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By making use of the concept of fractional 𝑞-calculus, we firstly define 𝑞-extension of the generalization of the generalized
Al-Oboudi differential operator. Then, we introduce new class of 𝑞-analogue of 𝑝-valently closed-to-convex function, and,
consequently, new class bymeans of this new general differential operator. Ourmain purpose is to determine the general properties
on such class and geometric properties for functions belonging to this class with negative coefficient. Further, the 𝑞-extension of
interesting properties, such as distortion inequalities, inclusion relations, extreme points, radii of generalized starlikeness, convexity
and close-to-convexity, quasi-Hadamard properties, and invariant properties, is obtained. Finally, we briefly indicate the relevant
connections of our presented results to the former results.

1. Introduction

The formulation of fractional calculus began shortly after
the classical calculus was established. Since its definition is
based on the concept of a noninteger order either integral or
derivative, the fractional calculus had been considered as a
subject in pure mathematics with no real applications for a
long time. However, the role of fractional calculus has been
changed in recent decades. Its applications take place inmany
fields of mathematical sciences. Extended from the fractional
calculus, the fractional 𝑞-calculus is the 𝑞-extension of the
ordinary fractional calculus. Many results of the study on
theory of 𝑞-calculus operators in recent decades have been
applied in various areas such as problems in the ordinary
fractional calculus, optimal control, solutions of 𝑞-difference
equations, 𝑞-differential equations, 𝑞-integral equations, and
𝑞-transform analysis and also in the geometric function
theory of complex analysis.

In the field of geometric function theory, various sub-
classes of analytic functions have been studied from different
viewpoints. The fractional 𝑞-calculus is the important tools
that are used to investigate subclasses of analytic functions.
For example, the extension of the theory of univalent func-
tions can be described by using the theory of 𝑞-calculus.

In [1], Ismail et al. introduced the generalized class of starlike
functions by using the 𝑞-difference operator and replaced
the right-half plane by a suitable domain. In a similar way,
Agrawal and Sahoo [2] introduced the generalized class of
starlike functions of order 𝛼 and Raghavendar and Swami-
nathan [3] also introduced the class of 𝑞-analogue to close-to-
convex functions.Moreover, the 𝑞-calculus operators, such as
fractional 𝑞-integral and fractional 𝑞-derivative operators, are
used to construct several subclasses of analytic functions (see,
e.g., [4–8]).

In addition, the differential operators have been exten-
sively investigated in the field of geometric function theory.
The well-known differential operator defined on the class
of analytic functions is introduced by Salagean [9]. This
operator was successfully used by many authors and it led to
the investigation of several properties of certain known and
new classes of analytic functions (see, e.g., [10–14]). However,
there are many generalized Salagean operators defined by
several authors. In [15], Al-Oboudi defined the generalized
Salagean operator by using the technique of convolution
structure. In [16], Al-Oboudi and Al-Amoudi used the
extension of fractional derivative and fractional integral to
define linear multiplier fractional differential operator which
yields the Al-Oboudi operator [15] and fractional differential
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operator. Moreover, Bulut [17] modified the Al-Oboudi
and Al-Amoudi operator [16] by introducing nonnegative
parameter 𝑙 in that operator. Recently, Selvakumaran et al. [8]
introduced the fractional 𝑞-differintegral operator by using
the fractional 𝑞-calculus operators involving the generalized
Al-Oboudi and Al-Amoudi operator [16]. For some recent
investigations of these operators on the classes of analytic
functions and related topics, such as coefficient estimate,
distortion theorem, extreme points, and subordination, we
refer to [18–23] and the references cited therein.

This paper is organized as follows. In Section 2, we
propose the 𝑞-extension of the Bulut operator [17] which
generalized Selvakumaran et al. operator [8]. We also define
new class toR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) by using this new general differential

operator together with 𝑞-analogue to 𝑝-valent closed-to-
convex function. In Section 3, we give linear combination
property and coefficient estimate for function belonging to
R𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼). By making use of the coefficient estimate, the 𝑞-
extension of geometric properties for function with negative
coefficientsTR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) is given in Section 4.Then, we finish

our paper by observations and concluding remarks.

