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We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation
technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear
relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some
reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this
method is more efficient than the previous methods.

1. Introduction

Optimization problems appeared in many subjects [1–3],
for example, technology [4–7] and economy [8–10]. There
is a long history of creating the method for solving the
problem [11–14]. We consider the following certain nonlinear
optimization problem on the set 𝑋 fl {𝑥 ∈ R𝑁 | 0 < 𝑥

𝑖
≤

𝑥
𝑖
≤ 𝑥
𝑖
< ∞ (𝑖 = 1, 2, . . . , 𝑁)} ⊂ R𝑁.

Let 𝑇𝑎
𝑗
, 𝑇
𝑏

𝑗
, 𝑇
𝑐

𝑘 ́𝑗
, 𝑇
𝑑

𝑘 ́𝑗
be natural numbers, let 𝛽𝑎

𝑗𝑡
, 𝛽
𝑏

𝑗𝑡
, 𝛽
𝑐

𝑘 ́𝑗𝑡
,

𝛽
𝑑

𝑘 ́𝑗𝑡
be nonzero real constants, and let 𝛾𝑎

𝑗𝑡𝑖
, 𝛾
𝑏

𝑗𝑡𝑖
, 𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
, 𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
be

real constants. Then we put the four kinds of functions on𝑋:

𝑎
𝑗 (𝑥) fl

𝑇
𝑎

𝑗

∑

𝑡=1

𝛽
𝑎

𝑗𝑡

𝑁

∏

𝑖=1

𝑥
𝛾
𝑎

𝑗𝑡𝑖

𝑖
,

𝑏
𝑗 (𝑥) fl

𝑇
𝑏

𝑗

∑

𝑡=1

𝛽
𝑏

𝑗𝑡

𝑁

∏

𝑖=1

𝑥
𝛾
𝑏

𝑗𝑡𝑖

𝑖
,

𝑐
𝑘 ́𝑗
(𝑥) fl

𝑇
𝑐

𝑘 ́𝑗

∑

𝑡=1

𝛽
𝑐

𝑘 ́𝑗𝑡

𝑁

∏

𝑖=1

𝑥
𝛾
𝑐

𝑘 ́𝑗𝑡𝑖

𝑖
,

𝑑
𝑘 ́𝑗
(𝑥) fl

𝑇
𝑑

𝑘 ́𝑗

∑

𝑡=1

𝛽
𝑑

𝑘 ́𝑗𝑡

𝑁

∏

𝑖=1

𝑥
𝛾
𝑑

𝑘 ́𝑗𝑡𝑖

𝑖
,

(𝑗 = 1, 2, . . . , 𝑃, ́𝑗 = 1, 2, . . . , 𝑃
𝑘
, 𝑘 = 1, 2, . . . ,𝑀) .

(1)

Let ℎ
𝑗
, ℎ
𝑘 ́𝑗

be two secondly differentiable functions R 󳨃→ R
satisfying the following conditions:

ℎ
󸀠

𝑗
> 0

or ℎ󸀠
𝑗
< 0,

ℎ
󸀠

𝑘 ́𝑗
> 0

or ℎ󸀠
𝑘 ́𝑗
< 0,

{ℎ
𝑗
}
󸀠󸀠

> 0

or {ℎ
𝑗
}
󸀠󸀠

< 0,

{ℎ
𝑘 ́𝑗
}
󸀠󸀠

> 0

or {ℎ
𝑘 ́𝑗
}
󸀠󸀠

< 0.

(2)
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We consider the following nonlinear optimization prob-
lem (𝑃) on𝑋:

min 𝑓
0 (𝑥) =

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑏
𝑗 (𝑥)

𝑎
𝑗 (𝑥)

)

s.t. 𝑓
𝑘 (𝑥) =

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑑
𝑘 ́𝑗
(𝑥)

𝑐
𝑘 ́𝑗
(𝑥)

) ≤ 0

(𝑗́ = 1, . . . , 𝑃
𝑘
, 𝑘 = 1, . . . ,𝑀) .

(𝑃)

Wepropose a specific nonlinear and nonconvex optimization
technique for (𝑃). It is generalized by Jiao et al., 2013 [4].

In the previous our work [15], we treat the same problem
(𝑃) applying Pei-Ping and Gui-Xia’s [5]. The method needs
to add the new valuables and takes a long time to solve the
optimal problem.

Jiao et al. propose the technique which does not launch
new ones for the following problems:

min ℎ
0 (𝑥) =

𝑃

∑

𝑗=1

𝑏
𝑗 (𝑥)

𝑎
𝑗 (𝑥)

s.t. ℎ
𝑘 (𝑥) =

𝑃
𝑘

∑

́𝑗=1

𝑐
𝑘 ́𝑗
(𝑥)

≤ 0 ( ́𝑗 = 1, . . . , 𝑃
𝑘
, 𝑘 = 1, . . . ,𝑀) ,

𝑥 ∈ 𝑋.

(𝑃
∗
)

Wegeneralize the problem (𝑃
∗
) to (𝑃) and useHongwei’s idea

[4, 16] to solve the problem (𝑃); that is, we propose the new
method by generalizing Hongwei’s method.

Firstly, we transform (𝑃) to linear relaxation problem of
it. Secondly, we obtain the approximate value by Simplex
method and Branch and Bound Algorithm [17, 18]. For
advance preparation of the linearization, we transform the
valuables 𝑥

