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The present survey contains the recent results on the local and nonlocal well-posed problems for second order differential and
difference equations. Results on the stability of differential problems for second order equations and of difference schemes for
approximate solution of the second order problems are presented.

1. Introduction

The importance of coercive (maximal regularity, well-
posedness) inequalities is well-known [1–6]. There are an
extensive number of literatures which concern investigation
of maximal regularity property for second order differential
equations in time [7–11]. Recently [12], the well-posedness of
difference schemes for abstract elliptic equations in
𝐿
𝑝
([0, 𝑇]; 𝐸) spaces was considered. The present survey

is devoted to qualitative theory and the numerical analysis of
abstract second order differential equations in functional
spaces.

Let 𝐵(𝐸) denote the Banach algebra of all linear bounded
operators on complex Banach space 𝐸. The set of all linear
closed densely defined operators in 𝐸 will be denoted by
C(𝐸). We denote by 𝜎(𝐵) the spectrum of the operator 𝐵 and
by 𝜌(𝐵) the resolvent set of 𝐵.

Consider the following inhomogeneous Cauchy problem:

𝑢
󸀠
(𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ [0, 𝑇] ;

𝑢 (0) = 𝑢
0
,

(1)

in a Banach space 𝐸, where the operator 𝐴 ∈ C(𝐸) is the
generator of a 𝐶0-semigroup and 𝑓(⋅) is some function from

[0, 𝑇] into 𝐸. Formally, as in the finite-dimensional analysis,
problem (1) has a solution of the form

𝑢 (𝑡) = exp (𝑡𝐴) 𝑢
0
+ ∫

𝑡

0
exp ((𝑡 − 𝑠) 𝐴) 𝑓 (𝑠) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] .
(2)

This is the so-called constant variation formula. The prop-
erties of the expression ∫

𝑡

0 exp((𝑡 − 𝑠)𝐴)𝑓(𝑠)𝑑𝑠 and the
corresponding interpretations of solutions related to repre-
sentation (2) are of interest. Problem (1) can be considered
in various functional spaces. The most popular situations
are the following settings: the well-posedness in 𝐶([0, 𝑇]; 𝐸),
𝐶
𝛼,0

([0, 𝑇]; 𝐸), and 𝐿
𝑝
([0, 𝑇]; 𝐸) spaces (see [1, 13]).

We say that problem (1) is well-posed, say in 𝐶([0, 𝑇]; 𝐸),
if, for any 𝑓(⋅) ∈ 𝐶([0, 𝑇]; 𝐸) and any 𝑢0 ∈ 𝐷(𝐴),

(i) the problem (1) is uniquely solvable; that is, 𝑢(⋅)

satisfies the main equation and initial condition in
(1), 𝑢(⋅) is continuously differentiable on [0, 𝑇], 𝑢(𝑡) ∈
𝐷(𝐴) for any 𝑡 ∈ [0, 𝑇], and 𝐴𝑢(⋅) is continuous on
[0, 𝑇];

(ii) the operator (𝑓(⋅), 𝑢
0
) → 𝑢(⋅) as an operator from

𝐶([0, 𝑇]; 𝐸) × 𝐷(𝐴) to 𝐶([0, 𝑇]; 𝐸) is continuous.
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In the case 𝑢
0

≡ 0, the coercive well-posedness, for
instance, in 𝐶([0, 𝑇]; 𝐸)means that

‖𝐴𝑢 (⋅)‖𝐶([0,𝑇];𝐸) ≤ 𝑐
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸) . (3)

In general, the coercive well-posedness in the space
Υ([0, 𝑇]; 𝐸) for problem (1) means that it is well-posed in the
space Υ([0, 𝑇]; 𝐸) and

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩Υ([0,𝑇];𝐸) + ‖𝐴𝑢 (⋅)‖Υ([0,𝑇];𝐸)

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩Υ([0,𝑇];𝐸) +
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸) ,

(4)

where 𝐸 is some subspace of 𝐸. For results of the coercive
well-posedness, see [1, 14].

We have to note that if (1) is coercively well-posed in the
space 𝐶([0, 𝑇]; 𝐸), then the operator 𝐴 should be bounded
or the space 𝐸 contains a subspace isomorphic to 𝑐0 [15]. It
means that in general problem (1) is not coercively well-posed
in 𝐶([0, 𝑇]; 𝐸) space. However, problem (1) is classically well-
posed in𝐶([0, 𝑇]; 𝐸𝛼

) (see [16–18]), where𝐸𝛼
= (𝐸,𝐷(𝐴))𝛼 is

a suitable interpolation space. It is proved in [2] that coercive
well-posedness in 𝐶

𝛼,0
([0, 𝑇]; 𝐸) space is equivalent to the

condition that 𝐴 generates an analytic 𝐶0-semigroup.
In themeantime, the situation in 𝐿

𝑝
([0, 𝑇]; 𝐸) space is not

complete. One got only an extrapolation theorem and one
could get a coercive inequality just for an interpolation space
instead of 𝐸 (see [12]).

The necessary and sufficient conditions for coercive well-
posedness of problem (1) in 𝐿

𝑝
([0, 𝑇]; 𝐸)with 𝐸 to be a UMD

space were obtained in [19–21].

Theorem 1 (see [21]). Let 𝐴 generate a bounded analytic
semigroup exp(⋅𝐴) on UMD space 𝐸. Then problem (1) is
coercively well-posed in the space 𝐿

𝑝
(R+; 𝐸) if and only if one

of the sets, (i), (ii), or (iii), is 𝑅-bounded:

(i) {𝜆(𝜆𝐼 − 𝐴)
−1

: 𝜆 ∈ 𝑖R, 𝜆 ̸= 0};
(ii) {exp(𝑡𝐴), 𝑡𝐴exp(𝑡𝐴) : 𝑡 > 0};
(iii) {exp(𝑧𝐴) : |arg𝑧| ≤ 𝛿}.

When 𝐸 = 𝐶
𝜃
(Ω), there is another “maximal regularity”

result known. Let us consider the following mixed Cauchy-
Dirichlet parabolic problem:

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) = A𝑢 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑥) , 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ Ω,

𝑢 (𝑡, 𝑥
󸀠
) = 𝑔 (𝑡, 𝑥

󸀠
) , 𝑡 ∈ [0, 𝑇] , 𝑥

󸀠
∈ 𝜕Ω,

𝑢 (0, 𝑥) = 𝑢0 (𝑥) , 𝑥 ∈ Ω.

(5)

Definition 2. One says that problem (5) has a strict solution
if there is a continuous function 𝑢(𝑡, 𝑥) such that it has the
first derivative in 𝑡 and the derivatives of order less than or
equal to 2 in the space variables that are continuous up to
the boundary of [0, 𝑇] × Ω; that is, 𝑢(⋅) ∈ 𝐶

1
([0, 𝑇]; 𝐶(Ω)) ∩

𝐶([0, 𝑇]; 𝐶2
(Ω)), and the equations in (5) are satisfied.

By 𝐵([0, 𝑇]; 𝐶2𝜃
(Ω)) we denote the space of bounded

functions 𝑢(⋅) : [0, 𝑇] → 𝐶
2𝜃
(Ω) endowed with the usual

sup-norm.

Theorem 3 (see [14]). Suppose the following assumptions are
satisfied for some 𝜃 ∈ (0, 2) \ {1}:

(I) Ω is an open bounded subset of R𝑛 lying to one side of
its topological boundary 𝜕Ω, which is a submanifold of
R𝑛 of dimension 𝑛 − 1 and class 𝐶2+2𝜃.

(II) The operator A = A(𝑥, 𝜕𝑥) = ∑|𝛼|≤2 𝑎𝛼(𝑥)𝜕
𝛼

𝑥
is a

second order strongly elliptic operator (i.e.,
Re(∑|𝛼|=2 𝑎𝛼(𝑥)𝜉

𝛼
) ≥ ]|𝜉|2 for some ] > 0 and for

any (𝑥, 𝜉) ∈ Ω ×R𝑛
) with coefficients of class 𝐶2𝜃

(Ω).

Then problem (5) has a unique strict solution 𝑢(⋅) belonging
to 𝐵([0, 𝑇]; 𝐶2+2𝜃

(Ω)) such that 𝜕𝑢/𝜕𝑡 ∈ 𝐵([0, 𝑇]; 𝐶2𝜃
(Ω)) if

and only if the following conditions are satisfied:

(a) 𝑢0 ∈ 𝐶
2+2𝜃

(Ω);

(b) 𝑓 ∈ 𝐶([0, 𝑇]; 𝐶(Ω)) ∩ 𝐵([0, 𝑇]; 𝐶2𝜃
(Ω));

(c) 𝑔 ∈ 𝐵([0, 𝑇]; 𝐶2+2𝜃
(𝜕Ω)) ∩ 𝐶([0, 𝑇]; 𝐶2

(𝜕Ω)) ∩ 𝐶
1
([0,

𝑇]; 𝐶(𝜕Ω)), 𝜕𝑔/𝜕𝑡 ∈ 𝐵([0, 𝑇]; 𝐶2𝜃
(𝜕Ω)), 𝜕𝑔/𝜕𝑡 − 𝛾𝑓 ∈

𝐶
𝜃
([0, 𝑇]; 𝐶(𝜕Ω));

(d) 𝛾𝑢0 = 𝑔(0, ⋅);

(e) (𝜕𝑔/𝜕𝑡)(0, ⋅) − 𝛾𝑓(0, ⋅) = 𝛾A𝑢0.

Note that in [4, 5] the maximal regularity was proved for
the problem

𝑑

𝑑𝑡
(𝑏0𝑢 (𝑡) + ∫

𝑡

−∞

𝛽 (𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠) + 𝑎∞𝑢 (𝑡)

= 𝑐0𝐴𝑢 (𝑡) − ∫

𝑡

−∞

𝛾 (𝑡 − 𝑠) 𝐴𝑢 (𝑠) 𝑑𝑠 + 𝑓 (𝑡)

(6)

in Hölder, Lebesgue, and Besov spaces.

2. Hyperbolic Problems

Thesituation in case of second order equation is very different
from the first order equation. Let us consider the Cauchy
problem

𝑢
󸀠󸀠
(𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ [0, 𝑇] ;

𝑢 (0) = 𝑢
0
, 𝑢

󸀠
(0) = 𝑢

1
,

(7)

in a Banach space 𝐸, where the operator 𝐴 is the generator
of a 𝐶0-cosine operator function 𝐶(⋅, 𝐴). We will write 𝐴 ∈

C(𝑀, 𝜔) if ‖𝐶(𝑡, 𝐴)‖ ≤ 𝑀𝑒
𝜔|𝑡|, 𝑡 ∈ R.

Definition 4. Function 𝑢(⋅) is called a classical solution of
problem (7) if 𝑢(⋅) is twice continuously differentiable, 𝑢(𝑡) ∈
𝐷(𝐴) for all 𝑡 ∈ [0, 𝑇], and 𝑢(⋅) satisfies relations (7).
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Assume that 𝑓(⋅) ∈ 𝐶([0, 𝑇]; 𝐸) and 𝑢(⋅) is a classical
solution of (7). Considering the expression

𝑑

𝑑𝑠
(𝐶 (𝑡 − 𝑠, 𝐴) 𝑢 (𝑠) + 𝑆 (𝑡 − 𝑠, 𝐴) 𝑢

󸀠
(𝑠)) = 𝑆 (𝑡 − 𝑠, 𝐴) 𝑓 (𝑠)

(8)

and integrating it in 0 ≤ 𝑠 < 𝑡, we get

𝑢 (𝑡) = 𝐶 (𝑡, 𝐴) 𝑢
0
+ 𝑆 (𝑡, 𝐴) 𝑢

1

+ ∫

𝑡

0
𝑆 (𝑡 − 𝑠, 𝐴) 𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] ,

(9)

which is analogous to (2). As in the case of 𝐶0-semigroups
of operators, the function 𝑢(⋅) given by (9) is not a classical
solution in general, since it can be not twice continuously
differentiable.

Proposition 5 (see [22]). Let 𝐴 ∈ C(𝑀, 𝜔), and let either

(i) 𝑓(⋅), 𝐴𝑓(⋅) ∈ 𝐶([0, 𝑇); 𝐸) and 𝑓(𝑡) ∈ 𝐷(𝐴) for 𝑡 ∈

[0, 𝑇]
or
(ii) 𝑓(⋅) ∈ 𝐶

1
([0, 𝑇]; 𝐸).

Then the function 𝑢(⋅) from (9) with 𝑢
0
∈ 𝐷(𝐴) and 𝑢

1
∈

𝐸
1 is a classical solution of problem (7) on [0, 𝑇]. Here 𝐸1 is the

Kisynskii space; that is, 𝐸1 is the space with the norm ‖𝑥‖𝐸1 :=

‖𝑥‖ + sup0<𝑡≤1‖𝐶
󸀠
(𝑡, 𝐴)𝑥‖.

Definition 6. The function 𝑢(⋅) ∈ 𝐶([0, 𝑇); 𝐸) given by
expression (9) is called a mild solution of problem (7).

Let us consider the following homogenous uniformly
well-posed Cauchy problem:

𝑢
󸀠󸀠
(𝑡) = 𝐴𝑢 (𝑡) , 𝑡 ∈ R;

𝑢 (0) = 𝑢
0
, 𝑢

󸀠
(0) = 𝑢

1
.

(10)

Define the matrix operator A := (
0 𝐼
𝐴 0 ) : 𝐸

1
× 𝐸 → 𝐸

1
× 𝐸

acting on an element (𝑥, 𝑦) ∈ 𝐸
1
×𝐸 by the formulaA(𝑥, 𝑦) =

(𝑦, 𝐴𝑥) that is given on the domain of𝐷(A) = 𝐷(𝐴) × 𝐸
1. In

what follows, an element (𝑥, 𝑦) ∈ 𝐸
1
×𝐸will be written as the

vector ( 𝑥
𝑦 ).

The operator A generates the following 𝐶0-groups of
operators on the Banach space 𝐸1

× 𝐸 [23]:

exp (𝑡A) (

𝑥

𝑦
) := (

𝐶 (𝑡, 𝐴) 𝑆 (𝑡, 𝐴)

𝐴𝑆 (𝑡, 𝐴) 𝐶 (𝑡, 𝐴)
)(

𝑥

𝑦
)

= (

𝐶 (𝑡, 𝐴) 𝑥 + 𝑆 (𝑡, 𝐴) 𝑦

𝐴𝑆 (𝑡, 𝐴) 𝑥 + 𝐶 (𝑡, 𝐴) 𝑦
) , 𝑡 ∈ R.

(11)

We have to note that the study of problem (10) by
reducing it to (equivalent) first order system some time is
inconvenient, since the space 𝐸

1 is defined either through
the 𝐶0-cosine operator-valued function 𝐶(⋅, 𝐴) or through
infinitely many powers of the resolvent. Therefore, certain

additional conditions that allows us to reduce problem (10) to
a first order system without use of the space 𝐸1 are of interest
[24].

Let uniformly well-posed problem (10) have the form

𝑢
󸀠󸀠
(𝑡) = B

2
𝑢 (𝑡) 𝑡 ∈ R;

𝑢 (0) = 𝑢
0
, 𝑢

󸀠
(0) = 𝑢

1
,

(12)

whereB ∈ C(𝐸).

Definition 7. One says that solution 𝑢(⋅) of problem (12)
satisfies condition (𝐾) if 𝑢󸀠(⋅) ∈ 𝐶([0, 𝑇];D(B)).

Proposition 8 (see [25]). Problem (12) has a unique solution
satisfying condition (𝐾) if and only if the following Cauchy
problem is uniformly well-posed on the space 𝐸 × 𝐸:

(

𝑢

V
)

󸀠

(𝑡) = (

0 B

B 0
)(

𝑢

V
) (𝑡) , 𝑡 ∈ R,

(

𝑢

V
) (0) = (

𝑢0

V0
) .

(13)

The following condition (𝐹), similar to previous condi-
tion (𝐾), will allows us to simplify the study of problem (10)
by using 𝐶0-semigroups.

Definition 9. 𝐶0-cosine operator-valued function 𝐶(⋅, 𝐴) sat-
isfies condition (𝐹) if the following conditions hold:

(i) There exists B ∈ C(𝐸) such that B2
= 𝐴, and B

commutes with any operator from 𝐵(𝐸) commuting
with 𝐴.

(ii) An operator 𝑆(𝑡, 𝐴)maps 𝐸 into𝐷(B) for any 𝑡 ∈ R.
(iii) The functionB𝑆(𝑡, 𝐴)𝑥 is continuous in 𝑡 ∈ R for any

fixed 𝑥 ∈ 𝐸.

Proposition 10 (see [22]). Under condition (𝐹), for each 𝑡 ∈

R, one hasB𝑆(𝑡, 𝐴) ∈ 𝐵(𝐸) and 𝐷(B) ⊆ 𝐸
1.

Proposition 11 (see [22]). There exists Banach space 𝐸 and
𝐶0-cosine operator-valued function 𝐶(⋅, 𝐴) (even uniformly
bounded) such that condition (𝐹) does not hold.

Proposition 12 (see [26]). Let the space 𝐸 be Hilbert, and
let the operator 𝐴 be self-adjoint and negative-definite. Then
𝐴 ∈ C(𝑀, 𝜔), condition (𝐹) is satisfied, and the corresponding
space 𝐸1 coincides withD((−𝐴)

1/2
).

Proposition 13 (see [27]). Let 𝐴 ∈ C(𝑀, 0), and let 𝐸 be a
UMD space. Then condition (𝐹) holds.

Theorem 14 (see [28]). Let 𝐴 and B be operators satisfying
condition (i) of Definition 9, and let 0 ∈ 𝜌(B). The following
conditions are equivalent:

(i) The𝐶0-cosine operator-valued function𝐶(⋅, 𝐴) satisfies
condition (𝐹).
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(ii) The operatorB generates a 𝐶0-group exp(⋅B) on 𝐸.
(iii) The operator (

0 B
B 0 ) with the domain 𝐷(𝐴) × 𝐷(B)

generates a 𝐶0-group on 𝐸 × 𝐸.
(iv) TheoperatorA := (

0 𝐼
𝐴 0 )with the domain𝐷(𝐴)×𝐷(B)

generates𝐶0-group exp(⋅A) onD(B)×𝐸, whereD(B)

is the Banach space of elements𝐷(B) endowedwith the
graph norm.

(v) The embedding𝐷(B) ⊆ 𝐸
1 holds.

(vi) Consider𝐷(B) = 𝐸
1.

Proposition 15 (see [28]). Under the conditions of
Theorem 14, for 𝑡 ∈ R, one has

(i) exp (𝑡B) = 𝐶 (𝑡, 𝐴) +B𝑆 (𝑡, 𝐴) ,

𝐶 (𝑡, 𝐴) =
(exp (𝑡B) + exp (−𝑡B))

2
;

(ii) exp (𝑡A) = (
B−1 0
0 𝐼

) exp(𝑡(

0 B

B 0
))(

B 0
0 𝐼

) .

(14)

Theorem 16 (see [29]). Let the operatorB = 𝐴
1/2 in problem

(7) have a bounded inverse B−1
∈ 𝐵(𝐸) and be a generator of

a 𝐶0-group, and let the function 𝑓(⋅) have one of the following
properties:

(i) 𝑓(⋅) ∈ 𝐶
1
([0, 𝑇); 𝐸);

(ii) B𝑓(⋅) ∈ 𝐶([0, 𝑇); 𝐸).

Then, for any 𝑢
0
∈ 𝐷(𝐴) and 𝑢

1
∈ 𝐷(B), there exists a

unique classical solution of problem (7) given by formula (9) in
the form

𝑢 (𝑡) =
1
2
(exp (𝑡B) + exp (−𝑡B)) 𝑢

0

+
1
2
(exp (𝑡B) − exp (−𝑡B))B

−1
𝑢
1

+
1
2
∫

𝑡

0
(exp ((𝑡 − 𝑠)B) − exp (− (𝑡 − 𝑠)B))

⋅B
−1
𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(15)

Denote (𝑆(⋅, 𝐴) ∗ 𝑓)(𝑡) := ∫
𝑡

0 𝑆(𝑡 − 𝑠, 𝐴)𝑓(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇].

Definition 17. One says that 𝐶0-cosine operator function
𝐶(⋅, 𝐴) has the maximal regularity (MR-property) if 𝑆(⋅, 𝐴) ∗

𝑓 ∈ 𝐶
2
([0, 𝑇]; 𝐸) or, which is equivalent, 𝐶(⋅, 𝐴) ∗ 𝑓 ∈

𝐶([0, 𝑇];D(𝐴)) for all 𝑓(⋅) ∈ 𝐶([0, 𝑇]; 𝐸).

Definition 18. Let 𝐸 be a Banach space being a subspace of
the initial space 𝐸, and let Υ([0, 𝑇]; 𝐸) be the Banach space of
functionswith values in𝐸. Problem (7) is said to be coercively
solvable in the pair of spaces (𝐸, Υ([0, 𝑇]; 𝐸)) (in other words,
the solution 𝑢(⋅) has the maximal regularity property) if, for
any right-hand side 𝑓(⋅) ∈ Υ([0, 𝑇]; 𝐸), there exists classical
solution 𝑢(⋅) of Cauchy problem (7), for each 𝑡, the value of

the solution 𝑢(𝑡) belongs to 𝐸, and the following coercive
inequality holds:

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩Υ([0,𝑇];𝐸) + ‖𝐴𝑢 (⋅)‖Υ([0,𝑇];𝐸)

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩Υ([0,𝑇];𝐸) +
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸 +

󵄩󵄩󵄩󵄩󵄩
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸) .

(16)

Theorem 19 (see [30]). Let problem (7) be coercively solvable
in the pair (D(𝐴), 𝐶([0, 𝑇]; 𝐸)). Then 𝐴 ∈ 𝐵(𝐸).

This result can also be reformulated as follows.

Theorem 20 (see [30]). The following statements are equiva-
lent:

(i) For all 𝑥, 𝑦 ∈ 𝐷(𝐴) and 𝑓(⋅) ∈ 𝐶([0, 𝑇]; 𝐸), problem
(7) has a classical solution.

(ii) The operator𝐴 generates a𝐶0-cosine operator function
that satisfies the MR-property.

(iii) The operator𝐴 generates a𝐶0-cosine operator function
that is of bounded semivariation on [0, 𝑇].

(iv) 𝐴 is a bounded linear operator on 𝐸.

In the case of 𝐿𝑝
([0, 𝑇]; 𝐸) space, the situation is the same.

Definition 21. Theproblem (7) is said to be coercively solvable
in 𝐿

𝑝
([0, 𝑇]; 𝐸), 1 ≤ 𝑝 ≤ ∞, if, for any 𝑓(⋅) ∈ 𝐿

𝑝
([0, 𝑇]; 𝐸),

there exists a unique solution 𝑢(⋅) satisfying the equation
almost everywhere such that 𝑢(0) = 𝑢

0, 𝑢󸀠(0) = 𝑢
1, 𝑢󸀠󸀠(⋅),

𝐴𝑢(⋅) ∈ 𝐿
𝑝
([0, 𝑇]; 𝐸), and the following coercive inequality

holds:
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸) + ‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇];𝐸)

≤ 𝑀(𝑝) (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸) +
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐷(𝐴)

+
󵄩󵄩󵄩󵄩󵄩
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸1) .

(17)

Theorem 22 (see [31]). Let problem (7) be coercively solvable
in 𝐿

𝑝
([0, 𝑇]; 𝐸) with a certain 1 ≤ 𝑝 ≤ ∞. Then 𝐴 is bounded.

Well-posedness and maximal regularity for the problems

𝑢
󸀠󸀠
(𝑡) + 𝐵 (𝑡) 𝑢

󸀠
(𝑡) + 𝐴 (𝑡) 𝑢 (𝑡) = 𝑓 (𝑡) 𝑡 − a.e.

𝑢 (0) = 𝑢
0
, 𝑢

󸀠
(0) = 𝑢

1
,

(18)

𝑢
󸀠󸀠
(𝑡) + 𝐴 (𝑡) 𝑢 (𝑡) = 𝑓 (𝑡) 𝑡 − a.e.

𝑢 (0) = 𝑢
0
, 𝑢

󸀠
(0) = 𝑢

1
,

(19)

were proved in case of Hilbert space 𝐻, where the operators
𝐴(𝑡) and 𝐵(𝑡) are associated with time-dependent sesquilin-
ear forms with domain 𝑉 which is continuously imbedded
into 𝐻 (see [32]). In Banach space 𝐸, problem (18) has been
studied in [33] in 𝐿

𝑝
([0, 𝑇]; 𝐸).

In [34, 35], they show existence, uniqueness, andmaximal
regularity of solution for the following differential equation
with delay:

𝑢
󸀠󸀠
(𝑡) + 𝐵 (𝑡) 𝑢

󸀠
(𝑡) + 𝐴 (𝑡) 𝑢 (𝑡)

= 𝐺𝑢
󸀠

𝑡
(𝑡) + 𝐹𝑢𝑡 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ R,

(20)
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where 𝑓(⋅) ∈ 𝐶
𝛼
(R; 𝐸), 0 < 𝛼 < 1. Here 𝐹, 𝐺 : 𝐶([−𝑟, 0];

𝐸) → 𝐸 are supposed to be bounded linear operators; 𝑢𝑡(⋅) =
𝑢(𝑡 + ⋅) on [−𝑟, 0]. Problem (20) with periodic conditions
𝑢(0) = 𝑢(2𝜋), 𝑢󸀠(0) = 𝑢

󸀠
(2𝜋) was considered in [36].

Finally, in [37] they find that if the problem

𝑢
󸀠󸀠
(𝑡) + 𝐵𝑢

󸀠
(𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡) 𝑡 ∈ [0, 𝑇] ;

𝑢 (0) = 0, 𝑢
󸀠
(0) = 0

(21)

has 𝐿
𝑝-maximal regularity, where 1 < 𝑝 < ∞, then the

corresponding propagator of the sine type is an analytic
function. The proof of this fact is based on the estimates of
‖𝜆(𝜆

2
𝐼 + 𝜆𝐵 + 𝐴)

−1
‖ and ‖𝐵(𝜆

2
𝐼 + 𝜆𝐵 + 𝐴)

−1
‖ with Re𝜆 > 𝜔.

3. The Weak Maximal Regularity
(WMR-Property) Property

As we saw in Section 2, maximal regularity for hyper-
bolic problem (7) in 𝐶([0, 𝑇]; 𝐸), 𝐿𝑝

([0, 𝑇]; 𝐸) spaces implies
boundedness of the operator 𝐴. So in this occasion for
unbounded operator𝐴 it is very natural to give the following
definition in case one would like to consider some kind of
maximal regularity.

Definition 23 (see [38]). One says that 𝐶0-cosine oper-
ator function 𝐶(⋅, 𝐴) has the weak maximal regularity
(WMR-property) or the maximal regularity with loss (MRL-
property) if 𝑆(⋅, 𝐴)∗𝑓 ∈ 𝐶

2
([0, 𝑇]; 𝐸) or, which is equivalent,

𝐶(⋅, 𝐴) ∗ 𝑓 ∈ 𝐶([0, 𝑇];D(𝐴)) for all 𝑓(⋅) ∈ 𝐹([0, 𝑇]; 𝐸) ⊂

𝐶([0, 𝑇]; 𝐸), where 𝐸 ⊂ 𝐸.

Definition 24. Let 𝐸̌ and 𝐸 be Banach spaces being subspaces
of the original space 𝐸, and let 𝐶([0, 𝑇]; 𝐸) be the Banach
space of continuous functions with values in 𝐸. Problem (7)
is said to be weakly coercively solvable in the pair of spaces
((𝐸̌, 𝐸), 𝐶([0, 𝑇]; 𝐸)) (in other words, the solution 𝑢(⋅) has
the weak maximal regularity property) if, for any right-hand
side 𝑓(⋅) ∈ 𝐹([0, 𝑇]; 𝐸), there exists classical solution 𝑢(⋅)

of Cauchy problem (7), for each 𝑡, the value of the solution
(𝑢(𝑡), 𝑢

󸀠
(𝑡)) belongs to 𝐸̌×𝐸, and the following weak coercive

inequality holds:

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸) + ‖𝐴𝑢 (⋅)‖𝐶([0,𝑇];𝐸)

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐹([0,𝑇];𝐸) +
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸̌ +

󵄩󵄩󵄩󵄩󵄩
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸) .

(22)

Remark 25. Note that in the cases 𝐹([0, 𝑇]; 𝐸) = 𝐶([0, 𝑇]; 𝐸)
and 𝐸̌ = 𝐷(𝐴), 𝐸 = 𝐷(B) the weak maximal regularity
(WMR-property) is equivalent to the maximal regularity in
𝐶([0, 𝑇]; 𝐸).

Theorem26. Assume that condition (𝐹) is satisfied and𝑓(⋅) ∈

𝐶
1
([0, 𝑇]; 𝐸) ∩ 𝐶([0, 𝑇]; 𝐷(B)). Then problem (7) is weakly

coercively solvable in the pair ((𝐷(𝐴), 𝐷(B)), 𝐶([0, 𝑇]; 𝐸)) and
the following estimate holds:

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸) + ‖𝐴𝑢 (⋅)‖𝐶([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) .

(23)

Proof. Following (15) fromTheorem 16 one can write

𝐴𝑢 (𝑡) =
1
2
(exp (𝑡B) + exp (−𝑡B)) 𝐴𝑢

0

+
1
2
(exp (𝑡B) − exp (−𝑡B))B𝑢

1

+
1
2
∫

𝑡

0
(exp ((𝑡 − 𝑠)B) − exp (− (𝑡 − 𝑠)B))

⋅B𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] ,

(24)

𝐴𝑢 (𝑡) =
1
2
(exp (𝑡B) + exp (−𝑡B)) 𝐴𝑢

0

+
1
2
(exp (𝑡B) − exp (−𝑡B))B𝑢

1
− 𝑓 (𝑡)

+
1
2
(exp (𝑡B) + exp (−𝑡B)) 𝑓 (0)

+
1
2
∫

𝑡

0
(exp ((𝑡 − 𝑠)B) + exp (− (𝑡 − 𝑠)B))

⋅ 𝑓
󸀠
(𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(25)

Using formulas (24) and (25), we get

‖𝐴𝑢 (𝑡)‖𝐸 ≤
1
2
(
󵄩󵄩󵄩󵄩exp (𝑡B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (−𝑡B)

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸

+
1
2
(
󵄩󵄩󵄩󵄩exp (𝑡B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (−𝑡B)

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸

+
1
2
∫

𝑡

0
(
󵄩󵄩󵄩󵄩exp ((𝑡 − 𝑠)B)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩exp (− (𝑡 − 𝑠)B)

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩B𝑓 (𝑠)

󵄩󵄩󵄩󵄩𝐸
𝑑𝑠

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐷(B))
+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) ,

(26)
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and also

‖𝐴𝑢 (𝑡)‖𝐸 ≤
1
2
(
󵄩󵄩󵄩󵄩exp (𝑡B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (−𝑡B)

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸

+
1
2
(
󵄩󵄩󵄩󵄩exp (𝑡B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (−𝑡B)

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸

+
1
2
∫

𝑡

0
(
󵄩󵄩󵄩󵄩exp ((𝑡 − 𝑠)B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (− (𝑡 − 𝑠)B)

󵄩󵄩󵄩󵄩)

⋅
󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(𝑠)

󵄩󵄩󵄩󵄩󵄩𝐸
𝑑𝑠

≤ 𝑀(
󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸) +
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸)

(27)

for any 𝑡 ∈ [0, 𝑇]. Then

‖𝐴𝑢 (⋅)‖𝐶([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) .

(28)

By the triangle inequality, this last estimate and (7) yield
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) .

(29)

In a similar manner, one can show the following theorem.

Theorem 27. Assume that condition (𝐹) is satisfied and𝑓(⋅) ∈

𝑊
1,𝑝

([0, 𝑇]; 𝐸)∩𝐿
𝑝([0, 𝑇]; 𝐷(B)). Then problem (7) is weakly

coercively solvable in the pair ((𝐷(𝐴), 𝐷(B)), 𝐿
𝑝
([0, 𝑇]; 𝐸))

and the following estimate holds:
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸) + ‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝑊1,𝑝([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) .

(30)

Proof. Using identity (24), we get

𝐴𝑢 (𝑡) =
1
2
(exp (𝑡B) + exp (−𝑡B)) 𝐴𝑢

0

+
1
2
(exp (𝑡B) − exp (−𝑡B))B𝑢

1

+
1
2
∫

𝑇

0
(exp (𝑠B) − exp (−𝑠B))B𝑓

∗
(𝑡 − 𝑠) 𝑑𝑠.

(31)

Here

𝑓
∗
(𝑡 − 𝑠) =

{

{

{

𝑓 (𝑡 − 𝑠) , 0 ≤ 𝑠 ≤ 𝑡,

0, 𝑡 ≤ 𝑠 ≤ 𝑇, 𝑡 − 𝑠 ∉ [0, 𝑇] .
(32)

FromMinkowski’s integral inequality, it follows that

‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇];𝐸)

≤ (∫

𝑇

0
(
1
2
(
󵄩󵄩󵄩󵄩exp (𝑡B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (−𝑡B)

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸)
𝑝

𝑑𝑡)

1/𝑝

+ (∫

𝑇

0
(
1
2
(
󵄩󵄩󵄩󵄩exp (𝑡B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (−𝑡B)

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸)
𝑝

𝑑𝑡)

1/𝑝

+ ∫

𝑇

0
𝑑𝑠 (∫

𝑇

0
(
1
2
(
󵄩󵄩󵄩󵄩exp (𝑠B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (−𝑠B)

󵄩󵄩󵄩󵄩)

⋅
󵄩󵄩󵄩󵄩𝑓

∗
(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩𝐸
)

𝑝

𝑑𝑡)

1/𝑝

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸

+ ∫

𝑇

0

1
2
(
󵄩󵄩󵄩󵄩exp (𝑠B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (−𝑠B)

󵄩󵄩󵄩󵄩) 𝑑𝑠

⋅ (∫

𝑇

0

󵄩󵄩󵄩󵄩B𝑓
∗
(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩𝐸𝑝
𝑑𝑡)

1/𝑝

] .

(33)

Using the definition of the function 𝑓
∗
(𝑡 − 𝑠), we get

(∫

𝑇

0

󵄩󵄩󵄩󵄩B𝑓
∗
(𝑡 − 𝑠)

󵄩󵄩󵄩󵄩𝐸𝑝
𝑑𝑡)

1/𝑝

≤ (∫

𝑇

0

󵄩󵄩󵄩󵄩B𝑓 (𝑡)
󵄩󵄩󵄩󵄩𝐸𝑝

𝑑𝑡)

1/𝑝

. (34)

Then

‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇];𝐸)

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸 + (∫

𝑇

0

󵄩󵄩󵄩󵄩B𝑓 (𝑡)
󵄩󵄩󵄩󵄩𝐸𝑝

𝑑𝑡)

1/𝑝

]

= 𝑀(
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐷(B))
+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) .

(35)

Applying identity (25) and proceeding by analogy with
estimate (35), we obtain

‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇];𝐸)

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝑊1,𝑝([0,𝑇];𝐸) +
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) .
(36)

From the last two estimates, it follows that

‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝑊1,𝑝([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) .

(37)
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By the triangle inequality, this last estimate and (7) yield
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝑊1,𝑝([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) .

(38)

3.1. Maximal Regularity in 𝐶([0, 𝑇]; 𝐸𝜃
) and 𝐶

𝛼
([0, 𝑇]; 𝐸)

Spaces. As one can see from Section 2, there are open
questions on maximal regularity in the area of maximal
regularity for second order equation in the spaces like
𝐶([0, 𝑇]; 𝐸𝜃

), 𝐶
𝛼
([0, 𝑇]; 𝐸), 0 ≤ 𝛼 < 1, 𝐿𝑝

([0, 𝑇]; 𝐸𝜃
) spaces.

The first order in time Cauchy problem (1) is not coercively
well-posed in 𝐶([0, 𝑇]; 𝐸) space, but it is coercively well-
posed in the spaces 𝐶([0, 𝑇]; 𝐸𝜃

), 𝐶𝛼,0
([0, 𝑇]; 𝐸), where 𝐸

𝜃

is interpolation space. In case of second order in time
Cauchy problem (7), the strong maximal regularity property
is independent of spaces and never holds.

The following relations for 𝐶0-cosine operator function
will be useful for us.

Proposition 28 (see [28, 39]). For all 𝑡, 𝑠 ∈ R, one has the
relations

(i) 𝐶(𝑡, 𝐴) = 𝐶(−𝑡, 𝐴), 𝑆(−𝑡, 𝐴) = −𝑆(𝑡, 𝐴), 𝑆(0, 𝐴) = 0;
(ii) 𝑆(𝑡 + 𝑠, 𝐴) + 𝑆(𝑡 − 𝑠, 𝐴) = 2𝑆(𝑡, 𝐴)𝐶(𝑠, 𝐴);
(iii) 𝑆(𝑡 + 𝑠, 𝐴) = 𝑆(𝑡, 𝐴)𝐶(𝑠, 𝐴) + 𝑆(𝑠, 𝐴)𝐶(𝑡, 𝐴);
(iv) 𝐶(𝑡 + 𝑠, 𝐴) − 𝐶(𝑡 − 𝑠, 𝐴) = 2𝐴𝑆(𝑡, 𝐴)𝑆(𝑠, 𝐴);
(v) 𝐶(2𝑡, 𝐴) = 2𝐶(𝑡, 𝐴)

2
− 𝐼, 𝐶(𝑡, 𝐴)

2
− 𝐴𝑆(𝑡, 𝐴)

2
= 𝐼.

Theorem 29. Let an operator 𝐴 be a generator of 𝐶0-cosine
operator function 𝐶(𝑡, 𝐴). Assume that Cauchy problem (7) is
coercively well-posed in 𝐶

𝛼
([0, 𝑇]; 𝐸) space. Then the operator

𝐴 is bounded.

Proof. Let us define the sequence of operators

𝐿𝜉𝑗 ,𝑡
𝑥 =

1
𝜉
𝛼
𝑗

(𝑔 (𝑡 + 𝜉𝑗) − 𝑔 (𝑡)) 𝑥, 𝜉𝑗 󳨀→ 0, as 𝑗 󳨀→ ∞,

(39)

where 𝑔(𝑡)𝑥 = 𝐴∫
𝑡

0 𝑆(𝑡 − 𝑠, 𝐴)𝑆(𝑠, 𝐴)𝑥 for any 𝑥 ∈ 𝐸. The
function 𝑔(⋅) represents the function 𝐴𝑢(⋅) which we have in
(9) in case when 𝑓(𝑡) = 𝑆(𝑡, 𝐴)𝑥. It is clear that such 𝑓(⋅) ∈

𝐶
1
([0, 𝑇]; 𝐸) ⊂ 𝐶

𝛼
([0, 𝑇]; 𝐸). If problem (7) is coercively

well-posed in 𝐶
𝛼
([0, 𝑇]; 𝐸) space, then 𝑔(⋅) ∈ 𝐶

𝛼
([0, 𝑇]; 𝐸)

and, therefore, the sequence {𝐿𝜉𝑗 ,𝑡
𝑥}

∞

𝑗=1 is bounded for any
𝑥 ∈ 𝐸. By the uniform boundedness principle, the norms
‖𝐿𝜉𝑗,𝑡

‖ are uniformly bounded as 𝑗 → ∞. In the meantime,
𝑔(𝑡) = 𝑆(𝑡, 𝐴) − 𝑡𝐶(𝑡, 𝐴) and therefore 𝐿𝜉𝑗,𝑡

= (1/𝜉𝛼
𝑗
)(𝑆(𝑡 +

𝜉𝑗, 𝐴)−𝑆(𝑡, 𝐴))−(1/𝜉𝛼
𝑗
)((𝑡+𝜉𝑗)𝐶(𝑡+𝜉𝑗, 𝐴)−𝑡𝐶(𝑡, 𝐴)). Hence,

we get that ‖𝐶(𝑡+𝜉𝑗, 𝐴)−𝐶(𝑡, 𝐴)‖ ≤ 𝐶𝜉
𝛼

𝑗
for any 𝑡 ∈ (0, 𝑇) and

𝜉𝑗 → 0. This implies that the operator 𝐴 must be bounded
(see [6]).

Theorem 30. Let an operator 𝐴 be a generator of 𝐶0-cosine
operator function 𝐶(𝑡, 𝐴). Assume that Cauchy problem (7) is
coercively well-posed in 𝐶([0, 𝑇]; 𝐸𝜃

) space. Then the operator
𝐴 is bounded.

Proof. We consider the function 𝑔(𝑡)𝑥 = 𝐴∫
𝑡

0 𝑆(𝑡 − 𝑠,

𝐴)𝐶(𝑠, 𝐴)(−𝐴)
−𝛼

𝑥 𝑑𝑠. For any 𝑥 ∈ 𝐸, the function𝑓(𝑠) = 𝐶(𝑠,

𝐴)(−𝐴)
−𝛼

𝑥 belongs to 𝐶([0, 𝑇]; 𝐸𝛼
) space and therefore

well-posedness in 𝐶([0, 𝑇]; 𝐸𝛼
) implies that 𝑔(⋅) ∈ 𝐶([0,

𝑇]; 𝐸
𝛼
).Then integrating𝐴∫

𝑡

0 𝑆(𝑡−𝑠, 𝐴)𝐶(𝑠, 𝐴)(−𝐴)
−𝛼

𝑥 𝑑𝑠 by
simple calculations which use (ii) from Proposition 28, one
can find that ‖𝑡𝐴𝑆(𝑡, 𝐴)‖ ≤ constant. So for any 𝑡 > 0 one gets
by (iv) from Proposition 28 that

‖𝐶 (𝑡 + ℎ, 𝐴) − 𝐶 (𝑡 − ℎ, 𝐴)‖

≤ ‖2𝐴𝑆 (𝑡, 𝐴)‖ ‖𝑆 (ℎ, 𝐴)‖ 󳨀→ 0,
(40)

as ℎ → 0, and therefore 𝐴 is bounded.