2. Preliminaries and Definitions

Let 𝑝 be a positive integer, and letA𝑝 be the class of analytic
functions and 𝑝-valent in the unit disk D = {𝑧 ∈ C : |𝑧| < 1}

that are of the form

𝑓 (𝑧) = 𝑧
𝑝
+

∞

∑

𝑘=𝑝+1

𝑎𝑘𝑧
𝑘
. (1)

LetT𝑝 be a subclass ofA𝑝 consisting of functions𝑓(𝑧) of the
form

𝑓 (𝑧) = 𝑧
𝑝
−

∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘
. (2)

In particular, we set A1 ≡ A and T1 ≡ T. For 0 ≤ 𝛼 <
1, let R(𝛼) be the subclass of A consisting of all functions
which satisfy Re{𝑓󸀠(𝑧)} > 𝛼 in D. The functions in R(𝛼)
are called functions of bounded turning. All of those are
univalent and close-to-convex in D (see [24]). Similarly, we
denote byR𝑝(𝛼), where 0 ≤ 𝛼 < 1, the class of all functions
inA𝑝 which satisfy Re{𝑓

󸀠
(𝑧)/𝑝𝑧

𝑝−1
} > 𝛼 (see more details in

[25, 26]).
For the convenience, we provide some basic definitions

and concept details of 𝑞-calculus which are used in this paper.
In the theory of 𝑞-calculus, the 𝑞-shifted factorial is defined
for 𝛼, 𝑞 ∈ C, 𝑛 ∈ N0 ≡ N ∪ {0} as a product of 𝑛 factors by

(𝛼; 𝑞)
𝑛
=
{

{

{

1, 𝑛 = 0;

(1 − 𝛼) (1 − 𝛼𝑞) ⋅ ⋅ ⋅ (1 − 𝛼𝑞
𝑛−1
) , 𝑛 ∈ N,

(3)

and in terms of the basic analogue of the gamma function

(𝑞
𝛼
; 𝑞)
𝑛
=
Γ𝑞 (𝛼 + 𝑛) (1 − 𝑞)

𝑛

Γ𝑞 (𝛼)
, (𝑛 > 0) , (4)

where the 𝑞-gamma function [27, 28] is defined by

Γ𝑞 (𝑥) =
(𝑞; 𝑞)
∞
(1 − 𝑞)

1−𝑥

(𝑞𝑥; 𝑞)
∞

, (0 < 𝑞 < 1) . (5)

We note that if |𝑞| < 1, the 𝑞-shifted factorial (3) remains
meaningful for 𝑛 = ∞ as a convergent infinite product:

(𝛼; 𝑞)
∞
=

∞

∏

𝑘=0

(1 − 𝛼𝑞
𝑘
) . (6)

Here, we recall the following 𝑞-analogue definitions given
by Gasper and Rahman [27]. The recurrence relation for 𝑞-
gamma function is given by

Γ𝑞 (𝑥 + 1) = [𝑥]𝑞 Γ𝑞 (𝑥) , (7)

where [𝑥]𝑞 = (1 − 𝑞
𝑥
)/(1 − 𝑞), and is called 𝑞-analogue of 𝑥.

It is well known that Γ𝑞(𝑥) → Γ(𝑥) as 𝑞 → 1
−, where Γ(𝑥) is

the ordinary Euler gamma function.
In view of the relation

lim
𝑞→1−

(𝑞
𝛼
; 𝑞)
𝑛

(1 − 𝑞)
𝑛 = (𝛼)𝑛 , (8)

we observe that the 𝑞-shifted factorial (3) reduces to the
familiar Pochhammer symbol (𝛼)𝑛, where (𝛼)𝑛 = 𝛼(𝛼+1)(𝛼+
2) ⋅ ⋅ ⋅ (𝛼 + 𝑛 − 1).

Let 𝜇 ∈ C be fixed. A set 𝐴 ⊂ C is called a 𝜇-geometric
set if, for 𝑧 ∈ 𝐴, 𝜇𝑧 ∈ 𝐴. Let 𝑓 be a function defined
on a 𝑞-geometric set. Jackson’s 𝑞-derivative and 𝑞-integral of
a function on a subset of C are, respectively, given by (see
Gasper and Rahman [27], pp. 19–22)

𝐷𝑞𝑓 (𝑧) =
𝑓 (𝑧) − 𝑓 (𝑧𝑞)

𝑧 (1 − 𝑞)
, (𝑧 ̸= 0, 𝑞 ̸= 0) ,

∫

𝑧

0

𝑓 (𝑡) 𝑑𝑞𝑡 = 𝑧 (1 − 𝑞)

∞

∑

𝑘=0

𝑞
𝑘
𝑓 (𝑧𝑞

𝑘
) .