𝑖
= exp(𝑦

𝑖
) (𝑖 = 1, 2, . . . , 𝑁). Let 𝑥

𝑖
fl exp(𝑦

𝑖
),

𝑥
𝑖
fl exp(𝑦

𝑖
), and 𝑌 fl {𝑦 ∈ R𝑁 | 𝑦

𝑖
≤ 𝑦
𝑖
≤ 𝑦
𝑖
< ∞ (𝑖 =

1, 2, . . . , 𝑁)}.
We denote

𝑎
𝑗
(𝑦) fl

𝑇
𝑎

𝑗

∑

𝑡=1

𝛽
𝑎

𝑗𝑡
exp(

𝑁

∑

𝑖=1

𝛾
𝑎

𝑗𝑡𝑖
𝑦
𝑖
) ,

𝑏
𝑗
(𝑦) fl

𝑇
𝑏

𝑗

∑

𝑡=1

𝛽
𝑏

𝑗𝑡
exp(

𝑁

∑

𝑖=1

𝛾
𝑏

𝑗𝑡𝑖
𝑦
𝑖
) ,

𝑐
𝑘 ́𝑗
(𝑦) fl

𝑇
𝑐

𝑘 ́𝑗

∑

𝑡=1

𝛽
𝑐

𝑘 ́𝑗𝑡
exp(

𝑁

∑

𝑖=1

𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
) ,

𝑑
𝑘 ́𝑗
(𝑦) fl

𝑇
𝑑

𝑘 ́𝑗

∑

𝑡=1

𝛽
𝑑

𝑘 ́𝑗𝑡
exp(

𝑁

∑

𝑖=1

𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
)

(𝑗 = 1, 2, . . . , 𝑃, ́𝑗 = 1, 2, . . . , 𝑃
𝑘
, 𝑘 = 1, 2, . . . ,𝑀) .

(3)

Accordingly, we obtain the equivalence problem of (𝑃):

min 𝑓
0
(𝑦) =

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑏
𝑗
(𝑦)

𝑎
𝑗
(𝑦)

)

s.t. 𝑓
𝑘
(𝑦) =

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑑
𝑘 ́𝑗
(𝑦)

𝑐
𝑘 ́𝑗
(𝑦)

)

≤ 0 ( ́𝑗 = 1, . . . , 𝑃
𝑘
, 𝑘 = 1, . . . ,𝑀)

𝑦 ∈ 𝑌.

(𝑃0)

As the function “exp” is convex function, we find the lower
and upper bounded linearized function of it.

In Section 2, we show how to linearize the original
problem (𝑃). In Section 3, we present our method by using
the Branch and Bound Algorithm. In Section 4, we prove the
convergence of the algorithm. In Section 5,we treat numerical
experiments.

2. Linear Relaxation Programing

In this section, we show how to transform (𝑃0) to the linear
relaxation problem.

We define

𝑌
𝑎

𝑗𝑡
fl
𝑁

∑

𝑖=1

𝛾
𝑎

𝑗𝑡𝑖
𝑦
𝑖
. (4)

Corresponding to the transformation of coordinates, the
domain is changed from 𝑦 to 𝑌, as follows:

𝑌
𝑎

𝑗𝑡
fl
𝑁

∑

𝑖=1

min {𝛾𝑎
𝑗𝑡𝑖
𝑦
𝑖
, 𝛾
𝑎

𝑗𝑡𝑖
𝑦
𝑖
} ,

𝑌
𝑎

𝑗𝑡
fl
𝑁

∑

𝑖=1

max {𝛾𝑎
𝑗𝑡𝑖
𝑦
𝑖
, 𝛾
𝑎

𝑗𝑡𝑖
𝑦
𝑖
} .

(5)

Since all 𝛽𝑎
𝑗𝑡
exp(𝑌𝑎

𝑗𝑡
) are convex, there exist the lower and

upper bounded linear functions for them. We denote these
functions by 𝐿𝑙

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
) and 𝐿𝑢

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
).

When 𝛽𝑎
𝑗𝑡
is negative, we can define the lower linearized

function 𝐿𝑙
𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
):

𝐿
𝑙

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
) fl

𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
) − 𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
)

𝑌
𝑎

𝑗𝑡
− 𝑌
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
− 𝑌
𝑎

𝑗𝑡
)

+ 𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
) .

(6)

Since each 𝛽𝑎
𝑗𝑡
exp(𝑌𝑎

𝑗𝑡
) is continuous and differentiable on

[𝑌
𝑎

𝑗𝑡
, 𝑌
𝑎

𝑗𝑡
], there exists 𝑐𝑎

𝑗𝑡
∈ (𝑌
𝑎

𝑗𝑡
, 𝑌
𝑎

𝑗𝑡
) such that

{𝛽
𝑎

𝑗𝑡
exp}
󸀠

(𝑐
𝑎

𝑗𝑡
) =

𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
) − 𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
)

𝑌
𝑎

𝑗𝑡
− 𝑌
𝑎

𝑗𝑡

(7)

by the mean value theorem.
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Since 𝛽𝑎
𝑗𝑡
exp(𝑌𝑎

𝑗𝑡
) is monotonic function on [𝑌

𝑎

𝑗𝑡
, 𝑌
𝑎

𝑗𝑡
],

there exists the inverse function of {𝛽𝑎
𝑗𝑡
exp}󸀠(𝑌𝑎

𝑗𝑡
). Hence 𝑐𝑎

𝑗𝑡

is uniquely given such that

𝑐
𝑎

𝑗𝑡
= {𝛽
𝑎

𝑗𝑡
exp}
󸀠−1

(

𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
) − 𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
)

𝑌
𝑎

𝑗𝑡
− 𝑌
𝑎

𝑗𝑡

) . (8)

When 𝛽𝑎
𝑗𝑡
is positive, we define 𝐿𝑙

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
):

𝐿
𝑙

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
) fl

𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
) − 𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
)

𝑌
𝑎

𝑗𝑡
− 𝑌
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
− 𝑐
𝑎

𝑗𝑡
)

+ 𝛽
𝑎

𝑗𝑡
exp (𝑐𝑎

𝑗𝑡
) .

(9)

For the upper linearized function of 𝛽𝑎
𝑗𝑡
exp(𝑌𝑎

𝑗𝑡
), we define

𝐿
𝑢

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
) as follows.

When 𝛽𝑎
𝑗𝑡
is negative, we define

𝐿
𝑢

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
) fl

𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
) − 𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
)

𝑌
𝑎

𝑗𝑡
− 𝑌
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
− 𝑐
𝑎

𝑗𝑡
)

+ 𝛽
𝑎

𝑗𝑡
exp (𝑐𝑎

𝑗𝑡
) .

(10)

When 𝛽𝑎
𝑗𝑡
is positive, we define 𝐿𝑢

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
):

𝐿
𝑢

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
) fl

𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
) − 𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
)

𝑌
𝑎

𝑗𝑡
− 𝑌
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
− 𝑌
𝑎

𝑗𝑡
)

+ 𝛽
𝑎

𝑗𝑡
exp (𝑌𝑎

𝑗𝑡
) .