Theorem 31. Assume that condition (𝐹) is satisfied and 𝑓(⋅) ∈

𝐶
1
([0, 𝑇]; 𝐸𝜃

) ∩ 𝐶([0, 𝑇]; 𝐷(B1+2𝜃
)). Then problem (7) is

weakly coercively solvable in the pair ((𝐷(𝐴
1+𝜃

), 𝐷(B1+2𝜃
)),

𝐶([0, 𝑇]; 𝐸𝜃
)) and the following estimate holds:

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸𝜃) + ‖𝐴𝑢 (⋅)‖𝐶([0,𝑇];𝐸𝜃)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1([0,𝑇];𝐸𝜃) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐷(B1+2𝜃)))

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸𝜃 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸𝜃) .

(41)

Proof. From (15) of Theorem 16, one can write

𝐴𝑢 (𝑡) =
1
2
(exp (𝑡B) + exp (−𝑡B)) 𝐴𝑢

0

+
1
2
(exp (𝑡B) − exp (−𝑡B))B𝑢

1

+
1
2
∫

𝑡

0
(exp ((𝑡 − 𝑠)B) − exp (− (𝑡 − 𝑠)B))

⋅B𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(42)

Integrating by parts and applying the operator𝐴𝜃 also to (42),
one gets

‖𝐴𝑢 (⋅)‖𝐶([0,𝑇];𝐸𝜃)

≤ 𝐶 (
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸𝜃 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸𝜃

+min (
󵄩󵄩󵄩󵄩B𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸𝜃) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1([0,𝑇];𝐸𝜃))) .

(43)

Now, we consider the weak coercive solvability of prob-
lem (7) in the Banach space 𝐶

𝛼
([0, 𝑇]; 𝐸) (0 < 𝛼 < 1),

obtained by completion of the set of smooth 𝐸-valued
functions 𝜑(𝑡) on [0, 𝑇] in the norm

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐶𝛼([0,𝑇];𝐸) = max

0≤𝑡≤𝑇
󵄩󵄩󵄩󵄩𝜑 (𝑡)

󵄩󵄩󵄩󵄩𝐸

+ sup
0≤𝑡<𝑡+𝜏≤𝑇

󵄩󵄩󵄩󵄩𝜑 (𝑡 + 𝜏) − 𝜑 (𝑡)
󵄩󵄩󵄩󵄩𝐸

𝜏𝛽
.

(44)
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Theorem 32. Assume that condition (𝐹) is satisfied and𝑓(⋅) ∈

𝐶
1+𝛼

([0, 𝑇]; 𝐷(𝐵
𝛼
))∩𝐶

𝛼
([0, 𝑇]; 𝐷(𝐵

1+𝛼
)). Then problem (7) is

weakly coercively solvable in the pair ((𝐷(𝐴
1+𝛼/2

),

𝐷(B1+𝛼
)), 𝐶

𝛼
([0, 𝑇]; 𝐸)) and the following estimate holds:

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶𝛼([0,𝑇];𝐸) + ‖𝐴𝑢 (⋅)‖𝐶𝛼([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1+𝛼([0,𝑇];𝐷(B𝛼))
,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶𝛼([0,𝑇];𝐷(B1+𝛼)))

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1+𝛼/2
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸 +

󵄩󵄩󵄩󵄩󵄩
B

1+𝛼
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸) .

(45)

Proof. ByTheorem 14,

‖𝐴𝑢 (⋅)‖𝐶([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸) .

(46)

Then, from the definition of the space 𝐶
𝛼
([0, 𝑇]; 𝐸) and the

estimate ‖𝐵−𝛼
‖ ≤ 𝑀, it follows that

‖𝐴𝑢 (⋅)‖𝐶([0,𝑇];𝐸)

≤ 𝑀1 (min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1+𝛼([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶𝛼([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1+𝛼/2
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸 +

󵄩󵄩󵄩󵄩󵄩
B

1+𝛼
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸) .

(47)

Now, let us estimate the difference 𝐴𝑢(𝑡 + 𝜏) − 𝐴𝑢(𝑡) for 0 ≤

𝑡 < 𝑡 + 𝜏 ≤ 𝑇. From identity (24), it follows that

𝐴𝑢 (𝑡 + 𝜏) − 𝐴𝑢 (𝑡)

=
1
2
(exp ((𝑡 + 𝜏)B) − exp (𝑡B)

+exp (− (𝑡 + 𝜏)B) − exp (−𝑡B)) 𝐴𝑢
0

+
1
2
(exp ((𝑡 + 𝜏)B) − exp (𝑡B)

−exp (− (𝑡 + 𝜏)B) + exp (−𝑡B))B𝑢
1

+
1
2
∫

𝜏

0
(exp ((𝑡 + 𝜏 − 𝑠)B)

−exp (− (𝑡 + 𝜏 − 𝑠)B))B𝑓 (𝑠) 𝑑𝑠

+
1
2
∫

𝑡

0
(exp (𝑠B) − exp (−𝑠B))

⋅B (𝑓 (𝑡 + 𝜏 − 𝑠) − 𝑓 (𝑡 − 𝑠)) 𝑑𝑠.

(48)

Using the last identity, we get

‖𝐴𝑢 (𝑡 + 𝜏) − 𝐴𝑢 (𝑡)‖𝐸

≤
1
2
(
󵄩󵄩󵄩󵄩󵄩
(exp ((𝑡 + 𝜏)B) − exp (𝑡B)) 𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸

+
󵄩󵄩󵄩󵄩󵄩
(exp (− (𝑡 + 𝜏)B) − exp (−𝑡B)) 𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸)

+
1
2
(
󵄩󵄩󵄩󵄩󵄩
(exp ((𝑡 + 𝜏)B) − exp (𝑡B))B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸

+
󵄩󵄩󵄩󵄩󵄩
(exp (− (𝑡 + 𝜏)B) − exp (−𝑡B))B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸)

+
1
2
∫

𝜏

0
(
󵄩󵄩󵄩󵄩exp ((𝑡 + 𝜏 − 𝑠)B)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩exp (− (𝑡 + 𝜏 − 𝑠)B)

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩B𝑓 (𝑠)

󵄩󵄩󵄩󵄩𝐸
𝑑𝑠

+
1
2
∫

𝑡

0
(
󵄩󵄩󵄩󵄩exp (𝑠B)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩exp (−𝑠B)

󵄩󵄩󵄩󵄩)

⋅
󵄩󵄩󵄩󵄩B (𝑓 (𝑡 + 𝜏 − 𝑠) − 𝑓 (𝑡 − 𝑠))

󵄩󵄩󵄩󵄩𝐸
𝑑𝑠

≤ 𝑀𝜏
𝛼
(
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶𝛼([0,𝑇];𝐷(B))

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1+𝛼/2
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸 +

󵄩󵄩󵄩󵄩󵄩
B

1+𝛼
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸) .

(49)

Estimates (47) and (49) give

‖𝐴𝑢 (⋅)‖𝐶𝛼([0,𝑇];𝐸)

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶𝛼([0,𝑇];𝐷(B))

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1+𝛼/2
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸 +

󵄩󵄩󵄩󵄩󵄩
B

1+𝛼
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸) .

(50)

Applying identity (25) and proceeding in a similar way as in
estimate (49), we obtain

‖𝐴𝑢 (⋅)‖𝐶𝛼([0,𝑇];𝐸)

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1+𝛼([0,𝑇];𝐸)

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1+𝛼/2
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸 +

󵄩󵄩󵄩󵄩󵄩
B

1+𝛼
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸) .

(51)

From the last two estimates, it follows that

‖𝐴𝑢 (⋅)‖𝐶𝛼([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1+𝛼([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶𝛼([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1+𝛼/2
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸 +

󵄩󵄩󵄩󵄩󵄩
B

1+𝛼
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸) .

(52)

By the triangle inequality, this last estimate and (7) yield
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶𝛼([0,𝑇];𝐸)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶1+𝛼([0,𝑇];𝐸) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶𝛼([0,𝑇];𝐷(B))
)

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1+𝛼/2
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸 +

󵄩󵄩󵄩󵄩󵄩
B

1+𝛼
𝑢
1󵄩󵄩󵄩󵄩󵄩𝐸) .

(53)
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Remark 33. As was mentioned in Theorem 22, the coercive
well-posedness of (7) in 𝐿

𝑝
([0, 𝑇]; 𝐸) spaces holds in general

if and only if𝐴 is bounded. Even in case of periodic functions
spaces 𝐿𝑝

2𝜋(R; 𝐸), 𝐶
𝛼

2𝜋(R; 𝐸), the situation is not changed: in
[10], it was shown that maximal regularity holds if and only
if {−𝑘

2
: 𝑘 ∈ Z} ⊂ 𝜌(𝐴), sup

𝑘∈Z‖𝑘(−𝑘
2
𝐼 − 𝐴)

−1
‖ <

∞, which does not hold for general bounded 𝐶0-cosine
operator function in Hilbert space 𝐸. In the particular case
of UMD spaces, 𝐸 maximal regularity of Cauchy problem
(7) for second order in time differential equations is defined
by location of the spectrum of operator 𝐴, but not by
smoothness of the space 𝐸; that is, the function 𝜆

2
(𝜆

2
𝐼−𝐴)

−1

must be Fourier multiplier which is not true in general. Thus
there is no coercive well-posedness of (7) in 𝐿

𝑝
([0, 𝑇]; 𝐸𝜃

)

space in general.

Applying 𝐴
𝜃 to formulas (24) and (25) and proceeding

similarly to Theorem 16, we obtain the following theorem.

Theorem 34. Assume that condition (𝐹) is satisfied and𝑓(⋅) ∈

𝑊
1,𝑝

([0, 𝑇]; 𝐸𝜃
) ∩ 𝐿

𝑝
([0, 𝑇]; 𝐷(B1+2𝜃

)). Then problem (7) is
weakly coercively solvable in the pair ((𝐷(𝐴

1+2𝜃
),

𝐷(B1+2𝜃
)), 𝐿

𝑝
([0, 𝑇]; 𝐸𝜃

)) and the following estimate holds:

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸𝜃) + ‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇];𝐸𝜃)

≤ 𝑀(min (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝑊1,𝑝([0,𝑇];𝐸𝜃) ,
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐷(B1+2𝜃)))

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸𝜃 +
󵄩󵄩󵄩󵄩󵄩
B𝑢

1󵄩󵄩󵄩󵄩󵄩𝐸𝜃) .

(54)

4. Elliptic Equations

In [2] the coercive well-posedness in 𝐿
𝑝
([0, 𝑇]; 𝐸) of the

problem

𝑢
󸀠󸀠
(𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢
0
, 𝑢 (𝑇) = 𝑢

𝑇
(55)

has been considered under condition of positivity of the
operator 𝐴. In such case, the operator −𝐴

1/2 generates an
analytic 𝐶0-semigroup.

In Banach space 𝐸, we consider boundary value problem
(55) with positive operator 𝐴 and 𝑓(⋅) is some function from
some function space. Problem (55) can be considered in
different functional spaces. Function 𝑢(⋅) is called a solution
in classical sense of problem (55) if the following conditions
are satisfied:

(i) 𝑢(⋅) is twice continuously differentiable on the inter-
val [0, 𝑇]. The derivative at the endpoints of the
segment are understood as the appropriate unilateral
derivatives.

(ii) The element 𝑢(𝑡) belongs to 𝐷(𝐴) for all 𝑡 ∈ [0, 𝑇],
and the function 𝐴𝑢(⋅) is continuous on the interval
[0, 𝑇].

(iii) 𝑢(⋅) satisfies the equation and boundary conditions
(55).

Let 𝐶([0, 𝑇]; 𝐸) be the space of all continuous functions
𝜑(⋅) defined on [0, 𝑇] with values in 𝐸 equipped with the
norm ‖𝜑(⋅)‖𝐶([0,𝑇];𝐸) = max0≤𝑡≤𝑇‖𝜑(𝑡)‖𝐸. The coercive well-
posedness in 𝐶([0, 𝑇]; 𝐸) of boundary value problem (55)
means that for the solution 𝑢(⋅) ∈ 𝐶([0, 𝑇]; 𝐸) the coercive
inequality

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸) + ‖𝐴𝑢 (⋅)‖𝐶([0,𝑇];𝐸)

≤ 𝑀(
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸) +
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

𝑇󵄩󵄩󵄩󵄩󵄩𝐸
)

(56)

holds with some constant 𝑀, which is independent of
𝑢
0
, 𝑢

𝑇
, 𝑓(⋅) ∈ 𝐶([0, 𝑇]; 𝐸). It turns out that this positivity

property of the operator 𝐴 in 𝐸 is a necessary condi-
tion of well-posedness of boundary value problem (55) in
𝐶([0, 𝑇]; 𝐸) [2]. One can ask: does the positivity of the
operator 𝐴 in 𝐸 imply the well-posedness of boundary value
problem (55)? In the general case, the answer is no (see [2]),
so the coercive inequality does not take place in 𝐶([0, 𝑇]; 𝐸)
for boundary value problem (55).

We recall that if Cauchy problem (1) is coercively well-
posed in the space 𝐶([0, 𝑇]; 𝐸), then operator 𝐴 has to be
bounded or the space 𝐸 contains a subspace isomorphic to
𝑐0 (see [15]). One gets a similar situation for problem (55).

Theorem 35 (see [12]). Let 𝐴 be a positive operator on 𝐸.
Assume that problem (55) is coercively well-posed in the space
𝐶([0, 𝑇]; 𝐸). Then either 𝐴 is bounded or 𝐸 contains a closed
subspace which is isomorphic to 𝑐0.

Consider 𝐶
𝛽,𝛾

([0, 𝑇]; 𝐸), 0 ≤ 𝛾 ≤ 𝛽, 0 < 𝛽 < 1, the
Banach space obtained by completion of the set of smooth
𝐸-valued functions 𝜑(⋅) on [0, 𝑇] in the norm

󵄩󵄩󵄩󵄩𝜑 (⋅)
󵄩󵄩󵄩󵄩𝐶𝛽,𝛾([0,𝑇];𝐸)

= max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝜑 (𝑡)
󵄩󵄩󵄩󵄩𝐸

+ sup
0≤𝑡<𝑡+𝜏≤𝑇

(𝑡 + 𝜏)
𝛾
(𝑇 − 𝑡)

𝛾 󵄩󵄩󵄩󵄩𝜑 (𝑡 + 𝜏) − 𝜑 (𝑡)
󵄩󵄩󵄩󵄩𝐸

𝜏𝛽
.

(57)

Theorem 36 (see [2, 12]). Let 𝐴 be a positive operator in
Banach space 𝐸 and 𝑓(⋅) ∈ 𝐶

𝛽,𝛾
([0, 𝑇]; 𝐸), 0 ≤ 𝛾 ≤ 𝛽,

0 < 𝛽 < 1. Then the solution of boundary value problem
(55) belongs to 𝑢(⋅) ∈ 𝐶

𝛽,𝛾
([0, 𝑇]; 𝐸) and the following coercive

inequalities hold:

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸𝛽−𝛾)

≤ 𝑀(
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0
+ 𝑓 (0)󵄩󵄩󵄩󵄩󵄩𝐸𝛽−𝛾 +

󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

𝑇
+ 𝑓 (𝑇)

󵄩󵄩󵄩󵄩󵄩𝐸𝛽−𝛾

+𝛽
−1

(1 − 𝛽)
−1 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐶𝛽,𝛾([0,𝑇];𝐸) )

(58)
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for 𝐴𝑢
0
+ 𝑓(0) ∈ 𝐸𝛽−𝛾, 𝐴𝑢

𝑇
+ 𝑓(𝑇) ∈ 𝐸𝛽−𝛾,

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶𝛽,𝛾([0,𝑇];𝐸) + ‖𝐴𝑢 (⋅)‖𝐶𝛽,𝛾([0,𝑇];𝐸)

≤ 𝑀(
󵄨󵄨󵄨󵄨󵄨
𝐴𝑢

0
+ 𝑓 (0)󵄨󵄨󵄨󵄨󵄨

𝛽,𝛾

0 +
󵄨󵄨󵄨󵄨󵄨
𝐴𝑢

𝑇
+ 𝑓 (𝑇)

󵄨󵄨󵄨󵄨󵄨

𝛽,𝛾

0

+𝛽
−1

(1 − 𝛽)
−1 󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶𝛽,𝛾([0,𝑇];𝐸) )

(59)

for 𝐴𝑢
0
+ 𝑓(0) ∈ 𝐸

𝛽,𝛾

0 , 𝐴𝑢
𝑇

+ 𝑓(𝑇) ∈ 𝐸
𝛽,𝛾

0 , where 𝑀 is
independent of 𝛽, 𝛾, 𝑢0, 𝑢𝑇, and 𝑓(⋅). Here, |𝑤|

𝛽,𝛾

0 denotes the
norm of Banach space 𝐸

𝛽,𝛾

0 , which consists of those 𝑤 ∈ 𝐸 for
which the norm

|𝑤|
𝛽,𝛾

0 = max
0≤𝑧≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑧𝐴

1/2
𝑤
󵄩󵄩󵄩󵄩󵄩󵄩𝐸

+ sup
0≤𝑧<𝑧+𝜏≤𝑇

𝜏
−𝛽

(𝑧 + 𝜏)
𝛾
(𝑇 − 𝑧)

𝛾

⋅
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑒

−(𝑧+𝜏)𝐴
1/2

− 𝑒
−𝑧𝐴

1/2
)𝑤

󵄩󵄩󵄩󵄩󵄩󵄩𝐸

(60)

is finite and the Banach space 𝐸𝛼 = 𝐸𝛼(𝐴
1/2

, 𝐸), 0 < 𝛼 <

1, consists of those V ∈ 𝐸 for which the norm ‖V‖𝐸𝛼 =

sup
𝑧>0𝑧

1−𝛼
‖𝐴

1/2exp(−𝑧𝐴1/2
)V‖𝐸 + ‖V‖𝐸 is finite.

Consider 𝐶𝛽,𝛾
([0, 𝑇], 𝐸𝛼−𝛽), 0 ≤ 𝛾 ≤ 𝛽 ≤ 𝛼, 0 < 𝛼 < 1.

To these, there correspond the spaces of traces 𝐸
𝛽,𝛾

𝛼−𝛽
, which

consist of elements 𝑤 ∈ 𝐸 for which the norm

|𝑤|
𝛽,𝛾

𝛼−𝛽
= max

0≤𝑧≤1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑧𝐴

1/2
𝑤
󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝛼−𝛽

+ sup
0≤𝑧<𝑧+𝜏≤1

𝜏
−𝛽

(𝑧 + 𝜏)
𝛾
(1 − 𝑧)

𝛾

⋅
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑒

−(𝑧+𝜏)𝐴
1/2

− 𝑒
−𝑧𝐴

1/2
)𝑤

󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝛼−𝛽

(61)

is finite.

Theorem 37 (see [12]). Let𝐴 be a positive operator in Banach
space 𝐸,𝐴𝑢

0
+ 𝑓(0) ∈ 𝐸

𝛽,𝛾

𝛼−𝛽
, 𝐴𝑢

𝑇
+ 𝑓(𝑇) ∈ 𝐸

𝛽,𝛾

𝛼−𝛽
and 𝑓(⋅) ∈

𝐶
𝛽,𝛾

([0, 𝑇]; 𝐸𝛼−𝛽), 0 ≤ 𝛾 ≤ 𝛽 ≤ 𝛼, 0 < 𝛼 < 1. Then for the
solution 𝑢(⋅) in 𝐶

𝛽,𝛾
([0, 𝑇]; 𝐸𝛼−𝛽) of boundary value problem

(55) the coercive inequality

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶𝛽,𝛾([0,𝑇];𝐸𝛼−𝛽)
+ ‖𝐴𝑢 (⋅)‖𝐶𝛽,𝛾([0,𝑇];𝐸𝛼−𝛽)

+
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸𝛽,𝛾
𝛼−𝛽

)

≤ 𝑀(
󵄨󵄨󵄨󵄨󵄨
𝐴𝑢

0
+ 𝑓 (0)󵄨󵄨󵄨󵄨󵄨

𝛽,𝛾

𝛼−𝛽
+
󵄨󵄨󵄨󵄨󵄨
𝐴𝑢

𝑇
+ 𝑓 (𝑇)

󵄨󵄨󵄨󵄨󵄨

𝛽,𝛾

𝛼−𝛽

+𝛼
−1

(1 − 𝛼)
−1 󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶𝛽,𝛾([0,𝑇];𝐸𝛼−𝛽)
)

(62)

holds, where𝑀 is independent of 𝛼, 𝛽, 𝛾, 𝑢0, 𝑢𝑇, and 𝑓(⋅).

Theorem 38 (see [12]). Let𝐴 be a positive operator in Banach
space 𝐸,𝐴𝑢

0
+ 𝑓(0) ∈ 𝐸𝛼−𝛾, 𝐴𝑢

𝑇
+ 𝑓(𝑇) ∈ 𝐸𝛼−𝛽, and 𝑓(⋅) ∈

𝐶
𝛽,𝛾

([0, 𝑇]; 𝐸𝛼−𝛾), 0 ≤ 𝛾 ≤ 𝛽 ≤ 𝛼, 0 < 𝛼 < 1. Then for the
solution 𝑢(⋅) in 𝐶

𝛽,𝛾
([0, 𝑇]; 𝐸𝛼−𝛽) of boundary value problem

(55) the coercive inequality

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶𝛽,𝛾([0,𝑇];𝐸𝛼−𝛽)
+ ‖𝐴𝑢 (⋅)‖𝐶𝛽,𝛾([0,𝑇];𝐸𝛼−𝛽)

+
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐶([0,𝑇];𝐸𝛼−𝛾)

≤ 𝑀𝛼
−1

(1 − 𝛼)
−1

⋅ (
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0
+ 𝑓 (0)󵄩󵄩󵄩󵄩󵄩𝐸𝛼−𝛾

+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

𝑇
+ 𝑓 (𝑇)

󵄩󵄩󵄩󵄩󵄩𝐸𝛼−𝛾
+
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐶𝛽,𝛾([0,𝑇];𝐸𝛼−𝛽)
)

(63)

holds, where𝑀 is independent of 𝛼, 𝛽, 𝛾, 𝑢0, 𝑢𝑇, and 𝑓(⋅).

Let us consider problem (55) in the spaces 𝐿𝑝
([0, 𝑇]; 𝐸),

1 ≤ 𝑝 < ∞, of all strongly measurable 𝐸-valued functions
V(⋅) on [0, 𝑇] with the norm ‖V‖𝐿𝑝([0,𝑇];𝐸) = (∫

𝑇

0 ‖V(𝑡)‖𝑝
𝐸
𝑑𝑡)

1/𝑝.
Function V(⋅) is said to be absolutely continuous if it has
a derivative V󸀠(𝑡) for almost every 𝑡 such that V󸀠(⋅) ∈

𝐿
1
([0, 𝑇]; 𝐸) and if the Newton-Leibniz formula V(𝑡) − V(𝜏) =

∫
𝑡

𝜏
V󸀠(𝑠)𝑑𝑠 holds for all 𝑡, 𝜏 ∈ [0, 𝑇]. Here the integral is

understood in the sense of Bochner. Function 𝑢(⋅) is said
to be a solution of problem (55) in 𝐿

𝑝
([0, 𝑇]; 𝐸) if it is

absolutely continuous, the functions 𝑢󸀠󸀠(⋅) and 𝐴𝑢(⋅) belong
to 𝐿

𝑝
([0, 𝑇]; 𝐸), (55) is satisfied for almost every 𝑡, and 𝑢(0) =

𝑢
0, 𝑢(𝑇) = 𝑢

𝑇. From this definition, it follows that a necessary
condition for the solvability of problem (55) in 𝐿

𝑝
([0, 𝑇]; 𝐸)

is that𝑓(⋅) ∈ 𝐿
𝑝
([0, 𝑇]; 𝐸). One can show that in certain cases

this condition is also sufficient for the solvability of problem
(55). Concerning the boundary elements, in contrast to the
situation considered earlier, from the solvability of problem
(55) in 𝐿

𝑝
([0, 𝑇]; 𝐸), it follows only that 𝑢0, 𝑢𝑇 ∈ 𝐸. From

the unique solvability of (55), it follows that the operator
𝑢(𝑡; 𝑓(𝑡), 𝑢

0
, 𝑢

𝑇
) is bounded in 𝐿

𝑝
([0, 𝑇]; 𝐸) and one has the

coercive inequality

󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠󵄩󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸) + ‖𝐴𝑢 (𝑡)‖𝐿𝑝([0,𝑇];𝐸)

≤ 𝑀𝐶 (
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸) +
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸 +
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

𝑇󵄩󵄩󵄩󵄩󵄩𝐸
) ,

(64)

where 1 ≤ 𝑀𝐶 < +∞ is independent of 𝑢0, 𝑢𝑇, and 𝑓(⋅).
From that, one can obtain the positivity of 𝐴 under the
stronger assumption that the operator 𝐴

−1 is compact in 𝐸

(see [40]).

Theorem 39 (see [40]). Let 𝐴 be a positive operator in a
Banach space 𝐸. Suppose problem (55) is coercively well-posed
in 𝐿

𝑝0([0, 𝑇]; 𝐸) for some 1 < 𝑝0 < ∞. Then it is coercively
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well-posed in 𝐿
𝑝
([0, 𝑇]; 𝐸) for any 1 < 𝑝 < ∞ and the

coercivity inequality holds:
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇],𝐸) + ‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇],𝐸)

+ ‖𝑢 (⋅)‖𝐶([0,𝑇];𝐸1−1/𝑝,𝑝(𝐴
1/2 ,𝐷(𝐴1/2)))

≤
𝑀(𝑝0) 𝑝

2

𝑝 − 1
󵄩󵄩󵄩󵄩𝑓 (⋅)

󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸)

+ 𝑀(
󵄩󵄩󵄩󵄩󵄩
𝑢
0󵄩󵄩󵄩󵄩󵄩𝐸1−1/𝑝,𝑝(𝐴

1/2 ,𝐷(𝐴1/2))

+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑇󵄩󵄩󵄩󵄩󵄩𝐸1−1/𝑝,𝑝(𝐴

1/2 ,𝐷(𝐴1/2))
) ,

(65)

where𝑀(𝑝0) and𝑀 are independent of 𝑝, 𝑢0, 𝑢𝑇, and 𝑓(⋅).

Theorem 40 (see [41]). Let 1 < 𝑝 < ∞ and 0 < 𝛼 < 1.
Suppose that 𝐴 is a positive operator in Banach space 𝐸. Then
problem (55) is coercively well-posed in 𝐿

𝑝
([0, 𝑇]; 𝐸𝛼,𝑝) and the

coercivity inequality holds:
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸𝛼,𝑝)
+ ‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇];𝐸𝛼,𝑝)

≤
𝑀

𝛼 (1 − 𝛼)

󵄩󵄩󵄩󵄩𝑓 (⋅)
󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸𝛼,𝑝)

+ 𝑀(
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸𝛼,𝑝
+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

𝑇󵄩󵄩󵄩󵄩󵄩𝐸𝛼,𝑝
) ,

(66)

where𝑀 is independent of 𝛼, 𝑝, 𝑢0, 𝑢𝑇, and 𝑓(⋅).

From these theorems we have the following.

Theorem 41. Let 1 < 𝑝, 𝑞 < ∞ and 0 < 𝛼 < 1. Suppose that
𝐴 is a positive operator in Banach space 𝐸. Then problem (55)
is coercively well-posed in 𝐿

𝑝
([0, 𝑇]; 𝐸𝛼,𝑞) and the coercivity

inequality holds:
󵄩󵄩󵄩󵄩󵄩
𝑢
󸀠󸀠
(⋅)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇],𝐸𝛼,𝑞)
+ ‖𝐴𝑢 (⋅)‖𝐿𝑝([0,𝑇];𝐸𝛼,𝑞)

≤
𝑀(𝑞)

𝛼 (1 − 𝛼)

󵄩󵄩󵄩󵄩𝑓 (⋅)
󵄩󵄩󵄩󵄩𝐿𝑝([0,𝑇];𝐸𝛼,𝑞)

+ 𝑀(
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

0󵄩󵄩󵄩󵄩󵄩𝐸𝛼,𝑞
+
󵄩󵄩󵄩󵄩󵄩
𝐴𝑢

𝑇󵄩󵄩󵄩󵄩󵄩𝐸𝛼,𝑞
) ,

(67)

where𝑀(𝑞) and𝑀 are independent of 𝛼, 𝑝, 𝑢0, 𝑢𝑇, and 𝑓(⋅).
Here the Banach space 𝐸𝛼,𝑞 = 𝐸𝛼,𝑞(𝐴

1/2
, 𝐸), 0 < 𝛼 < 1, 1 <

𝑞 < ∞, consists of those V ∈ 𝐸 for which the norm

‖V‖𝐸𝛼,𝑞 = (∫

∞

0
𝜆
1−𝛼 󵄩󵄩󵄩󵄩󵄩

𝐴
1/2 exp (−𝜆𝐴

1/2
) V

󵄩󵄩󵄩󵄩󵄩

𝑞

𝐸

𝑑𝜆

𝜆
)

1/𝑞
(68)

is finite.

In [42, 43], abstract elliptic differential equation (55) with
Dirichlet-Neumann boundary conditions

𝑢 (0) = 𝑑0, 𝑢
󸀠
(1) = 𝑛1 (69)

was considered. Maximal regularity in 𝐶
𝛼
([0, 1]; 𝐸) space is

obtained if 𝑑0 ∈ 𝐷(𝐴), 𝑛1 ∈ 𝐷(𝐴
1/2

).

5. General Approximation Scheme

The general approximation scheme, due to [44–47], can be
described in the following way (see also [12]). Let 𝐸𝑛 and 𝐸 be
Banach spaces and let {𝑝𝑛} be a sequence of linear bounded
operators 𝑝𝑛 : 𝐸 → 𝐸𝑛, 𝑝𝑛 ∈ 𝐵(𝐸, 𝐸𝑛), 𝑛 ∈ N = {1, 2, . . .},
with the property

󵄩󵄩󵄩󵄩𝑝𝑛𝑥
󵄩󵄩󵄩󵄩𝐸𝑛

󳨀→ ‖𝑥‖𝐸 as 𝑛 󳨀→ ∞ for any 𝑥 ∈ 𝐸. (70)

Definition 42. The sequence of elements {𝑥𝑛}, 𝑥𝑛 ∈ 𝐸𝑛, 𝑛 ∈

N, is said to be P-convergent to 𝑥 ∈ 𝐸 if and only if ‖𝑥𝑛 −

𝑝𝑛𝑥‖𝐸𝑛
→ 0 as 𝑛 → ∞ and one writes this 𝑥𝑛

P
󳨀→ 𝑥.

Definition 43. Thesequence of bounded linear operators𝐵𝑛 ∈

𝐵(𝐸𝑛), 𝑛 ∈ N, is said to be PP-convergent to the bounded
linear operator 𝐵 ∈ 𝐵(𝐸) if, for every 𝑥 ∈ 𝐸 and for every
sequence {𝑥𝑛}, 𝑥𝑛 ∈ 𝐸𝑛, 𝑛 ∈ N, such that 𝑥𝑛

P
󳨀→ 𝑥, one has

𝐵𝑛𝑥𝑛

P
󳨀→ 𝐵𝑥. One writes then 𝐵𝑛

PP
󳨀󳨀󳨀→ 𝐵.

For general examples of notions of P-convergence, see
[46].

Remark 44. If we put𝐸𝑛 = 𝐸 and𝑝𝑛 = 𝐼 for each 𝑛 ∈ N, where
𝐼 is the identity operator on 𝐸, then Definition 42 leads to the
traditional pointwise convergent bounded linear operators
which we denote by 𝐵𝑛 → 𝐵.

In the case of unbounded operators, and we know that in
general infinitesimal generators are unbounded, one has to
consider the notion of compatibility.

Definition 45. The sequence of closed linear operators {𝐴𝑛},
𝐴𝑛 ∈ C(𝐸𝑛), 𝑛 ∈ N, is said to be compatible with a closed
linear operator 𝐴 ∈ C(𝐸) if and only if, for each 𝑥 ∈ 𝐷(𝐴),
there is a sequence {𝑥𝑛}, 𝑥𝑛 ∈ 𝐷(𝐴𝑛) ⊆ 𝐸𝑛, 𝑛 ∈ N, such
that 𝑥𝑛

P
󳨀→ 𝑥 and 𝐴𝑛𝑥𝑛

P
󳨀→ 𝐴𝑥. One writes (𝐴𝑛, 𝐴) are

compatible.

Usually in practice, Banach spaces 𝐸𝑛 are finite dimen-
sional, although, in general, say for the case of a closed
operator 𝐴, we have dim𝐸𝑛 → ∞ and ‖𝐴𝑛‖𝐵(𝐸𝑛)

→ ∞ as
𝑛 → ∞.

Theorem 46 (see [48]). Let the operators 𝐴 and 𝐴𝑛 generate
analytic 𝐶0-semigroups. The following conditions (𝐴) and (𝐵1)
are equivalent to condition (𝐶1).

(𝐴) Consistency: there exists 𝜆 ∈ 𝜌(𝐴)∩∩𝑛𝜌(𝐴𝑛) such that
the resolvents converge (𝜆𝐼𝑛 − 𝐴𝑛)

−1 PP
󳨀󳨀󳨀→ (𝜆𝐼 − 𝐴)

−1.

(𝐵1) Stability: there are some constants 𝑀2 ≥ 1 and 𝜔2
independent of 𝑛 such that, for any Re𝜆 > 𝜔2,

󵄩󵄩󵄩󵄩󵄩
(𝜆𝐼𝑛 − 𝐴𝑛)

−1󵄩󵄩󵄩󵄩󵄩 ≤
𝑀2

󵄨󵄨󵄨󵄨𝜆 − 𝜔2
󵄨󵄨󵄨󵄨

∀𝑛 ∈ N. (71)
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(𝐶1) Convergence: for any finite 𝜇 > 0 and some 0 < 𝜃 <

𝜋/2, one has

max
𝜂∈Σ(𝜃,𝜇)

󵄩󵄩󵄩󵄩󵄩
exp (𝜂𝐴𝑛) 𝑢

0
𝑛
− 𝑝𝑛exp (𝜂𝐴) 𝑢

0󵄩󵄩󵄩󵄩󵄩 󳨀→ 0 (72)

as 𝑛 → ∞ whenever 𝑢0
𝑛

P
󳨀→ 𝑢

0. Here Σ(𝜃, 𝜇) = {𝑧 ∈ Σ(𝜃) :

|𝑧| ≤ 𝜇} and Σ(𝜃) = {𝑧 ∈ C : |arg 𝑧| ≤ 𝜃}.

For 𝐶0-cosine operator functions, the following ABC
Theorem holds.

Theorem 47 (see [6]). Let the operators 𝐴 and 𝐴𝑛 generate
𝐶0-cosine operator functions.The following conditions (𝐴) and
(𝐵

󸀠
) are equivalent to condition (𝐶

󸀠
).

(𝐴) Compatability: there exists 𝜆 ∈ 𝜌(𝐴) ∩ ∩𝑛𝜌(𝐴𝑛) such
that the resolvents converge (𝜆𝐼𝑛 − 𝐴𝑛)

−1 PP
󳨀󳨀󳨀→ (𝜆𝐼 −

𝐴)
−1.

(𝐵
󸀠
) Stability: there are some constants 𝑀 ≥ 1 and 𝜔 ≥ 0
such that

󵄩󵄩󵄩󵄩𝐶 (𝑡, 𝐴𝑛)
󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒

𝜔𝑡
, 𝑡 ≥ 0, 𝑛 ∈ N. (73)

(𝐶
󸀠
) Convergence: for any finite 𝑇 > 0, one has

max
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩󵄩
𝐶 (𝑡, 𝐴𝑛) 𝑢

0
𝑛
− 𝑝𝑛𝐶 (𝑡, 𝐴) 𝑢

0󵄩󵄩󵄩󵄩󵄩 󳨀→ 0 (74)

as 𝑛 → ∞, whenever 𝑢0
𝑛

P
󳨀→ 𝑢

0.

6. Discrete WMR Inequalities

One can also consider the problem of obtaining maximal
regularity for difference schemes for second order equations
in case of 𝐶𝜏𝑛

([0, 𝑇]; 𝐸𝜃

𝑛
), 𝐶𝛼

𝜏𝑛
([0, 𝑇]; 𝐸𝑛), and 𝐿

𝑝

𝜏𝑛
([0, 𝑇]; 𝐸𝜃

𝑞,𝑛
)

spaces, where 𝐸𝜃

𝑞,𝑛
, 𝐸

𝛼

𝑛
are interpolation spaces.

6.1. Discrete Maximal Regularity for the First Order Equations.
The following Cauchy problems in Banach spaces 𝐸𝑛 are the
semidiscrete approximation of (1):

𝑢
󸀠

𝑛
(𝑡) = 𝐴𝑛𝑢𝑛 (𝑡) + 𝑓𝑛 (𝑡) , 𝑡 ∈ [0, 𝑇] ;

𝑢𝑛 (0) = 𝑢
0
𝑛
,

(75)

where the operators 𝐴𝑛 generate 𝐶0-semigroups, 𝐴𝑛 and
𝐴 are compatible, and 𝑢

0
𝑛

P
󳨀→ 𝑢

0 and 𝑓𝑛(⋅)
P
󳨀→ 𝑓(⋅) in

appropriate sense. We assume that conditions (𝐴) and (𝐵1)
fromTheorem ABC for 𝐶0-semigroups are satisfied.

Here we are going to describe the discretization of (75) in
time. The simplest difference scheme (Rothe scheme) is

𝑈
𝑘

𝑛
− 𝑈

𝑘−1
𝑛

𝜏𝑛

= 𝐴𝑛𝑈
𝑘

𝑛
+ 𝜑

𝑘

𝑛
, 𝑘 ∈ {1, . . . , [ 𝑇

𝜏𝑛

]} ,

𝑈
0
𝑛
= 𝑢

0
𝑛
,

(76)

where, for example, in the case of 𝑓𝑛(⋅) ∈ 𝐶([0, 𝑇]; 𝐸𝑛), one
can set 𝜑𝑘

𝑛
= 𝑓𝑛(𝑘𝜏𝑛), 𝑘 ∈ {1, . . . , 𝐾}, 𝐾 = [𝑇/𝜏𝑛], and, in the

case 𝑓𝑛 ∈ 𝐿
1
([0, 𝑇]; 𝐸𝑛), one can set

𝜑
𝑘

𝑛
=

1
𝜏𝑛

∫

𝑡𝑘

𝑡𝑘−1

𝑓𝑛 (𝑠) 𝑑𝑠, 𝑡𝑘 = 𝑘𝜏𝑛, 𝑘 ∈ {1, . . . , 𝐾} . (77)

Theorem 48 (see [1]). Let condition (𝐵1) be satisfied. Problem
(76) is stable in the space 𝐶𝜏𝑛

([0, 𝑇]; 𝐸𝑛); that is,

󵄩󵄩󵄩󵄩󵄩
𝑈𝑛

󵄩󵄩󵄩󵄩󵄩𝐶𝜏𝑛 ([0,𝑇];𝐸𝑛)
≤ 𝐶(

󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐶𝜏𝑛 ([0,𝑇];𝐸𝑛)
+
󵄩󵄩󵄩󵄩󵄩
𝑢
0
𝑛

󵄩󵄩󵄩󵄩󵄩
) . (78)

Theorem 49 (see [1]). Let condition (𝐵1) be satisfied. Problem
(76) is almost coercively stable in the space 𝐶𝜏𝑛

([0, 𝑇]; 𝐸𝑛); that
is,

󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑈𝑛

󵄩󵄩󵄩󵄩󵄩𝐶𝜏𝑛 ([0,𝑇];𝐸𝑛)

≤ 𝑀(
󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑢

0
𝑛

󵄩󵄩󵄩󵄩󵄩𝐸𝑛
+min(ln(

1
𝜏𝑛

) , 1 +
󵄨󵄨󵄨󵄨ln

󵄩󵄩󵄩󵄩𝐴𝑛

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨)

⋅
󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐶𝜏𝑛 ([0,𝑇];𝐸𝑛)
) .

(79)

Theorem 50 (see [49]). Let condition (𝐵1) be satisfied. Prob-
lem (76) is coercively stable in the space 𝐶𝜏𝑛

([0, 𝑇]; 𝐸𝜃

𝑛
); that is,

󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑈𝑛

󵄩󵄩󵄩󵄩󵄩𝐶𝜏𝑛 ([0,𝑇];𝐸
𝜃
𝑛
)
≤ 𝑀(

󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑢

0
𝑛

󵄩󵄩󵄩󵄩󵄩𝐸𝜃
𝑛

+
󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐶𝜏𝑛 ([0,𝑇];𝐸
𝜃
𝑛
)
) .

(80)

Denote by 𝐶
𝛼,0
𝜏𝑛

([0, 𝑇]; 𝐸𝑛), 0 < 𝛼 < 1, the space of the
elements 𝜑

𝑛
with the norm

󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐶𝛼,0𝜏𝑛 ([0,𝑇];𝐸𝑛)
= max

0≤𝑘≤𝐾

󵄩󵄩󵄩󵄩󵄩
𝜑
𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝐸𝑛

+ max
1≤𝑘<𝑘+𝑙≤𝐾

󵄩󵄩󵄩󵄩󵄩
𝜑
𝑘+𝑙

𝑛
− 𝜑

𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝐸𝑛
(𝜏𝑛𝑘)

𝛼
(𝑙𝜏𝑛)

−𝛼
.