(9)

In case 𝑓(𝑧) = 𝑧
𝑛, the 𝑞-derivative of 𝑓(𝑧), where 𝑛 is a

positive integer, is given by

𝐷𝑞𝑧
𝑛
=
𝑧
𝑛
− (𝑧𝑞)

𝑛

(1 − 𝑞) 𝑧
= [𝑛]𝑞 𝑧

𝑛−1
. (10)

As 𝑞 → 1
− and 𝑛 ∈ N, we have [𝑛]𝑞 = (1 − 𝑞

𝑛
)/(1 − 𝑞) =

1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞
𝑛−1

→ 𝑛.
We now recall the definition of the fractional 𝑞-calculus

operators of a complex-valued function 𝑓(𝑧), which were
recently studied by Purohit and Raina [29].

Definition 1 (fractional 𝑞-integral operator). The fractional 𝑞-
integral operator 𝐼𝛿

𝑞,𝑧
of a function 𝑓(𝑧) of order 𝛿 (𝛿 > 0) is

defined by

𝐼
𝛿

𝑞,𝑧
𝑓 (𝑧) = 𝐷

−𝛿

𝑞,𝑧
𝑓 (𝑧) =

1

Γ𝑞 (𝛿)
∫

𝑧

0

(𝑧 − 𝑡𝑞)
1−𝛿
𝑓 (𝑡) 𝑑𝑞𝑡,

(11)
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where 𝑓(𝑧) is analytic in a simply connected region in the 𝑧-
plane containing the origin. Here, the term (𝑧 − 𝑡𝑞)𝛿−1 is a
𝑞-binomial function defined by

(𝑧 − 𝑡𝑞)
𝛿−1
= 𝑧
𝛿−1

∞

∏

𝑘=0

[
1 − (𝑡𝑞/𝑧) 𝑞

𝑘

1 − (𝑡𝑞/𝑧) 𝑞𝛿+𝑘−1
]

= 𝑧
𝛿

1Φ0 [𝑞
−𝛿+1

; −; 𝑞,
𝑡𝑞
𝛿

𝑧
] .

(12)

According to Gasper and Rahman [27], the series
1Φ0[𝛿; −; 𝑞, 𝑧] is single-valued when |arg(𝑧)| < 𝜋. Therefore,
the function (𝑧 − 𝑡𝑞)𝛿−1 in (12) is single-valued when
|arg(−𝑡𝑞𝛿/𝑧)| < 𝜋, |𝑡𝑞𝛿/𝑧| < 1, and |arg(𝑧)| < 𝜋.

Definition 2 (fractional 𝑞-derivative operator). The fractional
𝑞-derivative operator 𝐷𝛿

𝑞,𝑧
of a function 𝑓(𝑧) of order 𝛿 (0 ≤

𝛿 < 1) is defined by

𝐷
𝛿

𝑞,𝑧
𝑓 (𝑧) = 𝐷𝑞,𝑧𝐼

1−𝛿

𝑞,𝑧
𝑓 (𝑧)

=
1

Γ𝑞 (1 − 𝛿)
𝐷𝑞 ∫

𝑧

0

(𝑧 − 𝑡𝑞)
−𝛿
𝑓 (𝑡) 𝑑𝑞𝑡,

(13)

where𝑓(𝑧) is suitably constrained and themultiplicity of (𝑧−
𝑡𝑞)−𝛼 is removed as in Definition 1 above.

Definition 3 (extended fractional 𝑞-derivative operator).
Under the hypotheses of Definition 2, the fractional 𝑞-
derivative for a function 𝑓(𝑧) of order 𝛿 is defined by

𝐷
𝛿

𝑞,𝑧
𝑓 (𝑧) = 𝐷

𝑚

𝑞,𝑧
𝐼
𝑚−𝛿

𝑞,𝑧
𝑓 (𝑧) , (14)

where𝑚 − 1 ≤ 𝛿 < 𝑚, 𝑚 ∈ N0.