(11)

As the above definitions, we have the lower and upper
linearized functions of 𝑎

𝑗
(𝑦); that is,

𝑙
𝑙

𝑎
𝑗

(𝑦) fl
𝑇
𝑎

𝑗

∑

𝑡=1

𝐿
𝑙

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
) ,

𝑙
𝑢

𝑎
𝑗

(𝑦) fl
𝑇
𝑎

𝑗

∑

𝑡=1

𝐿
𝑢

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
) ,

(12)

and 𝑙𝑙
𝑏
𝑗

(𝑦), 𝑙𝑢
𝑏
𝑗

(𝑦), 𝑙𝑙
𝑐
𝑘 ́𝑗

(𝑦), 𝑙𝑢
𝑐
𝑘 ́𝑗

(𝑦), 𝑙𝑙
𝑑
𝑘 ́𝑗

(𝑦), and 𝑙𝑢
𝑑
𝑘 ́𝑗

(𝑦) are also
defined for 𝑏

𝑗
(𝑦), 𝑐
𝑘 ́𝑗
(𝑦), and 𝑑

𝑘 ́𝑗
(𝑦) as the same method.

Moreover, we can assume 𝑙𝑙
𝑎
𝑗

(𝑦) > 0, 𝑙𝑙
𝑏
𝑗

(𝑦) > 0, 𝑙𝑙
𝑐
𝑘 ́𝑗

(𝑦) > 0,
and 𝑙𝑙
𝑑
𝑘 ́𝑗

(𝑦) > 0 by adding some constraints.

Now, we define the new valuables 𝑌𝑗
𝑎𝑏

∈ [min 𝑙𝑙
𝑏
𝑗

(𝑦)/

max 𝑙𝑢
𝑎
𝑗

(𝑦),max 𝑙𝑢
𝑏
𝑗

(𝑦)/min 𝑙𝑙
𝑎
𝑗

(𝑦)] and 𝑌𝑘
́𝑗

𝑐𝑑
∈ [min 𝑙𝑙

𝑑
𝑘 ́𝑗

(𝑦)/

max 𝑙𝑢
𝑐
𝑘 ́𝑗

(𝑦),max 𝑙𝑢
𝑑
𝑘 ́𝑗

(𝑦)/min 𝑙𝑙
𝑐
𝑘 ́𝑗

(𝑦)]. Let us consider the lower
linearized functions 𝑙

ℎ
𝑗

, 𝑙
ℎ
𝑘 ́𝑗

for ℎ
𝑗
, ℎ
𝑘 ́𝑗
. We suppose 𝑙

ℎ
𝑗

as
follows.

Case 1 ({ℎ
𝑗
}
󸀠
> 0). In the case, we put the valuable 𝑌𝑗

𝑎𝑏
∈

[𝑌
𝑗

𝑎𝑏
, 𝑌
𝑗

𝑎𝑏
]; that is, 𝑌𝑗

𝑎𝑏
fl min 𝑙𝑙

𝑏
𝑗

(𝑦)/max 𝑙𝑢
𝑎
𝑗

(𝑦), 𝑌𝑗
𝑎𝑏

fl

max 𝑙𝑙
𝑏
𝑗

(𝑦)/max 𝑙𝑢
𝑎
𝑗

(𝑦).
As {ℎ
𝑗
}
󸀠
> 0, ℎ

𝑗
(𝑙
𝑙

𝑏
𝑗

(𝑦)/𝑙
𝑢

𝑎
𝑗

(𝑦)) ≤ ℎ
𝑗
(𝑏
𝑗
(𝑦)/𝑎
𝑗
(𝑦)).

When {ℎ
𝑗
}
󸀠󸀠
< 0, we define the lower linearized functions

of ℎ
𝑗
as follows:

𝑙
ℎ
𝑗

(𝑌
𝑗

𝑎𝑏
) fl

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏

(𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏
)

+ ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) .

(13)

Incidentally, as ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) is continuous and differentiable on

[𝑌
𝑗

𝑎𝑏
, 𝑌
𝑗

𝑎𝑏
], there exists 𝐶

ℎ
𝑗

∈ (𝑌
𝑗

𝑎𝑏
, 𝑌
𝑗

𝑎𝑏
) such that ℎ󸀠

𝑗
(𝐶
ℎ
𝑗

) =

(ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
))/(𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏
) by the mean value theorem.

Since ℎ󸀠
𝑗
(𝑌
𝑗

𝑎𝑏
) is monotonic function on [𝑌𝑗

𝑎𝑏
, 𝑌
𝑗

𝑎𝑏
], there

exists the inverse function of ℎ󸀠
𝑗
(𝑌
𝑗

𝑎𝑏
). Hence 𝐶

ℎ
𝑗

is uniquely
given such that

𝐶
ℎ
𝑗

= ℎ
󸀠

𝑗

−1

(

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏

) . (14)

When {ℎ
𝑗
}
󸀠󸀠
> 0, we define the lower linear function 𝑙

ℎ
𝑗

as the
following:

𝑙
ℎ
𝑗

(𝑌
𝑗

𝑎𝑏
) fl

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏

(𝑌
𝑗

𝑎𝑏
− 𝐶
ℎ
𝑗

)

+ ℎ
𝑗
(𝐶
ℎ
𝑗

) .

(15)

Similarly, 𝑙
ℎ
𝑘 ́𝑗

is defined as above.

Case 2 ({ℎ
𝑗
}
󸀠
< 0). In the case, we put the valuable 𝑌𝑗

𝑎𝑏
∈

[𝑌
𝑗

𝑎𝑏
, 𝑌
𝑗

𝑎𝑏
]; that is, 𝑌𝑗

𝑎𝑏
fl min 𝑙𝑢

𝑏
𝑗

(𝑦)/min 𝑙𝑙
𝑎
𝑗

(𝑦) and 𝑌𝑗
𝑎𝑏

fl

max 𝑙𝑢
𝑏
𝑗

(𝑦)/min 𝑙𝑙
𝑎
𝑗

(𝑦).
As {ℎ
𝑗
}
󸀠
< 0, ℎ

𝑗
(𝑙
𝑢

𝑏
𝑗

(𝑦)/𝑙
𝑙

𝑎
𝑗

(𝑦)) ≤ ℎ
𝑗
(𝑏
𝑗
(𝑦)/𝑎
𝑗
(𝑦)).