(81)

Theorem 51 (see [50]). Let condition (𝐵1) hold. Then scheme
(76) is coercively well-posed in 𝐶

𝛼,0
𝜏𝑛

([0, 𝑇]; 𝐸𝑛) with 0 < 𝛼 < 1;
that is,

󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑈𝑛

󵄩󵄩󵄩󵄩󵄩𝐶𝛼,0𝜏𝑛 ([0,𝑇];𝐸𝑛)

≤
𝑀

𝛼 (1 − 𝛼)
(
󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑢

0
𝑛

󵄩󵄩󵄩󵄩󵄩𝐸𝑛
+
󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐶𝛼,0𝜏𝑛 ([0,𝑇];𝐸𝑛)
) .

(82)

Roughly speaking, assumption (𝐵1) is necessary and
sufficient for the coercive well-posedness in 𝐶

𝛼,0
𝜏𝑛

([0, 𝑇]; 𝐸𝑛)

space.
Denote by 𝐿

𝑝

𝜏𝑛
([0, 𝑇]; 𝐸𝑛), 1 ≤ 𝑝 < ∞, the space of

elements 𝜑
𝑛
with the norm

󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
([0,𝑇];𝐸𝑛)

= (

𝐾

∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝜑
𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩

𝑝

𝐸𝑛
𝜏𝑛)

1/𝑝

. (83)



Abstract and Applied Analysis 13

Theorem 52 (see [50]). Let condition (𝐵1) hold. Let difference
scheme (76) be coercively well-posed in 𝐿

𝑝0
𝜏𝑛
([0, 𝑇]; 𝐸𝑛) for some

1 < 𝑝0 < ∞. Then it is coercively well-posed in 𝐿
𝑝

𝜏𝑛
([0, 𝑇]; 𝐸𝑛)

for any 1 < 𝑝 < ∞ and
󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑈𝑛

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
([0,𝑇];𝐸𝑛)

+ max
0≤𝑘≤𝐾

󵄩󵄩󵄩󵄩󵄩󵄩
𝑈

𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝑛,1−1/𝑝

≤
𝑀𝑝

2

𝑝 − 1
(
󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
([0,𝑇];𝐸𝑛)

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑈

0
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩1−1/𝑝
) .

(84)

It should be noted that, in contrast to the case of 𝐶𝛼,0-
space, the analyticity of the semigroup exp(⋅𝐴) is not enough
for the coercive well-posedness in 𝐿

𝑝
([0, 𝑇]; 𝐸) space [51];

therefore, to state coercive well-posedness in 𝐿
𝑝
([0, 𝑇]; 𝐸), we

need some additional assumptions.

Theorem 53 (see [50]). Let 1 < 𝑝, 𝑞 < ∞, 0 < 𝛼 < 1,
and let condition (𝐵1) hold. Then the difference scheme (76) is
coercively well-posed in 𝐿

𝑝

𝜏𝑛
([0, 𝑇]; 𝐸𝑛,𝛼,𝑞); that is,

󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑈𝑛

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
([0,𝑇];𝐸𝑛,𝛼,𝑞)

+ max
0≤𝑘≤𝐾

󵄩󵄩󵄩󵄩󵄩
𝑈

𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝐸𝑛,1−1/𝑝

≤
𝑀𝑝

2

(𝑝 − 1) 𝛼 (1 − 𝛼)
(
󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
([0,𝑇];𝐸𝑛,𝛼,𝑞)

+
󵄩󵄩󵄩󵄩󵄩
𝑈

0
𝑛

󵄩󵄩󵄩󵄩󵄩1−1/𝑝) ,

(85)

where 𝐸𝑛,𝛼,𝑞 is the interpolation space (𝐸𝑛, 𝐷(𝐴𝑛))𝛼,𝑞 with the
norm

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩𝐸𝑛,𝛼,𝑞

= (∫

∞

0

󵄩󵄩󵄩󵄩󵄩
𝜆
𝛼
𝐴𝑛 (𝜆 − 𝐴𝑛)

−1󵄩󵄩󵄩󵄩󵄩

𝑞

𝐸𝑛

𝑑𝜆

𝜆
)

1/𝑞
. (86)

For the general Banach space 𝐸𝑛, we have the following
results. Assume that 𝐴𝑛 are generators of the analytic semi-
groups exp(𝑡𝐴𝑛), 𝑡 ∈ R+, of linear bounded operators such
that stability condition (𝐵1) holds with 𝜔2 ≤ 0.

Theorem 54 (see [52]). Let condition (𝐵1) hold. Then the
solution of difference scheme (76) is almost coercively stable;
that is,

󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑈𝑛

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
([0,𝑇];𝐸𝑛)

≤ 𝑀(
󵄩󵄩󵄩󵄩󵄩
𝑈

0
𝑛

󵄩󵄩󵄩󵄩󵄩1−1/𝑝 +min{log 1
𝜏𝑛

, 1 +
󵄨󵄨󵄨󵄨󵄨
log 󵄩󵄩󵄩󵄩𝐴𝑛

󵄩󵄩󵄩󵄩𝐵(𝐸𝑛)

󵄨󵄨󵄨󵄨󵄨
}

⋅
󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
([0,𝑇];𝐸𝑛)

)

(87)

holds for any 𝑝 ≥ 1, where𝑀 does not depend on 𝜏𝑛, 𝑢
0
𝑛
, or 𝜑𝑛.

Theorem 55 (see [52]). Let condition (𝐵1) hold and let 𝐸𝑛 be
UMDBanach spaces uniformly in 𝑛 in the sense of boundedness
of the norms of Hilbert transforms. Assume also that the set
{𝜆(𝜆𝐼𝑛 − 𝐴𝑛)

−1
: 𝜆 ∈ 𝑖R, 𝜆 ̸= 0} is 𝑅-bounded with the 𝑅-

boundedness constant independent of 𝑛. Then the solution of
difference scheme (76) is coercively stable; that is,

󵄩󵄩󵄩󵄩󵄩
𝐴𝑛𝑈𝑛

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
(Z+ ;𝐸𝑛)

≤ 𝑀
󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
(Z+ ;𝐸𝑛)

(88)

holds for any 𝑝 ≥ 1, where𝑀 does not depend on 𝜏𝑛, 𝑢
0
𝑛
, or 𝜑

𝑛
.

The interpretation of discrete coercive inequality and
discrete semigroup defines the convolution operator in the
form 𝐴̆𝑛∑

𝑘

𝑗=0𝑇
𝑘−𝑗

𝑛
𝑄𝑛𝜑𝑛𝜏𝑛 with some bounded operator 𝑄𝑛 ∈

𝐵(𝐸𝑛), which usually has smoothness property. Boundedness
of the convolution operator in 𝐿

𝑝

𝜏𝑛
(Z+; 𝐸𝑛) space implies

discrete coercive well-posedness in 𝐿
𝑝

𝜏𝑛
(Z+; 𝐸𝑛).

Definition 56. The discrete semigroup 𝑇𝑛(⋅) with generators
𝐴̆𝑛 is said to generate coercive well-posedness on 𝐿

𝑝

𝜏𝑛
(Z+; 𝐸𝑛)

spaces if the corresponding convolution operators 𝜑𝑛 󳨃→

{𝐴̆𝑛∑
𝑘

𝑗=0𝑇
𝑘−𝑗

𝑛
𝑄𝑛𝜑

𝑗

𝑛
𝜏𝑛} are continuous on 𝐿

𝑝

𝜏𝑛
(Z+; 𝐸𝑛) spaces

and such convolution operators are bounded with a constant
which does not depend on 𝑛.

Concerning the previous definition, let us stress ourmain
assumption on Hilbert transform on general approximation
scheme. Up to the end of this section we will assume that the
Hilbert transforms𝐻𝑓(𝑡) = (1/𝜋)𝑃𝑉− ∫

∞

−∞
(1/(𝑡 − 𝑠))𝑓𝑛(𝑠)𝑑𝑠

extend to bounded operators on 𝐿
𝑝
(R; 𝐸𝑛) for some (all) 𝑝 ∈

(1,∞), such that all of them are bounded by a constant which
does not depend on 𝑛. This assumption holds if all 𝐸𝑛 can be
embedded into a fixed space 𝐿𝑝

(Ω) with 1 < 𝑝 < ∞.

Theorem 57 (see [52]). Let 𝐸𝑛 be UMD Banach spaces.
Assume also that the set {𝜆(𝜆𝐼𝑛 − 𝐴𝑛)

−1
: 𝜆 ∈ 𝑖R, 𝜆 ̸= 0} is

𝑅-bounded with the 𝑅-boundedness constant which does not
depend on 𝑛. Then the solution of Crank-Nicolson difference
scheme is coercively stable; that is,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{𝐴̆𝑛

𝑈
𝑘

𝑛
+ 𝑈

𝑘−1
𝑛

2
}

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
([0,𝑇];𝐸𝑛)

≤ 𝑀
󵄩󵄩󵄩󵄩𝜑𝑛

󵄩󵄩󵄩󵄩𝐿
𝑝

𝜏𝑛
([0,𝑇];𝐸𝑛) (89)

holds for any 𝑝 ≥ 1, where𝑀 does not depend on 𝜏𝑛, 𝑢
0
𝑛
, or 𝜑𝑛.

6.2. Discrete Weak Maximal Regularity for Second Order
Equations. The following Cauchy problems in Banach spaces
𝐸𝑛 are the semidiscrete approximation of (7):

𝑢
󸀠󸀠

𝑛
(𝑡) = 𝐴𝑛𝑢𝑛 (𝑡) + 𝑓𝑛 (𝑡) , 𝑡 ∈ [0, 𝑇] ;

𝑢𝑛 (0) = 𝑢
0
𝑛
, 𝑢

󸀠

𝑛
(0) = 𝑢

1
𝑛
,

(90)

where the operators 𝐴𝑛 generate 𝐶0-cosine operator func-
tions, 𝐴𝑛 and 𝐴 are compatible, and 𝑢

0
𝑛

P
󳨀→ 𝑢

0, 𝑢1
𝑛

P
󳨀→ 𝑢

1,
and 𝑓𝑛(⋅)

P
󳨀→ 𝑓(⋅) in appropriate sense. We assume that

natural conditions (𝐴) and (𝐵
󸀠
) from Theorem 47 for 𝐶0-

cosine operator functions are satisfied.
Sincewe do not have in general strongmaximal regularity

for second order equations, we can not expect to get strong
maximal regularity in the discrete case too.
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Now we are going to describe the discretization of (7) in
time variable. The simplest difference scheme is

𝑈
𝑘+1

𝑛
− 2𝑈

𝑘

𝑛
+ 𝑈

𝑘−1

𝑛

𝜏2
𝑛

= 𝐴𝑛𝑈
𝑘

𝑛
+ 𝜑

𝑘

𝑛
,

𝑘 ∈ {1, . . . , [
𝑇

𝜏𝑛

]} ,

𝑈
0
𝑛
= 𝑢

0
𝑛
, 𝑈

1
𝑛
= 𝑢𝑛 (𝜏𝑛) ,

(91)

where, for example, in the case of 𝑓𝑛(⋅) ∈ 𝐶([0, 𝑇]; 𝐸𝑛), one
can set 𝜑𝑘

𝑛
= 𝑓𝑛(𝑘𝜏𝑛), 𝑘 ∈ {1, . . . , 𝐾}, 𝐾 = [𝑇/𝜏𝑛], and, in the

case 𝑓𝑛(⋅) ∈ 𝐿
1
([0, 𝑇]; 𝐸𝑛), one can set

𝜑
𝑘

𝑛
=

1
𝜏𝑛

∫

𝑡𝑘

𝑡𝑘−1

𝑓𝑛 (𝑠) 𝑑𝑠, 𝑡𝑘 = 𝑘𝜏𝑛, 𝑘 ∈ {1, . . . , 𝐾} . (92)

Definition 58 (see [53]). The operators 𝐴𝑛 of 𝐶0-cosine
operator-valued function 𝐶(⋅, 𝐴𝑛) satisfy discrete Krein-
Fattorini Condition if the following conditions hold:

(i) There exist B𝑛 ∈ C(𝐸𝑛) such that B2
𝑛
= 𝐴𝑛, and B𝑛

commutes with any operator from 𝐵(𝐸𝑛) commuting
with 𝐴𝑛.

(ii) The operators B𝑛 generate 𝐶0-groups such that
‖exp(±𝑡B𝑛)‖ ≤ 𝑀0𝑒

𝜔0|𝑡|, 𝑡 ∈ R.
(iii) The operators −𝐴𝑛 are strongly positive; that is,

󵄩󵄩󵄩󵄩󵄩
(𝜆𝐼𝑛 − 𝐴𝑛)

−1󵄩󵄩󵄩󵄩󵄩 ≤
𝑀

1 + |𝜆|
, Re𝜆 ≥ 0, (93)

and ‖B−1
𝑛
‖ ≤ 𝐶 as 𝑛 ∈ N.

Let us denote by Z the set of all integer numbers.

Definition 59. The function K(𝑚) : Z → 𝐵(𝐸) is called
discrete cosine operator function if

K (𝑘 + 𝑚) +K (𝑘 − 𝑚) = 2K (𝑘)K (𝑚) ,

𝑘,𝑚 ∈ Z,

K (0) = 𝐼.

(94)

The generator 𝐴𝜏 of a discrete cosine operator function is
associated with it by the formula 𝐴𝜏 = (2/𝜏2)(K(1) − 𝐼). The
operatorK(1) is called leading operator of the discrete cosine
operator function.

Proposition 60 (see [54]). Assume that K(1) ∈ 𝐵(𝐸) is any
bounded linear operator. Then the discrete operator function
given by relation

K (𝑚 + 1) = 2K (𝑚)K (1) −K (𝑚 − 1) ,

𝑚 ∈ Z,

K (0) = 𝐼

(95)

is a discrete cosine operator function.

We consider the discrete cosine operator function in the
spaces 𝐸𝑛 and we write C𝑛(𝑡, 𝐴𝜏𝑛,𝑛

) for the discrete cosine
family with associated generator 𝐴𝜏𝑛,𝑛

, where 𝑡 = 𝑘𝜏𝑛, 𝑘 ∈ Z,
and 𝜏𝑛 > 0 is the step discretization in time. So in this way the
discrete cosine operator function is a function of argument
𝑡 = 𝑘𝜏𝑛 with leading operator C𝑛(𝜏𝑛, 𝐴𝜏𝑛,𝑛

) ∈ 𝐵(𝐸𝑛). The
choice of the leading operator could be different in the sense
that C𝑛(𝜏𝑛, 𝐴𝜏𝑛,𝑛

) = 𝐼𝑛 + (𝜏
2
𝑛
/2)𝐴𝜏𝑛,𝑛

with different choice of
𝐴𝜏𝑛,𝑛

. One can take 𝐴𝜏𝑛,𝑛
= 𝐴𝑛, say from (90). Sometimes

they use a different choice of 𝐴𝜏𝑛,𝑛
(see the paragraph before

the formula (103)).

Remark 61. As was mentioned in Proposition 11, the 𝐶0-
cosine operator function in general can not be represented in
the form of𝐶0-semigroups generated byB. In the meantime,
discrete cosine operator function can anytime be represented
in such form as a power of bounded operators [55, 56].

Definition 62. The function S(𝑘) : Z → 𝐵(𝐸) is called
discrete sine operator function associatedwith discrete cosine
operator functionK(𝑚) if

S (𝑘 + 𝑚) +S (𝑘 − 𝑚) = 2S (𝑘)K (𝑚) ,

𝑘,𝑚 ∈ Z,

S (0) = 0.

(96)

The operator S(1) ∈ 𝐵(𝐸) is called leading operator of the
discrete sine operator function.

Proposition 63 (see [54]). Assume that S(1) ∈ 𝐵(𝐸) is any
bounded linear operator. Then the discrete operator function
given by the relation

S (𝑚 + 1) = 2S (𝑚)K (1) −S (𝑚 − 1) ,

𝑚 ∈ Z,

S (0) = 0

(97)

is a discrete sine operator function.

One considers the discrete sine operator function in the
spaces 𝐸𝑛 and writes S𝑛(𝑡, 𝐴𝑛) for the discrete sine family
associated with C𝑛(𝑡, 𝐴𝑛), where 𝑡 = 𝑘𝜏𝑛, 𝑘 ∈ Z, and 𝜏𝑛 > 0
is the discretisation step in time.

Proposition 64. Assume that

S𝑛 (𝑡, 𝐴𝜏𝑛,𝑛
) =

𝜏𝑛

2
𝐼𝑛 + 𝜏𝑛

𝑡/𝜏𝑛

∑

𝑗=1
C𝑛 (𝑗𝜏𝑛, 𝐴𝜏𝑛,𝑛

) ,

𝑡 = 𝑚𝜏𝑛, 𝑚 ∈ Z,

S𝑛 (0, 𝐴𝜏𝑛,𝑛
) = 0.

(98)

Then {S𝑛(𝑚𝜏𝑛, 𝐴𝜏𝑛,𝑛
)}
∞

𝑚=1 is a discrete sine operator function.
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Proof. It is enough to check (97). So one has

𝜏𝑛𝐼𝑛 + 𝜏𝑛

𝑚−1
∑

𝑗=1
C𝑛 (𝑗𝜏𝑛, 𝐴𝜏𝑛,𝑛

) +

𝑚+1
∑

𝑗=1
C𝑛 (𝑗𝜏𝑛, 𝐴𝜏𝑛,𝑛

)

= 𝜏𝑛𝐼𝑛 + 𝜏𝑛C𝑛 (𝜏𝑛, 𝐴𝜏𝑛,𝑛
) + 𝜏𝑛C𝑛 (2𝜏𝑛, 𝐴𝜏𝑛,𝑛

)

+ 2𝜏𝑛
𝑚

∑

𝑗=2
C𝑛 (𝑗𝜏𝑛, 𝐴𝜏𝑛,𝑛

)C𝑛 (𝑡, 𝐴𝜏𝑛,𝑛
)

= 2(
𝜏𝑛

2
+ 𝜏𝑛

𝑚

∑

𝑗=1
C𝑛 (𝑗𝜏𝑛, 𝐴𝜏𝑛,𝑛

))C𝑛 (𝑡, 𝐴𝜏𝑛,𝑛
) .

(99)

Sometimes one considers the corrected sine operator
function

S̃𝑛 (𝑚𝜏𝑛, 𝐴𝑛) = S𝑛 (𝑚𝜏𝑛, 𝐴𝑛) −
𝜏

2
C𝑛 (𝑚𝜏𝑛, 𝐴𝑛) , 𝑚 ∈ Z.

(100)

In such case, the solution of (91) is given by the formula

𝑈𝑛 (𝑡) = C𝑛 (𝑡, 𝐴𝜏𝑛,𝑛
)𝑈

0
𝑛
+ S̃𝑛 (𝑡, 𝐴𝜏𝑛,𝑛

) 𝑢
1,𝜏𝑛
𝑛

, (101)

where 𝑢1,𝜏𝑛
𝑛

satisfy the relations

(𝐼𝑛 +
𝜏
2
𝑛

4
𝐴𝑛)𝑢

1,𝜏𝑛
𝑛

=
𝑈

1
𝑛
− 𝑈

0
𝑛

𝜏𝑛

−
𝜏𝑛

2
𝐴𝑛𝑈

0
𝑛
. (102)

One can have a look at the following choice of discrete
cosine if the leading operator of the discrete cosine operator
function is taken as C𝑛(𝜏𝑛, 𝐴𝑛(𝐼𝑛 − (𝜏

2
𝑛
/2)𝐴𝑛)

−1
) = 𝐼𝑛 +

(𝜏
2
𝑛
/2)𝐴𝑛(𝐼𝑛 −(𝜏

2
𝑛
/2)𝐴𝑛)

−1. In [11], it was shown that schemes
(91) are stable in case of C𝑛(𝜏𝑛, 𝐴𝑛(𝐼𝑛 − (𝜏

2
𝑛
/2)𝐴𝑛)

−1
), that

is, when, instead of 𝐴𝑛 in (91), one puts the operator
𝐴𝑛(𝐼𝑛 − (𝜏

2
𝑛
/2)𝐴𝑛)

−1. Moreover, they have shown that for a
nonhomogeneous equation the following estimates hold:
󵄩󵄩󵄩󵄩𝑈𝑛 (𝑘𝜏𝑛)

󵄩󵄩󵄩󵄩 ≤ 𝑀𝜌 (𝜏𝑛)
𝑘

⋅ (

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑈
0
𝑛
+ 𝑈

1
𝑛

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐷(𝐴𝜖
𝑛
)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑈
0
𝑛
− 𝑈

1
𝑛

𝜏𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐷(𝐴𝜖
𝑛
)

+ 𝜏𝑛

𝑘−1
∑

𝑗=0

󵄩󵄩󵄩󵄩𝜑𝑛 (𝑗𝜏𝑛)
󵄩󵄩󵄩󵄩𝐷(𝐴𝜖

𝑛
)
) ,

(103)

with 𝑘 ∈ N, 𝜌(𝜏𝑛) = (1 + 𝑐0𝜏𝑛/√2 + 𝑐
2
0𝜏

2
𝑛
/4)1/2, and any small

𝜖 > 0.

Theorem 65 (see [9]). Let the operators 𝐴 and 𝐴𝑛 generate
𝐶0-cosine operator functions and discrete cosine operator
function, respectively. The following conditions (𝐴) and (𝐵

󸀠󸀠
)

are equivalent to condition (𝐶
󸀠󸀠
).

(𝐴) Compatability: there exists 𝜆 ∈ 𝜌(𝐴) ∩ ∩𝑛𝜌(𝐴𝑛) such
that the resolvents converge (𝜆𝐼𝑛−𝐴𝑛)

−1
→ (𝜆𝐼−𝐴)

−1.
(𝐵

󸀠󸀠
) Stability: there are some constants 𝑀1 ≥ 1 and 𝜔1 ≥ 0
such that

󵄩󵄩󵄩󵄩C𝑛 (𝑡, 𝐴𝑛)
󵄩󵄩󵄩󵄩 ≤ 𝑀1𝑒

𝜔1𝑡, 𝑡 ≥ 0, 𝑛 ∈ N. (104)

(𝐶
󸀠󸀠
) Convergence: for any finite 𝑇 > 0 one has

max
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩󵄩
C𝑛 (𝑡, 𝐴𝑛) 𝑢

0
𝑛
− 𝑝𝑛𝐶 (𝑡, 𝐴) 𝑢

0󵄩󵄩󵄩󵄩󵄩 󳨀→ 0 (105)

as 𝑛 → ∞, whenever 𝑢0
𝑛

P
󳨀→ 𝑢

0.

Theorem 66. Assume that condition (𝐵
󸀠󸀠
) holds. Then the

scheme

𝑈
𝑘+1
𝑛

− 2𝑈𝑘

𝑛
+ 𝑈

𝑘−1
𝑛

𝜏2
𝑛

= 𝐴𝑛 (𝐼𝑛 −
𝜏
2
𝑛

2
𝐴𝑛)

−1

𝑈
𝑘

𝑛
+ 𝜑

𝑘

𝑛
,

𝑘 ∈ {1, . . . , [ 𝑇

𝜏𝑛

]} ,

𝑈
0
𝑛
= 𝑢

0
𝑛
, 𝑈

1
𝑛
= 𝑢𝑛 (𝜏𝑛) ,

(106)

that is, scheme (91) with operator 𝐴𝑛 replaced by 𝐴𝑛(𝐼𝑛 − (𝜏
2
𝑛
/

2)𝐴𝑛)
−1, is almost weakly coercively stable in 𝐶𝑛([0, 𝑇]; 𝐸

𝜃

𝑛
) in

the following sense:

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴𝑛 (𝐼𝑛 −
𝜏
2
𝑛

2
𝐴𝑛)

−1

𝑈𝑛 (𝑘𝜏𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝜃
𝑛

≤ 𝑀𝜌 (𝜏𝑛)
𝑘
(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴𝑛 (𝐼𝑛 −
𝜏
2
𝑛

2
𝐴𝑛)

−1
𝑈

0
𝑛
+ 𝑈

1
𝑛

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐷(𝐴𝜃+𝜖
𝑛

)

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴𝑛 (𝐼𝑛 −
𝜏
2
𝑛

2
𝐴𝑛)

−1
𝑈

0
𝑛
− 𝑈

1
𝑛

𝜏𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐷(𝐴𝜃+𝜖
𝑛

)

+ 𝜏𝑛

𝑘−1
∑

𝑗=0

󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠

𝑛
(𝑗𝜏𝑛)

󵄩󵄩󵄩󵄩󵄩𝐷(𝐴𝜃+𝜖
𝑛

)
) ,

(107)

with 𝑘 ∈ N, 𝜌(𝜏𝑛) = (1 + 𝑐0𝜏𝑛/√2 + 𝑐
2
0𝜏

2
𝑛
/4)1/2, 𝜖 > 0.

Proof. We follow the proof for (28) in [11], but we get an
estimate for𝐴𝑛𝑈𝑛 instead of𝑈𝑛. Integration by parts gives us
the discrete derivative of 𝜑𝑛(⋅) which we denote by 𝜑

󸀠

𝑛
(𝑗𝜏𝑛).

The product 𝑘𝜏𝑛 is bounded by 𝑇, so one can get an estimate
in discrete spaces 𝐶𝑛([0, 𝑇]; 𝐸

𝜃

𝑛
) for

𝑈
𝑘

𝑛
=

1
2𝜋𝑖

∫
Γ

𝑄𝑛 (𝑧) (𝑧𝐼𝑛 − 𝐴𝑛)
−1

𝑑𝑧𝑈
0
𝑛

+
1
2𝜋𝑖

∫
Γ

𝑄𝑛 (𝑧) (𝑧𝐼𝑛 − 𝐴𝑛)
−1

𝑑𝑧𝑈
1
𝑛

+
1
2𝜋𝑖

∫
Γ

𝑘−1
∑

𝑗=0
𝑅𝑘−𝑗 (𝑧) (𝑧𝐼𝑛 − 𝐴𝑛)

−1
𝜑
󸀠

𝑛
(𝑗𝜏𝑛) 𝑑𝑧.

(108)
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7. Difference Schemes for
Hyperbolic Equations

A large cycle of works on difference schemes for hyperbolic
partial differential equations (see, e.g., [48, 57–61] and the
references given therein), in which stability was established
under the assumption that the magnitude of the grid steps
𝜏 and ℎ with respect to the time and space variables are
connected. In abstract terms, this means, in particular, that
the condition 𝜏‖𝐴ℎ‖ → 0 when 𝜏 → 0 is satisfied.

Of great interest is the study of absolutely stable difference
schemes of a high order of accuracy for hyperbolic partial dif-
ferential equations, in which stability was established without
any assumptions with respect to the grid steps 𝜏 and ℎ. Such
type of stability inequalities for the solutions of the first order
of accuracy difference scheme for the differential equations
of hyperbolic type were established for the first time in [62].
The first and second order of accuracy difference schemes
approximately solving the abstract initial value problem for
hyperbolic equations inHilbert spaceswere presented in [63].
Applying the operator approach, the stability estimates for the
solution of these difference schemes were obtained.

In this survey section, we present results on stability
and convergence of absolutely stable difference schemes for
hyperbolic partial differential equations. Sections 7.1 and 7.2
are devoted to a Cauchy problem for hyperbolic equations.
Section 7.1 is based on results of [2, 7]. Section 7.2 is based on
results of [64–69]. In mathematical modeling, partial differ-
ential equations are used together with boundary conditions
specifying the solution on the boundary of the domain. In
some cases, classical boundary conditions cannot describe a
process or phenomenon precisely. Therefore, mathematical
models of various physical, chemical, biological, or envi-
ronmental processes often involve nonclassical conditions.
Such conditions are usually identified as nonlocal boundary
conditions and reflect situationswhen the data on the domain
boundary cannot be measured directly, or when the data
on the boundary depend on the data inside the domain.
Sections 7.3 and 7.4 are devoted to nonlocal boundary
value problems for hyperbolic and mixed types of partial
differential equations. Section 7.3 is based on results of [70–
76]. Section 7.4 is based on results of [77–91]. Section 7.5
is devoted to stochastic hyperbolic equations. It is based
on results of [92, 93]. Section 7.6 is devoted to fractional
hyperbolic differential and difference equations. It is based on
results of [94–97]. Finally, Section 7.7 is devoted to singular
perturbation hyperbolic problems. It is based on results of
[98–101].

This survey section does not touch the results of [102–
106] on integral inequalitieswith twodependent limits, on the
theory of integral-differential equations of hyperbolic type,
and on difference schemes for the approximate solution of
these problems or of [107, 108] on the equations of the second
order with a small parameter at the highest derivatives and on
the investigation of singular hyperbolic equations. Moreover,
we do not discuss results on the stability of the Goursat
problem for hyperbolic equations and an initial-boundary
value problem for a system of differential equations of first
order with nonlocal condition and difference schemes for the

approximate solution of these problems, for which the reader
is referred to [109–114].

7.1. A Cauchy Problem. We consider the abstract Cauchy
problem for hyperbolic equations

V󸀠󸀠 (𝑡) + 𝐴V (𝑡) = 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

V (0) = 𝜑, V󸀠 (0) = 𝜓

(109)

in Hilbert space 𝐻 with the self-adjoint positive definite
operator𝐴. Function V(𝑡) is called a solution of problem (109)
if the following conditions are satisfied:

(i) V(𝑡) is twice continuously differentiable on the seg-
ment [0, 𝑇]. The derivatives at the endpoints of the
segment are understood as the appropriate unilateral
derivatives.

(ii) The element V(𝑡) belongs to 𝐷(𝐴) for all 𝑡 ∈ [0, 𝑇]
and the function 𝐴V(𝑡) is continuous on the segment
[0, 𝑇].

(iii) V(𝑡) satisfies the equations and initial conditions (109).
If the function 𝑓(𝑡) is not only continuous, but also

continuously differentiable on [0, 𝑇], 𝜑 ∈ 𝐷(𝐴), and 𝜓 ∈

𝐷(𝐴
1/2

), it is easy to show that the formula

V (𝑡) = 𝐶 (𝑡, 𝐴) 𝜑 + 𝑆 (𝑡, 𝐴) 𝜓 + ∫

𝑡

0
𝑆 (𝑡 − 𝜆, 𝐴) 𝑓 (𝜆) 𝑑𝜆

(110)

gives a solution of problem (109). Here [115]

𝐶 (𝑡, 𝐴) =
𝑒
𝑖𝑡𝐴

1/2
+ 𝑒

−𝑖𝑡𝐴
1/2

2
,

𝑆 (𝑡, 𝐴) = 𝐴
−1/2 𝑒

𝑖𝑡𝐴
1/2

− 𝑒
−𝑖𝑡𝐴

1/2

2𝑖
.

(111)

Theorem 67. Suppose that 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈ 𝐷(𝐴
1/2

), and 𝑓(𝑡)

are continuously differentiable on [0, 𝑇] function.Then there is
a unique solution of problem (109) and the stability inequalities

max
0≤𝑡≤𝑇

‖V (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓 (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

] ,

max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2V (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ max

0≤𝑡≤𝑇
󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝐻
] ,

max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
2V (𝑡)
𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

‖𝐴V (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓 (0)

󵄩󵄩󵄩󵄩𝐻
+ ∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡]

(112)

hold, where𝑀 does not depend on 𝑓(𝑡), 𝑡 ∈ [0, 𝑇], or 𝜑, 𝜓.
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Now, we consider the application of abstractTheorem 67.
First, we consider the mixed problem for the hyperbolic
equation

𝑢𝑡𝑡 (𝑡, 𝑥) − (𝑎 (𝑥) 𝑢𝑥)𝑥
+ 𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) ,

0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑥 ≤ 𝐿,

𝑢 (0, 𝑥) = 𝜑 (𝑥) , 𝑢𝑡 (0, 𝑥) = 𝜓 (𝑥) ,

0 ≤ 𝑥 ≤ 𝐿,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝐿) , 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 𝐿) ,

0 ≤ 𝑡 ≤ 𝑇.

(113)

Problem (113) has a unique smooth solution 𝑢(𝑡, 𝑥) for
the smooth 𝑎(𝑥) > 0, 𝑎(0) = 𝑎(𝐿) (𝑥 ∈ [0, 𝐿]), 𝜑(𝑥),
𝜓(𝑥) (𝑥 ∈ [0, 𝐿]), and 𝑓(𝑡, 𝑥) (𝑡 ∈ [0, 𝑇], 𝑥 ∈ [0, 𝐿])
functions. This allows us to reduce mixed problem (113) to
initial value problem (109) in the Hilbert space 𝐻 = 𝐿2[0, 𝐿]
with self-adjoint positive definite operator𝐴 defined by (113).
Let us give a number of corollaries of Theorem 67.

Theorem 68. For solutions of mixed problem (113), the stabil-
ity inequalities

max
0≤𝑡≤𝑇

‖𝑢 (𝑡, ⋅)‖𝑊1
2 [0,𝐿]

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2[0,𝐿]

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝑊1
2 [0,𝐿]

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐿2[0,𝐿]
] ,

max
0≤𝑡≤𝑇

‖𝑢 (𝑡, ⋅)‖𝑊2
2 [0,𝐿] + max

0≤𝑡≤𝑇
󵄩󵄩󵄩󵄩𝑢𝑡𝑡 (𝑡, ⋅)

󵄩󵄩󵄩󵄩𝐿2[0,𝐿]

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓𝑡 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2[0,𝐿]

+
󵄩󵄩󵄩󵄩𝑓 (0, ⋅)󵄩󵄩󵄩󵄩𝐿2[0,𝐿]

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝑊2
2 [0,𝐿]

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝑊1
2 [0,𝐿]

]

(114)

hold, where𝑀 does not depend on 𝑓(𝑡, 𝑥) or 𝜑(𝑥), 𝜓(𝑥).

The proof of Theorem 68 is based on Theorem 67 and
the symmetry properties of the space operator generated by
problem (113).

Second, let Ω ⊂ R𝑛 be the bounded open domain with
smooth boundary 𝑆,Ω = Ω∪𝑆. In [0, 𝑇]×Ω, we consider the
mixed boundary value problem for hyperbolic equations

𝑢𝑡𝑡 (𝑡, 𝑥) −

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢𝑥𝑟

)
𝑥𝑟

= 𝑓 (𝑡, 𝑥) ,

𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω, 0 ≤ 𝑡 ≤ 𝑇,

𝑢 (0, 𝑥) = 𝜑 (𝑥) ,
𝜕𝑢 (0, 𝑥)

𝜕𝑡
= 𝜓 (𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑡, 𝑥) = 0, 𝑥 ∈ 𝑆, 0 ≤ 𝑡 ≤ 𝑇,

(115)

where 𝑎𝑟(𝑥), (𝑥 ∈ Ω), 𝜑(𝑥), 𝜓(𝑥) (𝑥 ∈ Ω), and 𝑓(𝑡, 𝑥) (𝑡 ∈

[0, 𝑇], 𝑥 ∈ Ω) are given smooth functions and 𝑎𝑟(𝑥) > 0. We

introduce the Hilbert space 𝐿2(Ω), the space of all integrable
functions defined on Ω, equipped with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(Ω)

= {∫ ⋅ ⋅ ⋅ ∫
𝑥∈Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑛}

1/2
. (116)

Problem (115) has a unique smooth solution 𝑢(𝑡, 𝑥) for the
smooth 𝑎𝑟(𝑥) > 0 and 𝑓(𝑡, 𝑥) functions. This allows us to
reduce mixed problem (115) to initial value problem (109)
in the Hilbert space 𝐻 = 𝐿2(Ω) with a self-adjoint positive
definite operator 𝐴 defined by (115).

Theorem 69. For solutions of mixed problem (115), the stabil-
ity inequalities

max
0≤𝑡≤𝑇

‖𝑢 (𝑡, ⋅)‖
𝑊1

2 (Ω)

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝑊1
2 (Ω)

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐿2(Ω)
] ,

max
0≤𝑡≤𝑇

‖𝑢 (𝑡, ⋅)‖
𝑊2

2 (Ω)
+ max

0≤𝑡≤𝑇
󵄩󵄩󵄩󵄩𝑢𝑡𝑡 (𝑡, ⋅)

󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓𝑡 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩𝑓 (0, ⋅)󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝑊2
2 (Ω)

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝑊1
2 (Ω)

]

(117)

hold, where𝑀 does not depend on 𝑓(𝑡, 𝑥) or 𝜑(𝑥), 𝜓(𝑥).

The proof of Theorem 69 is based on Theorem 67 and
the symmetry properties of the space operator generated by
problem (115) and the following theorem on the coercivity
inequality for the solution of the elliptic differential problem
in 𝐿2(Ω).

Theorem 70 (see [116]). For the solution of the elliptic differ-
ential problem

−

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢𝑥𝑟

)
𝑥𝑟

= 𝑤 (𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥) = 0, 𝑥 ∈ 𝑆,

(118)

the coercivity inequality
𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝑢𝑥𝑟𝑥𝑟

󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)
≤ 𝑀‖𝑤‖

𝐿2(Ω) (119)

is valid.

Now, we consider the high order of accuracy two-step
difference schemes generated by an exact difference scheme
and by Taylor’s decomposition on three points for the approx-
imate solutions of initial value problem (109). On the segment
[0, 𝑇], we consider a uniform grid

[0, 𝑇]𝜏 = {𝑡𝑘 = 𝑘𝜏, 𝑘 = 0, 1, . . . , 𝑁,𝑁𝜏 = 𝑇} (120)

with step 𝜏. First, we consider the high order of accuracy
two-step difference schemes generated by an exact difference
scheme for the approximate solutions of initial value problem
(109).
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Theorem 71 (see [2]). For the solution of initial value problem
(109), one has the following exact two-step difference scheme:

1
𝜏2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) =
2
𝜏2

(𝐶 (𝜏, 𝐴) − 𝐼) 𝑢𝑘 + 𝑓𝑘,

𝑓𝑘 = 𝜏
−1

{𝑓1,𝑘+1 + 𝑆 (𝜏, 𝐴) 𝑓2,𝑘 − 𝐶 (𝜏, 𝐴) 𝑓1,𝑘} ,

𝑓1,𝑘 = 𝜏
−1

∫

𝑡𝑘

𝑡𝑘−1

𝑆 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑧,

𝑓2,𝑘 = 𝜏
−1

∫

𝑡𝑘

𝑡𝑘−1

𝐶 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑧,

1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = V (0) ,

𝑢1 = 𝐶 (𝜏, 𝐴) V (0) + 𝑆 (𝜏, 𝐴) V󸀠 (0) + 𝜏𝑓1,1.

(121)

Let𝐵 = 𝐴
1/2. Suppose the operators (𝐼−𝑒2𝜏𝑖𝐵) and (𝐼+𝑒

𝜏𝑖𝐵
)

have the bounded inverses (𝐼 − 𝑒
2𝜏𝑖𝐵

)
−1 and (𝐼 + 𝑒

𝜏𝑖𝐵
)
−1. Then

this difference scheme is uniquely solvable and the following
formula holds:

𝑢0 = V (0) ,

𝑢1 = 𝐶 (𝜏, 𝐴) V (0) + 𝑆 (𝜏, 𝐴) V󸀠 (0) + 𝜏𝑓1,1,

𝑢𝑘 = [𝑒
−𝑘𝜏𝑖𝐵

− (𝐼 − 𝑒
2𝜏𝑖𝐵

)
−1

(𝑒
−𝑘𝜏𝑖𝐵

− 𝑒
𝑘𝜏𝑖𝐵

)] 𝑢0

+ 𝑒
𝜏𝑖𝐵

(𝐼 − 𝑒
2𝜏𝑖𝐵

)
−1

(𝑒
−𝑘𝜏𝑖𝐵

− 𝑒
𝑘𝜏𝑖𝐵

) 𝑢1

+ 𝜏
2
𝑘−1
∑

𝑚=1
𝑒
𝜏𝑖𝐵

(𝐼 − 𝑒
2𝜏𝑖𝐵

)
−1

(𝑒
−(𝑘−𝑚)𝜏𝑖𝐵

− 𝑒
(𝑘−𝑚)𝜏𝑖𝐵

) 𝑓𝑚,

2 ≤ 𝑘 ≤ 𝑁.

(122)

Now, we will consider the applications of exact difference
scheme (121). From (121), it is clear that for the approximate
solutions of problem (109) it is necessary to approximate the
expressions

𝑆 (𝜏, 𝐴) , 𝐶 (𝜏, 𝐴) , ∫

𝑡𝑘

𝑡𝑘−1

𝑆 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑧,

∫

𝑡𝑘

𝑡𝑘−1

𝐶 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑧.

(123)

Let us remark that in constructing difference schemes it
is important to know how to construct 𝑓𝑗,𝑙

𝑘
and 𝑓

𝑗,𝑙

1,1 such that

𝜏
−2

∫

𝑡𝑘+1

𝑡𝑘

𝑆 (𝑡𝑘+1 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑧 − 𝐶 (𝜏, 𝐴) 𝜏
−2

⋅ ∫

𝑡𝑘

𝑡𝑘−1

𝑆 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑧

+ 𝑆 (𝜏, 𝐴) 𝜏
−2

∫

𝑡𝑘

𝑡𝑘−1

𝐶 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑧

− 𝑓
𝑗,𝑙

𝑘
= 𝑜 (𝜏

𝑗+𝑙
) ,

𝜏
−1

∫

𝜏

0
𝑆 (𝜏 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑧 − 𝑓

𝑗,𝑙

1,1 = 𝑜 (𝜏
𝑗+𝑙

) ,

(124)

and the formulas of 𝑓𝑗,𝑙

𝑘
and 𝑓

𝑗,𝑙

1,1 are sufficiently simple. The
choice of 𝑓𝑗,𝑙

𝑘
and 𝑓

𝑗,𝑙

1,1 is not unique. Using Taylor’s formula
and integration by parts, we obtain the representation

𝜏
−2

∫

𝑡𝑘

𝑡𝑘−1

𝑆 (𝑡𝑘 − 𝑧) 𝑓 (𝑧) 𝑑𝑧

=

𝑗+𝑙−1

∑

𝑚=0
𝛽𝑚𝑓

(𝑚)
(𝑡𝑘−1)

+ 𝜏
−2

∫

𝑡𝑘

𝑡𝑘−1

𝑆 (𝑡𝑘 − 𝑧, 𝐴)

⋅ ∫

𝑠

𝑡𝑘−1

(𝑠 − 𝑧)
𝑗+𝑙−1

(𝑗 + 𝑙 − 1)!
𝑓
(𝑗+𝑙)

(𝑧) 𝑑𝑧 𝑑𝑠,

(125)

in which

𝛽𝑚 = −𝐴
−1 𝜏

𝑚−2

𝑚!
+ 𝐴

−1
𝛽𝑚−2, 2 ≤ 𝑚 ≤ 𝑗 + 𝑙 − 1,

𝛽0 = 𝜏
−2
𝐴
−1

(𝐶 (𝜏, 𝐴) − 𝐼) ,

𝛽1 = 𝜏
−2
𝐴
−1

(𝑆 (𝜏, 𝐴) − 𝜏𝐼) .

