,𝑀
and 𝛿𝑖,𝑀 are linearly independent for all 𝑖 = 1, 2, . . . , 𝑁 − 1.
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