When {ℎ
𝑗
}
󸀠󸀠
< 0, we define the linear functions 𝑙

ℎ
𝑗

; that is,

𝑙
ℎ
𝑗

(𝑌
𝑗

𝑎𝑏
) fl

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏

(𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏
)

+ ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) .

(16)

When {ℎ
𝑗
}
󸀠󸀠
> 0, we define 𝑙

ℎ
𝑗

as follows:

𝑙
ℎ
𝑗

(𝑌
𝑗

𝑎𝑏
) fl

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏

(𝑌
𝑗

𝑎𝑏
− 𝐶
ℎ
𝑗

)

+ ℎ
𝑗
(𝐶
ℎ
𝑗

) .

(17)

𝑙
ℎ
𝑘 ́𝑗

is also defined as the above.
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We have the lower bounded linearized optimization
problem of (𝑃0); that is,

min 𝑙
𝑓
0

(𝑦) =

𝑃

∑

𝑗=1

𝑙
ℎ
𝑗

(𝑦)

s.t. 𝑙
𝑓
𝑘

(𝑦) =

𝑃
𝑘

∑

𝑗=1

𝑙
ℎ
𝑘 ́𝑗

(𝑦) ≤ 0.

LRP(𝑃0)

We rewrite our problem (𝑃) putting some technical assump-
tion.

We assume 𝑙𝑙
𝑎
𝑗

(𝑥) > 0, 𝑙𝑙
𝑏
𝑗

(𝑥) > 0, 𝑙𝑙
𝑐
𝑘 ́𝑗

(𝑥) > 0, and 𝑙𝑙
𝑑
𝑘 ́𝑗

(𝑥) >

0, and the problem is

min 𝑓
0 (𝑥) =

𝑃

∑

𝑗=1

ℎ
𝑗
(

𝑏
𝑗 (𝑥)

𝑎
𝑗 (𝑥)

)

s.t. 𝑓
𝑘 (𝑥) =

𝑃
𝑘

∑

́𝑗=1

ℎ
𝑘 ́𝑗
(

𝑑
𝑘 ́𝑗
(𝑥)

𝑐
𝑘 ́𝑗
(𝑥)

)

≤ 0 ( ́𝑗 = 1, . . . , 𝑃
𝑘
, 𝑘 = 1, . . . ,𝑀)

𝑥 ∈ 𝑋,

(𝑃)
󸀠

where ℎ
𝑗
on [min 𝑙𝑙

𝑏
𝑗

(𝑥)/max 𝑙𝑢
𝑎
𝑗

(𝑥),max 𝑙𝑢
𝑏
𝑗

(𝑥)/min 𝑙𝑙
𝑎
𝑗

(𝑥)]

and ℎ
𝑘 ́𝑗

on [min 𝑙𝑙
𝑑
𝑘 ́𝑗

(𝑥)/max 𝑙𝑢
𝑐
𝑘 ́𝑗

(𝑥),max 𝑙𝑢
𝑑
𝑘 ́𝑗

(𝑥)/min 𝑙
𝑐
𝑙

𝑘 ́𝑗

(𝑥)]

satisfied the following condition:

ℎ
󸀠

𝑗
> 0

or ℎ󸀠
𝑗
< 0,

ℎ
󸀠

𝑘 ́𝑗
> 0

or ℎ󸀠
𝑘 ́𝑗
< 0,

{ℎ
𝑗
}
󸀠󸀠

> 0

or {ℎ
𝑗
}
󸀠󸀠

< 0,

{ℎ
𝑘 ́𝑗
}
󸀠󸀠

> 0

or {ℎ
𝑘 ́𝑗
}
󸀠󸀠

< 0.

(18)

3. Branch and Bound Algorithm

In this section, we use the Simplex method and the Branch
and Bound Algorithm and show how to find the approximate
value of (𝑃0).

We set the initial domain 𝑌0 fl 𝑌, the active domain
set Q

𝑞
, and the active domain 𝑌

𝑞(𝑚)
= {𝑦 | 𝑦

𝑞(𝑚)

𝑖
≤

𝑦
𝑞(𝑚)

𝑖
≤ 𝑦
𝑞(𝑚)

𝑖
, 𝑖 = 1, . . . , 𝑁} ⊆ 𝑌

0, where 𝑞 is the times
of the cutting domains and the number of the stages in the
algorithm and 𝑚 is the number of the active domains on
stage 𝑞. If 𝑌𝑞(𝑚) is active domain, we divide 𝑌𝑞(𝑚) into half
domains 𝑌𝑞(𝑚)⋅1, 𝑌𝑞(𝑚)⋅2. On each domain, we linearize the
problem (𝑃0) and solve the linearized problems LRP(𝑃0)) to
obtain the lower and upper bound values of (𝑃0). After the
repeat of the above calculations, we obtain the convergence
for the sequences of the lower and upper bound values. The
procedure leads the optimal value and the optimal solution
for our problem.

3.1. Branching Rule. We select the branching variable 𝑖 such
that 𝑖 = 𝑛max{𝑦𝑞(𝑚)

𝑛
− 𝑦
𝑞(𝑚)

𝑛
, 𝑛 = 1, 2, . . . , 𝑁}. We divide

the interval [𝑦𝑞(𝑚)
𝑖

, 𝑦
𝑞(𝑚)

𝑖
] into half intervals: [𝑦𝑞(𝑚)

𝑖
, (𝑦
𝑞(𝑚)

𝑖
+

𝑦
𝑞(𝑚)

𝑖
)/2] and [(𝑦𝑞(𝑚)

𝑖
+ 𝑦
𝑞(𝑚)

𝑖
)/2, 𝑦
𝑞(𝑚)

𝑖
].