(126)

In a similar manner, one can obtain that

𝜏
−2

∫

𝑡𝑘

𝑡𝑘−1

𝐶 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑧

=

𝑗+𝑙−1

∑

𝑚=0
𝛾𝑚𝑓

(𝑚)
(𝑡𝑘−1)

+ 𝜏
−2

∫

𝑡𝑘

𝑡𝑘−1

𝐶 (𝑡𝑘 − 𝑧, 𝐴)

⋅ ∫

𝑠

𝑡𝑘−1

(𝑠 − 𝑧)
𝑗+𝑙−1

(𝑗 + 𝑙 − 1)!
𝑓
(𝑗+𝑙)

(𝑧) 𝑑𝑧 𝑑𝑠,

(127)
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in which

𝛾𝑚 = 𝛽𝑚−1, 1 ≤ 𝑚 ≤ 𝑗 + 𝑙 − 1;

𝛾0 = 𝜏
−2
𝑆 (𝜏, 𝐴) .

(128)

Using the definitions of 𝑆(𝜏, 𝐴) and 𝐶(𝜏, 𝐴) and Padé
fractions 𝑅𝑗,𝑙+1(𝑧) for the function 𝑒

−𝑧, we can write

𝐶 (𝜏, 𝐴) =

𝑅𝑗,𝑙+1 (𝑖𝜏𝐵) + 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵)

2
+ 𝑜 (𝜏

𝑗+𝑙+2
) ,

𝑆 (𝜏, 𝐴) = 𝐵
−1𝑅𝑗,𝑙+1 (𝑖𝜏𝐵) − 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵)

2𝑖
+ 𝑜 (𝜏

𝑗+𝑙+2
) .

(129)

Now, using formulas (124), (125), (127), and (129),𝑓𝑗,𝑙

𝑘
and𝑓

𝑗,𝑙

1,1
can be defined by the following formulas:

𝑓
𝑗,𝑙

𝑘
=

𝑗+𝑙−1

∑

𝑚=0
𝐵𝑚𝑓

(𝑚)
(𝑡𝑘)

+ 𝐵
−1𝑅𝑗,𝑙+1 (𝑖𝜏𝐵) − 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵)

2𝑖

×

𝑗+𝑙−1

∑

𝑚=0
𝐵𝑚𝑓

(𝑚)
(𝑡𝑘−1)

−

𝑅𝑗,𝑙+1 (𝑖𝜏𝐵) + 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵)

2

𝑗+𝑙−1

∑

𝑚=0
𝐵𝑚𝑓

(𝑚)
(𝑡𝑘−1) ,

(130)

𝑓
𝑗,𝑙

1,1 =

𝑗+𝑙−2

∑

𝑚=0
𝐵𝑚𝑓

(𝑚)
(0) , 𝑓

𝑗,𝑙

0 = 𝜏𝑓
𝑗,𝑙

1,1, (131)

where

𝐵𝑚 = −𝐴
−1 𝜏

𝑚−2

𝑚!
+ 𝐴

−1
𝐵𝑚−2, 2 ≤ 𝑚 ≤ 𝑗 + 𝑙 − 1,

𝐵0 = 𝜏
−2
𝐴
−1

(

𝑅𝑗,𝑙+1 (𝑖𝜏𝐵) + 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵)

2
− 𝐼) ,

𝐵1 = 𝜏
−2
𝐴
−1

(𝐵
−1𝑅𝑗,𝑙+1 (𝑖𝜏𝐵) − 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵)

2𝑖
− 𝜏𝐼) ,

𝐵𝑚 = 𝐵𝑚−1, 1 ≤ 𝑚 ≤ 𝑗 + 𝑙 − 1;

𝐵0 = 𝜏
−2
𝐵
−1𝑅𝑗,𝑙+1 (𝑖𝜏𝐵) − 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵)

2𝑖
.

(132)

Now, using formulas (121), (130), and (131), we obtain the
difference schemes (𝑗 + 𝑙)th order of accuracy

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘 = 𝑓
𝑗,𝑙

𝑘
, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = V0,

𝐴 = 2𝜏−2 (𝐼 −

𝑅𝑗,𝑙+1 (𝑖𝜏𝐵) + 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵)

2
) ,

𝜏
−1

(𝑢1 − 𝑢0) = 𝜏
−1

(

𝑅𝑗,𝑙 (𝑖𝜏𝐵) + 𝑅𝑗,𝑙 (−𝑖𝜏𝐵)

2
− 𝐼) V0

+ 𝜏
−1
𝐵
−1𝑅𝑗,𝑙 (𝑖𝜏𝐵) − 𝑅𝑗,𝑙 (−𝑖𝜏𝐵)

2𝑖
V󸀠 (0)

+ 𝑓
𝑗,𝑙

0 ,

(133)

for the approximate solution of initial value problem (109).
Note that difference schemes (133) for 𝑗 = 𝑙, 𝑗 = 𝑙 −

1, and 𝑗 = 𝑙 + 1 include difference schemes of arbitrary
high order of approximation. Moreover, the corresponding
functions |𝑅𝑗,𝑙+1(𝑧)| tend to 0 as 𝑧 → ∞ for 𝑗 = 𝑙 − 1, 𝑙 and
|𝑅𝑗,𝑙+1(𝑧)| = 1 for 𝑗 = 𝑙 + 1. Such difference schemes are the
simplest, in the sense that the degrees of the denominators
of the corresponding Padé approximants of the function
exp{−𝑧} are minimal for a fixed order of approximation of
the difference schemes.

Suppose the operators (𝐼 − 𝑅
2
𝑗,𝑙
(𝑖𝜏𝐵)) and (𝐼 + 𝑅𝑗,𝑙(𝑖𝜏𝐵))

have the bounded inverses (𝐼 − 𝑅
2
𝑗,𝑙
(𝑖𝜏𝐵))

−1 and (𝐼 +

𝑅𝑗,𝑙(𝑖𝜏𝐵))
−1. It is clear that this problem is uniquely solvable

and the following formula holds:

𝑢𝑘 = [𝑅
𝑘

𝑗,𝑙
(−𝑖𝜏𝐵) − (𝐼 − 𝑅

2
𝑗,𝑙

(𝑖𝜏𝐵))
−1

⋅ (𝑅
𝑘

𝑗,𝑙
(−𝑖𝜏𝐵) − 𝑅

𝑘

𝑗,𝑙
(𝑖𝜏𝐵))] 𝑢0

+ 𝑅𝑗,𝑙 (𝑖𝜏𝐵) (𝐼 − 𝑅
2
𝑗,𝑙

(𝑖𝜏𝐵))
−1

⋅ (𝑅
𝑘

𝑗,𝑙
(−𝑖𝜏𝐵) − 𝑅

𝑘

𝑗,𝑙
(𝑖𝜏𝐵)) 𝑢1

+ 𝜏
2
𝑘−1
∑

𝑚=1
𝑅𝑗,𝑙 (𝑖𝜏𝐵) (𝐼 − 𝑅

2
𝑗,𝑙

(𝑖𝜏𝐵))
−1

⋅ [𝑅
𝑘−𝑚

𝑗,𝑙
(−𝑖𝜏𝐵) − 𝑅

𝑘−𝑚

𝑗,𝑙
(𝑖𝜏𝐵)] 𝑓

𝑗,𝑙

𝑚
,

2 ≤ 𝑘 ≤ 𝑁,

𝑢1 =

𝑅𝑗,𝑙 (𝑖𝜏𝐵) + 𝑅𝑗,𝑙 (−𝑖𝜏𝐵)

2
𝜑

+ 𝐵
−1𝑅𝑗,𝑙 (𝑖𝜏𝐵) − 𝑅𝑗,𝑙 (−𝑖𝜏𝐵)

2𝑖
𝜓 + 𝜏𝑓

𝑗,𝑙

0 ,

𝑢0 = 𝜑.

(134)
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Theorem 72. Suppose the operators (𝐼 − 𝑅
2
𝑗,𝑙
(𝑖𝜏𝐵)) and (𝐼 +

𝑅𝑗,𝑙(𝑖𝜏𝐵)) have the bounded inverses (𝐼 − 𝑅
2
𝑗,𝑙
(𝑖𝜏𝐵))

−1 and (𝐼 +

𝑅𝑗,𝑙(𝑖𝜏𝐵))
−1. Suppose that 𝑢0 ∈ 𝐷(𝐵

2
), 𝑢1 − 𝑢0 ∈ 𝐷(𝐵). Then

for the solution of two-step difference schemes (133) for 𝑗 = 𝑙

and 𝑗 = 𝑙 − 1 the following stability inequalities hold:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝐵
−1
𝑓
𝑗,𝑙

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐵
−1
𝜏
−1

(𝑢1 − 𝑢0)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝐻
] ,

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝐼 − 𝑒
−𝜏𝑖𝐵

) 𝑢𝑘−1
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗,𝑙

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢1 − 𝑢0)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐵𝑢0

󵄩󵄩󵄩󵄩𝐻
] ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
2≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑓
𝑗,𝑙

𝑘
− 𝑓

𝑗,𝑙

𝑘−1)
󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗,𝑙

1
󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐵𝜏

−1
(𝑢1 − 𝑢0)

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐵
2
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

(135)

where𝑀 does not depend on 𝜏, 𝑓𝑗,𝑙

𝑘
, 1 ≤ 𝑘 ≤ 𝑁 − 1, or 𝑢0, 𝑢1.

Theorem 73. Suppose the operators (𝐼 − 𝑅
2
𝑗,𝑙
(𝑖𝜏𝐵)) and (𝐼 +

𝑅𝑗,𝑙(𝑖𝜏𝐵)) have the bounded inverses (𝐼 − 𝑅
2
𝑗,𝑙
(𝑖𝜏𝐵))

−1 and (𝐼 +

𝑅𝑗,𝑙(𝑖𝜏𝐵))
−1. Suppose that 𝑢0 ∈ 𝐷(𝐵

3
), 𝑢1 − 𝑢0 ∈ 𝐷(𝐵

2
) and

𝑓
𝑗,𝑙

𝑘
∈ 𝐷(𝐵), 1 ≤ 𝑘 ≤ 𝑁 − 1. Then for the solution of two-

step difference schemes (133) for 𝑗 = 𝑙 + 1 the following stability
inequalities hold:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗,𝑙

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢1 − 𝑢0)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐵𝑢0

󵄩󵄩󵄩󵄩𝐻
] ,

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝐼 − 𝑒
−𝜏𝑖𝐵

) 𝑢𝑘−1
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝐵𝑓

𝑗,𝑙

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐵𝜏

−1
(𝑢1 − 𝑢0)

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐵
2
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
2≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝜏
−1
𝐵 (𝑓

𝑗,𝑙

𝑘
− 𝑓

𝑗,𝑙

𝑘−1)
󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝐵𝑓

𝑗,𝑙

1
󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐵
2
𝜏
−1

(𝑢1 − 𝑢0)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐵
3
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

(136)

where𝑀 does not depend on 𝜏, 𝑓𝑗,𝑙

𝑘
, 1 ≤ 𝑘 ≤ 𝑁 − 1, or 𝑢0, 𝑢1.

Now, abstract Theorems 72 and 73 are applied in the
investigation of difference schemes of higher order of accu-
racy with respect to one variable for approximate solutions
of mixed boundary value problem (115). The discretization of
problem (115) is carried out in two steps. In the first step let
us define the grid sets

Ωℎ = {𝑥 = 𝑥𝑚 = (ℎ1𝑚1, . . . , ℎ𝑛𝑚𝑛) , 𝑚 = (𝑚1, . . . , 𝑚𝑛) ,

0 ≤ 𝑚𝑟 ≤ 𝑁𝑟, ℎ𝑟𝑁𝑟 = 𝐿, 𝑟 = 1, . . . , 𝑛} ,

Ωℎ = Ωℎ ∩ Ω, 𝑆ℎ = Ωℎ ∩ 𝑆.

(137)

We introduce the Banach space 𝐿2(Ωℎ) of the grid functions
𝜑
ℎ
(𝑥) = {𝜑(ℎ1𝑚1, . . . , ℎ𝑛𝑚𝑛)} defined on Ωℎ, equipped with

the norm

󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

= ( ∑

𝑥∈Ωℎ

󵄨󵄨󵄨󵄨󵄨
𝜑
ℎ
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
ℎ1 ⋅ ⋅ ⋅ ℎ𝑛)

1/2

. (138)

To the differential operator𝐴𝑥 generated by problem (115), we
assign the difference operator 𝐴𝑥

ℎ
by the formula

𝐴
𝑥

ℎ
𝑢
ℎ

𝑥
= −Σ

𝑛

𝑟=1 (𝑎𝑟 (𝑥) 𝑢
ℎ

𝑥𝑟
)
𝑥𝑟 ,𝑗𝑟

(139)

acting in the space of grid functions 𝑢
ℎ
(𝑥), satisfying the

conditions 𝑢
ℎ
(𝑥) = 0 for all 𝑥 ∈ 𝑆ℎ. It is known that 𝐴𝑥

ℎ
is

a self-adjoint positive definite operator in 𝐿2(Ωℎ). With the
help of 𝐴𝑥

ℎ
, we arrive at the initial value problem:

𝑑
2Vℎ (𝑡, 𝑥)
𝑑𝑡2

+ 𝐴
𝑥

ℎ
Vℎ (𝑡, 𝑥) = 𝑓

ℎ
(𝑡, 𝑥) , 0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ Ωℎ,

Vℎ (0, 𝑥) = 𝜑
ℎ
(𝑥) ,

𝑑Vℎ (0, 𝑥)
𝑑𝑡

= 𝜓
ℎ
(𝑥) , 𝑥 ∈ Ωℎ

(140)

for an infinite system of ordinary differential equations.
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In the second step we replace problem (140) with differ-
ence schemes (133):

𝜏
−2

(𝑢
ℎ

𝑘+1 (𝑥) − 2𝑢ℎ
𝑘
(𝑥) + 𝑢

ℎ

𝑘−1 (𝑥)) + 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘
(𝑥) = 𝑓

ℎ

𝑘
(𝑥) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑥 ∈ Ωℎ,

𝑢
ℎ

0 (𝑥) = 𝜑
ℎ
(𝑥) ,

𝜏
−1

(𝑢
ℎ

1 (𝑥) − 𝑢
ℎ

0 (𝑥))

= 𝜏
−1

(

𝑅𝑗,𝑙 (𝑖𝜏𝐵
𝑥

ℎ
) + 𝑅𝑗,𝑙 (−𝑖𝜏𝐵

𝑥

ℎ
)

2
− 𝐼)𝜑

ℎ
(𝑥)

+ 𝜏
−1

(𝐵
𝑥

ℎ
)
−1

⋅

𝑅𝑗,𝑙 (𝑖𝜏𝐵
𝑥

ℎ
) − 𝑅𝑗,𝑙 (−𝑖𝜏𝐵

𝑥

ℎ
)

2𝑖
𝜓
ℎ
(𝑥) + 𝜏𝑓

ℎ

0 (𝑥) ,

𝑥 ∈ Ωℎ

𝐴
𝑥

ℎ
= 2𝜏−2 (𝐼 −

𝑅𝑗,𝑙+1 (𝑖𝜏𝐵
𝑥

ℎ
) + 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵

𝑥

ℎ
)

2
) ,

(𝐵
𝑥

ℎ
)
2
= 𝐴

𝑥

ℎ
,

𝑓
ℎ

𝑘
(𝑥)

=

𝑗+𝑙−1

∑

𝑚=0
𝐵𝑚𝑓

(𝑚)
(𝑡𝑘, 𝑥)

+ 𝐵
−1𝑅𝑗,𝑙+1 (𝑖𝜏𝐵

𝑥

ℎ
) − 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵

𝑥

ℎ
)

2𝑖

×

𝑗+𝑙−1

∑

𝑚=0
𝐵𝑚𝑓

(𝑚)
(𝑡𝑘−1, 𝑥)

−

𝑅𝑗,𝑙+1 (𝑖𝜏𝐵
𝑥

ℎ
) + 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵

𝑥

ℎ
)

2

𝑗+𝑙−1

∑

𝑚=0
𝐵𝑚𝑓

(𝑚)
(𝑡𝑘−1, 𝑥) ,

𝑓
ℎ

0 (𝑥) = 𝜏

𝑗+𝑙−2

∑

𝑚=0
𝐵𝑚𝑓

(𝑚)
(0, 𝑥) ,

(141)

where

𝐵𝑚 = − (𝐴
𝑥

ℎ
)
−1 𝜏

𝑚−2

𝑚!
+ (𝐴

𝑥

ℎ
)
−1

𝐵𝑚−2,

2 ≤ 𝑚 ≤ 𝑗 + 𝑙 − 1,

𝐵0 = 𝜏
−2

(𝐴
𝑥

ℎ
)
−1

(

𝑅𝑗,𝑙+1 (𝑖𝜏𝐵
𝑥

ℎ
) + 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵

𝑥

ℎ
)

2
− 𝐼) ,

𝐵1 = 𝜏
−2

(𝐴
𝑥

ℎ
)
−1

⋅ ((𝐵
𝑥

ℎ
)
−1 𝑅𝑗,𝑙+1 (𝑖𝜏𝐵

𝑥

ℎ
) − 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵

𝑥

ℎ
)

2𝑖
− 𝜏𝐼) ,

𝐵𝑚 = 𝐵𝑚−1, 1 ≤ 𝑚 ≤ 𝑗 + 𝑙 − 1,

𝐵0 = 𝜏
−2

(𝐵
𝑥

ℎ
)
−1 𝑅𝑗,𝑙+1 (𝑖𝜏𝐵

𝑥

ℎ
) − 𝑅𝑗,𝑙+1 (−𝑖𝜏𝐵

𝑥

ℎ
)

2𝑖
.

(142)

Theorem 74. Let 𝜏 and |ℎ| be sufficiently small numbers.Then
the solutions of difference schemes (141) for 𝑗 = 𝑙 and 𝑗 = 𝑙 − 1
satisfy the following stability estimates:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

≤ 𝑀1 [ max
0≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
(𝐵

𝑥

ℎ
)
−1

𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+
󵄩󵄩󵄩󵄩󵄩
(𝐵

𝑥

ℎ
)
−1

𝜓
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+
󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

] ,

max
0≤𝑘≤𝑁

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟𝑟𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+ max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢
ℎ

𝑘
− 𝑢

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

≤ 𝑀1 [ max
0≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+
󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
] ,

max
0≤𝑘≤𝑁

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟𝑥𝑟𝑟𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢
ℎ

𝑘+1 − 2𝑢ℎ
𝑘
+ 𝑢

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

≤ 𝑀1 [ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑓
ℎ

𝑘
− 𝑓

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+
󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

0
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+

𝑛

∑

𝑟=1
𝜏
−1 󵄩󵄩󵄩󵄩󵄩𝜓

ℎ

𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜑

ℎ

𝑥𝑟
)
𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
] .

(143)

Here 𝑀1 does not depend on 𝜏, ℎ, 𝜑ℎ
(𝑥), 𝜓ℎ

(𝑥), or 𝑓ℎ

𝑘
(𝑥), 0 ≤

𝑘 ≤ 𝑁 − 1.

Theorem 75. Let 𝜏 and |ℎ| be sufficiently small numbers.Then
the solutions of difference schemes (141) for 𝑗 = 𝑙 + 1 satisfy the
following stability estimates:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

≤ 𝑀1 [ max
0≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+
󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
] ,
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max
0≤𝑘≤𝑁

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟𝑟𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+ max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢
ℎ

𝑘
− 𝑢

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

≤ 𝑀1 [ max
0≤𝑘≤𝑁−1

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓

ℎ

𝑘
)
𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ

𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜑

ℎ

𝑥𝑟
)
𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
] ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢
ℎ

𝑘+1 − 2𝑢ℎ
𝑘
+ 𝑢

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+ max
0≤𝑘≤𝑁

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟𝑥𝑟𝑟𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

≤ 𝑀1 [ max
1≤𝑘≤𝑁−1

𝜏
−1

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓

ℎ

𝑘
)
𝑥𝑟 ,𝑚𝑟

− (𝑓
ℎ

𝑘−1)𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓

ℎ

0 )𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜓

ℎ

𝑥𝑟
)
𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

((𝜑
ℎ

𝑥𝑟
)
𝑥𝑟
)
𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

] .

(144)

Here 𝑀1 does not depend on 𝜏, ℎ, 𝜑ℎ
(𝑥), 𝜓ℎ

(𝑥), or 𝑓ℎ

𝑘
(𝑥),

0 ≤ 𝑘 ≤ 𝑁 − 1.

The proofs ofTheorems 74 and 75 are based onTheorems
72 and 73 and the symmetry property of the operator 𝐴

𝑥

ℎ

defined by formula (139) and the following theorem on the
coercivity inequality for the solution of the elliptic difference
problem in 𝐿2ℎ.

Theorem 76 (see [116]). For the solutions of the elliptic
difference problem

𝐴
𝑥

ℎ
𝑢
ℎ
(𝑥) = 𝜔

ℎ
(𝑥) , 𝑥 ∈ Ωℎ,

𝑢
ℎ
(𝑥) = 0, 𝑥 ∈ 𝑆ℎ,

(145)

the following coercivity inequality holds:

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

𝑥𝑟𝑥𝑟

󵄩󵄩󵄩󵄩󵄩𝐿2ℎ
≤ 𝑀

󵄩󵄩󵄩󵄩󵄩
𝜔
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

, (146)

where𝑀 does not depend on ℎ or 𝜔ℎ.

Note that in a similar manner one can construct the
difference schemes of a high order of accuracy with respect
to one variable for approximate solutions of boundary value
problem (113). Abstract Theorems 71 and 72 permit us to
obtain the stability estimates for solutions of these difference
schemes.

Second, we consider the high order of accuracy two-step
difference schemes generated by Taylor’s decomposition on
three points for the approximate solutions of initial value
problem (109).

Theorem77 (see [2]). Let the function V(𝑡) (0 ≤ 𝑡 ≤ 𝑇) have a
(2𝑙+2𝑗+2)th continuous derivative and 𝑡𝑘−1, 𝑡𝑘, 𝑡𝑘+1 ∈ [0, 𝑇]𝜏.
Then, one has the following Taylor decomposition on the three
points:

V (𝑡𝑘+1) − 2V (𝑡𝑘) + V (𝑡𝑘−1) −
𝑙

∑

𝑠=1
𝛼𝑠V

(2𝑠)
(𝑡𝑘) 𝜏

2𝑠

−

𝑗

∑

𝑠=1
𝜂𝑠 {V

(2𝑠)
(𝑡𝑘−1) + V(2𝑠) (𝑡𝑘+1)} 𝜏

2𝑠
= 𝑜 (𝜏

2𝑙+2𝑗+2
) ,

(147)

where 𝜂𝑚,𝑚 = 1, . . . , 𝑗, is the solution of system

𝜂𝑠 =
1

(2𝑠)!
−

𝑠−1
∑

𝑚=1

𝜂𝑚

(2𝑠 − 2𝑚)!
,

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠, 𝑙 + 1 ≤ 𝑠 ≤ 𝑗,

𝑗

∑

𝑚=1

(2𝑠)!𝜂𝑚
(2𝑠 − 2𝑚)!

= 1, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠, 𝑗 + 1 ≤ 𝑠 ≤ 𝑙 + 𝑗,

𝛼1 = 1 − 2𝜂1,

𝛼𝑠 = (
1

(2𝑠)!
− 𝜂𝑠 −

𝑠−1
∑

𝑚=1
𝜂𝑚

1
(2 (𝑠 − 𝑚))!

) 2

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠, 2 ≤ 𝑠 ≤ 𝑙.

(148)

Suppose further that the function V(𝑡) (0 ≤ 𝑡 ≤ 𝑇) has a
(2𝑙+2𝑗+1)th continuous derivative.Then, one has the following
Taylor decomposition on two points:

V (𝜏) − V (0) +
2𝑗

∑

𝑠=1
𝛿𝑠V

(𝑠)
(𝜏) 𝜏

𝑠

−

2𝑙
∑

𝑠=1
𝜌𝑠V

(𝑠)
(0) 𝜏𝑠 = 𝑜 (𝜏

2𝑙+2𝑗+1
) ,

(149)

where

𝜌𝑠 =
(2𝑙 + 2𝑗 − 𝑠)! (2𝑙)!
(2𝑙 + 2𝑗)!𝑠! (2𝑙 − 𝑠)!

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠, 1 ≤ 𝑠 ≤ 2𝑙,

𝛿𝑠 =
(2𝑙 + 2𝑗 − 𝑠)! (2𝑗)! (−1)𝑠

(2𝑙 + 2𝑗)!𝑠! (2𝑗 − 𝑠)!
𝑓𝑜𝑟 𝑎𝑛𝑦 𝑠, 1 ≤ 𝑠 ≤ 2𝑗.

(150)

Now, we will consider the applications of Taylor’s decom-
position (147) of the function V(𝑡) on the three points and
Taylor’s decomposition (149) of the function V(𝑡) on the two
points to approximate solutions of initial value problem (109).
From (147) and (149), it is clear that for the approximate
solution of problem (109) it is necessary to find V(𝑗)(𝜏) for any
𝑠, 1 ≤ 𝑠 ≤ 2𝑙, V(2𝑠)(𝑡𝑘) for any 𝑠, 1 ≤ 𝑠 ≤ 𝑙, and V(2𝑠)(𝑡𝑘−1),
V(2𝑠)(𝑡𝑘+1) for any 𝑠, 1 ≤ 𝑠 ≤ 𝑗. Using the equation

V󸀠󸀠 (𝑡) = −𝐴V (𝑡) + 𝑓 (𝑡) , (151)
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we obtain

V(2𝑛) (𝑡) = (−𝐴)
𝑛 V (𝑡)

+

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(𝑡) , 𝑛 = 2, . . . ,
(152)

V(2𝑛+1) (𝑡) = (−𝐴)
𝑛 V󸀠 (𝑡)

+

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(𝑡) , 𝑛 = 1, . . . .
(153)

Suppose further that the function V(𝑡) (0 ≤ 𝑡 ≤ 𝑇) has a
(2𝑙 + 2𝑗 − 2𝑚+ 2)th continuous derivative. Then, we have the
following Taylor decomposition on two points:

V (𝜏) − V (0) +
2𝑙−2[𝑚/2]

∑

𝑠=1
𝑎𝑠V

(𝑠)
(𝜏) 𝜏

𝑠

−

2𝑗−2𝑚+2[𝑚/2]+1

∑

𝑠=1
𝑏𝑠V

(𝑠)
(0) 𝜏𝑠 = 𝑜 (𝜏

2𝑙+2𝑗−2𝑚+2
) ,

(154)

where

𝑎𝑠 =
(2𝑙 + 2𝑗 − 2𝑚 + 1 − 𝑠)! (2𝑙 − 2 [𝑚/2])! (−1)𝑠

(2𝑙 + 2𝑗 + 1 − 2𝑚)!𝑠! (2𝑝 − 2 [𝑚/2] − 𝑠)!

for any 𝑠, 1 ≤ 𝑠 ≤ 2𝑙 − 2 [𝑚
2
] ,

𝑏𝑠 =
(2𝑙 + 2𝑗 + 1 − 2𝑚 − 𝑠)! (2𝑗 − 2𝑚 + 2 [𝑚/2] + 1)!
(2𝑙 + 2𝑗 + 1 − 2𝑚)!𝑠! (2𝑗 − 2𝑚 + 2 [𝑚/2] + 1 − 𝑠)!

for any 𝑠, 1 ≤ 𝑠 ≤ 2𝑗 − 2𝑚 + 2 [𝑚
2
] + 1,

(155)

where [𝑎] denotes the integer part of the number 𝑎. Further
using formulas (152), (153), and (154), we can write

V󸀠 (𝜏) − V󸀠 (0) +
𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛 V󸀠 (𝜏) 𝜏2𝑛

+

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(𝜏) 𝜏
2𝑛

+

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴)

𝑛 V (𝜏) 𝜏2𝑛−1

+

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(𝜏) 𝜏
2𝑛−1

−

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛 (−𝐴)

𝑛 V󸀠 (0) 𝜏2𝑛

−

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(0) 𝜏2𝑛

−

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1 (−𝐴)

𝑛 V (0) 𝜏2𝑛−1

−

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(0) 𝜏2𝑛−1

= 𝑜 (𝜏
2𝑙+2𝑗−2𝑚+2

) , 0 ≤ 𝑚 ≤ 𝑗 − 1.
(156)

From the last formula it follows that

(𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
) V󸀠 (𝜏)

= (𝐼 +

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
) V󸀠 (0)

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴)

𝑛 V (𝜏) 𝜏2𝑛−1

+

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1 (−𝐴)

𝑛 V (0) 𝜏2𝑛−1

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(𝜏) 𝜏
2𝑛

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(𝜏) 𝜏
2𝑛−1

+

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(0) 𝜏2𝑛

+

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(0) 𝜏2𝑛−1

+ 𝑜 (𝜏
2𝑙+2𝑗−2𝑚+2

) , 0 ≤ 𝑚 ≤ 𝑗 − 1.
(157)
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Suppose further that the operator (𝐼 + ∑
𝑙−[𝑚/2]
𝑛=1 𝑎2𝑛(−𝐴)

𝑛
𝜏
2𝑛
)

has a bounded inverse. Then

V󸀠 (𝜏) = (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

− 1

⋅ {(𝐼 +

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
) V󸀠 (0)

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴)

𝑛 V (𝜏) 𝜏2𝑛−1

+

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1 (−𝐴)

𝑛 V (0) 𝜏2𝑛−1

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(𝜏) 𝜏
2𝑛

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(𝜏) 𝜏
2𝑛−1

+

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(0) 𝜏2𝑛

+

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(0) 𝜏2𝑛−1}

+ 𝑜 (𝜏
2𝑙+2𝑗−2𝑚+2

) , 0 ≤ 𝑚 ≤ 𝑗 − 1.
(158)

Now, using formulas (147), (149), (152), (153), (154), and (158),
we obtain the difference schemes of a (2𝑙 + 2𝑗)th order of
accuracy:

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

−

𝑙

∑

𝑠=1
𝛼𝑠 (−𝐴)

𝑠
𝜏
2𝑠−2

𝑢𝑘

−

𝑗

∑

𝑠=1
𝜂𝑠 (−𝐴)

𝑠
𝜏
2𝑠−2

(𝑢𝑘−1 + 𝑢𝑘+1) = 𝑓
𝑗,𝑙

𝑘
,

𝑓
𝑗,𝑙

𝑘
=

𝑗

∑

𝑠=1
𝜂𝑠

𝑠

∑

𝜆=1
(−𝐴)

𝑠−𝜆

⋅ (𝑓
(2𝜆−2)

(𝑡𝑘+1) + 𝑓
(2𝜆−2)

(𝑡𝑘−1)) 𝜏
2𝑠−2

+

𝑙

∑

𝑠=1
𝛼𝑠

𝑠

∑

𝜆=1
(−𝐴)

𝑠−𝜆
𝑓
(2𝜆−2)

(𝑡𝑘) 𝜏
2𝑠−2

,

1 ≤ 𝑘 ≤ 𝑁 − 1,
𝑢0 = V0,

𝑢1 − 𝑢0
𝜏

−

𝑙

∑

𝑛=1
𝜌2𝑛 (−𝐴)

𝑛
𝜏
2𝑛−1V (0)

−

𝑙

∑

𝑛=1
𝜌2𝑛−1 (−𝐴)

𝑛−1
𝜏
2𝑛−2V󸀠 (0)

+

𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴)

𝑛
𝜏
2𝑛−1

𝑢1 +

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴)

𝑚
𝜏
2𝑚−2

× (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

−1

⋅ {(𝐼 +

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
) V󸀠 (0)

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴)

𝑛
𝜏
2𝑛−1

𝑢1

+

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1 (−𝐴)

𝑛
𝜏
2𝑛−1V (0)}

=

𝑙

∑

𝑛=1
𝜌2𝑛 (−𝐴)

𝑛
𝜏
2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(0)

+

𝑙

∑

𝑛=1
𝜌2𝑛−1 (−𝐴)

𝑛−1
𝜏
2𝑛−2

⋅

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(0)

−

𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴)

𝑛
𝜏
2𝑛−1

⋅

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(𝜏)

−

𝑗

∑

𝑛=1
𝛿2𝑛−1 (−𝐴)

𝑛
𝜏
2𝑛−2

⋅

𝑛−1
∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(𝜏)

−

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴)

𝑚
𝜏
2𝑚−2

⋅ (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

−1

⋅ (𝐼 +

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

⋅ {−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(𝜏) 𝜏
2𝑛

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(𝜏) 𝜏
2𝑛−1
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+

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(0) 𝜏2𝑛

+

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1

⋅

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(0) 𝜏2𝑛−1} ,

(159)

for the approximate solution of initial value problem (109).
Suppose that the operator

(𝐼 +

𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴)

𝑛
𝜏
2𝑛

−

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴)

𝑚
𝜏
2𝑚−1

⋅ (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

−1
𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴)

𝑛
𝜏
2𝑛−1

)

(160)

has a bounded inverse. Suppose further that the operator (𝐼−
∑

𝑗

𝑠=1 𝜂𝑠(−𝐴)
𝑠
𝜏
2𝑠
) has a bounded inverse and

𝐼 −
1
4
(2𝐼 +

𝑙

∑

𝑠=1
𝛼𝑠 (−𝐴)

𝑠
𝜏
2𝑠
)

2

(𝐼 −

𝑗

∑

𝑠=1
𝜂𝑠 (−𝐴)

𝑠
𝜏
2𝑠
)

−2

≥ 0.
(161)

This problem is uniquely solvable and the following formula
holds:

𝑢𝑘 = (𝑅̃𝑗,𝑙 (−𝑖𝜏𝐴) − 𝑅̃𝑗,𝑙 (𝑖𝜏𝐴))
−1

𝑅̃𝑗,𝑙 (𝑖𝜏𝐴)

⋅ 𝑅̃𝑗,𝑙 (−𝑖𝜏𝐴) (𝑅̃
𝑘−1
𝑗,𝑙

(𝑖𝜏𝐴) − 𝑅̃
𝑘−1
𝑗,𝑙

(−𝑖𝜏𝐴)) 𝑢0

+ (𝑅̃𝑗,𝑙 (−𝑖𝜏𝐴) − 𝑅̃𝑗,𝑙 (𝑖𝜏𝐴))
−1

⋅ (𝑅̃
𝑘

𝑗,𝑙
(−𝑖𝜏𝐴) − 𝑅̃

𝑘

𝑗,𝑙
(𝑖𝜏𝐴)) 𝑢1

+

𝑘

∑

𝑗=1
(𝑅̃𝑗,𝑙 (−𝑖𝜏𝐴) − 𝑅̃𝑗,𝑙 (𝑖𝜏𝐴))

−1
𝑗,𝑙

𝑅̃𝑗,𝑙 (𝑖𝜏𝐴) 𝑅̃𝑗,𝑙 (−𝑖𝜏𝐴)

× (𝑅̃
𝑘−𝑚

𝑗,𝑙
(−𝑖𝜏𝐴) − 𝑅̃

𝑘−𝑚

𝑗,𝑙
(𝑖𝜏𝐴))

⋅ (𝐼 −

𝑗

∑

𝑠=1
𝜂𝑠 (−𝐴)

𝑠
𝜏
2𝑠
)

−1

𝑓
𝑗,𝑙

𝑚
, 2 ≤ 𝑘 ≤ 𝑁,

𝑢1 = 𝑐𝜏𝜑 + 𝑠𝜏𝜓 + 𝜏𝑓
𝑗,𝑙

0 .

(162)

Here

𝑅̃𝑗,𝑙 (±𝑖𝜏𝐴)

=
1
2
(2𝐼 +

𝑙

∑

𝑠=1
𝛼𝑠 (−𝐴)

𝑠
𝜏
2𝑠
)(𝐼 −

𝑗

∑

𝑠=1
𝜂𝑠 (−𝐴)

𝑠
𝜏
2𝑠
)

−1

± 𝑖(𝐼 −
1
4
(2𝐼 +

𝑙

∑

𝑠=1
𝛼𝑠 (−𝐴)

𝑠
𝜏
2𝑠
)

2

⋅ (𝐼 −

𝑗

∑

𝑠=1
𝜂𝑠 (−𝐴)

𝑠
𝜏
2𝑠
)

−2

)

1/2

,

𝑐𝜏 = (𝐼 +

𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴)

𝑛
𝜏
2𝑛

−

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴)

𝑚
𝜏
2𝑚−1

× (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

−1

⋅

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴)

𝑛
𝜏
2𝑛−1

)

−1

× {

𝑙

∑

𝑛=1
𝜌2𝑛 (−𝐴)

𝑛
𝜏
2𝑛−1

+

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴)

𝑚
𝜏
2𝑚−2

× (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

−1

⋅

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1 (−𝐴)

𝑛
𝜏
2𝑛−1

} ,

𝑠𝜏 = (𝐼 +

𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴)

𝑛
𝜏
2𝑛

−

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴)

𝑚
𝜏
2𝑚−1

× (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

−1

⋅

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴)

𝑛
𝜏
2𝑛−1

)

−1

× {

𝑙

∑

𝑛=1
𝜌2𝑛−1 (−𝐴)

𝑛−1
𝜏
2𝑛−2
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+

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴)

𝑚
𝜏
2𝑚−2

× (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

−1

⋅ (𝐼 +

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)} ,

𝑓
𝑗,𝑙

0 =

𝑙

∑

𝑛=1
𝜌2𝑛 (−𝐴)

𝑛
𝜏
2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(0)

+

𝑙

∑

𝑛=1
𝜌2𝑛−1 (−𝐴)

𝑛−1
𝜏
2𝑛−2

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(0)

−

𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴)

𝑛
𝜏
2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(𝜏)

−

𝑗

∑

𝑛=1
𝛿2𝑛−1 (−𝐴)

𝑛
𝜏
2𝑛−2

𝑛−1
∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(𝜏)

−

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴)

𝑚
𝜏
2𝑚−2

(𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

−1

⋅ (𝐼 +

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

⋅ {−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(𝜏) 𝜏
2𝑛

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(𝜏) 𝜏
2𝑛−1

+

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−1)

(0) 𝜏2𝑛

+

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1

𝑛

∑

𝜆=1
(−𝐴)

𝑛−𝜆
𝑓
(2𝜆−2)

(0) 𝜏2𝑛−1} .

(163)

From formula (162), it follows that the investigation of the
stability of difference schemes (159) relies in an essential
manner on a number of properties of the powers of the
operator 𝑅̃𝑗,𝑙(±𝑖𝜏𝐴). We were not able to obtain the estimates
for powers of the operator 𝑅̃𝑗,𝑙(±𝑖𝜏𝐴) in the general cases of
numbers 𝑗 and 𝑙.

Theorem 78 (see [2]). Suppose that 𝑢0 ∈ 𝐷(𝐴), 𝑢1 − 𝑢0 ∈

𝐷(𝐴
1/2

). Then for the solution of two-step difference schemes
(159) for 𝑙 = 0 the following stability inequalities hold:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝐴
−1
𝑓
𝑗,𝑙

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜏
−1

(𝑢1 − 𝑢0)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝐻
] ,

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗,𝑙

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢1 − 𝑢0)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢0

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
2≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑓
𝑗,𝑙

𝑘
− 𝑓

𝑗,𝑙

𝑘−1)
󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑓
𝑗,𝑙

1
󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜏
−1

(𝑢1 − 𝑢0)
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝑢0

󵄩󵄩󵄩󵄩𝐻
] ,

(164)

where𝑀 does not depend on 𝜏, 𝑓𝑗,𝑙

𝑘
, 1 ≤ 𝑘 ≤ 𝑁 − 1, or 𝑢0, 𝑢1.

Note that the assumptions of Theorem 78 actually hold
in the general cases of numbers 𝑗 and 𝑙 under the following
assumption:

𝜏 ‖𝐴‖𝐻→𝐻 󳨀→ 0 when 𝜏 󳨀→ 0. (165)

Now, abstract Theorem 78 is applied in the investigation
of difference schemes of higher order of accuracywith respect
to one variable for approximate solutions of mixed boundary
value problem (115).The first step of discretization of problem
(115) is given above. Suppose that the operator

(𝐼 +

𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴)

𝑛
𝜏
2𝑛

−

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴)

𝑚
𝜏
2𝑚−1

⋅ (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴)

𝑛
𝜏
2𝑛
)

−1

⋅

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴)

𝑛
𝜏
2𝑛−1

)

(166)

has a bounded inverse. Suppose further that the operator (𝐼−
∑

𝑗

𝑠=1 𝜂𝑠(−𝐴
𝑥

ℎ
)
𝑠
𝜏
2𝑠
) has a bounded inverse and

𝐼 −
1
4
(2𝐼 +

𝑙

∑

𝑠=1
𝛼𝑠 (−𝐴

𝑥

ℎ
)
𝑠
𝜏
2𝑠
)

2

⋅ (𝐼 −

𝑗

∑

𝑠=1
𝜂𝑠 (−𝐴

𝑥

ℎ
)
𝑠
𝜏
2𝑠
)

−2

≥ 0.

(167)
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Then in the second step we replace problem (140) with
difference schemes (159):

𝜏
−2

(𝑢
ℎ

𝑘+1 (𝑥) − 2𝑢ℎ
𝑘
(𝑥) + 𝑢

ℎ

𝑘−1 (𝑥)) + 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘
(𝑥)

+ 𝐴𝐴
𝑥

ℎ
(𝑢

ℎ

𝑘+1 (𝑥) + 𝑢
ℎ

𝑘−1 (𝑥)) = 𝑓
ℎ

𝑘
(𝑥) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑥 ∈ Ωℎ,

𝐴
𝑥

ℎ
= −

𝑙

∑

𝑠=1
𝛼𝑠 (−𝐴

𝑥

ℎ
)
𝑠
𝜏
2𝑠−2

,

𝐴𝐴
𝑥

ℎ
= −

𝑗

∑

𝑠=1
𝜂𝑠 (−𝐴

𝑥

ℎ
)
𝑠
𝜏
2𝑠−2

,

𝑓
ℎ

𝑘
(𝑥) =

𝑗

∑

𝑠=1
𝜂𝑠

𝑠

∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑠−𝜆

⋅ (𝑓
(2𝜆−2)

(𝑡𝑘+1, 𝑥) + 𝑓
(2𝜆−2)

(𝑡𝑘−1, 𝑥)) 𝜏
2𝑠−2

+

𝑙

∑

𝑠=1
𝛼𝑖

𝑠

∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑠−𝜆

𝑓
(2𝜆−2)

(𝑡𝑘, 𝑥) 𝜏
2𝑠−2

,

1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢
ℎ

1 (𝑥) = 𝑐𝜏𝜑
ℎ
(𝑥) + 𝑠𝜏𝜓

ℎ
(𝑥) + 𝜏𝑓

ℎ

0 (𝑥) , 𝑥 ∈ Ωℎ,

𝑐𝜏 = (𝐼 +

𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛

−

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴

𝑥

ℎ
)
𝑚
𝜏
2𝑚−1

× (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛
)

−1

⋅

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛−1

)

−1

× {

𝑙

∑

𝑛=1
𝜌2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛−1

+

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴

𝑥

ℎ
)
𝑚
𝜏
2𝑚−2

× (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛
)

−1

⋅

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛−1

} ,

𝑠𝜏 = (𝐼 +

𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛

−

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴

𝑥

ℎ
)
𝑚
𝜏
2𝑚−1

× (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛
)

−1

⋅

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛−1

)

−1

× {

𝑙

∑

𝑛=1
𝜌2𝑛−1 (−𝐴

𝑥

ℎ
)
𝑛−1

𝜏
2𝑛−2

+

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴

𝑥

ℎ
)
𝑚
𝜏
2𝑚−2

× (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛
)

−1

⋅ (𝐼 +

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛
)} ,

𝑓
ℎ

0 (𝑥)

=

𝑙

∑

𝑛=1
𝜌2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛−1

⋅

𝑛

∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑛−𝜆

𝑓
(2𝜆−2)

(0, 𝑥) +
𝑙

∑

𝑛=1
𝜌2𝑛−1 (−𝐴

𝑥

ℎ
)
𝑛−1

𝜏
2𝑛−2

⋅

𝑛

∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑛−𝜆

𝑓
(2𝜆−1)

(0, 𝑥) −
𝑗

∑

𝑛=1
𝛿2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛−1

⋅

𝑛

∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑛−𝜆

𝑓
(2𝜆−2)

(𝜏, 𝑥) −

𝑗

∑

𝑛=1
𝛿2𝑛−1 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛−2

⋅

𝑛−1
∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑛−𝜆

𝑓
(2𝜆−1)

(𝜏, 𝑥) −

𝑗

∑

𝑚=1
𝛿2𝑚−1 (−𝐴

𝑥

ℎ
)
𝑚
𝜏
2𝑚−2

⋅ (𝐼 +

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛
)

−1

× (𝐼 +

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛 (−𝐴

𝑥

ℎ
)
𝑛
𝜏
2𝑛
)

⋅ { −

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛

𝑛

∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑛−𝜆

𝑓
(2𝜆−1)

(𝜏, 𝑥) 𝜏
2𝑛

−

𝑙−[𝑚/2]
∑

𝑛=1
𝑎2𝑛−1

𝑛

∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑛−𝜆

𝑓
(2𝜆−2)

(𝜏, 𝑥) 𝜏
2𝑛−1

+

𝑗−𝑚+[𝑚/2]

∑

𝑛=1
𝑏2𝑛

𝑛

∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑛−𝜆

𝑓
(2𝜆−1)

(0, 𝑥) 𝜏2𝑛

+

𝑗−𝑚+[𝑚/2]+1

∑

𝑛=1
𝑏2𝑛−1

𝑛

∑

𝜆=1
(−𝐴

𝑥

ℎ
)
𝑛−𝜆

𝑓
(2𝜆−2)

(0, 𝑥) 𝜏2𝑛−1} .

(168)

We have the following.
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Theorem 79 (see [2]). Let 𝜏 and |ℎ| be sufficiently small
numbers. Then the solutions of difference schemes (168) for
𝑙 = 0 satisfy the following stability estimates:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

≤ 𝑀1 [ max
0≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
(𝐵

𝑥

ℎ
)
−1

𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+
󵄩󵄩󵄩󵄩󵄩
(𝐵

𝑥

ℎ
)
−1

𝜓
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+
󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

] ,

max
0≤𝑘≤𝑁

𝑚

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟𝑟𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
+ max

1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢
ℎ

𝑘
− 𝑢

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

≤ 𝑀1 [ max
0≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+
󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ

𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
] ,

max
0≤𝑘≤𝑁

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟𝑥𝑟𝑟𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢
ℎ

𝑘+1 − 2𝑢ℎ
𝑘
+ 𝑢

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

≤ 𝑀1 [ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑓
ℎ

𝑘
− 𝑓

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+
󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

0
󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝜓
ℎ

𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
+

𝑛

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝜑

ℎ

𝑥𝑟
)
𝑥𝑟 ,𝑚𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)
] .

(169)

Here 𝑀1 does not depend on 𝜏, ℎ, 𝜑ℎ
(𝑥), 𝜓ℎ

(𝑥), or 𝑓ℎ

𝑘
(𝑥), 0 ≤

𝑘 ≤ 𝑁 − 1.

The proof ofTheorem 79 is based onTheorem 78 and the
symmetry property of the operator 𝐴

𝑥

ℎ
defined by formula

(139) and Theorem 76 on the coercivity inequality for the
solution of the elliptic difference problem in 𝐿2ℎ.

In a similar manner one can construct the difference
schemes of a high order of accuracy with respect to one vari-
able for approximate solutions of boundary value problem
(113). Abstract Theorem 78 permits us to obtain the stability
estimates for the solutions of these difference schemes.

Note that most high orders of accuracy absolutely stable
difference schemes for approximate solutions of problem
(109) were generated by square roots of 𝐴. This action is
very difficult to accomplish. Therefore, in spite of theoretical
results, the role of their application to a numerical solution

for an initial value problem is not great. Finally, in [117, 118],
the third order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)

+
2
3
𝐴𝑢𝑘 +

1
6
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) +

1
12

𝜏
2
𝐴

2
𝑢𝑘+1

= 𝑓𝑘,

𝑓𝑘 =
2
3
𝑓 (𝑡𝑘) +

1
6
(𝑓 (𝑡𝑘+1) + 𝑓 (𝑡𝑘−1))

−
1
12

𝜏
2
(−𝐴𝑓 (𝑡𝑘+1) + 𝑓

󸀠󸀠
(𝑡𝑘+1)) ,

1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝜑,

(𝐼 +
𝜏
2

12
𝐴 +

𝜏
4

144
𝐴

2
)𝜏

−1
(𝑢1 − 𝑢0)

= −
𝜏

2
𝐴𝜑 + (𝐼 −

𝜏
2

12
𝐴)𝜓 + 𝑓1,1𝜏,

𝑓1,1 = 𝑓 (0) + (−𝑓 (0) + 𝜏𝑓
󸀠
(0)) 1

2
− 2𝑓󸀠

(0) 𝜏
6

(170)

and the fourth order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
5
6
𝐴𝑢𝑘

+
1
12

𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) −
𝜏
2

72
𝐴

2
𝑢𝑘

+
𝜏
2

144
𝐴

2
(𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓𝑘,

𝑓𝑘 =
5
6
𝑓 (𝑡𝑘) +

1
12

(𝑓 (𝑡𝑘+1) + 𝑓 (𝑡𝑘−1))

+
𝜏
2

72
(−𝐴𝑓 (𝑡𝑘) + 𝑓

󸀠󸀠
(𝑡𝑘)) −

1
144

𝜏
2

⋅ (−𝐴 (𝑓 (𝑡𝑘+1) + 𝑓 (𝑡𝑘−1)) + 𝑓
󸀠󸀠
(𝑡𝑘+1) + 𝑓

󸀠󸀠
(𝑡𝑘−1)) ,

1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑡𝑘 = 𝑘𝜏, 𝑁𝜏 = 1,
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𝑢0 = 𝜑,

(𝐼 +
𝜏
2
𝐴

12
+

𝜏
4
𝐴

2

144
)𝜏

−1
(𝑢1 − 𝑢0)

= −
𝜏

2
𝐴𝜑 + (𝐼 −

𝜏
2
𝐴

12
)𝜓 + 𝑓2,2𝜏,

𝑓2,2 = {(𝐼 −
𝜏
2
𝐴

12
)𝑓 (0)

+ (−(𝐼 −
5𝜏2𝐴
12

)𝑓 (0) + 𝜏𝑓
󸀠
(0)) 1

2

+ (−𝐴𝜏𝑓 (0) − 2𝑓󸀠
(0) + 𝜏𝑓

󸀠󸀠
(0)) 𝜏

6

+ (𝐴𝑓 (0) − 3𝑓󸀠󸀠
(0)) 𝜏

2

24
}

(171)

for the approximate solution of initial value problem (109)
generated by the integer powers of the operator 𝐴 were
presented.

Theorem 80. Let 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈ 𝐷(𝐴
1/2

), and 𝑓1,1 ∈

𝐷(𝐴
1/2

). Then, for the solution of difference scheme (170), the
following stability estimates hold:

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓1,1
󵄩󵄩󵄩󵄩󵄩𝐻

} ,

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
+ max

1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘 − 𝑢𝑘−1
𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ 𝜏

󵄩󵄩󵄩󵄩𝑓1,1
󵄩󵄩󵄩󵄩𝐻

} ,

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴

1/2 𝑢𝑘 − 𝑢𝑘−1
𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓1,1

󵄩󵄩󵄩󵄩󵄩𝐻
} ,

(172)

where𝑀 does not depend on 𝜏, 𝜑, 𝜓, 𝑓1,1, or 𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁− 1.

Theorem81. Let 𝜑 ∈ 𝐷(𝐴),𝜓 ∈ 𝐷(𝐴
1/2

), and𝑓2,2 ∈ 𝐷(𝐴
1/2

).
Then, for the solution of difference scheme (171), the following
stability estimates hold:

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘 + 𝑢𝑘−1
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓2,2
󵄩󵄩󵄩󵄩󵄩𝐻

} ,

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴

1/2 𝑢𝑘 + 𝑢𝑘−1
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ 𝜏

󵄩󵄩󵄩󵄩𝑓2,2
󵄩󵄩󵄩󵄩𝐻

} ,

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴
𝑢𝑘 + 𝑢𝑘−1

2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴

1/2 𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓2,2

󵄩󵄩󵄩󵄩󵄩𝐻
} ,

(173)

where𝑀 does not depend on 𝜏, 𝜑, 𝜓, 𝑓1,1, or𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁−1.

Note that in a similar manner one can construct the
difference schemes of third and fourth order of accuracy with
respect to one variable for approximate solutions of boundary
value problems (113) and (115). Abstract Theorems 80 and 81
permit us to obtain the stability estimates for the solutions
of these difference schemes. A finite difference method and
some results of numerical experiments are presented in order
to support theoretical statements.

Note that we have not been able to obtain a sharp
estimate for the constants figuring in the stability inequality.
In [66, 67], numerical experiments of the initial-boundary
value problem for the wave equation with nonhomogeneous
cylindrical shells and for the one-dimensional hyperbolic
partial differential with variable coefficients were proposed to
obtain the constants figuring in the stability inequality.

Finally, in [119], the boundary value problems for 2𝑘th
order partial differential equations were investigated. Well-
posedness of two boundary value problems for partial dif-
ferential equations in the cases of even and odd 𝑘 was
established. Note that solvability results were dependent on
the evenness and oddness of the number 𝑘.
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7.2. A Cauchy Problem with 𝑡-Dependent 𝐴(𝑡) Operators
Coefficients. We consider the abstract Cauchy problem for
the hyperbolic equations

V󸀠󸀠 (𝑡) + 𝐴 (𝑡) V (𝑡) = 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ;

V (0) = 𝜑, V󸀠 (0) = 𝜓

(174)

in Hilbert space 𝐻 with the self-adjoint positive definite
operators 𝐴(𝑡) in 𝐻 with 𝑡-independent domain 𝐷 =

𝐷(𝐴(𝑡)).
Function V(𝑡) is called a solution of problem (174) if the

following conditions are satisfied:

(i) V(𝑡) is twice continuously differentiable on the seg-
ment [0, 𝑇].

(ii) The element V(𝑡) belongs to𝐷 for all 𝑡 ∈ [0, 𝑇] and the
function𝐴(𝑡)V(𝑡) is continuous on the segment [0, 𝑇].

(iii) V(𝑡) satisfies the equation and initial conditions (174).

Of great interest is the study of absolutely stable difference
schemes of a high order of accuracy for hyperbolic partial
differential equations. Such type of stability inequalities for
the solutions of the first order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑘𝑢𝑘+1 = 𝑓𝑘,

𝐴𝑘 = 𝐴 (𝑡𝑘) , 𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝑢1 − 𝑢0) + 𝑖𝐴
1/2
1 𝑢1 = 𝑖𝐴

1/2
0 𝑢0 + 𝜓,

𝑢0 = 𝜑

(175)

for approximately solving problem (174) has been established
for the first time in [62]. The following theorems summarize
Sobolevskii and Chebotaryeva’s results.

Theorem 82 (see [62]). Assume that the operator-function
𝐴

1/2
(𝑡)𝐴

−1/2
(0) has a finite variation on the segment [0, 𝑇] and

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(0) 𝐴−1/2

(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑀1/2 (176)

for any 𝑡 ∈ [0, 𝑇], 𝜑 ∈ 𝐷(𝐴(0)), and 𝜓 ∈ 𝐷(𝐴
1/2

(0)). Then,
the following estimate

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘 − 𝑢𝑘−1
𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(0) 𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
+ max

0≤𝑘≤𝑁
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩𝐻

≤ 𝑀1 [
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(0) 𝜑󵄩󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐻

+

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏]

(177)

holds, where𝑀1 does not depend on 𝜑, 𝜓, 𝑓
𝑠
(0 ≤ 𝑠 ≤ 𝑁− 1),

or 𝜏.

Theorem 83 (see [62]). Assume that the operator-function
𝐴(𝑡)𝐴

−1
(0) has a finite variation on the segment [0, 𝑇] and

󵄩󵄩󵄩󵄩󵄩
𝐴 (0) 𝐴−1

(𝑡)
󵄩󵄩󵄩󵄩󵄩
≤ 𝑀1 (178)

for any 𝑡 ∈ [0, 𝑇], 𝜑 ∈ 𝐷(𝐴(0)), and 𝜓 ∈ 𝐷(𝐴
1/2

(0)). Then,
the following estimate

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(0)

𝑢𝑘 − 𝑢𝑘−1
𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

1≤𝑘≤𝑁
󵄩󵄩󵄩󵄩𝐴 (0) 𝑢𝑘

󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀2 [
󵄩󵄩󵄩󵄩𝐴 (0) 𝜑󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(0) 𝜓󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻
+

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

]

(179)

holds, where𝑀2 does not depend on 𝜑, 𝜓, 𝑓𝑠 (1 ≤ 𝑠 ≤ 𝑁− 1),
or 𝜏.

The second order of accuracy absolutely stable difference
schemes was constructed and investigated later than first
order difference scheme (175) in [64, 65]. One second order
of accuracy two-step difference scheme generated by Crank-
Nicholson difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑘+1/24
−1

(𝑢𝑘+1 + 𝑢𝑘)

+ 𝐴
1/2
𝑘+1/2𝐴

1/2
𝑘−1/24

−1
(𝑢𝑘 + 𝑢𝑘−1)

+ 𝜏
−1

(𝐴
1/2
𝑘−1/2 − 𝐴

1/2
𝑘+1/2)𝐴

−1/2
𝑘−1/2𝜏

−1
(𝑢𝑘 − 𝑢𝑘−1)

+ 2−1𝜏−1 (𝐴1/2
𝑘+1 − 𝐴

1/2
𝑘

)𝐴
−1/2
𝑘+1/2𝜏

−1
(𝑢𝑘+1 − 𝑢𝑘)

+ 𝐴
1/2
𝑘+1/2𝐴

−1/2
𝑘−1/22

−1
𝜏
−1

⋅ (𝐴
1/2
𝑘

− 𝐴
1/2
𝑘−1)𝐴

−1/2
𝑘−1/2𝜏

−1
(𝑢𝑘 − 𝑢𝑘−1)

= 2−1 (𝑓𝑘−1/2 + 𝑓𝑘+1/2)

+ 2−1 (𝐴1/2
𝑘+1/2 − 𝐴

1/2
𝑘−1/2)𝐴

−1/2
𝑘−1/2𝑓𝑘−1/2,

𝐴𝑘±1/2 = 𝐴(𝑡𝑘 ±
𝜏

2
) , 𝑓𝑘±1/2 = 𝑓(𝑡𝑘 ±

𝜏

2
) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝜑,

𝜏
−1

(𝑢1 − 𝑢0) +
𝜏

2
𝐴1/22

−1
(𝑢1 + 𝑢0)

+
𝜏

2
(𝐴

1/2
1/2)

󸀠

𝐴
−1/2
1/2 𝜏

−1
(𝑢1 − 𝑢0)

=
𝜏

2
𝑓1/2 + 𝐴

1/2
1/2𝐴

−1/2
1/2 𝜓,

(180)
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for approximately solving problem (174), was presented in
[64]. The following stability estimates of the solution of the
difference method and its first and second order difference
derivatives were established. Let us have the above estimates.

Theorem 84 (see [64]). Assume that all assumptions of
Theorem 82 are satisfied. Then, for the solution of difference
scheme (180), the following stability estimate

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘 − 𝑢𝑘−1
𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

0≤𝑘≤𝑁
󵄩󵄩󵄩󵄩𝑢𝑘

󵄩󵄩󵄩󵄩𝐻

≤ 𝑀2 [
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(0) 𝜑󵄩󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐻

+

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠+1/2
󵄩󵄩󵄩󵄩𝐻

𝜏]

(181)

holds, where𝑀2 does not depend on 𝜑, 𝜓, 𝑓𝑠+1/2 (0 ≤ 𝑠 ≤ 𝑁 −

1), or 𝜏.

Theorem 85 (see [64]). Assume that all assumptions of
Theorem 83 are satisfied. Then, for the solution of difference
scheme (180), the following stability estimate

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(0)

𝑢𝑘 − 𝑢𝑘−1
𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴𝑘+1/24

−1
(𝑢𝑘+1 + 𝑢𝑘)

+ 𝐴
1/2
𝑘+1/2𝐴

1/2
𝑘−1/24

−1
(𝑢𝑘 + 𝑢𝑘−1)

+ 𝜏
−1

(𝐴
1/2
𝑘−1/2 − 𝐴

1/2
𝑘+1/2)𝐴

−1/2
𝑘−1/2𝜏

−1
(𝑢𝑘 − 𝑢𝑘−1)

+ 2−1𝜏−1 (𝐴1/2
𝑘+1 − 𝐴

1/2
𝑘

)𝐴
−1/2
𝑘+1/2𝜏

−1
(𝑢𝑘+1 − 𝑢𝑘)

+ 𝐴
1/2
𝑘+1/2𝐴

−1/2
𝑘−1/22

−1
𝜏
−1

(𝐴
1/2
𝑘

− 𝐴
1/2
𝑘−1)

⋅ 𝐴
−1/2
𝑘−1/2𝜏

−1
(𝑢𝑘 − 𝑢𝑘−1)

󵄩󵄩󵄩󵄩󵄩𝐻
,

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀2 [
󵄩󵄩󵄩󵄩𝐴 (0) 𝜑󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(0) 𝜓󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1/2

󵄩󵄩󵄩󵄩𝐻

+

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠+1/2 − 𝑓𝑠−1/2
󵄩󵄩󵄩󵄩𝐻

]

(182)

holds, where 𝑀2 does not depend on 𝜑, 𝜓, 𝑓𝑠+1/2 (0 ≤ 𝑠 ≤

𝑁 − 1), or 𝜏.

Another second order of accuracy two-step difference
scheme generated by the second order of accuracy implicit
difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)

= [𝐴
1/2

𝑘+1
+

𝜏

2
(𝐴

1/2

𝑘+1
)
󸀠

]

⋅ {−𝐴
1/2

𝑘+1
𝑢𝑘+1

+ [
𝜏

2
𝐴𝑘+1 −

1

2
𝐴
−1/2

𝑘+1
(𝐴

1/2

𝑘+1
)
󸀠

]

⋅ 𝐴
−1/2

𝑘+3/2
[𝜏

−1
(𝑢𝑘+1 − 𝑢𝑘)

−
𝜏

2
𝐴𝑘+1𝑢𝑘+1 +

𝜏

2
𝑓𝑘+1]

+ 𝐴
−1/2

𝑘+1
𝑓𝑘+1}

− {[𝐴
1/2

𝑘+1
+

𝜏

2
(𝐴

1/2

𝑘+1
)
󸀠

]𝐴
−1/2

𝑘+1
(𝐴

1/2

𝑘+1
)
󸀠

𝐴
−1/2

𝑘+1/2

− 𝜏
−1

[(𝐴
1/2

𝑘+1
− 𝐴

1/2

𝑘
) +

𝜏

2
((𝐴

1/2

𝑘+1
)
󸀠

− (𝐴
1/2

𝑘
)
󸀠

)]}

⋅ 𝐴
−1/2

𝑘+1/2
× [𝜏

−1
(𝑢𝑘 − 𝑢𝑘−1) −

𝜏

2
𝐴𝑘𝑢𝑘 +

𝜏

2
𝑓𝑘]

+ 2
−1

(𝐴𝑘+1𝑢𝑘+1 − 𝐴𝑘𝑢𝑘) − 2
−1

(𝑓𝑘+1 − 𝑓𝑘) ,

𝐴𝑘 = 𝐴 (𝑡𝑘) , 𝐴𝑘±1/2 = 𝐴(𝑡𝑘 ±
𝜏

2
) , 𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝜑,

𝜏
−1

(𝑢1 − 𝑢0) +
𝜏

2
𝐴1/22

−1
(𝑢1 + 𝑢0)

+
𝜏

2
(𝐴

1/2

1/2
)
󸀠

𝐴
−1/2

1/2
𝜏
−1

(𝑢1 − 𝑢0)

=
𝜏

2
𝑓1 + 𝐴

1/2

1/2
𝐴
−1/2

1/2
𝜓

(183)

for approximately solving problem (174) was constructed in
[65]. Similar stability estimates of the solution of difference
scheme (180) and its first and second order difference deriva-
tives were established under the same conditions.

However, difference schemes (180) and (183) were gener-
ated by the square root of𝐴(𝑡).Thus, for a practical realization
of these difference methods, it is necessary to first construct
operator 𝐴

1/2
(𝑡), which obviously is not easy. Hence, in

spite of theoretical results, the application of these methods
for numerically solving an initial-value problem is not very
practical. It is important to study the difference schemes
generated by integer powers of 𝐴(𝑡).
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In [68, 69], a second order of accuracy of two types of
difference schemes

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+

1

2
𝐴𝑘𝑢𝑘

+
1

4
𝐴𝑘 (𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓𝑘,

𝐴𝑘 = 𝐴 (𝑡𝑘) , 𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇,

(𝐼 + 𝜏
2
𝐴0) 𝜏

−1
(𝑢1 − 𝑢0) =

𝜏

2
(𝑓0 − 𝐴0𝑢0) + 𝜓,

𝑓0 = 𝑓 (0) , 𝑢0 = 𝜑,

(184)

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

+ 𝐴𝑘𝑢𝑘 +
𝜏
2

4
𝐴

2
𝑘
𝑢𝑘+1 = 𝑓𝑘,

𝐴𝑘 = 𝐴 (𝑡𝑘) , 𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇,

(𝐼 + 𝜏
2
𝐴0) 𝜏

−1
(𝑢1 − 𝑢0) =

𝜏

2
(𝑓0 − 𝐴0𝑢0) + 𝜓,

𝑓0 = 𝑓 (0) , 𝑢0 = 𝜑

(185)

generated by integer powers of𝐴(𝑡) for approximately solving
problem (174) was presented. The stability estimates for the
solution of these difference schemes and for the first and
second order difference derivatives were established. The
theoretical statements for this difference method were sup-
ported by the numerical experiments for one-dimensional
hyperbolic partial differential equation with the Dirichlet
boundary condition.

7.3. Nonlocal Problems. In [120], the nonlocal boundary value
problem for hyperbolic equations

𝑑
2V (𝑡)
𝑑𝑡2

+ 𝐴V (𝑡) = 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

V (0) = 𝛼V (𝑇) + 𝜑, V󸀠 (0) = 𝛽V󸀠 (𝑇) + 𝜓

(186)

was considered.
Function V(𝑡) is called a solution of problem (186) if the

following conditions are satisfied:

(i) V(𝑡) is twice continuously differentiable on the inter-
val [0, 𝑇] and continuously differentiable on the
segment [0, 𝑇].

(ii) The element V(𝑡) belongs to 𝐷(𝐴) for all 𝑡 ∈ [0, 𝑇],
and the function 𝐴V(𝑡) is continuous on the segment
[0, 𝑇].

(iii) V(𝑡) satisfies the equation and nonlocal boundary
conditions (186).

Theorem 86 (see [120]). Suppose that 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈

𝐷(𝐴
1/2

), and 𝑓(𝑡) are continuously differentiable on [0, 𝑇]

function and |1+𝛼𝛽| > |𝛼+𝛽|. Then there is a unique solution
of problem (186) and the stability inequalities

max
0≤𝑡≤𝑇

‖V (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓 (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

] ,

max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2V (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ max

0≤𝑡≤𝑇
󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝐻
] ,

max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
2V (𝑡)
𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

‖𝐴V (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓 (0)󵄩󵄩󵄩󵄩𝐻 + ∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡]

(187)

hold, where𝑀 does not depend on 𝑓(𝑡), 𝑡 ∈ [0, 𝑇], or 𝜑, 𝜓.

Two applications ofTheorem 86were presented. First, the
mixed boundary value problem for hyperbolic equations

𝑢𝑡𝑡 − (𝑎 (𝑥) 𝑢𝑥)𝑥
+ 𝑢 = 𝑓 (𝑡, 𝑥) ,

0 < 𝑡 < 𝑇, 0 < 𝑥 < 1,

𝑢 (0, 𝑥) = 𝛼𝑢 (𝑇, 𝑥) + 𝜑 (𝑥) ,

𝑢𝑡 (0, 𝑥) = 𝛽𝑢𝑡 (𝑇, 𝑥) + 𝜓 (𝑥) ,

0 ≤ 𝑥 ≤ 1,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) ,

𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 1) ,

0 ≤ 𝑡 ≤ 𝑇,

(188)

was considered. Problem (188) has unique smooth solution
𝑢(𝑡, 𝑥) for |1 + 𝛼𝛽| > |𝛼| + |𝛽| and the smooth 𝑎(𝑥) ≥

𝑎 > 0 (𝑥 ∈ (0, 1)), 𝑎(1) = 𝑎(0), 𝜑(𝑥), 𝜓(𝑥) (𝑥 ∈ [0, 1]),
and 𝑓(𝑡, 𝑥) (𝑡 ∈ [0, 𝑇], 𝑥 ∈ [0, 1]) functions. This allows us
to reduce mixed problem (188) to nonlocal boundary value
problem (186) in Hilbert space 𝐻 with self-adjoint positive
definite operator 𝐴 defined by (188).

Theorem87 (see [120]). For solutions of mixed problem (188),
the stability inequalities

max
0≤𝑡≤𝑇

‖𝑢‖𝑊1
2 [0,1]

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2[0,1]

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝑊1
2 [0,1]

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐿2[0,1]
] ,

max
0≤𝑡≤𝑇

‖𝑢‖𝑊2
2 [0,1] + max

0≤𝑡≤𝑇
󵄩󵄩󵄩󵄩𝑢𝑡𝑡

󵄩󵄩󵄩󵄩𝐿2[0,1]

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓𝑡
󵄩󵄩󵄩󵄩𝐿2[0,1]

+
󵄩󵄩󵄩󵄩𝑓 (0)󵄩󵄩󵄩󵄩𝐿2[0,1]

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝑊2
2 [0,1]

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝑊1
2 [0,1]

]

(189)

hold, where𝑀 does not depend on 𝑓(𝑡, 𝑥) or 𝜑(𝑥), 𝜓(𝑥).
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Second, letΩ be the unit open cube in the 𝑛-dimensional
Euclidean space R𝑛

(0 < 𝑥𝑘 < 1, 1 ≤ 𝑘 ≤ 𝑛) with boundary
𝑆, Ω = Ω∪𝑆. In [0, 𝑇]×Ω, themixed boundary value problem
for the multidimensional hyperbolic equation

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡2
−

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢𝑥𝑟

)
𝑥𝑟

= 𝑓 (𝑡, 𝑥) ,

𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω, 0 < 𝑡 < 𝑇,

𝑢 (0, 𝑥) = 𝛼𝑢 (𝑇, 𝑥) + 𝜑 (𝑥) ,

𝜕𝑢 (0, 𝑥)
𝜕𝑡

= 𝛽
𝜕𝑢 (𝑇, 𝑥)

𝜕𝑡
+ 𝜓 (𝑥) ,

𝑥 ∈ Ω,

𝑢 (𝑡, 𝑥) = 0, 𝑥 ∈ 𝑆,

(190)

was considered, where 𝑎𝑟(𝑥), (𝑥 ∈ Ω), 𝜑(𝑥), 𝜓(𝑥) (𝑥 ∈ Ω)

and 𝑓(𝑡, 𝑥) (𝑡 ∈ (0, 𝑇), 𝑥 ∈ Ω) are given smooth functions
and 𝑎𝑟(𝑥) ≥ 0.

Problem (190) has unique smooth solution 𝑢(𝑡, 𝑥) for
|1 + 𝛼𝛽| > |𝛼| + |𝛽| and the smooth 𝑎𝑟(𝑥) ≥ 0 and 𝑓(𝑡, 𝑥)

functions. This allows us to reduce mixed problem (190) to
nonlocal boundary value problem (186) in Hilbert space 𝐻

with self-adjoint positive definite operator𝐴 defined by (190).

Theorem88 (see [120]). For solutions of mixed problem (190),
the stability inequalities

max
0≤𝑡≤𝑇

‖𝑢‖
𝑊1

2 (Ω)

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝑊1
2 (Ω)

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐿2(Ω)
] ,

max
0≤𝑡≤𝑇

‖𝑢‖
𝑊2

2 (Ω)
+ max

0≤𝑡≤𝑇
󵄩󵄩󵄩󵄩𝑢𝑡𝑡

󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓𝑡
󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩𝑓 (0)󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝑊2
2 (Ω)

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝑊1
2 (Ω)

]

(191)

hold, where𝑀 does not depend on 𝑓(𝑡, 𝑥) or 𝜑(𝑥), 𝜓(𝑥).

Futhermore, the first order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘+1) ,

𝑡𝑘+1 = (𝑘 + 1) 𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝛼𝑢𝑁 + 𝜑,

𝜏
−1

(𝑢1 − 𝑢0) = 𝛽𝜏
−1

(𝑢𝑁 − 𝑢𝑁−1) + 𝜓

(192)

for approximately solving boundary value problem (186) was
considered.

The stability of solutions of difference scheme (192) was
investigated under the assumption

󵄨󵄨󵄨󵄨1 + 𝛼𝛽
󵄨󵄨󵄨󵄨 >

󵄨󵄨󵄨󵄨𝛼 + 𝛽
󵄨󵄨󵄨󵄨 . (193)

Theorem 89 (see [120]). Let 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈ 𝐷(𝐴
1/2

), and
1 > |𝛼||𝛽|+ |𝛼|+ |𝛽|. Then, for the solution of difference scheme
(192), the stability inequalities

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏

+ 𝐴
−1/2 󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
} , 𝑘 = 0, 2, . . . , 𝑁,

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑖𝜏𝐴

1/2
)𝐴

−1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

] ,

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

} , 𝑘 = 0, 2, . . . , 𝑁,

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢1

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝑀[

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑖𝜏𝐴

1/2
) 𝜓

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
} ,

󵄩󵄩󵄩󵄩𝐴𝑢1
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑖𝜏𝐴

1/2
)𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

]

(194)

hold, where𝑀 does not depend on 𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁 − 1, or 𝜑, 𝜓.

Note that these stability estimates in the case 𝑘 = 1
are weaker than the respective estimates in the cases 𝑘 =

0, 2, . . . , 𝑁. However, obtaining this type of estimate is impor-
tant for applications. Consider 𝑎

𝜏
= (𝑎𝑘) denotes the mesh

function of the approximation. And ‖(𝐼 + 𝑖𝜏𝐴
−1/2

)𝑎1‖𝐻 ∼

‖𝑎1‖𝐻 = 𝑜(𝜏) assume that 𝜏‖𝐴𝑎1‖𝐻 tends to 0 as 𝜏 →

0 not slower than ‖𝑎1‖𝐻. It takes place in applications by
supplementary restriction of the smoothness property of the
data in the space variables. It is clear that the uniformity in 𝜏

estimate
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝐻
≤

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

(195)

is absent. However, estimates for the solution of first order
of accuracy modified difference scheme for approximately
solving boundary value problem (186)

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝛼𝑢𝑁 + 𝜑,

(𝐼 + 𝜏
2
𝐴) 𝜏

−1
(𝑢1 − 𝑢0) = 𝛽𝜏

−1
(𝑢𝑁 − 𝑢𝑁−1) + 𝜓

(196)

are better than the estimates for the solution of difference
scheme (192).
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Theorem 90 (see [120]). Let 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈ 𝐷(𝐴
1/2

), and
1 > |𝛼||𝛽| + |𝛼| + |𝛽|. Then for the solution of difference scheme
(196) the stability inequalities

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
} ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
}

(197)

hold, where𝑀 does not depend on 𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁 − 1, or 𝜑, 𝜓.

Moreover, two types of the second order of accuracy
difference schemes

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘 +
𝜏
2

4
𝐴

2
𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

(𝐼 +
𝜏
2
𝐴

2
)𝜏

−1
(𝑢1 − 𝑢0) −

𝜏

2
(𝑓0 − 𝐴𝑢0)

= 𝛽 [𝜏
−1

(𝑢𝑁 − 𝑢𝑁−1) +
𝜏

2
(𝑓𝑁 − 𝐴𝑢𝑁)] + 𝜓,

𝑓0 = 𝑓 (0) , 𝑓𝑁 = 𝑓 (1) , 𝑢0 = 𝛼𝑢𝑁 + 𝜑,

(198)

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
1
2
𝐴𝑢𝑘 +

1
4
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

(𝐼 +
𝜏
2
𝐴

4
)[(𝐼 +

𝜏
2
𝐴

4
)𝜏

−1
(𝑢1 − 𝑢0) −

𝜏

2
(𝑓0 − 𝐴𝑢0)]

= 𝛽 [𝜏
−1

(𝑢𝑁 − 𝑢𝑁−1) +
𝜏

2
(𝑓𝑁 − 𝐴𝑢𝑁)] + 𝜓,

𝑓0 = 𝑓 (0) , 𝑓𝑁 = 𝑓 (1) ,

𝑢0 = 𝛼𝑢𝑁 + 𝜑

(199)

for approximately solving boundary value problem (186)were
considered.

Theorem 91 (see [120]). Let 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈ 𝐷(𝐴
1/2

), and
1 > |𝛼||𝛽| + |𝛼| + |𝛽|. Then for the solution of difference scheme
(198) the stability inequalities

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁

∑

𝑠=0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝑀{

𝑁

∑

𝑠=0

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
} ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁

∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
}

(200)

hold,where𝑀 does not depend on 𝑓𝑠, 0 ≤ 𝑠 ≤ 𝑁, or 𝜑, 𝜓.

Theorem 92 (see [120]). Let 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈ 𝐷(𝐴
1/2

), and
1 > |𝛼||𝛽| + |𝛼| + |𝛽|. Then for the solution of difference scheme
(199) the stability inequalities

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁

∑

𝑠=0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝑀{

𝑁

∑

𝑠=0

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
} ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁

∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
}

(201)

hold, where𝑀 does not depend on 𝑓𝑠, 0 ≤ 𝑠 ≤ 𝑁, or 𝜑, 𝜓.

Note that one can construct the difference schemes of the
second order of approximation over time and of an arbitrary
order of approximation over space variables for approxi-
mate solutions of boundary value problems (188) and (190).
Abstract Theorems 91 and 92 permit us to obtain stability
estimates for the solutions of these difference schemes.
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In [73, 75], a third order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
2
3
𝐴𝑢𝑘

+
1
6
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) +

1
12

𝜏
2
𝐴

2
𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 =
2
3
𝑓 (𝑡𝑘) +

1
6
(𝑓 (𝑡𝑘+1) + 𝑓 (𝑡𝑘−1))

−
1
12

𝜏
2
(−𝐴𝑓 (𝑡𝑘+1) + 𝑓

󸀠󸀠
(𝑡𝑘+1)) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝛼𝑢𝑁 + 𝜑,

(𝐼 +
𝜏
2

12
𝐴 +

𝜏
4

144
𝐴

2
)𝜏

−1
(𝑢1 − 𝑢0) +

𝜏

2
𝐴𝑢0 − 𝜏𝑓1,1

= 𝛽(𝐼 −
𝜏
2
𝐴

12
)(

7𝑢𝑁 − 8𝑢𝑁−1 + 𝑢𝑁−2
6𝜏

+
𝜏

3
(𝑓𝑁 − 𝐴𝑢𝑁))

+ (𝐼 −
𝜏
2
𝐴

12
)𝜓,

𝑓1,1 =
1
2
𝑓 (0) + 𝑓

󸀠
(0) 𝜏

6
(202)

and a fourth order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
5
6
𝐴𝑢𝑘

+
1
12

𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) −
𝜏
2

72
𝐴

2
𝑢𝑘

+
𝜏
2

144
𝐴

2
(𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓𝑘,

𝑓𝑘 =
5
6
𝑓 (𝑡𝑘) +

1
12

(𝑓 (𝑡𝑘+1) + 𝑓 (𝑡𝑘−1))

+
𝜏
2

72
(−𝐴𝑓 (𝑡𝑘) + 𝑓

󸀠󸀠
(𝑡𝑘))

−
1
144

𝜏
2
(−𝐴 (𝑓 (𝑡𝑘+1) + 𝑓 (𝑡𝑘−1))

+𝑓
󸀠󸀠
(𝑡𝑘+1) + 𝑓

󸀠󸀠
(𝑡𝑘−1)) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 𝛼𝑢𝑁 + 𝜑,

(𝐼 +
𝜏
2

12
𝐴 +

𝜏
4

144
𝐴

2
)𝜏

−1
(𝑢1 − 𝑢0) +

𝜏

2
𝐴𝑢0 − 𝜏𝑓2,2

= 𝛽(𝐼 −
𝜏
2
𝐴

12
)(

85𝑢𝑁 − 108𝑢𝑁−1 + 27𝑢𝑁−2 − 4𝑢𝑁−3
66𝜏

+
3𝜏
11

(𝑓𝑁 − 𝐴𝑢𝑁))

+ (𝐼 −
𝜏
2
𝐴

12
)𝜓,

𝑓2,2 = {(𝐼 −
𝜏
2
𝐴

12
)𝑓 (0)

+ (−(𝐼 −
5𝜏2𝐴
12

)𝑓 (0) + 𝜏𝑓
󸀠
(0)) 1

2

+ (−𝐴𝜏𝑓 (0) − 2𝑓󸀠
(0) + 𝜏𝑓

󸀠󸀠
(0)) 𝜏

6

+ (𝐴𝑓 (0) − 3𝑓󸀠󸀠
(0)) 𝜏

2

24
}

(203)

for approximately solving nonlocal boundary value problem
(186) were constructed.

Theorem 93 (see [73, 75]). Suppose that the assumption

|𝛼| + 2 󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 + 2 |𝛼| 󵄨󵄨󵄨󵄨𝛽

󵄨󵄨󵄨󵄨 < 1 (204)

is satisfied and 𝜑 ∈ 𝐷(𝐴
3/2

), 𝜓 ∈ 𝐷(𝐴
1/2

). Then, for
the solution of difference scheme (202), the following stability
estimates hold:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑖𝜏𝐴

1/2
) 𝜑

󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓1,1
󵄩󵄩󵄩󵄩󵄩𝐻

} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(𝐼 + 𝑖𝜏𝐴

1/2
) 𝜑

󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ 𝜏

󵄩󵄩󵄩󵄩𝑓1,1
󵄩󵄩󵄩󵄩𝐻

} ,



36 Abstract and Applied Analysis

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴 (𝐼 + 𝑖𝜏𝐴

1/2
) 𝜑

󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓1,1

󵄩󵄩󵄩󵄩󵄩𝐻
} ,

(205)

where𝑀 does not depend on 𝜏, 𝜑, 𝜓, 𝑓1,1, or𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁−1.