3.2. Algorithm Statement

Step 0. Let 𝑞 be 0, and let𝑚 be 1.We set an appropriate 𝜖-value
as a convergence tolerance, the initial upper bound 𝑉∗ = ∞,
and Q

0
= {𝑌
0(1)
}. We solve LRP(𝑌0(1)), and we write 𝑦̂(𝑌0(1))

and LB
0(1)

for the linear optimal solution and optimal value.
If 𝑦̂(𝑌0(1)) is feasible for (𝑃0), update 𝑉∗ = 𝑓

0
(𝑦̂(𝑌
0(1)
)) and

we set the initial lower bound LB = LB
0(1)

. If 𝑉∗ − LB ≤ 𝜖,
then we get the 𝜖-approximate optimal value𝑓

0
(𝑦̂(𝑌
0(1)
)) and

optimal solution 𝑦̂(𝑌0(1)) of (𝑃0), so we stop this algorithm.
Otherwise, we proceed to Step 1.

Step 1. For all𝑚, we divide𝑌𝑞(𝑚) into two half domains𝑌𝑞(𝑚)⋅1

and 𝑌𝑞(𝑚)⋅2 according to above branching rule.

Step 2. For all 𝑚 and each domain 𝑌𝑞(𝑚)⋅V (V = 1, 2), we
calculate

𝑓
𝑘(V)

=

𝑃
𝑘

∑

́𝑗=1,ℎ
󸀠

𝑘 ́𝑗

>0

ℎ
𝑘 ́𝑗
(𝑌
𝑘 ́𝑗 𝑌
𝑞(𝑚)⋅V

𝑐𝑑
)

+

𝑃
𝑘

∑

́𝑗=1,ℎ
󸀠

𝑘 ́𝑗

<0

ℎ
𝑘 ́𝑗
(𝑌
𝑘 ́𝑗 𝑌
𝑞(𝑚)⋅V

𝑐𝑑
) (𝑘 = 1, . . . ,𝑀) ,

(19)

where 𝑌𝑘
́𝑗 𝑌
𝑞(𝑚)⋅V

𝑐𝑑
, 𝑌
𝑘 ́𝑗 𝑌
𝑞(𝑚)⋅V

𝑐𝑑
are defined on 𝑌𝑞(𝑚)⋅V:

𝑌
𝑘 ́𝑗 𝑌
𝑞(𝑚)⋅V

𝑐𝑑

fl
∑
𝑇
𝑑

𝑘 ́𝑗

𝑡=1,𝛽
𝑑

𝑘 ́𝑗𝑡

>0
𝛽
𝑑

𝑘 ́𝑗𝑡
exp(∑𝑁

𝑖=1,𝛾
𝑑

𝑘 ́𝑗𝑡𝑖

>0
𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
+ ∑
𝑁

𝑖=1,𝛾
𝑑

𝑘 ́𝑗𝑡𝑖

<0
𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
) + ∑

𝑇
𝑑

𝑘 ́𝑗

𝑡=1,𝛽
𝑑

𝑘 ́𝑗𝑡

<0
𝛽
𝑑

𝑘 ́𝑗𝑡
exp(∑𝑁

𝑖=1,𝛾
𝑑

𝑘 ́𝑗𝑡𝑖

>0
𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
+ ∑
𝑁

𝑖=1,𝛾
𝑑

𝑘 ́𝑗𝑡𝑖

<0
𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
)

∑

𝑇
𝑐

𝑘 ́𝑗

𝑡=1,𝛽
𝑐

𝑘 ́𝑗𝑡

>0
𝛽
𝑐

𝑘 ́𝑗𝑡
exp(∑𝑁

𝑖=1,𝛾
𝑐

𝑘 ́𝑗𝑡𝑖

>0
𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
+ ∑
𝑁

𝑖=1,𝛾
𝑐

𝑘 ́𝑗𝑡𝑖

<0
𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
) + ∑

𝑇
𝑐

𝑘 ́𝑗

𝑡=1,𝛽
𝑐

𝑘 ́𝑗𝑡

<0
𝛽
𝑐

𝑘 ́𝑗𝑡
exp(∑𝑁

𝑖=1,𝛾
𝑐

𝑘 ́𝑗𝑡𝑖

>0
𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
+ ∑
𝑁

𝑖=1,𝛾
𝑐

𝑘 ́𝑗𝑡𝑖

<0
𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
)

.
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𝑌
𝑘 ́𝑗 𝑌
𝑞(𝑚)⋅V

𝑐𝑑

fl
∑
𝑇
𝑑

𝑘 ́𝑗

𝑡=1,𝛽
𝑑

𝑘 ́𝑗𝑡

>0
𝛽
𝑑

𝑘 ́𝑗𝑡
exp(∑𝑁

𝑖=1,𝛾
𝑑

𝑘 ́𝑗𝑡𝑖

>0
𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
+ ∑
𝑁

𝑖=1,𝛾
𝑑

𝑘 ́𝑗𝑡𝑖

<0
𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
) + ∑

𝑇
𝑑

𝑘 ́𝑗

𝑡=1,𝛽
𝑑

𝑘 ́𝑗𝑡

<0
𝛽
𝑑

𝑘 ́𝑗𝑡
exp(∑𝑁

𝑖=1,𝛾
𝑑

𝑘 ́𝑗𝑡𝑖

>0
𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
+ ∑
𝑁

𝑖=1,𝛾
𝑑

𝑘 ́𝑗𝑡𝑖

<0
𝛾
𝑑

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
)

∑

𝑇
𝑐

𝑘 ́𝑗

𝑡=1,𝛽
𝑐

𝑘 ́𝑗𝑡

>0
𝛽
𝑐

𝑘 ́𝑗𝑡
exp(∑𝑁

𝑖=1,𝛾
𝑐

𝑘 ́𝑗𝑡𝑖

>0
𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
+ ∑
𝑁

𝑖=1,𝛾
𝑐

𝑘 ́𝑗𝑡𝑖

<0
𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
) + ∑

𝑇
𝑐

𝑘 ́𝑗

𝑡=1,𝛽
𝑐

𝑘 ́𝑗𝑡

<0
𝛽
𝑐

𝑘 ́𝑗𝑡
exp(∑𝑁

𝑖=1,𝛾
𝑐

𝑘 ́𝑗𝑡𝑖

>0
𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
+ ∑
𝑁

𝑖=1,𝛾
𝑐

𝑘 ́𝑗𝑡𝑖

<0
𝛾
𝑐

𝑘 ́𝑗𝑡𝑖
𝑦
𝑖
)

.