Theorem 94 (see [73, 75]). Suppose that assumption (204)
holds and 𝜑 ∈ 𝐷(𝐴

1/2
), 𝜓 ∈ 𝐷(𝐴

1/2
). Then, for the solution of

difference scheme (203), the following stability estimates hold:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓2,2
󵄩󵄩󵄩󵄩󵄩𝐻

} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ 𝜏

󵄩󵄩󵄩󵄩𝑓2,2
󵄩󵄩󵄩󵄩𝐻

} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓2,2

󵄩󵄩󵄩󵄩󵄩𝐻
} ,

(206)

where𝑀 does not depend on 𝜏, 𝜑, 𝜓, 𝑓2,2, or𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁−1.

In [72], the multipoint nonlocal boundary value problem

𝑑
2V (𝑡)
𝑑𝑡2

+ 𝐴V (𝑡) = 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

V (0) =
𝑛

∑

𝑗=1
𝛼𝑗V (𝜆𝑗) + 𝜑,

V𝑡 (0) =
𝑛

∑

𝑗=1
𝛽𝑗V𝑡 (𝜆𝑗) + 𝜓,

0 < 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑛 ≤ 𝑇

(207)

for a differential equation in Hilbert space 𝐻 with the self-
adjoint positive definite operator 𝐴 was considered.

Function V(𝑡) is called a solution of problem (207) if the
following conditions are satisfied:

(i) V(𝑡) is twice continuously differentiable on the inter-
val [0, 𝑇] and continuously differentiable on the
segment [0, 𝑇].

(ii) The element V(𝑡) belongs to 𝐷(𝐴) for all 𝑡 ∈ [0, 𝑇],
and the function 𝐴V(𝑡) is continuous on the segment
[0, 𝑇].

(iii) V(𝑡) satisfies the equation and nonlocal boundary
conditions (207).

Theorem 95 (see [72]). Suppose that 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈ 𝐷(𝐴
1/2

),
𝑓(𝑡) is continuously differentiable on [0, 𝑇] function and the
assumption

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘 + 𝛽𝑘

󵄨󵄨󵄨󵄨 +

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨

𝑛

∑

𝑚=1

󵄨󵄨󵄨󵄨𝛽𝑚

󵄨󵄨󵄨󵄨 <

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +

𝑛

∑

𝑘=1
𝛼𝑘𝛽𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(208)

holds. Then there is a unique solution of problem (207) and the
stability inequalities

max
0≤𝑡≤𝑇

‖V (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓 (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

] ,

max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2V (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ max

0≤𝑡≤𝑇
󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝐻
] ,

max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
2V (𝑡)
𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

‖𝐴V (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓 (0)󵄩󵄩󵄩󵄩𝐻 + ∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡]

(209)

hold, where𝑀 does not depend on 𝜑, 𝜓, or 𝑓(𝑡), 𝑡 ∈ [0, 1].

In practice, the mixed multipoint nonlocal boundary
value problem

𝑢𝑡𝑡 − (𝑎 (𝑥) 𝑢𝑥)𝑥
+ 𝛿𝑢 = 𝑓 (𝑡, 𝑥) ,

0 < 𝑡 < 𝑇, 0 < 𝑥 < 1,

𝑢 (0, 𝑥) =
𝑛

∑

𝑗=1
𝛼𝑗𝑢 (𝜆𝑗, 𝑥) + 𝜑 (𝑥) ,

𝑢𝑡 (0, 𝑥) =
𝑛

∑

𝑘=1
𝛽𝑘𝑢𝑡 (𝜆𝑘, 𝑥) + 𝜓 (𝑥) ,

0 ≤ 𝑥 ≤ 1,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) ,

𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 1) ,

0 ≤ 𝑡 ≤ 𝑇,

(210)



Abstract and Applied Analysis 37

for one-dimensional hyperbolic equations with nonlocal
boundary conditions and the nonlocal boundary value prob-
lem

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡2
−

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢𝑥𝑟

)
𝑥𝑟

= 𝑓 (𝑡, 𝑥) ,

𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω, 0 < 𝑡 < 𝑇,

𝑢 (0, 𝑥) =
𝑛

∑

𝑗=1
𝛼𝑗𝑢 (𝜆𝑗, 𝑥) + 𝜑 (𝑥) , 𝑥 ∈ Ω,

𝑢𝑡 (0, 𝑥) =
𝑛

∑

𝑘=1
𝛽𝑘𝑢𝑡 (𝜆𝑘, 𝑥) + 𝜓 (𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑡, 𝑥) = 0, 𝑥 ∈ 𝑆;

0 < 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ < 𝜆𝑛 ≤ 𝑇,

(211)

for the multidimensional hyperbolic equation with Dirichlet
condition were considered. The stability estimates for solu-
tion of these problems were established.

We associate multipoint boundary value problem (207)
with the corresponding first order of accuracy difference
scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 =

𝑛

∑

𝑟=1
𝛼𝑟𝑢[𝜆𝑟/𝜏]

+ 𝜑,

𝜏
−1

(𝑢1 − 𝑢0) =

𝑛

∑

𝑟=1
𝛽𝑟 (𝑢[𝜆𝑟/𝜏]+1 − 𝑢[𝜆𝑟/𝜏]

)
1
𝜏
+ 𝜓.

(212)

Theorem 96 (see [72]). Suppose that 𝜑 ∈ 𝐷(𝐴),𝜓 ∈ 𝐷(𝐴
1/2

),
and the assumption

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨 +

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨 +

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨 < 1 (213)

is satisfied.Then, for the solution of difference scheme (212), the
following stability estimates

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
} ,

𝑘 = 0, 2, . . . , 𝑁,

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑖𝜏𝐴

1/2
)𝐴

−1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

] ,

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

} ,

𝑘 = 0, 2, . . . , 𝑁,

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢1

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑖𝜏𝐴

1/2
) 𝜓

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
} , 𝑘 = 0, 2, . . . , 𝑁,

󵄩󵄩󵄩󵄩𝐴𝑢1
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝑖𝜏𝐴

1/2
)𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

]

(214)

hold, where𝑀 does not depend on 𝜏, 𝜑, 𝜓, or𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁−1.

In [74], two types of second order of accuracy difference
schemes

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘 +
𝜏
2

4
𝐴

2
𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

(𝐼 +
𝜏
2
𝐴

2
)𝜏

−1
(𝑢1 − 𝑢0) −

𝜏

2
(𝑓0 − 𝐴𝑢0)

=

𝑛

∑

𝑘=1
𝛽𝑘 {𝜏

−1
(𝑢[𝜆𝑘/𝜏]

− 𝑢[𝜆𝑘/𝜏]−1) + (
𝜏

2
+ (𝜆𝑘 − [

𝜆𝑘

𝜏
] 𝜏))

⋅ (𝑓[𝜆𝑘/𝜏]
− 𝐴𝑢[𝜆𝑘/𝜏]

)} + 𝜓,

𝑢0 =

𝑛

∑

𝑚=1
𝛼𝑚 {𝑢[𝜆𝑚/𝜏]

+ 𝜏
−1

(𝑢[𝜆𝑚/𝜏]
− 𝑢[𝜆𝑚/𝜏]−1)

⋅ (𝜆𝑚 − [
𝜆𝑚

𝜏
] 𝜏)} + 𝜑,

𝑓0 = 𝑓 (0) ,
(215)
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𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
1
2
𝐴𝑢𝑘

+
1
4
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

(𝐼 +
𝜏
2
𝐴

4
)[(𝐼 +

𝜏
2
𝐴

4
)𝜏

−1
(𝑢1 − 𝑢0) −

𝜏

2
(𝑓0 − 𝐴𝑢0)]

=

𝑛

∑

𝑘=1
𝛽𝑘 {𝜏

−1
(𝑢[𝜆𝑘/𝜏]

− 𝑢[𝜆𝑘/𝜏]−1)

+ (
𝜏

2
+ (𝜆𝑘 − [

𝜆𝑘

𝜏
] 𝜏))

⋅ (𝑓[𝜆𝑘/𝜏]
− 𝐴𝑢[𝜆𝑘/𝜏]

)} + 𝜓,

𝑢0 =

𝑛

∑

𝑚=1
𝛼𝑚 {𝑢[𝜆𝑚/𝜏]

+ 𝜏
−1

(𝑢[𝜆𝑚/𝜏]
− 𝑢[𝜆𝑚/𝜏]−1)

⋅ (𝜆𝑚 − [
𝜆𝑚

𝜏
] 𝜏)} + 𝜑,

𝑓0 = 𝑓 (0)
(216)

for approximately solving nonlocal boundary value problem
(207) were constructed.

Theorem 97 (see [74]). Suppose that 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈ 𝐷(𝐴
1/2

),
and the assumption

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨 (1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘 − [
𝜆𝑘

𝜏
] 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨 (1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘 − [
𝜆𝑘

𝜏
] 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨 (1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘 − [
𝜆𝑘

𝜏
] 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘 − [
𝜆𝑘

𝜏
] 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘 − [
𝜆𝑘

𝜏
] 𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1

(217)

is satisfied.Then, for the solution of difference scheme (215), the
stability inequalities

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑘=0

󵄩󵄩󵄩󵄩𝑓𝑘
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
} ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴𝑢𝑘 +
𝜏
2
𝐴

2

4
𝑢𝑘+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑘=1

󵄩󵄩󵄩󵄩𝑓𝑘 − 𝑓𝑘−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
}

(218)

hold, where𝑀 does not depend on 𝜏, 𝜑, 𝜓, or𝑓𝑘, 0 ≤ 𝑘 ≤ 𝑁−1.

Theorem 98 (see [74]). Suppose that 𝜑 ∈ 𝐷(𝐴), 𝜓 ∈ 𝐷(𝐴
1/2

),
and assumption (217) holds. Then, for the solution of difference
scheme (216), the stability inequalities

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑘=0

󵄩󵄩󵄩󵄩𝑓𝑘
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
} ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1
2
𝐴𝑢𝑘 +

1
4
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑘=1

󵄩󵄩󵄩󵄩𝑓𝑘 − 𝑓𝑘−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
}

(219)

hold, where𝑀 does not depend on 𝜏, 𝜑, 𝜓, or𝑓𝑘, 0 ≤ 𝑘 ≤ 𝑁−1.

In practice, difference schemes of the first and second
order of accuracy difference schemes for the approximate
solution of problems (210) and (211) were presented in [72,
74]. The stability estimates for the solution of these problems
were established. Numerical experiments provide convincing
support for the theoretical statements.

In [76], the third order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
2
3
𝐴𝑢𝑘

+
1
6
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) +

1
12

𝜏
2
𝐴

2
𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 =
2
3
𝑓 (𝑡𝑘) +

1
6
(𝑓 (𝑡𝑘+1) + 𝑓 (𝑡𝑘−1))

−
1
12

𝜏
2
(−𝐴𝑓 (𝑡𝑘+1) + 𝑓

󸀠󸀠
(𝑡𝑘+1)) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 1,
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(𝐼 − 𝑖𝜏𝐴
2
) 𝑢0

=

𝑛

∑

𝑘=1
𝛼𝑘 {𝑢[𝜆𝑘/𝜏]

+ 𝜏
−1

(𝑢[𝜆𝑘/𝜏]
− 𝑢[𝜆𝑘/𝜏]−1)

⋅ (𝜆𝑘 − [
𝜆𝑘

𝜏
] 𝜏)

+
3
2
(𝑓[𝜆𝑘/𝜏]

− 𝐴𝑢[𝜆𝑘/𝜏]
) (𝜆𝑘 − [

𝜆𝑘

𝜏
] 𝜏)

2

+
7
6
(𝑓

󸀠

[𝜆𝑘/𝜏]
− 𝜏

−1
𝐴(𝑢[𝜆𝑘/𝜏]

− 𝑢[𝜆𝑘/𝜏]−1))

⋅ (𝜆𝑘 − [
𝜆𝑘

𝜏
] 𝜏)

3
} + 𝜑,

(𝐼 + 𝑖𝜏𝐴
2
) 𝜏

−1
(𝑢1 − 𝑢0)

=

𝑛

∑

𝑘=1
𝛽𝑘 {𝜏

−1
(𝑢[𝜆𝑘/𝜏]

− 𝑢[𝜆𝑘/𝜏]−1)

+ (𝑓[𝜆𝑘/𝜏]
− 𝐴𝑢[𝜆𝑘/𝜏]) (𝜆𝑘 − [

𝜆𝑘

𝜏
] 𝜏)

+
1
2!

(𝑓
󸀠

[𝜆𝑘/𝜏]
− 𝜏

−1
𝐴(𝑢[𝜆𝑘/𝜏]

− 𝑢[𝜆𝑘/𝜏]−1))

⋅ (𝜆𝑘 − [
𝜆𝑘

𝜏
] 𝜏)

2

+
1
3!

(𝑓
󸀠󸀠

[𝜆𝑘/𝜏]
− 𝐴𝑓[𝜆𝑘/𝜏]

+ 𝐴
2
𝑢[𝜆𝑘/𝜏]

)

⋅ (𝜆𝑘 − [
𝜆𝑘

𝜏
] 𝜏)

3
}

+ 𝜓 + 𝑓1,1𝜏,

𝑓1,1 =
1
2
𝑓 (0) + 𝑓

󸀠
(0) 𝜏

6
(220)

and the fourth order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
5
6
𝐴𝑢𝑘

+
1
12

𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) −
𝜏
2

72
𝐴

2
𝑢𝑘

+
𝜏
2

144
𝐴

2
(𝑢𝑘+1 + 𝑢𝑘−1)

=
5
6
𝑓 (𝑡𝑘) +

1
12

(𝑓 (𝑡𝑘+1) + 𝑓 (𝑡𝑘−1))

+
𝜏
2

72
(−𝐴𝑓 (𝑡𝑘) + 𝑓

󸀠󸀠
(𝑡𝑘))

−
1
144

𝜏
2
[−𝐴 (𝑓 (𝑡𝑘+1) + 𝑓 (𝑡𝑘−1))

+𝑓
󸀠󸀠
(𝑡𝑘+1) + 𝑓

󸀠󸀠
(𝑡𝑘−1)] ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = (𝐼 −
𝑖𝜏𝐴

1/2

2
+

𝜏
2
𝐴

3

12
)

−1

×

𝑛

∑

𝑘=1
𝛼𝑘 {((

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]) −

7𝐴𝜏
2

6
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

3
)

× (𝑢[𝜆𝑘/𝜏]
− 𝑢[𝜆𝑘/𝜏]−1)

+ (𝐼 −
3𝜏2𝐴
2

(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

2

+
𝜏
4
𝐴

2

24
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

4
)𝑢[𝜆𝑘/𝜏]

+
3
2
𝜏
2
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

2
𝑓[𝜆𝑘/𝜏]

+
7
6
𝜏
3
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

3
𝑓
󸀠

[𝜆𝑘/𝜏]

+
1
24

𝜏
4
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

4
𝑓
󸀠󸀠

[𝜆𝑘/𝜏]

−
1
24

𝐴𝜏
4
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

4
𝑓[𝜆𝑘/𝜏]

} + 𝜑,

𝜏
−1

(𝑢1 − 𝑢0)

= (𝐼 −
𝜏
2
𝐴

12
)(𝐼 +

𝑖𝜏𝐴
1/2

2
+

𝜏
2
𝐴

3

12
)

−1

⋅

𝑛

∑

𝑘=1
𝛽𝑘 {[

1
𝜏
−

𝜏𝐴

2
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

2

+
𝜏
3
𝐴

2

24
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

4
]

⋅ (𝑢[𝜆𝑘/𝜏]
− 𝑢[𝜆𝑘/𝜏]−1)

+ (−𝐴𝜏(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

+
𝐴

2
𝜏
3

6
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

3
)𝑢[𝜆𝑘/𝜏]

+ 𝜏𝑓[𝜆𝑘/𝜏]
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

+
𝜏
2

2
𝑓
󸀠

[𝜆𝑘/𝜏]
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

2

+
𝜏
3

6
𝑓
󸀠󸀠

[𝜆𝑘/𝜏]
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

3

+
𝜏
4

24
𝑓
󸀠󸀠󸀠

[𝜆𝑘/𝜏]
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

4

−
𝐴𝜏

3

6
𝑓[𝜆𝑘/𝜏]

(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

3

−
𝐴𝜏

4

24
𝑓
󸀠

[𝜆𝑘/𝜏]
(
𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
])

4
}

+ 𝜓 + 𝑓2,2𝜏,
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𝑓2,2 = {(𝐼 −
𝜏
2
𝐴

12
)𝑓 (0)

+ (−(𝐼 −
5𝜏2𝐴
12

)𝑓 (0) + 𝜏𝑓
󸀠
(0)) 1

2

+ (−𝐴𝜏𝑓 (0) − 2𝑓󸀠
(0) + 𝜏𝑓

󸀠󸀠
(0)) 𝜏

6

+ (𝐴𝑓 (0) − 3𝑓󸀠󸀠
(0)) 𝜏

2

24
}

(221)

for approximately solving multipoint nonlocal BVP (207)
were constructed. The stability estimates for the solution of
difference scheme (220) were obtained under the assumption

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨 {1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
3
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
7
6

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

3
+
1
24

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4
}

+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨 {1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
1
6

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

3
+

1
24

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4
}

+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨

⋅ {1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4
+
1
9

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

6

+
1
576

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

8
} < 1.

(222)

Theorem 99 (see [76]). Suppose that assumption (222) holds
and 𝜑 ∈ 𝐷(𝐴

1/2
), 𝜓 ∈ 𝐷(𝐴

1/2
). Then, for the solution of

difference scheme (220), the following stability estimates hold:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓1,1
󵄩󵄩󵄩󵄩󵄩𝐻

} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ 𝜏

󵄩󵄩󵄩󵄩𝑓1,1
󵄩󵄩󵄩󵄩𝐻

} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓1,1

󵄩󵄩󵄩󵄩󵄩𝐻
} ,

(223)

where𝑀 does not depend on 𝜏, 𝜑, 𝜓, 𝑓1,1, or𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁−1.

The stability estimates for the solution of difference
scheme (221) were obtained under the assumption

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨 {1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
3
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
7
6

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

3
+

1
24

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4
}

+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨 {1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+
1
6

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

3
+

1
24

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4
}

+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨

⋅ {1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2
+
1
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

+
1
9

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

6

+
1
576

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑘

𝜏
− [

𝜆𝑘

𝜏
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

8
} < 1.

(224)

Theorem 100 (see [76]). Suppose that assumption (224) holds
and 𝜑 ∈ 𝐷(𝐴

1/2
), 𝜓 ∈ 𝐷(𝐴

1/2
). Then, for the solution of

difference scheme (221), the following stability estimates hold:

max
2≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘 + 𝑢𝑘−1
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑘−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓2,2
󵄩󵄩󵄩󵄩󵄩𝐻

} ,
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󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑘−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓2,2
󵄩󵄩󵄩󵄩󵄩𝐻

} ,

max
2≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

2≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴

1/2 𝑢𝑘 + 𝑢𝑘−1
2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑘−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ 𝜏

󵄩󵄩󵄩󵄩𝑓2,2
󵄩󵄩󵄩󵄩𝐻

} ,

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢1

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑘−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
+ 𝜏

󵄩󵄩󵄩󵄩𝑓2,2
󵄩󵄩󵄩󵄩𝐻

} ,

max
2≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴

1/2 𝑢𝑘+1 − 𝑢𝑘−1
2𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

2≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴
𝑢𝑘 + 𝑢𝑘−1

2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓2,2

󵄩󵄩󵄩󵄩󵄩𝐻
} ,

󵄩󵄩󵄩󵄩𝐴𝑢1
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜏
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓2,2

󵄩󵄩󵄩󵄩󵄩𝐻
} ,

(225)

where𝑀 does not depend on 𝜏, 𝜑, 𝜓, 𝑓2,2, or𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁−1.

In [70, 71], the nonlocal boundary value problem for the
multidimensional hyperbolic equation

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡2
−

𝑚

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢𝑥𝑟

)
𝑥𝑟

+ 𝜎𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) ,

𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ Ω, 0 < 𝑡 < 𝑇,

(226)

with integral conditions

𝑢 (0, 𝑥) = ∫

𝑇

0
𝛼 (𝜌) 𝑢 (𝜌, 𝑥) 𝑑𝜌

+

𝑛

∑

𝑖=1
𝑎 (𝜆𝑖) 𝑢 (𝜆𝑖, 𝑥) + 𝜑 (𝑥) , 𝑥 ∈ Ω,

𝑢𝑡 (0, 𝑥) = ∫

𝑇

0
𝛽 (𝜌) 𝑢𝑡 (𝜌, 𝑥) 𝑑𝜌

+

𝑛

∑

𝑖=1
𝑏 (𝜆𝑖) 𝑢𝑡 (𝜆𝑖, 𝑥) + 𝜓 (𝑥) , 𝑥 ∈ Ω,

(227)

and nonclassical conditions
𝑢 (𝑡, 𝑥)|𝑆1

= 0,

𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆2

= 0, 0 ≤ 𝑡 ≤ 𝑇,

(228)

or classical Dirichlet condition
𝑢|𝑆 = 0 (229)

or classical Neumann condition
𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆

= 0 (230)

was investigated under the assumption
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 + ∫

𝑇

0
𝛼 (𝑠) 𝛽 (𝑠) 𝑑𝑠 +

𝑛

∑

𝑘=1
𝑎 (𝜆𝑘)

𝑛

∑

𝑘=1
𝑏 (𝜆𝑘)

+

𝑛

∑

𝑘=1
𝑎 (𝜆𝑘) ∫

𝑇

0
𝛽 (𝑠) 𝑑𝑠 +

𝑛

∑

𝑘=1
𝑏 (𝜆𝑘) ∫

𝑇

0
𝛼 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> ∫

𝑇

0
(|𝛼 (𝑠)| +

󵄨󵄨󵄨󵄨𝛽 (𝑠)
󵄨󵄨󵄨󵄨) 𝑑𝑠

+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎 (𝜆𝑘) + 𝑏 (𝜆𝑘)
󵄨󵄨󵄨󵄨 .

(231)

Here,Ω is the unit open cube in the𝑚-dimensional Euclidean
space R𝑚

(𝑥 = (𝑥1, . . . , 𝑥𝑚) : 0 < 𝑥𝑗 < 1, 1 ≤ 𝑗 ≤

𝑚) with boundary 𝑆 = 𝑆1 ∪ 𝑆2, Ω = Ω ∪ 𝑆, 𝑎𝑟(𝑥) (𝑥 ∈

Ω), 𝜑(𝑥), 𝜓(𝑥) (𝑥 ∈ Ω), and 𝑓(𝑡, 𝑥) (𝑡 ∈ (0, 𝑇), 𝑥 ∈ Ω)

which are given smooth functions, and 𝑎𝑟(𝑥) ≥ 𝑎 > 0. ⃗𝑛

is the normal vector to Ω, 𝜎 ≥ 0, and 𝛼(𝑠), 𝛽(𝑠), 𝑎(𝑠), and
𝑏(𝑠) are scalar real-valued continuous functions. Theorems
on stability of solutions of these problems were established.
The first and second order of accuracy in 𝑡 stable difference
schemes for the approximate solution of these problems were
presented. Stability of these difference schemes was obtained
under the assumption

1 >

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼 (𝑡𝑗)

󵄨󵄨󵄨󵄨󵄨
𝜏

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽 (𝑡𝑗)

󵄨󵄨󵄨󵄨󵄨
𝜏 +

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼 (𝑡𝑗)

󵄨󵄨󵄨󵄨󵄨
𝜏 +

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽 (𝑡𝑗)

󵄨󵄨󵄨󵄨󵄨
𝜏

(232)

for the first order difference scheme and under the assump-
tion

1 >

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼 (𝑡𝑗 −

𝜏

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜏 +

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛽 (𝑡𝑗 −

𝜏

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜏

+

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛼 (𝑡𝑗 −

𝜏

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜏

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝛽 (𝑡𝑗 −

𝜏

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜏

(233)

for the second order difference scheme.
The theoretical statements for the solution of these differ-

ence schemes for one-dimensional hyperbolic equations are
supported by two numerical examples in computer. We show
that the second order of accuracy difference scheme is more
accurate compared with the first order of accuracy difference
scheme.
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7.4. Hyperbolic and Mixed Type PDEs. The solutions of
large-scale scientific-technological problems in the field of
construction of the base of project and system of rational
elaboration, improvement of elaboration and exploitation
of technology, modern methods of construction of deep
well-holes in complicated conditions, hydrodynamics of low
permeable spaces, and protection of environment become
possible only owing to the application of mathematical mod-
els and new numerical methods implemented on computers.
Mathematical models of many problems of such type are
reduced to nonclassical or classical problems of mixed type
PDEs (see, e.g., [121–125]). Ashyralyev jointly with his group
of scientists investigated the modeling processes of exploita-
tion of gas places. The investigation of the underground
natural gas beneath the earth 6 km from the underlying
is based on mathematical models. In this section we give
results of his group on the stability of nonlocal problems for
partial differential equations of mixed hyperbolic-parabolic
and elliptic-hyperbolic types. First, we consider the nonlocal
boundary value problem

𝑑
2
𝑢 (𝑡)

𝑑𝑡2
+ 𝐴𝑢 (𝑡) = 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

𝑑𝑢 (𝑡)

𝑑𝑡
+ 𝐴𝑢 (𝑡) = 𝑔 (𝑡) (−𝑇 ≤ 𝑡 ≤ 0) ,

𝑢 (−𝑇) = 𝛼𝑢 (𝜇) + 𝜑, 0 ≤ 𝛼 ≤ 1, 0 < 𝜇 ≤ 𝑇,

(234)

for hyperbolic-parabolic differential equations of mixed type
in Hilbert space 𝐻, where 𝐴 = 𝐴

∗
≥ 𝛿𝐼 (𝛿 > 0) is a positive

definite and self-adjoint operator with dense domain𝐷(𝐴).
Function 𝑢(𝑡) is called a solution of problem (234) if the

following conditions are satisfied:

(i) 𝑢(𝑡) is twice continuously differentiable on the inter-
val (0, 𝑇] and continuously differentiable on the
segment [−𝑇, 𝑇].

(ii) The element 𝑢(𝑡) belongs to 𝐷(𝐴) for all 𝑡 ∈ [−𝑇, 𝑇],
and the function 𝐴𝑢(𝑡) is continuous on the segment
[−𝑇, 𝑇].

(iii) 𝑢(𝑡) satisfies the equations and nonlocal boundary
condition (234).

Theorem 101. Suppose that 𝜑 ∈ 𝐷(𝐴) and 𝑓(𝑡) are con-
tinuously differentiable on [0, 𝑇] and 𝑔(𝑡) is continuously
differentiable on [−𝑇, 0] function. Then there is a unique
solution of problem (234) and the stability inequalities

max
−𝑇≤𝑡≤𝑇

‖𝑢 (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+ max

−𝑇≤𝑡≤0
󵄩󵄩󵄩󵄩𝑔 (𝑡)

󵄩󵄩󵄩󵄩𝐻
+ max

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓 (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

] ,

max
−𝑇≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢 (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+ ∫

0

−𝑇

󵄩󵄩󵄩󵄩𝑔 (𝑡)
󵄩󵄩󵄩󵄩𝐻

𝑑𝑡 + max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩𝐻

] ,

max
−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑢 (𝑡)

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
2
𝑢 (𝑡)

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑇≤𝑡≤𝑇

‖𝐴𝑢 (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑔 (0)󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓 (0)󵄩󵄩󵄩󵄩𝐻 + max

−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
+ ∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡]

(235)

hold, where 𝑀 does not depend on 𝑓(𝑡), 𝑡 ∈ [0, 𝑇], 𝑔(𝑡) ∈

[−𝑇, 0], or 𝜑.

In [87], the difference analogues of these stability inequal-
ities were presented for solutions of the first order of accuracy
difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝑢1 − 𝑢0) + 𝑖𝐴
1/2

𝑢1 = (−𝐴 + 𝑖𝐴
1/2

) 𝑢0 + 𝑔0,

𝑁𝜏 = 𝑇,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴𝑢𝑘 = 𝑔𝑘,

𝑔𝑘 = 𝑔 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼𝑢[𝜇/𝜏] + 𝜑

(236)

and second order of accuracy of the two types of difference
schemes

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘 +
𝜏
2

4
𝐴

2
𝑢𝑘+1 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝑢1 − 𝑢0) + 𝑖𝐴
1/2

(𝐼 + 𝑖
𝜏𝐴

1/2

2
)𝑢1 = 𝑍1,

𝑁𝜏 = 𝑇,

𝑍1 =
𝜏

2
(𝑓 (0) − 𝐴𝑢0) + (𝑖𝐴

1/2
− 𝜏𝐴) 𝑢0

+ (𝐼 − 𝑖𝜏𝐴
1/2

) (𝑔 (0) − 𝐴𝑢0) ,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴(𝐼 +
𝜏

2
𝐴)𝑢𝑘 = (𝐼 +

𝜏

2
𝐴)𝑔(𝑡𝑘 −

𝜏

2
) ,
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𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝑢[𝜇/𝜏]+1 − 𝑢[𝜇/𝜏]) (
𝜇

𝜏
− [

𝜇

𝜏
])) + 𝜑,

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
1
2
𝐴𝑢𝑘

+
1
4
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝑢1 − 𝑢0) + 𝑖𝐴
1/2

(𝐼 + 𝑖
𝜏𝐴

1/2

2
)𝑢1 = 𝑍1,

𝑁𝜏 = 1,

𝑍1 =
𝜏

2
(𝑓 (0) − 𝐴𝑢0) + (𝑖𝐴

1/2
− 𝜏𝐴) 𝑢0

+ (𝐼 − 𝑖𝜏𝐴
1/2

) (𝑔 (0) − 𝐴𝑢0) ,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴(𝐼 +
𝜏

2
𝐴)𝑢𝑘 = (𝐼 +

𝜏

2
𝐴)𝑔(𝑡𝑘 −

𝜏

2
) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝑢[𝜇/𝜏]+1 − 𝑢[𝜇/𝜏]) (
𝜇

𝜏
− [

𝜇

𝜏
])) + 𝜑

(237)

for approximately solving boundary value problem (234).
However, for the practical realization of these difference

schemes, it is necessary to first construct operator 𝐴1/2. This
action is very difficult for a computer. Therefore, in spite of
the theoretical results, the role of their application to the
numerical solution of the boundary value problem is not
great.

Let us associate with boundary value problem (234) the
corresponding first order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝑢1 − 𝑢0) = −𝐴𝑢0 + 𝑔0,

𝑁𝜏 = 𝑇,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴𝑢𝑘 = 𝑔𝑘,

𝑔𝑘 = 𝑔 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼𝑢[𝜇/𝜏] + 𝜑.

(238)

Theorem 102. Let 𝜑 ∈ 𝐷(𝐴), 𝑔0 ∈ 𝐷(𝐴
1/2

). Then for the
solution of difference scheme (238) the stability inequalities

max
−𝑁≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
+ max

−(𝑁−1)≤𝑘≤0
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
] ,

max
−𝑁≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩𝑓𝑘
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑔0

󵄩󵄩󵄩󵄩𝐻

+

0
∑

𝑘=−(𝑁−1)

󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔𝑘−1
󵄩󵄩󵄩󵄩𝐻

] ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−(𝑁−1)≤𝑘≤0

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑁≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[

𝑁−1
∑

𝑘=2

󵄩󵄩󵄩󵄩𝑓𝑘 − 𝑓𝑘−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑔0

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻

+ max
−(𝑁−1)≤𝑘≤0

󵄩󵄩󵄩󵄩󵄩
(𝑔𝑘 − 𝑔𝑘−1) 𝜏

−1󵄩󵄩󵄩󵄩󵄩𝐻]

(239)

hold, where𝑀 does not depend on 𝑓𝑘, 𝑔𝑘, or 𝜑.

Note that Theorem 102 permits us to obtain the conver-
gence estimates for the solution of difference scheme (238).

In [88, 89], the same stability results for the solution of the
following difference schemes of second order of accuracy

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘 +
𝜏
2

4
𝐴

2
𝑢𝑘+1 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝐼 + 𝜏
2
𝐴) (𝑢1 − 𝑢0) = 𝑍1,

𝑁𝜏 = 𝑇,

𝑍1 =
𝜏

2
(𝑓 (0) − 𝐴𝑢0) + (𝑔 (0) − 𝐴𝑢0) ,
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𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴(𝐼 +
𝜏

2
𝐴)𝑢𝑘 = (𝐼 +

𝜏

2
𝐴)𝑔(𝑡𝑘 −

𝜏

2
) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝑢[𝜇/𝜏]+1 − 𝑢[𝜇/𝜏]) (
𝜇

𝜏
− [

𝜇

𝜏
])) + 𝜑;

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
1
2
𝐴𝑢𝑘

+
1
4
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝐼 + 𝜏
2
𝐴) (𝑢1 − 𝑢0) = 𝑍1,

𝑁𝜏 = 𝑇,

𝑍1 =
𝜏

2
(𝑓 (0) − 𝐴𝑢0) + (𝑔 (0) − 𝐴𝑢0) ,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴(𝐼 +
𝜏

2
𝐴)𝑢𝑘 = (𝐼 +

𝜏

2
𝐴)𝑔(𝑡𝑘 −

𝜏

2
) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝑢[𝜇/𝜏]+1 − 𝑢[𝜇/𝜏]) (
𝜇

𝜏
− [

𝜇

𝜏
])) + 𝜑,

(240)

for approximately solving problem (234), were obtained.
Moreover, the nonlocal boundary value problem

𝑑
2
𝑢 (𝑡)

𝑑𝑡2
+ 𝐴𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) (0 ≤ 𝑡 ≤ 𝑇) ,

𝑑𝑢 (𝑡)

𝑑𝑡
+ 𝐴𝑢 (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡)) (−𝑇 ≤ 𝑡 ≤ 0) ,

𝑢 (−𝑇) = 𝛼𝑢 (𝜇) + 𝜑, 0 ≤ 𝛼 ≤ 1, 0 < 𝜇 ≤ 𝑇,

(241)

for semilinear differential equations of mixed type in Hilbert
space 𝐻 with an operator 𝐴 = 𝐴

∗
≥ 𝛿𝐼 was considered. The

first order of accuracy

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘+1 = 𝑓 (𝑡𝑘, 𝑢𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝑢1 − 𝑢0) = −𝐴𝑢0 + 𝑔 (0, 𝑢0) ,

𝑁𝜏 = 𝑇,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴𝑢𝑘 = 𝑔 (𝑡𝑘, 𝑢𝑘) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼𝑢[𝜇/𝜏] + 𝜑

(242)

and second order of accuracy

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘 +
𝜏
2

4
𝐴

2
𝑢𝑘+1 = 𝑓 (𝑡𝑘, 𝑢𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝐼 + 𝜏
2
𝐴) (𝑢1 − 𝑢0) = 𝑍1,

𝑁𝜏 = 𝑇,

𝑍1 =
𝜏

2
(𝑓 (0, 𝑢0) − 𝐴𝑢0) + (𝑔 (0, 𝑢0) − 𝐴𝑢0) ,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴(𝐼 +
𝜏

2
𝐴)𝑢𝑘

= (𝐼 +
𝜏

2
𝐴)𝑔(𝑡𝑘 −

𝜏

2
,
1
2
(𝑢𝑘 + 𝑢𝑘−1)) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝑢[𝜇/𝜏]+1 − 𝑢[𝜇/𝜏]) (
𝜇

𝜏
− [

𝜇

𝜏
])) + 𝜑;

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
1
2
𝐴𝑢𝑘

+
1
4
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓 (𝑡𝑘, 𝑢𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝜏
−1

(𝐼 + 𝜏
2
𝐴) (𝑢1 − 𝑢0) = 𝑍1,

𝑁𝜏 = 𝑇,

𝑍1 = 𝑍1 =
𝜏

2
(𝑓 (0, 𝑢0) − 𝐴𝑢0) + (𝑔 (0, 𝑢0) − 𝐴𝑢0) ,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴(𝐼 +
𝜏

2
𝐴)𝑢𝑘

= (𝐼 +
𝜏

2
𝐴)𝑔(𝑡𝑘 −

𝜏

2
,
1
2
(𝑢𝑘 + 𝑢𝑘−1)) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝑢[𝜇/𝜏]+1 − 𝑢[𝜇/𝜏]) (
𝜇

𝜏
− [

𝜇

𝜏
])) + 𝜑

(243)

difference schemes approximately solving problem (241) were
investigated. The convergence estimates for the solution of
these difference schemes were obtained. Abstract theorems
of [87–89] permit us to obtain the stability estimates for
the solutions of these difference schemes. A finite difference
method and some results of numerical experiments are
presented in order to support theoretical statements.
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Such type stability results for special cases of hyperbolic-
parabolic equations were obtained before in [78–81].

In [82, 83], the nonlocal boundary value problem

𝑑
2
𝑢 (𝑡)

𝑑𝑡2
+ 𝐴𝑢 (𝑡) = 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

𝑢 (−𝑇) = 𝛼𝑢 (𝜇) + 𝛽𝑢
󸀠
(𝜆) + 𝜑,

𝑑𝑢 (𝑡)

𝑑𝑡
+ 𝐴𝑢 (𝑡) = 𝑔 (𝑡) (−𝑇 ≤ 𝑡 ≤ 0) ,

|𝛼| ≤ 1, 0 <
󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 ≤ 1,

0 < 𝜇, 𝜆 ≤ 𝑇,

(244)

for hyperbolic-parabolic differential equations of mixed type
in Hilbert space 𝐻, with a positive definite and self-adjoint
operator 𝐴 = 𝐴

∗
≥ 𝛿𝐼 (𝛿 > 0) with dense domain𝐷(𝐴), was

considered.
Function 𝑢(𝑡) is called a solution of problem (244) if the

following conditions are satisfied:

(i) 𝑢(𝑡) is twice continuously differentiable on the inter-
val (0, 𝑇] and continuously differentiable on the
segment [−𝑇, 𝑇].

(ii) The element 𝑢(𝑡) belongs to 𝐷(𝐴) for all 𝑡 ∈ [−𝑇, 𝑇],
and the function 𝐴𝑢(𝑡) is continuous on the segment
[−𝑇, 𝑇].

(iii) 𝑢(𝑡) satisfies the equations and nonlocal boundary
condition (244).

Theorem 103 (see [83]). Suppose that 𝜑 ∈ 𝐷(𝐴), 𝑔(0) ∈

𝐷(𝐴
1/2

), 𝑔󸀠
(0) ∈ 𝐻, 𝑓(0) ∈ 𝐷(𝐴

1/2
), and 𝑓

󸀠
(0) ∈ 𝐻. Let

𝑓(𝑡) be twice continuously differentiable on [0, 𝑇] and let 𝑔(𝑡)
be twice continuously differentiable on [−𝑇, 0] functions. Then
there is a unique solution of problem (244) and the following
stability inequalities hold:

max
−𝑇≤𝑡≤𝑇

‖𝑢 (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+ max

−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔 (0)󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓 (0)󵄩󵄩󵄩󵄩󵄩𝐻 + max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

max
−𝑇≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑢

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑇≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢 (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑔 (0)󵄩󵄩󵄩󵄩𝐻 + max

−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓 (0)󵄩󵄩󵄩󵄩𝐻 + max

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

max
−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑢

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
2
𝑢

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑇≤𝑡≤𝑇

‖𝐴𝑢 (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑔 (0)󵄩󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠
(0)󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓 (0)󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(0)󵄩󵄩󵄩󵄩󵄩𝐻 + max

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

(245)

where 𝑀 does not depend on 𝑓(𝑡), 𝑡 ∈ [0, 𝑇], 𝑔(𝑡) ∈ [−𝑇, 0],
or 𝜑.