(20)

If there is 𝑓
𝑘(V)

that satisfies 𝑓
𝑘(V)

> 0 for some 𝑘 ∈ {1, 2, . . . ,

𝑀}, the domain 𝑌𝑞(𝑚)⋅V is infeasible for (𝑃0). In the case, we
delete the domain fromQ

𝑞
. If𝑌𝑞(𝑚)⋅V (V = 1, 2) are deleted for

all𝑚, then the problem has no feasible solution.

Step 3. For left domains, we solve LRP(𝑌𝑞(𝑚)⋅V) by the
Simplex algorithm, and we write (𝑦̂(𝑌𝑞(𝑚)⋅V), LB

𝑞(𝑚)⋅V) for the
obtained linear optimal solution and the value. If 𝑦̂(𝑌𝑞(𝑚)⋅V)
is feasible for (𝑃0), we update 𝑉∗ = min{𝑉∗, 𝑓

0
(𝑦̂(𝑌
𝑞(𝑚)⋅V

))}.
If LB
𝑞(𝑚)⋅V > 𝑉

∗, we delete the corresponding domain from
Q
𝑞
. If𝑉∗ −LB

𝑞(𝑚)⋅V ≤ 𝜖, we obtain the 𝜖-approximate optimal
value 𝑓

0
(𝑦̂(𝑌
𝑞(𝑚)⋅V

)) and optimal solution 𝑦̂(𝑌𝑞(𝑚)⋅V) of (𝑃0).
Hence we stop this algorithm. Otherwise, we proceed to Step
4.

Step 4. We update the index of left domains 𝑌𝑞(𝑚)⋅V to 𝑌𝑞+1(𝑚).
We initialize 𝑚 and settle that Q

𝑞+1
is a set of 𝑌𝑞+1(𝑚) and go

to Step 1.

4. Convergence of the Optimization Method

In this section, we prove the following two theorems to
guarantee the convergence of our optimization method.

Theorem 1. If |𝑦 − 𝑦| → 0, then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃

∑

𝑗=1

ℎ
𝑗
(𝑦) −

𝑃

∑

𝑗=1

𝑙
ℎ
𝑗

(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0, (21)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃
𝑘

∑

𝑗=1

ℎ
𝑘 ́𝑗
(𝑦) −

𝑃
𝑘

∑

𝑗=1

𝑙
ℎ
𝑘 ́𝑗

(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0. (22)

One proves convergence (21). The convergence of (22) is proved
by the same procedure as (21).

Proof. We show the following.
If |𝑦 − 𝑦| → 0, then |ℎ

𝑗
(𝑦) − 𝑙

ℎ
𝑗

(𝑦)| → 0 for each 𝑗.
Consider

󵄨󵄨󵄨󵄨󵄨󵄨
ℎ
𝑗
(𝑦) − 𝑙

ℎ
𝑗

(𝑦)
󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
𝑗
(

𝑏
𝑗
(𝑦)

𝑎
𝑗
(𝑦)

)

− 𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

max 𝑙𝑢
𝑎
𝑗

(𝑦)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
𝑗
(

𝑏
𝑗
(𝑦)

𝑎
𝑗
(𝑦)

)

− 𝑙
ℎ
𝑗

(

𝑏
𝑗
(𝑦)

𝑎
𝑗
(𝑦)

) + 𝑙
ℎ
𝑗

(

𝑏
𝑗
(𝑦)

𝑎
𝑗
(𝑦)

) − 𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

𝑎
𝑗
(𝑦)

)

+ 𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

𝑎
𝑗
(𝑦)

) − 𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

𝑙𝑢
𝑎
𝑗

(𝑦)
) + 𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

𝑙𝑢
𝑎
𝑗

(𝑦)
)

− 𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

max 𝑙𝑢
𝑎
𝑗

(𝑦)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
𝑗
(

𝑏
𝑗
(𝑦)

𝑎
𝑗
(𝑦)

)

− 𝑙
ℎ
𝑗

(

𝑏
𝑗
(𝑦)

𝑎
𝑗
(𝑦)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙
ℎ
𝑗

(

𝑏
𝑗
(𝑦)

𝑎
𝑗
(𝑦)

) − 𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

𝑎
𝑗
(𝑦)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

𝑎
𝑗
(𝑦)

) − 𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

𝑙𝑢
𝑎
𝑗

(𝑦)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

𝑙𝑢
𝑎
𝑗

(𝑦)
)

− 𝑙
ℎ
𝑗

(

𝑙
𝑙

𝑏
𝑗

(𝑦)

max 𝑙𝑢
𝑎
𝑗

(𝑦)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(23)

We prove the convergence of the 4 terms of the above.
(i) The proof of |ℎ

𝑗
(𝑏
𝑗
(𝑦)/𝑎
𝑗
(𝑦)) − 𝑙

ℎ
𝑗

(𝑏
𝑗
(𝑦)/𝑎
𝑗
(𝑦))| → 0

is as follows.
When ℎ󸀠󸀠

𝑗
> 0, we define the lower linearized function of

ℎ
𝑗
(𝑦); that is,

𝑙
ℎ
𝑗

(𝑌
𝑗

𝑎𝑏
) fl

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏

(𝑌
𝑗

𝑎𝑏
− 𝐶
ℎ
𝑗

)

+ ℎ
𝑗
(𝐶
ℎ
𝑗

) .

(24)

Then

max
󵄨󵄨󵄨󵄨󵄨󵄨
ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − 𝑙
ℎ
𝑗

(𝑌
𝑗

𝑎𝑏
)
󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

− (

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏

(𝑌
𝑗

𝑎𝑏
− 𝐶
ℎ
𝑗

)

+ ℎ
𝑗
(𝐶
ℎj
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(25)
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We put 𝐼
𝑌
𝑗

𝑎𝑏

fl 𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏
, 𝐶
ℎ
𝑗

= 𝑌
𝑗

𝑎𝑏
+ 𝜃
𝑗

𝑎𝑏
⋅ 𝐼
𝑌
𝑗

𝑎𝑏

(0 ≤ 𝜃
𝑗

𝑎𝑏
≤ 1).