In [82], the first order of accuracy

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘+1) ,

𝑡𝑘+1 = (𝑘 + 1) 𝜏, 1 ≤ 𝑘 < 𝑁,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴𝑢𝑘 = 𝑔𝑘,

𝑔𝑘 = 𝑔 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, −𝑁 < 𝑘 ≤ 0,

𝜏
−1

(𝑢1 − 𝑢0) = −𝐴𝑢0 + 𝑔0,

𝑢−𝑁 = 𝛼𝑢0 + 𝛽 (−𝐴𝑢0 + 𝑔0) + 𝜑, 𝜇 ≤ 2𝜏, 𝜆 ≤ 2𝜏,

𝑢−𝑁 = 𝛼𝑢[𝜇/𝜏] + 𝛽 (−𝐴𝑢0 + 𝑔0) + 𝜑, 2𝜏 < 𝜇, 𝜆 ≤ 2𝜏,

𝑢−𝑁 = 𝛼𝑢0 + 𝛽
𝑢[𝜆/𝜏] − 𝑢[𝜆/𝜏]−1

𝜏
+ 𝜑, 𝜇 ≤ 2𝜏, 2𝜏 < 𝜆,

𝑢−𝑁 = 𝛼𝑢[𝜇/𝜏] + 𝛽
𝑢[𝜆/𝜏] − 𝑢[𝜆/𝜏]−1

𝜏
+ 𝜑, 2𝜏 < 𝜇, 2𝜏 < 𝜆,

(246)
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and two types of second order of accuracy

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘 +
𝜏
2

4
𝐴

2
𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 < 𝑁,

𝜏
−1

(𝐼 + 𝜏
2
𝐴) (𝑢1 − 𝑢0) = 𝑍1,

𝑍1 =
𝜏

2
(𝑓 (0) − 𝐴𝑢0) + (𝑔 (0) − 𝐴𝑢0) ,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴(𝐼 +
𝜏

2
𝐴)𝑢𝑘 = (𝐼 +

𝜏

2
𝐴)𝑔𝑘,

𝑔𝑘 = 𝑔(𝑡𝑘 −
𝜏

2
) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼 (𝑢0 + 𝜇 (−𝐴𝑢0 + 𝑔0))

+ 𝛽 (−𝐴𝑢0 + 𝑔0 + 𝜆 (−𝐴𝑢0 + 𝑓0))

+ 𝜑, 𝜇 ≤ 2𝜏, 𝜆 ≤ 2𝜏,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝜇 − [
𝜇

𝜏
] 𝜏)

𝑢[𝜇/𝜏] − 𝑢[𝜇/𝜏]−1

𝜏
)

+ 𝛽 (−𝐴𝑢0 + 𝑔0 + 𝜆 (−𝐴𝑢0 + 𝑓0))

+ 𝜑, 2𝜏 < 𝜇, 𝜆 ≤ 2𝜏,

𝑢−𝑁 = 𝛼 (𝑢0 + 𝜇 (−𝐴𝑢0 + 𝑔0))

+ 𝛽 (
𝑢[𝜆/𝜏] − 𝑢[𝜆/𝜏]−1

𝜏

+(𝜆 − [
𝜆

𝜏
] 𝜏 −

𝜏

2
) (𝑓[𝜆/𝜏] − 𝐴𝑢[𝜆/𝜏]))

+ 𝜑, 𝜇 ≤ 2𝜏, 2𝜏 < 𝜆,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝜇 − [
𝜇

𝜏
] 𝜏)

𝑢[𝜇/𝜏] − 𝑢[𝜇/𝜏]−1

𝜏
)

+ 𝛽(
𝑢[𝜆/𝜏] − 𝑢[𝜆/𝜏]−1

𝜏

+(𝜆 − [
𝜆

𝜏
] 𝜏 −

𝜏

2
) (𝑓[𝜆/𝜏] − 𝐴𝑢[𝜆/𝜏]))

+ 𝜑, 2𝜏 < 𝜇, 2𝜏 < 𝜆,

(247)

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
1
2
𝐴𝑢𝑘

+
1
4
𝐴 (𝑢𝑘+1 + 𝑢𝑘−1) = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 < 𝑁,

𝜏
−1

(𝐼 + 𝜏
2
𝐴) (𝑢1 − 𝑢0) = 𝑍1,

𝑍1 =
𝜏

2
(𝑓 (0) − 𝐴𝑢0) + (𝑔 (0) − 𝐴𝑢0) ,

𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1) + 𝐴(𝐼 +
𝜏

2
𝐴)𝑢𝑘 = (𝐼 +

𝜏

2
𝐴)𝑔𝑘,

𝑔𝑘 = 𝑔(𝑡𝑘 −
𝜏

2
) ,

𝑡𝑘 = 𝑘𝜏, − (𝑁 − 1) ≤ 𝑘 ≤ 0,

𝑢−𝑁 = 𝛼 (𝑢0 + 𝜇 (−𝐴𝑢0 + 𝑔0))

+ 𝛽 (−𝐴𝑢0 + 𝑔0 + 𝜆 (−𝐴𝑢0 + 𝑓0))

+ 𝜑, 𝜇 ≤ 2𝜏, 𝜆 ≤ 2𝜏,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝜇 − [
𝜇

𝜏
] 𝜏)

𝑢[𝜇/𝜏] − 𝑢[𝜇/𝜏]−1

𝜏
)

+ 𝛽 (−𝐴𝑢0 + 𝑔0 + 𝜆 (−𝐴𝑢0 + 𝑓0))

+ 𝜑, 2𝜏 < 𝜇, 𝜆 ≤ 2𝜏,

𝑢−𝑁 = 𝛼 (𝑢0 + 𝜇 (−𝐴𝑢0 + 𝑔0))

+ 𝛽 (
𝑢[𝜆/𝜏] − 𝑢[𝜆/𝜏]−1

𝜏

+(𝜆 − [
𝜆

𝜏
] 𝜏 −

𝜏

2
) (𝑓[𝜆/𝜏] − 𝐴𝑢[𝜆/𝜏]))

+ 𝜑, 𝜇 ≤ 2𝜏, 2𝜏 < 𝜆,

𝑢−𝑁 = 𝛼(𝑢[𝜇/𝜏] + (𝜇 − [
𝜇

𝜏
] 𝜏)

𝑢[𝜇/𝜏] − 𝑢[𝜇/𝜏]−1

𝜏
)

+ 𝛽(
𝑢[𝜆/𝜏] − 𝑢[𝜆/𝜏]−1

𝜏

+(𝜆 − [
𝜆

𝜏
] 𝜏 −

𝜏

2
) (𝑓[𝜆/𝜏] − 𝐴𝑢[𝜆/𝜏]))

+ 𝜑, 2𝜏 < 𝜇, 2𝜏 < 𝜆,

(248)

difference schemes for approximately solving boundary value
problem (244) were presented. For the solution of these
difference schemes, the following stability estimates are
established.
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Theorem 104 (see [82]). Suppose that 𝜑 ∈ 𝐷(𝐴), 𝑔0 ∈

𝐷(𝐴
1/2

), and 𝑓1 ∈ 𝐷(𝐴
1/2

). Then, for the solution of difference
scheme (246), the following stability estimates hold:

max
−𝑁≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓1
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔0
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
2≤𝑘<𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

(𝑓𝑘 − 𝑓𝑘−1) 𝜏
−1󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑁<𝑘≤0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

(𝑔𝑘 − 𝑔𝑘−1) 𝜏
−1󵄩󵄩󵄩󵄩󵄩𝐻] ,

max
−𝑁≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑔0

󵄩󵄩󵄩󵄩𝐻

+ max
2≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
(𝑓𝑘 − 𝑓𝑘−1) 𝜏

−1󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−(𝑁−1)≤𝑘≤0

󵄩󵄩󵄩󵄩󵄩
(𝑔𝑘 − 𝑔𝑘−1) 𝜏

−1󵄩󵄩󵄩󵄩󵄩𝐻] ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑁≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

+ max
−(𝑁−1)≤𝑘≤0

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓1

󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
(𝑓2 − 𝑓1) 𝜏

−1󵄩󵄩󵄩󵄩󵄩𝐻

+ max
2≤𝑘≤𝑁−2

󵄩󵄩󵄩󵄩󵄩
(𝑓𝑘+1 − 2𝑓𝑘 + 𝑓𝑘−1) 𝜏

−2󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑔0

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
(𝑔0 − 𝑔−1) 𝜏

−1󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−(𝑁−1)≤𝑘≤−1

󵄩󵄩󵄩󵄩󵄩
(𝑔𝑘+1 − 2𝑔𝑘 + 𝑔𝑘−1) 𝜏

−2󵄩󵄩󵄩󵄩󵄩𝐻] ,

(249)

where 𝑀 does not depend on 𝜏, 𝑓𝑘, 1 ≤ 𝑘 < 𝑁, 𝑔𝑘, −𝑁 < 𝑘 ≤

0, or 𝜑.

Theorem 105 (see [82]). Suppose that 𝜑 ∈ 𝐷(𝐴), 𝑔0 ∈

𝐷(𝐴
1/2

), and 𝑓0 ∈ 𝐷(𝐴
1/2

). Then for the solution of difference
schemes (247) and (248) the following stability estimates hold:

max
−𝑁≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓0
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔0
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘<𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
−1/2

𝜏
(𝑓𝑘 − 𝑓𝑘−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑁<𝑘≤0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐴
−1/2

𝜏
(𝑔𝑘 − 𝑔𝑘−1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

] ,

max
−𝑁≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑔0

󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
(𝑓𝑘 − 𝑓𝑘−1) 𝜏

−1󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−(𝑁−1)≤𝑘≤0

󵄩󵄩󵄩󵄩󵄩
(𝑔𝑘 − 𝑔𝑘−1) 𝜏

−1󵄩󵄩󵄩󵄩󵄩𝐻] ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑁≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

+ max
−(𝑁−1)≤𝑘≤0

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑢𝑘 − 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓0

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
(𝑓1 − 𝑓0) 𝜏

−1󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑘≤𝑁−2

󵄩󵄩󵄩󵄩󵄩
(𝑓𝑘+1 − 2𝑓𝑘 + 𝑓𝑘−1) 𝜏

−2󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑔0

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
(𝑔0 − 𝑔−1) 𝜏

−1󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−(𝑁−1)≤𝑘≤−1

󵄩󵄩󵄩󵄩󵄩
(𝑔𝑘+1 − 2𝑔𝑘 + 𝑔𝑘−1) 𝜏

−2󵄩󵄩󵄩󵄩󵄩𝐻] ,

(250)

where𝑀 does not depend on 𝜏, 𝑓𝑘, 0 ≤ 𝑘 < 𝑁, 𝑔𝑘, −𝑁 < 𝑘 ≤ 0,
or 𝜑.

In applications, the stability estimates for the solutions
of the difference schemes of the mixed type boundary value
problems for hyperbolic-parabolic equations were obtained.
The theoretical statements for the solution of these difference
schemes for hyperbolic-parabolic equation were supported
by the results of numerical experiments.

The generalization of stability estimates results of [82, 83]
was presented in [84, 85] for the solution of the multipoint
nonlocal boundary value problem

𝑑
2
𝑢 (𝑡)

𝑑𝑡2
+ 𝐴𝑢 (𝑡) = 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

𝑑𝑢 (𝑡)

𝑑𝑡
+ 𝐴𝑢 (𝑡) = 𝑔 (𝑡) (−𝑇 ≤ 𝑡 ≤ 0) ,

𝑢 (−𝑇) =

𝑁

∑

𝑖=1
𝛼𝑖𝑢 (𝜇𝑖) +

𝐿

∑

𝑖=1
𝛽𝑖𝑢

󸀠
(𝜆𝑖) + 𝜑,

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖
󵄨󵄨󵄨󵄨 ≤ 1, 0 <

𝐿

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛽𝑖

󵄨󵄨󵄨󵄨 ≤ 1, 0 < 𝜇𝑖, 𝜆𝑖 ≤ 𝑇,

(251)

for differential equations of mixed type in Hilbert space 𝐻

with self-adjoint positive definite operator 𝐴.
In practice, the stability estimates for the solutions of

difference schemes of the nonlocal boundary value problems
for one-dimensional hyperbolic-parabolic equations with
nonlocal boundary conditions in space variable and multidi-
mensional hyperbolic-parabolic equations withDirichlet and
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Neumann conditions in space variables were obtained. The
method was illustrated by numerical examples.

In [90, 91], the nonlocal boundary value problem

𝑑
2
𝑢 (𝑡)

𝑑𝑡2
+ 𝐴𝑢 (𝑡) = 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

𝑖
𝑑𝑢 (𝑡)

𝑑𝑡
+ 𝐴𝑢 (𝑡) = 𝑔 (𝑡) (−𝑇 ≤ 𝑡 ≤ 0) ,

𝐴𝑢 (−𝑇) = 𝛼𝑢 (𝜇) + 𝜑, 0 < 𝜇 ≤ 𝑇,

(252)

for differential equations of hyperbolic-Schrödinger type in
Hilbert space𝐻with self-adjoint positive definite operator𝐴
was considered.

Theorem 106 (see [90]). Suppose that 𝜑 ∈ 𝐷(𝐴
1/2

), 𝑓(0) ∈

𝐷(𝐴
1/2

), and 𝑔(0) ∈ 𝐷(𝐴
1/2

). Let 𝑓(𝑡) be continuously
differentiable on [0, 𝑇] and let 𝑔(𝑡) be twice continuously
differentiable on [−𝑇, 0] functions. Then, there is a unique
solution of problem (252) and the following stability inequalities

max
−𝑇≤𝑡≤𝑇

‖𝑢 (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔 (0)󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1
𝑔
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻

+max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓 (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

] ,

max
−𝑇≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑢 (𝑡)

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑇≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢 (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑔 (0)󵄩󵄩󵄩󵄩𝐻 + max

−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻

+max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩𝐻

] ,

max
−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑢 (𝑡)

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
2
𝑢 (𝑡)

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−1≤𝑡≤1

‖𝐴𝑢 (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑔 (0)󵄩󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠
(0)󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓 (0)󵄩󵄩󵄩󵄩󵄩𝐻

+max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑓
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
]

(253)

hold, where 𝑀 is independent of 𝑓(𝑡), 𝑡 ∈ [0, 𝑇], 𝑔(𝑡), 𝑡 ∈

[−𝑇, 0], and 𝜑.

In applications, the stability estimates for the solutions
of the mixed type boundary value problems for hyperbolic-

Schrödinger equations were obtained. Difference schemes of
first and second order of accuracy for approximate solutions
of nonlocal boundary value problem (252) for hyperbolic-
Schrödinger equations were investigated. Stability estimates
for the solutions of these difference schemes were obtained.
A finite difference method and some results of numerical
experiments are presented in order to support theoretical
statements.

In [126], difference schemes for the approximate numer-
ical solutions of difference schemes of multipoint non-
local boundary value problem for the multidimensional
hyperbolic-parabolic equations with Dirichlet and Neumann
conditions were investigated. Stability estimates for the
solution of these difference schemes and their first and
second orders difference derivatives were obtained. Numer-
ical experiments of one-dimensional hyperbolic-parabolic
equations with variable conditions in 𝑥 and two-dimensional
hyperbolic-parabolic equations were given. The theoretical
statements for the solution of these difference schemes are
supported by numerical examples.

Second, we consider the nonlocal boundary value prob-
lem

𝑢𝑡𝑡 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇,

−𝑢𝑡𝑡 (𝑡) + 𝐴𝑢 (𝑡) = 𝑔 (𝑡) , −𝑇 ≤ 𝑡 ≤ 0,

𝑢 (−𝑇) = 𝑢 (𝑇) , 𝑢 (0) = 𝜑

(254)

for hyperbolic-elliptic differential equations in Hilbert
space 𝐻, with the self-adjoint positive definite operator
𝐴.

Function 𝑢(𝑡) is called a solution of problem (254) if the
following conditions are satisfied:

(i) 𝑢(𝑡) is twice continuously differentiable in the region
[−𝑇, 0) ∪ (0, 𝑇] and continuously differentiable on the
segment [−𝑇, 𝑇].

(ii) The element 𝑢(𝑡) belongs to 𝐷(𝐴) for all 𝑡 ∈ [−𝑇, 𝑇],
and the function 𝐴𝑢(𝑡) is continuous on [−𝑇, 𝑇].

(iii) 𝑢(𝑡) satisfies the equations and boundary conditions
(254).

Theorem 107 (see [77]). Suppose that 𝜑 ∈ 𝐷(𝐴), and let
𝑓(𝑡) be continuously differentiable on [0, 𝑇] and let 𝑔(𝑡) be
continuously differentiable on [−𝑇, 0] functions.Then there is a
unique solution of problem (254) and the stability inequalities

max
−𝑇≤𝑡≤𝑇

‖𝑢 (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+ max

−𝑇≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔 (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓 (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

] ,

max
−𝑇≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑢

𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑇≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢 (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻



Abstract and Applied Analysis 49

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+ ∫

0

−𝑇

󵄩󵄩󵄩󵄩𝑔 (𝑡)
󵄩󵄩󵄩󵄩𝐻

𝑑𝑡 + ∫

𝑇

0

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩𝐻

𝑑𝑡] ,

max
−𝑇≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
2
𝑢

𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑇≤𝑡≤𝑇

‖𝐴𝑢 (𝑡)‖𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑔 (0)󵄩󵄩󵄩󵄩𝐻 +

󵄩󵄩󵄩󵄩𝑓 (0)󵄩󵄩󵄩󵄩𝐻

+∫

0

−𝑇

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡 + ∫

𝑇

0

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
𝑑𝑡]

(255)

hold, where M does not depend on 𝑓(𝑡), 𝑡 ∈ [0, 𝑇], 𝑔(𝑡), 𝑡 ∈

[−𝑇, 0], and 𝜑.

In [77], applying the first order of accuracy difference
scheme for hyperbolic equations and the second order of
accuracy difference scheme for elliptic equations and the first
order approximation formulae for nonlocal condition and
continuity condition at 𝑡 = 0, the following first order of
accuracy difference scheme

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

+ 𝐴𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘+1) ,

𝑡𝑘+1 = (𝑘 + 1) 𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇,

−
𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝐴𝑢𝑘 = 𝑔𝑘,

𝑔𝑘 = 𝑔 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, −𝑁 + 1 ≤ 𝑘 ≤ −1,

𝑢−𝑁 = 𝑢𝑁, 𝑢0 = 𝜑,

𝑢1 − 𝑢0 = 𝑢0 − 𝑢−1,

(256)

for approximately solving nonlocal boundary value problem
(254), was presented.

Theorem 108 (see [77]). Let 𝜑 ∈ 𝐷(𝐴). Then, for the solution
of difference scheme (256), the stability inequalities

max
−𝑁≤𝑡≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+ max

−𝑁+1≤𝑡≤−1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

+ max
1≤𝑡≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

max
−𝑁+1≤𝑡≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘 − 𝑢𝑘−1
𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

−𝑁≤𝑡≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+

−1
∑

𝑘=−𝑁+1
𝜏
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩𝐻
+

𝑁−1
∑

𝑘=1
𝜏
󵄩󵄩󵄩󵄩𝑓𝑘

󵄩󵄩󵄩󵄩𝐻
] ,

max
−𝑁+1≤𝑡≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

−𝑁≤𝑡≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑔−1

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻

+

−1
∑

𝑘=−𝑁+1

󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔𝑘−1
󵄩󵄩󵄩󵄩𝐻

+

𝑁−1
∑

𝑘=2

󵄩󵄩󵄩󵄩𝑓𝑘 − 𝑓𝑘−1
󵄩󵄩󵄩󵄩𝐻

]

(257)

hold, where 𝑀 does not depend on 𝜏, 𝜑, or 𝑓𝑘, 1 ≤ 𝑘 ≤ 𝑁 −

1, 𝑔
𝑘
, −𝑁 + 1 ≤ 𝑘 ≤ −1.

In [77], applying the second order of accuracy difference
scheme for hyperbolic equations and elliptic equations and
the second order approximation formulae for nonlocal con-
dition and continuity condition at 𝑡 = 0, the following second
order of accuracy difference schemes

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

+ 𝐴𝑢𝑘 +
𝜏
2

4
𝐴

2
𝑢𝑘+1 = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇,

−
𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝐴𝑢𝑘 = 𝑔𝑘,

𝑔𝑘 = 𝑔 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, −𝑁 + 1 ≤ 𝑘 ≤ −1,

𝑢1 − 𝑢0 −
𝜏
2

2
(𝑓0 − 𝐴𝑢0)

= 𝑢0 − 𝑢−1 −
𝜏
2

2
(𝑔0 − 𝐴𝑢0)

𝑓0 = 𝑓 (0) , 𝑔0 = 𝑔 (0) ,

𝑢0 = 𝜑, 𝑢−𝑁 = 𝑢𝑁,

(258)
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𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

+
1
2
𝐴𝑢𝑘 +

1
4
(𝐴𝑢𝑘+1 + 𝐴𝑢𝑘−1) = 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇,

−
𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1

𝜏2
+ 𝐴𝑢𝑘 = 𝑔𝑘,

𝑔𝑘 = 𝑔 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, −𝑁 + 1 ≤ 𝑘 ≤ −1,

(𝐼 +
𝜏
2
𝐴

4
) (𝑢1 − 𝑢0) −

𝜏
2

2
(𝑓0 − 𝐴𝑢0)

= 𝑢0 − 𝑢−1 −
𝜏
2

2
(𝑔0 − 𝐴𝑢0) ,

𝑓0 = 𝑓 (0) , 𝑔0 = 𝑔 (0) ,

𝑢0 = 𝜑, 𝑢−𝑁 = 𝑢𝑁,

(259)

for approximately solving nonlocal boundary value problem
(254), was presented.

Theorem 109 (see [77]). Let 𝜑 ∈ 𝐷(𝐴). Then, for the solution
of difference scheme (258), the stability inequalities

max
−𝑁≤𝑡≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩𝐻
+ max

−𝑁+1≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

max
−𝑁+1≤𝑡≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘 − 𝑢𝑘−1
𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

−𝑁≤𝑡≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜑
󵄩󵄩󵄩󵄩󵄩𝐻

+

0
∑

𝑘=−𝑁+1
𝜏
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩𝐻
+

𝑁−1
∑

𝑘=0
𝜏
󵄩󵄩󵄩󵄩𝑓𝑘

󵄩󵄩󵄩󵄩𝐻
] ,

max
−𝑁+1≤𝑡≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

−𝑁≤𝑡≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝐴𝜑

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑔0

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻

+

0
∑

𝑘=−𝑁+1

󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔𝑘−1
󵄩󵄩󵄩󵄩𝐻

+

𝑁−1
∑

𝑘=1

󵄩󵄩󵄩󵄩𝑓𝑘 − 𝑓𝑘−1
󵄩󵄩󵄩󵄩𝐻

]

(260)

hold, where M does not depend on 𝜏, 𝜑, or 𝑓𝑘, 0 ≤ 𝑘 ≤ 𝑁 −

1, 𝑔
𝑘
, −𝑁 + 1 ≤ 𝑘 ≤ 0.

Theorem 110 (see [77]). Let 𝜑 ∈ 𝐷(𝐴
3/2

). Then, for the
solution of difference scheme (259), the stability inequalities

max
−𝑁≤𝑡≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
(𝐼 ± 𝑖𝜏𝐴

1/2
) 𝜑

󵄩󵄩󵄩󵄩󵄩𝐻

+ max
−𝑁+1≤𝑡≤0

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑔𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
] ,

max
−𝑁+1≤𝑡≤𝑁

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘 − 𝑢𝑘−1
𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

−𝑁≤𝑡≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
(𝐼 ± 𝑖𝜏𝐴

1/2
) 𝜑

󵄩󵄩󵄩󵄩󵄩𝐻

+

0
∑

𝑘=−𝑁+1
𝜏
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩𝐻
+

𝑁−1
∑

𝑘=0
𝜏
󵄩󵄩󵄩󵄩𝑓𝑘

󵄩󵄩󵄩󵄩𝐻
] ,

max
−𝑁+1≤𝑡≤𝑁−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1
𝜏2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻
+ max

−𝑁≤𝑡≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩󵄩
𝐴 (𝐼 ± 𝑖𝜏𝐴

1/2
) 𝜑

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑔0

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐻

+

0
∑

𝑘=−𝑁+1

󵄩󵄩󵄩󵄩𝑔𝑘 − 𝑔𝑘−1
󵄩󵄩󵄩󵄩𝐻

+

𝑁−1
∑

𝑘=1

󵄩󵄩󵄩󵄩𝑓𝑘 − 𝑓𝑘−1
󵄩󵄩󵄩󵄩𝐻

]

(261)

hold, where 𝑀 does not depend on 𝜏, 𝜑, or 𝑓𝑘, 0 ≤ 𝑘 ≤ 𝑁 −

1, 𝑔
𝑘
, −𝑁 + 1 ≤ 𝑘 ≤ 0.

Thegeneralization of stability estimates results of [77, 126]
was presented in [86] for the solution of the multipoint
nonlocal boundary value problem

𝑢𝑡𝑡 (𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇,

−𝑢𝑡𝑡 (𝑡) + 𝐴𝑢 (𝑡) = 𝑔 (𝑡) , −𝑇 ≤ 𝑡 ≤ 0,

𝑢 (−1) =
𝑃

∑

𝑘=1
𝛼𝑘𝑢 (𝜃𝑘) + 𝜑,

0 < 𝜃1 < ⋅ ⋅ ⋅ < 𝜃𝑃 ≤ 𝑇,

𝑢 (0) = 0

(262)

for hyperbolic-elliptic differential equations of mixed type in
Hilbert space 𝐻 with self-adjoint positive definite operator
𝐴.

In practice, the stability estimates for the solutions of dif-
ference schemes of the nonlocal boundary value problems for
one-dimensional hyperbolic-elliptic equations with nonlocal
boundary conditions in space variable and multidimensional
hyperbolic-elliptic equations with Dirichlet and Neumann
conditions in space variables were obtained.Themethod was
illustrated by numerical examples.
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7.5. Stochastic Hyperbolic Equations. It is known that most
problems for stochastic differential equations are applied to
model diverse phenomena such as fluctuating stock prices
or physical system subject to thermal fluctuations. Typi-
cally, stochastic differential equations incorporate white noise
which can be thought of as the derivative of Brownianmotion
(or theWiener process); however, it should bementioned that
other types of random fluctuations are possible, such as jump
processes.

It is known that initial-boundary value problems for
stochastic hyperbolic equations can be reduced to the Cauchy
problem

V󸀠󸀠 (𝑡) 𝑑𝑡 = −𝐴V (𝑡) 𝑑𝑡 + 𝑓 (𝑡) 𝑑𝑤𝑡, 0 < 𝑡 < 𝑇,

V (0) = 0,

V󸀠 (0) = 0,

𝑤𝑡 =
√𝑡𝜉, 𝜉 ∈ 𝑁 (0, 1) ,

(263)

for the second order stochastic differential equation in
Hilbert space 𝐻 with self-adjoint positive definite operator
𝐴 with 𝐴 ≥ 𝛿𝐼, where 𝛿 > 𝛿0 > 0. Here,

(i) 𝑤𝑡 is a standard Wiener process given on the proba-
bility space (Ω, 𝐹, 𝑃);

(ii) for any 𝑧 ∈ [0, 𝑇], 𝑓(𝑧) is an element of the space
𝑀

2
𝑤
([0, 𝑇],𝐻1), where𝐻1 is a subspace of𝐻.

Here, 𝑀2
𝑤
([0, 𝑇],𝐻) denote the space of 𝐻-valued mea-

surable processes which satisfy the following:
(a) 𝜙(𝑡) is 𝐹𝑡 measurable, a.e. in 𝑡.

(b) Consider 𝐸∫
𝑇

0 ‖𝜙(𝑡)‖𝐻𝑑𝑡 < ∞.

It is clear that under assumptions (i)-(ii) Cauchy problem
(263) has a unique mild solution, which is represented by the
following formula:

V (𝑡) = ∫

𝑡

0
𝑆 (𝑡 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑤𝑧. (264)

Theorem 111 (see [93]). Let V(𝑡𝑘) be the solution of (263) at
the grid points 𝑡 = 𝑡𝑘. Then {V(𝑡𝑘)}

𝑁

0 is the solution of the initial
value problem for the following difference equation:

1
𝜏2

(V (𝑡𝑘+1) − 2V (𝑡𝑘) + V (𝑡𝑘−1))

+
2
𝜏2

(𝐼 − 𝐶 (𝜏, 𝐴)) V (𝑡𝑘) = 𝑓𝑘,

𝑓𝑘 =
1
𝜏
(𝑓1,𝑘+1 + 𝑆 (𝜏, 𝐴) 𝑓2,𝑘 − 𝐶 (𝜏, 𝐴) 𝑓1,𝑘) ,

𝑓1,𝑘 =
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

𝑆 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑤𝑧,

𝑓2,𝑘 =
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

𝐶 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑤𝑧,

1 ≤ 𝑘 ≤ 𝑁 − 1,

V (0) = 0, V (𝜏) = 𝜏𝑓1,1.

(265)

For the approximate solution of problem (263), we need
to approximate the expressions

𝑓1,𝑘 =
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

𝑆 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑤𝑧,

𝑓2,𝑘 =
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

𝐶 (𝑡𝑘 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑤𝑧,

exp (±𝑖𝜏𝐴
1/2

) .

(266)

Using Taylor’s formula and Padé approximation of the func-
tion 𝑒

−𝑧 at 𝑧 = 0, we can construct the following two-step
difference scheme:

1
𝜏2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) +
1
2
𝐴𝑢𝑘 +

1
4
𝐴𝑢𝑘+1 + 𝐴𝑢𝑘−1

=
1
𝜏
((𝐼 +

1
4
𝜏
2
𝐴)𝑓1,𝑘+1 + 𝜏𝑓2,𝑘 − (𝐼 −

1
4
𝜏
2
𝐴)𝑓1,𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = 0, 𝑢1 = 𝜏𝑓1,1,

(267)

for the approximate solution of problem (263).

Theorem 112 (see [93]). Assume that

𝐸∫

𝑇

0

󵄩󵄩󵄩󵄩𝐴𝑓 (𝑡)
󵄩󵄩󵄩󵄩

2
𝐻
𝑑𝑡 ≤ 𝐶. (268)

Then the estimate of convergence

(

𝑁

∑

𝑘=1
𝐸
󵄩󵄩󵄩󵄩V (𝑡𝑘) − 𝑢𝑘

󵄩󵄩󵄩󵄩

2
𝐻
)

1/2

≤ 𝐶1 (𝛿) 𝜏 (269)

holds. Here, 𝐶1(𝛿) does not depend on 𝜏.

In applications, the initial-boundary value problem for
one-dimensional stochastic hyperbolic equation

𝑢𝑡𝑡 (𝑡, 𝑥) 𝑑𝑡 − (𝑎 (𝑥) 𝑢𝑥)𝑥
𝑑𝑡 + 𝛿𝑢 (𝑡, 𝑥) 𝑑𝑡 = 𝑓 (𝑡, 𝑥) 𝑑𝑤𝑡,

0 < 𝑡 < 𝑇, 0 < 𝑥 < 1,

𝑢 (0, 𝑥) = 𝑢𝑡 (0, 𝑥) = 0, 0 ≤ 𝑥 ≤ 1,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) , 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 1) , 0 ≤ 𝑡 ≤ 𝑇,

(270)

was considered. Here 𝛿 > 0, 𝑎(𝑥) ≥ 𝑎 > 0, 𝑎(1) =

𝑎(0) (𝑥 ∈ (0, 1)), and 𝑓(𝑡, 𝑥) (𝑡 ∈ [0, 𝑇], 𝑥 ∈ [0, 1]) are
smooth functions with respect to 𝑥.

The discretization of problem (270) is carried out in two
steps. In the first step, we define the grid space

[0, 1]ℎ = {𝑥 = 𝑥𝑛 : 𝑥𝑛 = 𝑛ℎ, 0 ≤ 𝑛 ≤ 𝑀,𝑀ℎ = 1} . (271)
Let us introduce the Hilbert space 𝐿2ℎ = 𝐿2([0, 1]ℎ) of the
grid functions 𝜑ℎ

(𝑥) = {𝜑𝑛}
𝑀−1
1 defined on [0, 1]ℎ, equipped

with the norm

󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

= ( ∑

𝑥∈[0,1]ℎ

󵄨󵄨󵄨󵄨𝜑 (𝑥)
󵄨󵄨󵄨󵄨

2
ℎ)

1/2

. (272)
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To the differential operator𝐴 generated by problem (270), we
assign the difference operator 𝐴𝑥

ℎ
by the formula

𝐴
𝑥

ℎ
𝜑
ℎ
(𝑥) = {− (𝑎 (𝑥) 𝜑𝑥)𝑥,𝑛

+ 𝛿𝜑𝑛}
𝑀−1
1

(273)

acting in the space of grid functions 𝜑ℎ
(𝑥) = {𝜑𝑛}

𝑀

0 satisfying
the conditions 𝜑0 = 𝜑𝑀, 𝜑1 − 𝜑0 = 𝜑𝑀 − 𝜑𝑀−1. It is well-
known that 𝐴𝑥

ℎ
is a self-adjoint positive definite operator in

𝐿2ℎ. With the help of 𝐴𝑥

ℎ
, we arrive at the following initial

value problem:

𝑢
ℎ

𝑡𝑡
(𝑡, 𝑥) 𝑑𝑡 + 𝐴

𝑥

ℎ
𝑢
ℎ
(𝑡, 𝑥) 𝑑𝑡 = 𝑓

ℎ
(𝑡, 𝑥) 𝑑𝑤𝑡,

0 < 𝑡 < 𝑇, 𝑥 ∈ [0, 1]ℎ ,

𝑢
ℎ
(0, 𝑥) = 𝑢

ℎ

𝑡
(0, 𝑥) = 0, 𝑥 ∈ [0, 1]ℎ .

(274)

In the second step, we replace (274) with difference scheme
(267):

1
𝜏2

(𝑢
ℎ

𝑘+1 (𝑥) − 2𝑢ℎ
𝑘
(𝑥) + 𝑢

ℎ

𝑘−1 (𝑥)) +
1
2
𝐴
𝑥

ℎ
𝑢
ℎ

𝑘
(𝑥)

+
1
4
(𝐴

𝑥

ℎ
𝑢
ℎ

𝑘+1 (𝑥) + 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘−1 (𝑥)) = 𝜑
ℎ

𝑘
(𝑥) ,

𝜑
ℎ

𝑘
(𝑥) =

1
𝜏
((𝐼 +

1
4
𝜏
2
𝐴
𝑥

ℎ
)𝜑

ℎ

1,𝑘+1 (𝑥) + 𝜏𝜑
ℎ

2,𝑘 (𝑥)

− (𝐼 −
1
4
𝜏
2
𝐴
𝑥

ℎ
)𝜑

ℎ

1,𝑘 (𝑥)) ,

𝜑
ℎ

1,𝑘 (𝑥) = −
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

(𝑧 − 𝑡𝑘) 𝑓
ℎ
(𝑧, 𝑥) 𝑑𝑤𝑧,

𝜑
ℎ

2,𝑘 (𝑥) =
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑧) 𝑑𝑤𝑧,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑥 ∈ [0, 1]ℎ ,

𝑢
ℎ

0 (𝑥) = 0, 𝑢
ℎ

1 (𝑥) = −∫

𝜏

0
(𝑧 − 𝜏) 𝑓

ℎ
(𝑧, 𝑥) 𝑑𝑤𝑧,

𝑥 ∈ [0, 1]ℎ .

(275)

Theorem 113 (see [93]). Let 𝜏 and ℎ be sufficiently small
numbers. Then, the solutions of difference scheme (275) satisfy
the following convergence estimate:

(

𝑁

∑

𝑘=1
𝐸
󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ
(𝑡𝑘) − 𝑢

ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩

2
𝐿2ℎ

)

1/2

≤ 𝐶 (𝛿) (𝜏 + ℎ) , (276)

where 𝐶(𝛿) does not depend on 𝜏 or ℎ.

The proof of Theorem 113 is based on the abstract
Theorem 112 and the symmetry properties of the difference
operator 𝐴𝑥

ℎ
defined by formula (273).

Second, letΩ be the unit open cube in the 𝑛-dimensional
Euclidean space R𝑛

= {𝑥 = (𝑥1, . . . , 𝑥𝑛) : 0 < 𝑥𝑖 < 1, 𝑖 =

1, . . . , 𝑛}with boundary 𝑆, Ω = Ω∪𝑆. In [0, 𝑇]×Ω, the mixed

boundary value problem for the multidimensional parabolic
equation

𝑢𝑡𝑡 (𝑡, 𝑥) 𝑑𝑡 −

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢𝑥𝑟

)
𝑥𝑟

𝑑𝑡 = 𝑓 (𝑡, 𝑥) 𝑑𝑤𝑡,

0 < 𝑡 < 𝑇, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω,

𝑢 (0, 𝑥) = 𝑢𝑡 (0, 𝑥) = 0, 𝑥 ∈ Ω;

𝑢 (𝑡, 𝑥) = 0, 𝑥 ∈ 𝑆, 0 ≤ 𝑡 ≤ 𝑇,

(277)

with theDirichlet condition, was considered. Here 𝑎𝑟(𝑥), (𝑥 ∈

Ω), and𝑓(𝑡, 𝑥) (𝑡 ∈ (0, 1), 𝑥 ∈ Ω) are given smooth functions
with respect to 𝑥 and 𝑎𝑟(𝑥) ≥ 𝑎 > 0.

The discretization of problem (277) is carried out in two
steps. In the first step, define the grid space Ωℎ = {𝑥 = 𝑥𝑚 =

(ℎ1𝑚1, . . . , ℎ𝑛𝑚𝑛); 𝑚 = (𝑚1, . . . , 𝑚𝑛), 0 ≤ 𝑚𝑟 ≤ 𝑁𝑟, ℎ𝑟𝑁𝑟 =

1, 𝑟 = 1, . . . , 𝑛},Ωℎ = Ωℎ ∩ Ω, 𝑆ℎ = Ωℎ ∩ 𝑆.
Let 𝐿2ℎ denote the Hilbert space

𝐿2ℎ = 𝐿2 (Ωℎ)

=

{{

{{

{

𝜑
ℎ
(𝑥) : ( ∑

𝑥∈Ωℎ

󵄨󵄨󵄨󵄨󵄨
𝜑
ℎ
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
ℎ1 ⋅ ⋅ ⋅ ℎ𝑛)

1/2

< ∞

}}

}}

}

.

(278)

The differential operator 𝐴 in (277) is replaced with

𝐴
𝑥

ℎ
𝑢
ℎ
(𝑥) = −

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢

ℎ

𝑥𝑟
)
𝑥𝑟 ,𝑗𝑟

, (279)

where the difference operator 𝐴
𝑥

ℎ
is defined on those grid

functions 𝑢ℎ(𝑥) = 0, for all 𝑥 ∈ 𝑆ℎ. It is well-known that 𝐴𝑥

ℎ

is a self-adjoint positive definite operator in 𝐿2ℎ.
Using (279), we arrive at the following initial value

problem:

𝑢
ℎ

𝑡𝑡
(𝑡, 𝑥) 𝑑𝑡 + 𝐴

𝑥

ℎ
𝑢
ℎ
(𝑡, 𝑥) 𝑑𝑡 = 𝑓

ℎ
(𝑡, 𝑥) 𝑑𝑤𝑡,

0 < 𝑡 < 𝑇, 𝑥 ∈ Ωℎ,

𝑢
ℎ
(0, 𝑥) = 𝑢

ℎ

𝑡
(0, 𝑥) = 0, 𝑥 ∈ Ωℎ.

(280)
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In the second step, we replace (280) with difference
scheme (267):

1
𝜏2

(𝑢
ℎ

𝑘+1 (𝑥) − 2𝑢ℎ
𝑘
(𝑥) + 𝑢

ℎ

𝑘−1 (𝑥)) +
1
2
𝐴
𝑥

ℎ
𝑢
ℎ

𝑘
(𝑥)

+
1
4
(𝐴

𝑥

ℎ
𝑢
ℎ

𝑘+1 (𝑥) + 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘−1 (𝑥)) = 𝜑
ℎ

𝑘
(𝑥) ,

𝜑
ℎ

𝑘
(𝑥) =

1
𝜏
((𝐼 +

1
4
𝜏
2
𝐴
𝑥

ℎ
)𝜑

ℎ

1,𝑘+1 (𝑥) + 𝜏𝜑
ℎ

2,𝑘 (𝑥)

− (𝐼 −
1
4
𝜏
2
𝐴
𝑥

ℎ
)𝜑

ℎ

1,𝑘 (𝑥)) ,

𝜑
ℎ

1,𝑘 (𝑥) = −
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

(𝑧 − 𝑡𝑘) 𝑓
ℎ
(𝑧, 𝑥) 𝑑𝑤𝑧,

𝜑
ℎ

2,𝑘 (𝑥) =
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑧) 𝑑𝑤𝑧,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑥 ∈ Ωℎ,

𝑢
ℎ

0 (𝑥) = 0, 𝑢
ℎ

1 (𝑥) = −∫

𝜏

0
(𝑧 − 𝜏) 𝑓

ℎ
(𝑧, 𝑥) 𝑑𝑤𝑧,

𝑥 ∈ Ωℎ.

(281)

Theorem 114 (see [93]). Let 𝜏 and |ℎ| = √ℎ
2
1 + ⋅ ⋅ ⋅ + ℎ2

𝑛

be sufficiently small numbers. Then, the solution of difference
scheme (281) satisfies the following convergence estimate:

(

𝑁

∑

𝑘=1
𝐸
󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ
(𝑡𝑘) − 𝑢

ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩

2
𝐿2ℎ

)

1/2

≤ 𝐶 (𝛿) (𝜏 + |ℎ|
2
) , (282)

where 𝐶(𝛿) does not depend on 𝜏 or |ℎ|.

The proof of Theorem 114 is based on the abstract
Theorem 112 and the symmetry properties of the difference
operator 𝐴𝑥

ℎ
defined by formula (279).

Third, in [0, 𝑇] × Ω, the mixed boundary value problem
for the multidimensional parabolic equation

𝑢𝑡𝑡 (𝑡, 𝑥) 𝑑𝑡 −

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢𝑥𝑟

)
𝑥𝑟

𝑑𝑡

+ 𝛿𝑢 (𝑡, 𝑥) 𝑑𝑡 = 𝑓 (𝑡, 𝑥) 𝑑𝑤𝑡,

0 < 𝑡 < 𝑇, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω,

𝑢 (0, 𝑥) = 𝑢𝑡 (0, 𝑥) = 0, 𝑥 ∈ Ω;

𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛
= 0, 𝑥 ∈ 𝑆, 0 ≤ 𝑡 ≤ 𝑇,

(283)

with the Neumann condition, was considered. Here ⃗𝑛 is the
normal vector to Ω. Here 𝛿 > 0 𝑎𝑟(𝑥), (𝑥 ∈ Ω), and
𝑓(𝑡, 𝑥) (𝑡 ∈ (0, 1), 𝑥 ∈ Ω) are given smooth functions with
respect to 𝑥 and 𝑎𝑟(𝑥) ≥ 𝑎 > 0.

The discretization of problem (283) is carried out in two
steps. In the first step, the differential operator 𝐴 in (283) is
replaced with

𝐴
𝑥

ℎ
𝑢
ℎ
(𝑥) = −

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢

ℎ

𝑥𝑟
)
𝑥𝑟 ,𝑗𝑟

+ 𝛿𝑢
ℎ
(𝑥) , (284)

where the difference operator 𝐴
𝑥

ℎ
is defined on those grid

functions 𝐷ℎ
𝑢
ℎ
(𝑥) = 0, for all 𝑥 ∈ 𝑆ℎ, where 𝐷

ℎ
𝑢
ℎ
(𝑥) = 0

is the second order of approximation of 𝜕𝑢(𝑡, 𝑥)/𝜕 ⃗𝑛. It is easy
to see that𝐴𝑥

ℎ
is a self-adjoint positive definite operator in𝐿2ℎ.