It is
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

−

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏

(𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏
− 𝜃
𝑗

𝑎𝑏
⋅ 𝐼
𝑌
𝑗

𝑎𝑏

)

− ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
+ 𝜃
𝑗

𝑎𝑏
⋅ 𝐼
𝑌
𝑗

𝑎𝑏

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

+ (ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)) 𝜃
𝑗

𝑎𝑏
⋅ 𝐼
𝑌
𝑗

𝑎𝑏

− ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
+ 𝜃
𝑗

𝑎𝑏
⋅ 𝐼
𝑌
𝑗

𝑎𝑏

)
󵄨󵄨󵄨󵄨󵄨󵄨
⋅ ⋅ ⋅ .

(∗1)

If |𝑦 − 𝑦| → 0, then 𝜃𝑗
𝑎𝑏
⋅ 𝐼
𝑌
𝑗

𝑎𝑏

→ 0. Hence (∗1) → 0.

When ℎ󸀠󸀠
𝑗
< 0, we define 𝑙

ℎ
𝑗

(𝑌
𝑗

𝑎𝑏
) as follows:

𝑙
ℎ
𝑗

(𝑌
𝑗

𝑎𝑏
) fl

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏

(𝑌
𝑗

𝑎𝑏
− 𝑌
𝑗

𝑎𝑏
)

+ ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) .

(26)

max
󵄨󵄨󵄨󵄨󵄨󵄨
ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − 𝑙
ℎ
𝑗

(𝑌
𝑗

𝑎𝑏
)
󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨
ℎ
𝑗
(𝐶
ℎ
𝑗

) − 𝑙
ℎ
𝑗

(𝐶
ℎ
𝑗

)
󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
+ 𝜃
𝑗

𝑎𝑏
⋅ 𝐼
𝑌
𝑗

𝑎𝑏

)

− (

ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
) − ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
)

𝑌
𝑗

𝑎𝑏
− 𝑌

j
𝑎𝑏

(𝑌
𝑗

𝑎𝑏
+ 𝜃
𝑗

𝑎𝑏
⋅ 𝐼
𝑌
𝑗

𝑎𝑏

− 𝑌
𝑗

𝑎𝑏
)

− ℎ
𝑗
(𝑌
𝑗

𝑎𝑏
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ ⋅ ⋅ .

(∗2)

When |𝑦 − 𝑦| → 0, then 𝜃𝑗
𝑎𝑏
⋅ 𝐼
𝑌
𝑗

𝑎𝑏

→ 0. Then (∗2) → 0.
(ii) The proof of |𝑙

ℎ
𝑗

(𝑏
𝑗
(𝑦)/𝑎
𝑗
(𝑦)) − 𝑙

ℎ
𝑗

(𝑙
𝑙

𝑏
𝑗

(𝑦)/𝑎
𝑗
(𝑦))| → 0

is as follows.
We show that |𝑏

𝑗
(𝑦) − 𝑙

𝑙

𝑏
𝑗

(𝑦)| → 0 if |𝑦 − 𝑦| → 0.
By the definition of 𝐿𝑙

𝛽
𝑏

𝑗𝑡

(𝑌
𝑏

𝑗𝑡
), we show that |𝛽𝑏

𝑗𝑡
exp(𝑌𝑏

𝑗𝑡
) −

𝐿
𝑙

𝛽
𝑏

𝑗𝑡

(𝑌
𝑏

𝑗𝑡
)| → 0 for any 𝑡 similarly to (i).

(iii)The proof of |𝑙
ℎ
𝑗

(𝑙
𝑙

𝑏
𝑗

(𝑦)/𝑎
𝑗
(𝑦))−𝑙

ℎ
𝑗

(𝑙
𝑙

𝑏
𝑗

(𝑦)/𝑙
𝑢

𝑎
𝑗

(𝑦))| → 0

is as follows.
We prove that |𝑎

𝑗
(𝑦) − 𝑙

𝑢

𝑎
𝑗

(𝑦)| → 0 if |𝑦 − 𝑦| → 0.

By the definition of 𝐿𝑢
𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
), we show that |𝛽𝑎

𝑗𝑡
exp(𝑌𝑎

𝑗𝑡
) −

𝐿
𝑢

𝛽
𝑎

𝑗𝑡

(𝑌
𝑎

𝑗𝑡
)| → 0 for any 𝑡 similarly to (i).

(iv)The proof of |𝑙
ℎ
𝑗

(𝑙
𝑙

𝑏
𝑗

(𝑦)/𝑙
𝑢

𝑎
𝑗

(𝑦))−𝑙
ℎ
𝑗

(𝑙
𝑙

𝑏
𝑗

(𝑦)/max 𝑙𝑢
𝑎
𝑗

(𝑦))|

→ 0 is as follows.
If |𝑦 − 𝑦| → 0, then 𝑙𝑢

𝑎
𝑗

(𝑦) → max 𝑙𝑢
𝑎
𝑗

(𝑦).

Theorem 2. Suppose that problem (𝑃0) has a global optimal
solution, denoted by 𝜇∗

0
. Then one has the following.

(i) For the case 𝜖 > 0: the algorithm always terminates after
finitely many iterations yielding a global 𝜖-optimal solution 𝑦∗
and a global 𝜖-optimal value 𝑉∗ for problem (𝑃0) in the sense
that 𝑦∗ ∈ 𝑌, 𝑉∗ − 𝜖 ≤ 𝜇∗

0
with 𝑉∗ = 𝑓

0
(𝑦
∗
).

(ii) For the case 𝜖 → 0: one assumes the sequence 𝜖
𝑛
is

convergence tolerance, such that 𝜖
1
> 𝜖
2
> ⋅ ⋅ ⋅ > 𝜖

𝑛
> 𝜖
𝑛+1

>

⋅ ⋅ ⋅ > 0; that is, lim
𝑛→∞

𝜖
𝑛
= 0. And we assume the sequence

𝑦
∗

𝑛
is optimal solution of (𝑃0) corresponding to 𝜖

𝑛
. Then the

accumulation point of 𝑦∗
𝑛
is global optimal solution of (𝑃0).