Using (284), we arrive at the following initial value problem:

𝑢
ℎ

𝑡𝑡
(𝑡, 𝑥) 𝑑𝑡 + 𝐴

𝑥

ℎ
𝑢
ℎ
(𝑡, 𝑥) 𝑑𝑡 = 𝑓

ℎ
(𝑡, 𝑥) 𝑑𝑤𝑡,

0 < 𝑡 < 𝑇, 𝑥 ∈ Ωℎ,

𝑢
ℎ
(0, 𝑥) = 𝑢

ℎ

𝑡
(0, 𝑥) = 0, 𝑥 ∈ Ωℎ.

(285)

In the second step, we replace (285) with the difference
scheme (267):

1
𝜏2

(𝑢
ℎ

𝑘+1 (𝑥) − 2𝑢ℎ
𝑘
(𝑥) + 𝑢

ℎ

𝑘−1 (𝑥)) +
1
2
𝐴
𝑥

ℎ
𝑢
ℎ

𝑘
(𝑥)

+
1
4
(𝐴

𝑥

ℎ
𝑢
ℎ

𝑘+1 (𝑥) + 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘−1 (𝑥)) = 𝜑
ℎ

𝑘
(𝑥) ,

𝜑
ℎ

𝑘
(𝑥) =

1
𝜏
((𝐼 +

1
4
𝜏
2
𝐴
𝑥

ℎ
)𝜑

ℎ

1,𝑘+1 (𝑥) + 𝜏𝜑
ℎ

2,𝑘 (𝑥)

− (𝐼 −
1
4
𝜏
2
𝐴
𝑥

ℎ
)𝜑

ℎ

1,𝑘 (𝑥)) ,

𝜑
ℎ

1,𝑘 (𝑥) = −
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

(𝑧 − 𝑡𝑘) 𝑓
ℎ
(𝑧, 𝑥) 𝑑𝑤𝑧,

𝜑
ℎ

2,𝑘 (𝑥) =
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑧) 𝑑𝑤𝑧,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑥 ∈ Ωℎ,

𝑢
ℎ

0 (𝑥) = 0, 𝑢
ℎ

1 (𝑥) = −∫

𝜏

0
(𝑧 − 𝜏) 𝑓

ℎ
(𝑧, 𝑥) 𝑑𝑤𝑧,

𝑥 ∈ Ωℎ.

(286)

Theorem 115 (see [93]). Let 𝜏 and |ℎ| = √ℎ
2
1 + ⋅ ⋅ ⋅ + ℎ2

𝑛

be sufficiently small numbers. Then, the solution of difference
scheme (286) satisfies the following convergence estimate:

(

𝑁

∑

𝑘=1
𝐸
󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ
(𝑡𝑘) − 𝑢

ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩

2
𝐿2ℎ

)

1/2

≤ 𝐶 (𝛿) (𝜏 + |ℎ|
2
) , (287)

where 𝐶(𝛿) does not depend on 𝜏 or |ℎ|.

The proof of Theorem 115 is based on the abstract
Theorem 112 and the symmetry properties of the difference
operator 𝐴𝑥

ℎ
defined by formula (284).
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Fourth, in [0, 𝑇] ×Ω, the mixed boundary value problem
for the multidimensional parabolic equation

𝑢𝑡𝑡 (𝑡, 𝑥) 𝑑𝑡 −

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢𝑥𝑟

)
𝑥𝑟

𝑑𝑡

+ 𝛿𝑢 (𝑡, 𝑥) 𝑑𝑡 = 𝑓 (𝑡, 𝑥) 𝑑𝑤𝑡,

0 < 𝑡 < 𝑇, 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω,

𝑢 (0, 𝑥) = 𝑢𝑡 (0, 𝑥) = 0, 𝑥 ∈ Ω;

𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛
= 0, 𝑥 ∈ 𝑆2,

0 ≤ 𝑡 ≤ 𝑇, 𝑆1 ∪ 𝑆2 = 𝑆,

𝑢 (𝑡, 𝑥) = 0, 𝑥 ∈ 𝑆1,

(288)

with the Dirichlet and Neumann conditions was considered.
Here ⃗𝑛 is the normal vector to Ω. Here 𝛿 > 0 𝑎𝑟(𝑥), (𝑥 ∈ Ω),
and 𝑓(𝑡, 𝑥) (𝑡 ∈ (0, 1), 𝑥 ∈ Ω) are given smooth functions
with respect to 𝑥 and 𝑎𝑟(𝑥) ≥ 𝑎 > 0.

The discretization of problem (288) is carried out in two
steps. In the first step, the differential operator 𝐴 in (288) is
replaced with

𝐴
𝑥

ℎ
𝑢
ℎ
(𝑥) = −

𝑛

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢

ℎ

𝑥𝑟
)
𝑥𝑟 ,𝑗𝑟

+ 𝛿𝑢
ℎ
(𝑥) , (289)

where the difference operator 𝐴
𝑥

ℎ
is defined on those grid

functions 𝑢ℎ(𝑥) = 0, for all 𝑥 ∈ 𝑆
1
ℎ
and 𝐷

ℎ
𝑢
ℎ
(𝑥) = 0, for all

𝑥 ∈ 𝑆
2
ℎ
, 𝑆1

ℎ
∪𝑆

2
ℎ
= 𝑆ℎ, where𝐷

ℎ
𝑢
ℎ
(𝑥) = 0 is the second order of

approximation of 𝜕𝑢(𝑡, 𝑥)/𝜕 ⃗𝑛. By [101], we can conclude that
𝐴
𝑥

ℎ
is a self-adjoint positive definite operator in 𝐿2ℎ. Using

(289), we arrive at initial value problem (285).
In the second step, we replace (285) with difference

scheme (267):

1
𝜏2

(𝑢
ℎ

𝑘+1 (𝑥) − 2𝑢ℎ
𝑘
(𝑥) + 𝑢

ℎ

𝑘−1 (𝑥)) +
1
2
𝐴
𝑥

ℎ
𝑢
ℎ

𝑘
(𝑥)

+
1
4
(𝐴

𝑥

ℎ
𝑢
ℎ

𝑘+1 (𝑥) + 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘−1 (𝑥)) = 𝜑
ℎ

𝑘
(𝑥) ,

𝜑
ℎ

𝑘
(𝑥) =

1
𝜏
((𝐼 +

1
4
𝜏
2
𝐴
𝑥

ℎ
)𝜑

ℎ

1,𝑘+1 (𝑥) + 𝜏𝜑
ℎ

2,𝑘 (𝑥)

− (𝐼 −
1
4
𝜏
2
𝐴
𝑥

ℎ
)𝜑

ℎ

1,𝑘 (𝑥)) ,

𝜑
ℎ

1,𝑘 (𝑥) = −
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

(𝑧 − 𝑡𝑘) 𝑓
ℎ
(𝑧, 𝑥) 𝑑𝑤𝑧,

𝜑
ℎ

2,𝑘 (𝑥) =
1
𝜏
∫

𝑡𝑘

𝑡𝑘−1

𝑓 (𝑧) 𝑑𝑤𝑧,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇, 𝑥 ∈ Ωℎ,

𝑢
ℎ

0 (𝑥) = 0, 𝑢
ℎ

1 (𝑥) = −∫

𝜏

0
(𝑧 − 𝜏) 𝑓

ℎ
(𝑧, 𝑥) 𝑑𝑤𝑧,

𝑥 ∈ Ωℎ.

(290)

Theorem 116 (see [93]). Let 𝜏 and |ℎ| = √ℎ
2
1 + ⋅ ⋅ ⋅ + ℎ2

𝑛

be sufficiently small numbers. Then, the solution of difference
scheme (290) satisfies the following convergence estimate:

(

𝑁

∑

𝑘=1
𝐸
󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ
(𝑡𝑘) − 𝑢

ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩

2
𝐿2ℎ

)

1/2

≤ 𝐶 (𝛿) (𝜏 + |ℎ|
2
) , (291)

where 𝐶(𝛿) does not depend on 𝜏 or |ℎ|.

The proof of Theorem 116 is based on abstract
Theorem 112 and the symmetry properties of the difference
operator 𝐴𝑥

ℎ
defined by formula (284).

In [92], the initial value problem

𝑑V̇ (𝑡) + 𝐴V (𝑡) 𝑑𝑡 = 𝑓 (𝑡) 𝑑𝑤𝑡, 0 < 𝑡 < 𝑇,

V (0) = 𝜑, V̇ (0) = 𝜓,

(292)

for a stochastic hyperbolic equation in Hilbert space 𝐻 with
self-adjoint positive definite operator 𝐴 with 𝐴 ≥ 𝛿𝐼, where
𝛿 > 𝛿0 > 0, was investigated. In addition to (i) and (ii), we
put the following:

(iii) 𝜑 and 𝜓 are elements of the space 𝑀
2
𝑤
([0, 𝑇],𝐻2)

of 𝐻2-valued measurable processes, where 𝐻2 is a
subspace of𝐻.

Then, under assumptions (i), (ii), and (iii), initial value
problem (292) has a unique mild solution given by the
formula

V (𝑡) = 𝐶 (𝑡, 𝐴) 𝜑 + 𝑆 (𝑡, 𝐴) 𝜓 + ∫

𝑡

0
𝑆 (𝑡 − 𝑧, 𝐴) 𝑓 (𝑧) 𝑑𝑤𝑧.

(293)

Applying the method of [93] and formula (293), the differ-
ence scheme for the approximate solution of initial value
problem (292) was constructed and investigated. The con-
vergence estimate for the solution of the difference scheme
was proved. In applications, the theorems on convergence
estimates for the solution of difference schemes for the
approximate solution of initial-boundary value problems for
hyperbolic equations with Neumann, Dirichlet, Dirichlet-
Neumann, and Neumann-Dirichlet conditions were proved.
Thus, results show that the error is stable and decreases in an
exponential manner.

7.6. Fractional Hyperbolic Equations. In [96], the initial value
problem

𝑑
2V (𝑡)
𝑑𝑡2

+ 𝐷
1/2
𝑡

V (𝑡) + 𝐴V (𝑡) = 𝑓 (𝑡) , 0 < 𝑡 < 𝑇,

V (0) = 0, V󸀠 (0) = 𝜓,

(294)

for the fractional differential equation of the hyperbolic type
in Hilbert space𝐻with self-adjoint positive definite operator
𝐴 with 𝐴 ≥ 𝛿𝐼, where 𝛿 > 𝛿0 > 0 was considered.
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Function V(𝑡) is called a solution of problem (294) if the
following conditions are satisfied:

(i) V(𝑡) is twice continuously differentiable on the seg-
ment [0, 𝑇].

(ii) The element V(𝑡) belongs to 𝐷(𝐴) for all 𝑡 ∈ [0, 𝑇]
and the function 𝐴V(𝑡) is continuous on the segment
[0, 𝑇].

(iii) 𝑢(𝑡) satisfies the equation and initial conditions (294).

Theorem 117 (see [96]). Suppose that 𝜓 ∈ 𝐻 and let 𝑓(𝑡) be
a continuous function defined on [0, 𝑇]. Then, the following
stability estimates hold:

max
0≤𝑡≤𝑇

‖V (𝑡)‖𝐻 + max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩V𝑡
󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐷

1/2
𝑡

V (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩V𝑡𝑡 + V (𝑡)󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
] .

(295)

Suppose that 𝜓 = 0 and 𝑓(𝑡) is a continuously differentiable
function defined [0, 𝑇]. Then, the following stability estimates
hold:

max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑
2V (𝑡)
𝑑𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑡≤𝑇

‖𝐴V (𝑡)‖𝐻 + max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝐷

3/2
𝑡

V (𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[
󵄩󵄩󵄩󵄩𝑓 (0)󵄩󵄩󵄩󵄩𝐻 + max

0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻
] .

(296)

Here𝑀 does not depend on 𝜓 or 𝑓(𝑡), 𝑡 ∈ [0, 𝑇].

In applications, the stability estimates for the solution of
two problems were established. First, the mixed problem for
the fractional hyperbolic equation

𝑢𝑡𝑡 + 𝐷
1/2
𝑡

𝑢 (𝑡) − (𝑎 (𝑥) 𝑢𝑥)𝑥
+ 𝛿𝑢 = 𝑓 (𝑡, 𝑥) ,

0 < 𝑡 < 𝑇, 0 < 𝑥 < 1,
𝑢 (0, 𝑥) = 0, 𝑢𝑡 (0, 𝑥) = 0, 0 ≤ 𝑥 ≤ 1,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 1) , 𝑢𝑥 (𝑡, 0) = 𝑢𝑥 (𝑡, 1) , 0 ≤ 𝑡 ≤ 𝑇,

(297)

was considered. Problem (297) has unique smooth solution
𝑢(𝑡, 𝑥) for 𝛿 > 0 and the smooth functions 𝑎(𝑥) ≥ 𝑎 > 0,
𝑎(0) = 𝑎(1) (𝑥 ∈ (0, 1)), and 𝑓(𝑡, 𝑥) (𝑡 ∈ [0, 𝑇], 𝑥 ∈ [0, 1]).
This allows us to reduce mixed problem (297) to initial-
boundary value problem (294) in Hilbert space𝐻 = 𝐿2[0, 1]
with self-adjoint positive definite operator 𝐴

𝑥 defined by
formula (297).

Theorem 118 (see [96]). For solutions of mixed problem (297),
one has the following stability inequalities:

max
0≤𝑡≤𝑇

‖𝑢 (𝑡, ⋅)‖𝐿2[0,1] + max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑡 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2[0,1]

≤ 𝑀max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2[0,1]

,

max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑥𝑥 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2[0,1]

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑡𝑡 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2[0,1]

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓𝑡 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2[0,1]

+
󵄩󵄩󵄩󵄩𝑓 (0, ⋅)󵄩󵄩󵄩󵄩𝐿2[0,1]

] ,

(298)

where𝑀 does not depend on 𝑓(𝑡, 𝑥).

The proof of Theorem 118 is based on abstract
Theorem 117 and the symmetry properties of the operator
𝐴
𝑥 defined by formula (297).
Second, letΩ be the unit open cube in the𝑚-dimensional

Euclidean space R𝑚
{𝑥 = (𝑥1, . . . , 𝑥𝑚) : 0 < 𝑥𝑗 < 1, 1 ≤ 𝑗 ≤

𝑚} with boundary 𝑆, Ω = Ω ∪ 𝑆. In [0, 𝑇] × Ω, the mixed
boundary value problem for the multidimensional fractional
hyperbolic equation

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡2
−

𝑚

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢𝑥𝑟

)
𝑥𝑟

+ 𝐷
1/2
𝑡

𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) ,

𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ Ω, 0 < 𝑡 < 𝑇,

𝑢 (0, 𝑥) = 0, 𝑢𝑡 (0, 𝑥) = 0, 𝑥 ∈ Ω;

𝑢 (𝑡, 𝑥) = 0, 𝑥 ∈ 𝑆,

(299)

was considered. Here 𝑎𝑟(𝑥), (𝑥 ∈ Ω), and 𝑓(𝑡, 𝑥) (𝑡 ∈

(0, 𝑇), 𝑥 ∈ Ω) are given smooth functions and 𝑎𝑟(𝑥) ≥ 𝑎 > 0.
Problem (299) has a unique smooth solution 𝑢(𝑡, 𝑥)

for the smooth functions 𝑎𝑟(𝑥) and 𝑓(𝑡, 𝑥). This allows us
to reduce mixed problem (299) to initial-boundary value
problem (294) in Hilbert space 𝐻 = 𝐿2(Ω) with self-adjoint
positive definite operator 𝐴𝑥 defined by formula (299).

Theorem 119 (see [96]). For the solutions of mixed problem
(299), the following stability inequalities

max
0≤𝑡≤𝑇

‖𝑢 (𝑡, ⋅)‖
𝐿2(Ω)

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑡 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝑀max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2(Ω)

,

max
0≤𝑡≤𝑇

𝑚

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩
𝑢𝑥𝑟𝑥𝑟

(𝑡, ⋅)
󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

+ max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑢𝑡𝑡 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝑀[max
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑓𝑡 (𝑡, ⋅)
󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩𝑓 (0, ⋅)󵄩󵄩󵄩󵄩𝐿2(Ω)

]

(300)

hold, where𝑀 does not depend on 𝑓(𝑡, 𝑥).

The proof of Theorem 119 is based on Theorem 117, the
symmetry properties of the operator 𝐴𝑥 defined by formula
(299), and Theorem 70 on the coercivity inequality for the
solution of the elliptic differential problem in 𝐿2(Ω).
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Let us associate initial-boundary value problem (294)
with corresponding first order of accuracy difference scheme

𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1) + 𝐴𝑢𝑘+1

+
1

√𝜋

𝑘

∑

𝑚=1

1
(𝑘 − 𝑚)!

∫

∞

0
𝑡
𝑘−𝑚−1/2

𝑒
−𝑡
𝑑𝑡

⋅
𝑓𝑚 − 𝑓𝑚−1

𝜏1/2
= 𝑓𝑘,

𝑓𝑘 = 𝑓 (𝑡𝑘) ,

𝑡𝑘 = 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇;

𝑢0 = 0,

(𝐼 + 𝜏
2
𝐴) 𝜏

−1
(𝑢1 − 𝑢0) = 𝜓.

(301)

Theorem 120 (see [96]). Suppose that 𝜓 ∈ 𝐷(𝐴
1/2

). Then, for
the solution of difference scheme (301), the stability inequalities

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓𝑠

󵄩󵄩󵄩󵄩󵄩𝐻
𝜏 +

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

} ,

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝑢𝑘

󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝑀{

𝑁−1
∑

𝑠=1

󵄩󵄩󵄩󵄩𝑓𝑠
󵄩󵄩󵄩󵄩𝐻

𝜏 +
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐻
} ,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐻

+ max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝐴𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀1 {
𝑁−1
∑

𝑠=2

󵄩󵄩󵄩󵄩𝑓𝑠 − 𝑓𝑠−1
󵄩󵄩󵄩󵄩𝐻

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩󵄩
𝐴

1/2
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻

}

(302)

hold, where𝑀1 does not depend on 𝜏, 𝜓, or 𝑓𝑠, 1 ≤ 𝑠 ≤ 𝑁 − 1.

First, initial-boundary value problem (297) for one-
dimensional fractional hyperbolic equation was considered.
Thediscretization of problem (297) is carried out in two steps.
In the first step, let us define the grid space

[0, 1]ℎ = {𝑥 : 𝑥𝑟 = 𝑟ℎ, 0 ≤ 𝑟 ≤ 𝑀,𝑀ℎ = 1} . (303)

We introduce the Hilbert space 𝐿2ℎ = 𝐿2([0, 1]ℎ) of the grid
functions 𝜑ℎ

(𝑥) = {𝜑
𝑟
}
𝑀−1
1 defined on [0, 1]ℎ, equipped with

the norm

󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

= (

𝑀−1
∑

𝑟=1

󵄨󵄨󵄨󵄨󵄨
𝜑
ℎ
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
ℎ)

1/2

. (304)

To the differential operator𝐴 generated by problem (297), we
assign the difference operator 𝐴𝑥

ℎ
by the formula

𝐴
𝑥

ℎ
𝜑
ℎ
(𝑥) = {− (𝑎 (𝑥) 𝜑𝑥)𝑥,𝑛

+ 𝛿𝜑𝑛}
𝑀−1
1

(305)

acting in the space of grid functions 𝜑ℎ
(𝑥) = {𝜑𝑛}

𝑀

0 satisfying
the conditions𝜑0 = 𝜑𝑀,𝜑1−𝜑0 = 𝜑𝑀−𝜑𝑀−1. It is well-known

that𝐴𝑥

ℎ
is a self-adjoint positive definite operator in 𝐿2ℎ.With

the help of 𝐴𝑥

ℎ
, we arrive the following initial value problem

𝑑
2Vℎ (𝑡, 𝑥)
𝑑𝑡2

+ 𝐷
1/2
𝑡

Vℎ (𝑡, 𝑥) + 𝐴
𝑥

ℎ
Vℎ (𝑡, 𝑥) = 𝑓

ℎ
(𝑡, 𝑥) ,

0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ [0, 1]ℎ ,

Vℎ (0, 𝑥) = 0, Vℎ
𝑡
(0, 𝑥) = 0, 𝑥 ∈ [0, 1]ℎ ,

(306)

for an infinite system of ordinary fractional differential
equations.

In the second step, we replace problem (306) with
difference scheme (301):

𝑢
ℎ

𝑘+1 (𝑥) − 2𝑢ℎ
𝑘
(𝑥) + 𝑢

ℎ

𝑘−1 (𝑥)

𝜏2

+
1

√Π

𝑘

∑

𝑚=1

Γ (𝑘 − 𝑚 + 1/2)
(𝑘 − 𝑚)!

(
𝑢
ℎ

𝑚
− 𝑢

ℎ

𝑚−1
𝜏1/2

)

+ 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘+1 = 𝑓
ℎ

𝑘
(𝑥) , 𝑥 ∈ [0, 1]ℎ ,

𝑓
ℎ

𝑘+1 (𝑥) = 𝑓 (𝑡𝑘+1, 𝑥𝑛) ,

𝑡𝑘+1 = (𝑘 + 1) 𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇,

(𝐼 + 𝜏
2
𝐴
𝑥

ℎ
)
𝑢
ℎ

1 (𝑥) − 𝑢
ℎ

0 (𝑥)

𝜏
= 0,

𝑢
ℎ

0 (𝑥) = 0, 𝑥 ∈ [0, 1]ℎ .

(307)

Theorem 121 (see [96]). Let 𝜏 and ℎ be sufficiently small
numbers. Then, the solutions of difference scheme (307) satisfy
the following stability estimates:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2ℎ
+ max

0≤𝑘≤𝑁

𝑚

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟 ,𝑗𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

≤ 𝑀1 max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2ℎ
,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢
ℎ

𝑘+1 − 2𝑢ℎ
𝑘
+ 𝑢

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

+ max
0≤𝑘≤𝑁

𝑚

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟𝑥𝑟 ,𝑗𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

≤ 𝑀1 [
󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

1
󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

+ max
2≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑓
ℎ

𝑘
− 𝑓

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

] .

(308)

Here𝑀1 does not depend on 𝜏, ℎ, or 𝑓ℎ

𝑘
, 1 ≤ 𝑘 < 𝑁.

The proof of Theorem 121 is based on abstract
Theorem 117 and the symmetry properties of the operator
𝐴
𝑥

ℎ
defined by (305).
Second, initial-boundary value problem (299) for the

𝑚-dimensional hyperbolic equation is considered. The dis-
cretization of problem (299) is carried out in two steps.
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In the first step, let us define the grid sets

Ωℎ = {𝑥 = 𝑥𝑟 = (ℎ1𝑟1, . . . , ℎ𝑚𝑟𝑚) , 𝑟 = (𝑟1, . . . , 𝑟𝑚) ,

0 ≤ 𝑟𝑗 ≤ 𝑁𝑗, ℎ𝑗𝑁𝑗 = 1, 𝑗 = 1, . . . , 𝑚} ,

Ωℎ = Ωℎ ∩ Ω, 𝑆ℎ = Ωℎ ∩ 𝑆.

(309)

We introduce the Banach space 𝐿2ℎ = 𝐿2(Ωℎ) of the
grid functions 𝜑

ℎ
(𝑥) = {𝜑(ℎ1𝑟1, . . . , ℎ𝑚𝑟𝑚)} defined on Ωℎ,

equipped with the norm

󵄩󵄩󵄩󵄩󵄩
𝜑
ℎ󵄩󵄩󵄩󵄩󵄩𝐿2(Ωℎ)

= ( ∑

𝑥∈Ωℎ

󵄨󵄨󵄨󵄨󵄨
𝜑
ℎ
(𝑥)

󵄨󵄨󵄨󵄨󵄨

2
ℎ1 ⋅ ⋅ ⋅ ℎ𝑚)

1/2

. (310)

To the differential operator𝐴 generated by problem (299), we
assign the difference operator 𝐴𝑥

ℎ
by the formula

𝐴
𝑥

ℎ
𝑢
ℎ

𝑥
= −

𝑚

∑

𝑟=1
(𝑎𝑟 (𝑥) 𝑢

ℎ

𝑥𝑟
)
𝑥𝑟 ,𝑗𝑟

(311)

acting in the space of grid functions 𝑢
ℎ
(𝑥), satisfying the

conditions 𝑢
ℎ
(𝑥) = 0 for all 𝑥 ∈ 𝑆ℎ. It is known that 𝐴𝑥

ℎ
is

a self-adjoint positive definite operator in 𝐿2(Ωℎ). With the
help of 𝐴𝑥

ℎ
, we arrive at the initial-boundary value problem

𝑑
2Vℎ (𝑡, 𝑥)
𝑑𝑡2

+ 𝐷
1/2
𝑡

Vℎ (𝑡, 𝑥) + 𝐴
𝑥

ℎ
Vℎ (𝑡, 𝑥) = 𝑓

ℎ
(𝑡, 𝑥) ,

0 ≤ 𝑡 ≤ 𝑇, 𝑥 ∈ Ωℎ,

Vℎ (0, 𝑥) = 0, 𝑑Vℎ (0, 𝑥)
𝑑𝑡

= 0, 𝑥 ∈ Ω,

(312)

for an infinite system of ordinary fractional differential
equations.

In the second step, we replace problem (312) with differ-
ence scheme (301):

𝑢
ℎ

𝑘+1 (𝑥) − 2𝑢ℎ
𝑘
(𝑥) + 𝑢

ℎ

𝑘−1 (𝑥)

𝜏2

+
1

√Π

𝑘

∑

𝑚=1

Γ (𝑘 − 𝑚 + 1/2)
(𝑘 − 𝑚)!

(
𝑢
ℎ

𝑚
− 𝑢

ℎ

𝑚−1
𝜏1/2

)

+ 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘+1 = 𝑓
ℎ

𝑘
(𝑥) , 𝑥 ∈ Ωℎ,

𝑓
ℎ

𝑘+1 (𝑥) = 𝑓 (𝑡𝑘+1, 𝑥𝑛) ,

𝑡𝑘+1 = (𝑘 + 1) 𝜏, 1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑁𝜏 = 𝑇,

(𝐼 + 𝜏
2
𝐴
𝑥

ℎ
)
𝑢
ℎ

1 (𝑥) − 𝑢
ℎ

0 (𝑥)

𝜏
= 0,

𝑢
ℎ

0 (𝑥) = 0, 𝑥 ∈ Ωℎ.

(313)

Theorem 122 (see [94, 96]). Let 𝜏 and |ℎ| be sufficiently small
numbers. Then, the solutions of difference scheme (313) satisfy
the following stability estimates:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝑢
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2ℎ
+ max

0≤𝑘≤𝑁

𝑚

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟 ,𝑗𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

≤ 𝑀1 max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿2ℎ
,

max
1≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−2

(𝑢
ℎ

𝑘+1 − 2𝑢ℎ
𝑘
+ 𝑢

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

+ max
0≤𝑘≤𝑁

𝑚

∑

𝑟=1

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑢

ℎ

𝑘
)
𝑥𝑟𝑥𝑟 ,𝑗𝑟

󵄩󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

≤ 𝑀1 [
󵄩󵄩󵄩󵄩󵄩
𝑓
ℎ

1
󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

+ max
2≤𝑘≤𝑁−1

󵄩󵄩󵄩󵄩󵄩
𝜏
−1

(𝑓
ℎ

𝑘
− 𝑓

ℎ

𝑘−1)
󵄩󵄩󵄩󵄩󵄩𝐿2ℎ

] .

(314)

Here𝑀1 does not depend on 𝜏, ℎ, or 𝑓ℎ

𝑘
, 1 ≤ 𝑘 < 𝑁.

The proof of Theorem 122 is based on abstract
Theorem 117, the symmetry properties of the operator
𝐴
𝑥

ℎ
defined by formula (311), and Theorem 76 on the

coercivity inequality for the solution of the elliptic difference
problem in 𝐿2ℎ.

In [94], a procedure of modified Gauss elimination
method was used for obtaining the solution of difference
scheme (313) in the case of one-dimensional fractional hyper-
bolic partial differential equations.The theoretical statements
for the solution of this difference scheme were supported by
the results of the numerical experiment.

In [95, 97], the numerical and analytic solutions of the
mixed problem for multidimensional fractional hyperbolic
partial differential equations with the Neumann condition
were presented. The stable difference scheme for the numer-
ical solution of the mixed problem for the multidimensional
fractional hyperbolic equation with the Neumann condition
was presented. Stability estimates for the solution of this dif-
ference scheme and for the first and second order difference
derivatives were obtained. A procedure of modified Gauss
elimination method was used for solving this difference
scheme in the case of one-dimensional fractional hyper-
bolic partial differential equations. He’s variational iteration
method was applied. The comparison of these methods
was presented. Application of variational iteration technique
to this problem has shown the rapid convergence of the
sequence constructed by this method to the exact solution.

Finally, in [127], the initial-boundary value problem
for partial differential equations of higher order involving
the Caputo fractional derivative was studied. Theorems on
existence and uniqueness of a solution and its continuous
dependence on the initial data and on the right-hand side of
the equation were established.

7.7. Singular Perturbation Hyperbolic Problems. We consider
the abstract Cauchy problem for hyperbolic equations:

𝜀
2V󸀠󸀠 (𝑡) + 𝐴V (𝑡) = 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

V (0) = 𝜑, V󸀠 (0) = 𝜓

(315)
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in Hilbert space 𝐻 with the self -adjoint positive definite
operator 𝐴 and 𝜀 ∈ (0,∞).

Function V(𝑡) is called a solution of problem (315) if the
following conditions are satisfied:

(i) V(𝑡) is twice continuously differentiable on the seg-
ment [0, 𝑇].

(ii) The element V(𝑡) belongs to 𝐷(𝐴) for all 𝑡 ∈ [0, 𝑇]
and the function 𝐴V(𝑡) is continuous on the segment
[0, 𝑇].

(iii) V(𝑡) satisfies the equations and initial conditions (109).

If the function 𝑓(𝑡) is not only continuous, but also
continuously differentiable on [0, 𝑇], 𝜑 ∈ 𝐷(𝐴), and 𝜓 ∈

𝐷(𝐴
1/2

), it is easy to show that the formula

V (𝑡) = 𝐶(
𝑡

𝜀
, 𝐴) V0 + 𝑆 (

𝑡

𝜀
, 𝐴) V󸀠0

+
1
𝜀2

∫

𝑡

0
𝑆 (

𝑡 − 𝑠

𝜀
, 𝐴)𝑓 (𝑠) 𝑑𝑠

(316)

gives a solution of problem (315). Here

𝐶(
𝑡

𝜀
, 𝐴) =

𝑒
𝑖(𝑡/𝜀)𝐴

1/2
+ 𝑒

−𝑖(𝑡/𝜀)𝐴
1/2

2
,

𝑆 (
𝑡

𝜀
, 𝐴) = 𝜀𝐴

−1/2 𝑒
𝑖(𝑡/𝜀)𝐴

1/2
− 𝑒

−𝑖(𝑡/𝜀)𝐴
1/2

2𝑖
.

(317)

Theorem 123 (see [99]). Assume that the function 𝑓(𝑡) has
2𝑚 + 3 derivatives and

󵄩󵄩󵄩󵄩󵄩
𝑓
(2𝑚+3)

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀, 0 ≤ 𝑡 ≤ 𝑇. (318)

Then for small 𝜀 and an even number𝑚 the following (𝑚+2)th
order asymptotic formula for the solution of (316) holds:

V (𝑡) =
𝑚

∑

𝑖=0
𝜀
𝑖
[𝑢𝑖 (𝑡) + 𝑤𝑖 (

𝑡

𝜀
)] + 𝑜 (𝜀

𝑚+2
) ; (319)

for small 𝜀 and an odd number𝑚 the following (𝑚+1)th order
asymptotic formula for the solution of (316) holds:

V (𝑡) =
𝑚

∑

𝑖=0
𝜀
𝑖
[𝑢𝑖 (𝑡) + 𝑤𝑖 (

𝑡

𝜀
)] + 𝑜 (𝜀

𝑚+1
) , (320)

where 𝑢𝑖(𝑡) and 𝑤𝑖(𝑡/𝜀) for 𝑖 ∈ {1, . . . , 𝑚} are defined by the
following formulas

𝑢0 (𝑡) = 𝐴
−1
𝑓 (𝑡) , 𝑢1 (𝑡) = 0,

𝑢𝑖 (𝑡) = −𝐴
−1
𝑢
󸀠󸀠

𝑖−2 (𝑡) , 𝑖 = 2, . . . , 𝑚,

(𝑤
󸀠󸀠

𝑖
)
𝜉𝜉
(𝜉) + 𝐴𝑤𝑖 (𝜉) = 0, 𝑖 = 0, 1, . . . , 𝑚,

𝑤0 (0) = 𝜑 − 𝑢0 (0) ,

𝑤𝑖 (0) = −𝑢𝑖 (0) , 𝑖 = 1, . . . , 𝑚,

(𝑤
󸀠

0)𝜉 (0) = 0, (𝑤
󸀠

1)𝜉 (0) = 𝜓 − 𝑢
󸀠

0 (0) ,

(𝑤
󸀠

𝑖
)
𝜉
(0) = −𝑢

󸀠

𝑖−1 (0) , 𝑖 = 2, . . . , 𝑚.

(321)

In Section 7.1, the stability of the high order of accuracy
difference schemes generated by an exact difference scheme
or by Taylor’s decomposition on the three points for the
numerical solutions of abstract initial value problem (315) for
𝜀 = 1 was presented. Unfortunately, these difference schemes
can not be applied for the approximate solutions of (315) in
the general cases 𝜀 ∈ (0,∞). In [100, 101], the high order of
accuracy two-step uniform difference schemes of the approx-
imate solutions for differential equations of the hyperbolic
type with arbitrary parameter 𝜀 at the highest derivative was
presented. The stability estimates of the solutions of these
difference schemes were obtained.

By Theorem 71, we have the following exact two-step
difference scheme:

V (𝑡𝑘+1) − 2𝐶(
𝜏

𝜀
, 𝐴) V (𝑡𝑘) + V (𝑡𝑘−1)

=
1
𝜀2

{∫

𝑡𝑘+1

𝑡𝑘

𝑆 (
𝑡𝑘+1 − 𝑧

𝜀
, 𝐴)𝑓 (𝑧) 𝑑𝑧

+∫

𝑡𝑘

𝑡𝑘−1

𝑆 (
𝑧 − 𝑡𝑘−1

𝜀
, 𝐴)𝑓 (𝑧) 𝑑𝑧} ,

1 ≤ 𝑘 ≤ 𝑁 − 1,

V (0) = V0,

V (𝜏) − V (0)

= (𝐶(
𝜏

𝜀
, 𝐴) − 𝐼) V (0)

+ 𝑆 (
𝜏

𝜀
, 𝐴) V󸀠 (0) + 1

𝜀2
∫

𝜏

0
𝑆 (

𝜏 − 𝑧

𝜀
, 𝐴)𝑓 (𝑧) 𝑑𝑧

(322)

or

𝜌
−2

(V (𝑡𝑘+1) − 2V (𝑡𝑘) + V (𝑡𝑘−1))

= 2𝜌−2 (𝐶(
𝜏

𝜀
, 𝐴) − 𝐼) V (𝑡𝑘) + 𝜏

−1
𝜀
2
𝑓𝑘,

𝑓𝑘 = 𝑓1,𝑘+1 + 𝑆 (
𝜏

𝜀
, 𝐴)𝑓2,𝑘 − 𝐶(

𝜏

𝜀
, 𝐴)𝑓1,𝑘,

𝑓1,𝑘 = (𝜀
2
𝜏)

−1
∫

𝑡𝑘

𝑡𝑘−1

𝑆 (
𝑡𝑘 − 𝑧

𝜀
, 𝐴)𝑓 (𝑧) 𝑑𝑧,

𝑓2,𝑘 = (𝜀
2
𝜏)

−1
∫

𝑡𝑘

𝑡𝑘−1

𝐶(
𝑡𝑘 − 𝑧

𝜀
, 𝐴)𝑓 (𝑧) 𝑑𝑧,

1 ≤ 𝑘 ≤ 𝑁 − 1,

𝑢0 = V0,

𝑢1 = 𝐶(
𝜏

𝜀
, 𝐴) V (0) + 𝑆 (

𝜏

𝜀
, 𝐴) V󸀠 (0) + 𝜏𝑓1,1.

(323)



Abstract and Applied Analysis 59

In [100, 101], applying this exact two-step difference
scheme, the following high order of accuracy difference
schemes

𝜌
−2

(𝑢𝑘+1 − 2𝑢𝑘 + 𝑢𝑘−1)

= 2𝜌−2 (𝐶 (𝜌, 𝐴) − 𝐼) 𝑢𝑘 + 𝜏
−1
𝜀
2
𝑓𝑘,

𝑓𝑘 = 𝑓1,𝑘+1 + 𝑆 (𝜌, 𝐴) 𝑓2,𝑘 − 𝐶 (𝜌, 𝐴) 𝑓1,𝑘,

𝑢0 = V0,

𝑢1 = 𝐶 (𝜌, 𝐴) V (0) + 𝑆 (𝜌, 𝐴) V󸀠 (0) + 𝜏𝑓1,1,

𝑓1,𝑘 = (𝜏𝐴)
−1

[𝑓 (𝑡𝑘) − 𝐶 (𝜌, 𝐴) 𝑓 (𝑡𝑘−1)]

− (𝜏𝐴)
−1

𝑚−1
∑

𝑗=0
𝐵𝑗𝑓

(𝑗+1)
(𝑡𝑘−1) ,

𝑓2,𝑘 = − (𝜀
2
𝜏)

−1
𝑆 (𝜌, 𝐴) 𝑓 (𝑡𝑘−1)

+ (𝜀
2
𝜏)

−1 𝑚−1
∑

𝑗=0
𝐶𝑗𝑓

(𝑗+1)
(𝑡𝑘−1) ,

𝐵0 = 𝑆 (𝜌, 𝐴) , 𝐵1 = 𝜀
2
𝐴
−1

(1 − 𝐶 (𝜌, 𝐴)) ,

𝐵2𝑗 = (𝜀
2
𝐴
−1
)
𝑗

𝐵0 −

𝑗

∑

𝑖=1
(𝜀

2
𝐴
−1
)
𝑗−𝑖+1 𝜏

2𝑖−1

(2𝑖 − 1)!
,

2 ≤ 2𝑗 ≤ 𝑚 − 1,

𝐵2𝑗+1 = (𝜀
2
𝐴
−1
)
𝑗

𝐵1 −

𝑗

∑

𝑖=1
(𝜀

2
𝐴
−1
)
𝑗−𝑖+1 𝜏

2𝑖

(2𝑖)!
,

3 ≤ 2𝑗 + 1 ≤ 𝑚 − 1,

𝐶0 = 𝜀
2
𝐴
−1

(1 − 𝐶 (𝜌, 𝐴)) ,

𝐶𝑗 = − (𝜀
2
𝐴)

−1
𝐵𝑗−1 + (𝜀

2
𝐴)

−1 𝜏
𝑗

𝑗!
, 1 ≤ 𝑗 ≤ 𝑚 − 1

(324)

was constructed for the approximate solutions of initial value
problem (315). Here 𝜏 = 𝜌𝜀.

Theorem 124 (see [101]). For the solution of two-step differ-
ence scheme (324), the following stability inequality holds:

max
0≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀[max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩𝑓1,𝑘
󵄩󵄩󵄩󵄩𝐻

+ 𝜀max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2

𝑓2,𝑘
󵄩󵄩󵄩󵄩󵄩𝐻

+ 𝜀
󵄩󵄩󵄩󵄩󵄩
𝐴
−1/2V󸀠0

󵄩󵄩󵄩󵄩󵄩𝐻
+
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩𝐻
] ,

(325)

where 𝑀 does not depend on 𝜀, 𝜏, 𝑓1,𝑘, 𝑓2,𝑘, 1 ≤ 𝑘 ≤ 𝑁, or V0,
V󸀠0.

Stability inequality (325) permits us to obtain the estimate
of convergence of two-step difference scheme (324).

Theorem 125 (see [101]). Suppose that the function 𝑓(𝑡) has
𝑚 + 1 derivatives and

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑚+1)

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻

≤ 𝑀, 0 ≤ 𝑡 ≤ 𝑇. (326)

Then, for the solution of difference problem (324), the following
convergence estimate is valid:

max
1≤𝑘≤𝑁

󵄩󵄩󵄩󵄩V (𝑡𝑘) − 𝑢𝑘
󵄩󵄩󵄩󵄩𝐻

≤ 𝑀1𝜏
𝑚
, (327)

where𝑀1 does not depend on 𝜏 or 𝜀.

In [98, 100, 101], applying this approach, the high order of
accuracy uniform difference schemes for the following three
types of singular perturbation problems

𝜀
2V󸀠󸀠 (𝑡) + V󸀠 (𝑡) = 𝐴V (𝑡) + 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

V (0) = 𝜑, V󸀠 (0) = 𝜓,

𝜀
2V󸀠󸀠 (𝑡) − 𝑖V󸀠 (𝑡) = 𝐴V (𝑡) + 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

V (0) = 𝜑, V󸀠 (0) = 𝜓,

𝜀
2V󸀠󸀠 (𝑡) + V󸀠 (𝑡) = (𝜀

2
𝐴 + 𝐵) V (𝑡) + 𝑓 (𝑡) (0 ≤ 𝑡 ≤ 𝑇) ,

V (0) = 𝜑, V󸀠 (0) = 𝜓

(328)

involving second order differential equations in Banach space
𝐸 was presented and investigated. Here 𝐴, 𝐵 are linear, gen-
erally unbounded operators in 𝐸. Theorems on the stability
estimates of the solutions of these difference schemes were
established.
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