Proof. (i) It is obvious by the algorithm statement.
(ii) We denote that the upper bound corresponding to 𝜖

𝑛

is 𝑉∗
𝑛
:

𝑓
0
(𝑦
∗

𝑛
) ∈ [𝑉

∗

𝑛
− 𝜖, 𝑉

∗

𝑛
] . (27)

Then {𝑦∗
𝑛
} is the point sequence on bounded closed set, and

{𝑦
∗

𝑛
} has a converge subsequence {𝑦∗

𝑛𝑖
}.

We denote lim
𝑖→∞

𝑦
∗

𝑛𝑖
= 𝑦
∗, and then

𝑉
∗

𝑛𝑖
− 𝜖
𝑛𝑖
≤ 𝑓
0
(𝑉
∗

𝑛𝑖
) ≤ 𝑉
∗

𝑛𝑖
.

If 𝑖 󳨀→ ∞,

then 𝑛𝑖 󳨀→ ∞,

lim
𝑛𝑖→∞

𝜖
𝑛𝑖
= 0.

(28)

Now {𝑉∗
𝑛
} is a monotone decreasing sequence; therefore it is

convergent. We put lim
𝑛→∞

𝑉
∗

𝑛
= 𝜇
∗

0
:

lim
𝑖→∞

(𝑉
∗

𝑛𝑖
− 𝜖
𝑛𝑖
) ≤ lim
𝑖→∞

𝑓
0
(𝑦
∗

𝑛𝑖
) ≤ lim
𝑖→∞

𝑉
∗

𝑛𝑖
. (29)

Since 𝑓
0
(𝑦) is a continuous function, lim

𝑖→∞
𝑓
0
(𝑦
𝑛𝑖
) =

𝑓
0
(𝑦
∗
). Therefore, 𝜇∗

0
≤ 𝑓
0
(𝑦
∗
) ≤ 𝜇
∗

0
, and 𝑓

0
(𝑦
∗
) = 𝜇
∗

0
. Since

𝑓
𝑘
(𝑦
∗

𝑛
) ≤ 0, for each 𝑘, and 𝑓

𝑘
(𝑦
∗
) is continuous, we obtain

that lim
𝑛→∞

𝑓
𝑘
(𝑦
∗

𝑛
) = 𝑓
𝑘
(𝑦
∗
) ≤ 0.

5. Numerical Experiment

In this section, we show some numerical experiments for
these optimization problems according to the former rules.
We make the algorithm coded with Matlab. In these codes,
we use Matlab’s unique function code “linprog” to solve the
linear optimization problems.
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Example 1. Consider

min (exp(
−𝑥
2

1
+ 3𝑥
1
+ 2𝑥
2

2
+ 3𝑥
2
+ 3.5

𝑥
1
+ 1

) − exp( 𝑥
2

𝑥
2

1
− 2𝑥
1
+ 𝑥
2

2
− 8𝑥
2
+ 20

))

s.t. 𝑥
1
−
𝑥
2

𝑥
1

≤ 1

2
𝑥
1

𝑥
2

+ 𝑥
2
≤ 6

𝑋 = {𝑥 : 1 ≤ 𝑥
1
≤ 3, 1 ≤ 𝑥

2
≤ 3} .

(30)

We set 𝜖 = 0.000001. After the algorithm, we found a global
𝜖-optimal value 𝑉∗ = 59.3054 when the global 𝜖-optimal
solution is (𝑥

1
, 𝑥
2
)
𝑇
= (1, 1.6180).

Example 2. Consider

min (sin(
𝑥
2

1
+ 2𝑥
2
− 2𝑥
1
+ 𝑥
2

2

𝑥
1
+ 𝑥
2

2
+ 4

) + cos(
3𝑥
2

1
− 3𝑥
2
+ 2𝑥
1
+ 𝑥
2

2
+ 3

𝑥
2

1
+ 2𝑥
2

2
+ 10

))

s.t. sin(
𝑥
2

1
+ 3𝑥
2
− 2𝑥
2

2
+ 2

𝑥
2

1
+ 𝑥
2
+ 5

) + cos(
−𝑥
2

2
+ 2𝑥
1
+ 2𝑥
2

𝑥
1
+ 5

) ≤ 0

𝑋 = {𝑥 : 1 ≤ 𝑥
1
≤ 2, 1 ≤ 𝑥

2
≤ 2} .

(31)

We set 𝜖 = 0.000001. After the algorithm, we found a global
𝜖-optimal value 𝑉∗ = 0.9023 when the global 𝜖-optimal
solution is (𝑥

1
, 𝑥
2
)
𝑇
= (2, 1).

Example 3. Consider

min (log(
2𝑥
2

1
− 𝑥
2
+ 35

−𝑥
1
+ 2𝑥
2

2
+ 9

) − log(
3𝑥
2

1
− 𝑥
2
+ 35

𝑥
2

1
− 𝑥
1
+ 𝑥
2

2
+ 2𝑥
2
+ 3

))

s.t. 𝑥
2

1
− 2𝑥
2
≤ 1

𝑥
1
−
𝑥
2

𝑥
1

≤ 1

𝑋 = {𝑥 : 1 ≤ 𝑥
1
≤ 3, 1 ≤ 𝑥

2
≤ 3} .

(32)

We set 𝜖 = 0.000001. After the algorithm, we found a global
𝜖-optimal value 𝑉∗ = −0.5382 when the global 𝜖-optimal
solution is (𝑥

1
, 𝑥
2
)
𝑇
= (1, 1).

6. Concluding Remarks

In this paper, we propose the specific nonlinear and non-
convex optimization technique which does not launch new
valuables applying Hongwei’s method [6]. We compute the
examples of our previous work [17] by the new method. In
[17], it had taken over 8 hours to find optimal value for
each problem. The proposed method can compute the same

problems in 10 minutes. If the algorithms are coded by C or
C++, we obtain the optimal value in a shorter time.
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