In addition, the extension of 𝑞-differintegral operatorΩ𝛿
𝑞
:

A𝑝 → A𝑝, for 𝛿 < 𝑝+ 1, 0 < 𝑞 < 1, and 𝑛 ∈ N, is defined by

Ω
𝛿

𝑞
𝑓 (𝑧) =

Γ𝑞 (𝑝 + 1 − 𝛿)

Γ𝑞 (𝑝 + 1)
𝑧
𝛿
𝐷
𝛿

𝑞,𝑧
𝑓 (𝑧)

= 𝑧
𝑝
+

∞

∑

𝑘=𝑝+1

Γ𝑞 (𝑘 + 1) Γ𝑞 (𝑝 − 𝛿 + 1)

Γ𝑞 (𝑝 + 1) Γ𝑞 (𝑘 − 𝛿 + 1)
𝑎𝑘𝑧
𝑘
,

(15)

where 𝐷𝛿
𝑞,𝑧

in (15) represents, respectively, a fractional 𝑞-
integral of 𝑓(𝑧) of order 𝛿when −∞ < 𝛿 < 0 and a fractional
𝑞-derivative of 𝑓(𝑧) of order 𝛿 when 0 ≤ 𝛿 < 𝑝 + 1. We note
that when 𝑞 → 1

−, the operator Ω𝛿
𝑞
reduces to the operator

Ω
𝛿 introduced by Owa and Srivastava [30].

Now, we define the 𝑞-extension of Al-Oboudi type differ-
ential operator D𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
: A𝑝 → A𝑝, for 𝑙, 𝜆 ≥ 0, 𝛿 < 𝑝 + 1,

and𝑚 ∈ N0, which is defined by

D
𝛿,0

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧) = 𝑓 (𝑧) ,

D
𝛿,1

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧) =

[𝑝]
𝑞
− 𝜆 [𝑝]

𝑞
+ 𝑙

[𝑝]
𝑞
+ 𝑙

Ω
𝛿

𝑞
𝑓 (𝑧)

+
𝜆

[𝑝]
𝑞
+ 𝑙
𝑧𝐷𝑞 (Ω

𝛿

𝑞
𝑓 (𝑧)) ,

D𝛿,2
𝑞,𝜆,𝑙,𝑝

𝑓 (𝑧) = D𝛿,1
𝑞,𝜆,𝑙,𝑝

(D𝛿,1
𝑞,𝜆,𝑙,𝑝

𝑓 (𝑧)) ,

.

.

.

D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧) = D

𝛿,1

𝑞,𝜆,𝑙,𝑝
(D
𝛿,𝑚−1

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧)) .

(16)

We note that if 𝑓 ∈ A is given by (1), then by (16) we have

D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧) = 𝑧

𝑝
+

∞

∑

𝑘=𝑝+1

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) 𝑎𝑘𝑧

𝑘
, (17)

where

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

= [

[

Γ𝑞 (𝑘 + 1) Γ𝑞 (𝑝 − 𝛿 + 1)

Γ𝑞 (𝑝 + 1) Γ𝑞 (𝑘 − 𝛿 + 1)

[𝑝]
𝑞
+ ([𝑘]𝑞 − [𝑝]𝑞) 𝜆 + 𝑙

[𝑝]
𝑞
+ 𝑙

]

]

𝑚

.

(18)

We note that, by setting appropriated values for the param-
eters in the operator D𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
, this operator reduces to many

known differential operators. For example, in case 𝑙 = 0 the
operator D𝛿,𝑚

𝑞,𝜆,0,𝑝
is exactly the Selvakumaran et al. operator

D𝛿,𝑚
𝑞,𝜆,𝑝

in [8]. Also, when 𝑞 → 1
− the operatorD𝛿,𝑚

𝜆,𝑙,𝑝
reduces

to the operator introduced by Bulut [17]. Moreover Bulut
[17] noticed that, for suitable parameters 𝑙, 𝜆, 𝛿, 𝑝, and 𝑚,
the operatorD𝛿,𝑚

𝜆,𝑙,𝑝
generalizes many operators introduced by

several authors, for instance, Salagean [9], Al-Oboudi [15],
Al-Oboudi and Al-Amoudi [16], Acu andOwa [31], Acu et al.
[32], Cătaş [33], Cho and Srivastava [34], Cho and Kim [35],
Kumar et al. [36], Owa and Srivastava [30], and Uralegaddi
and Somanatha [37].

Next, we define the 𝑞-analogous to the function class
R𝑝(𝛼) by R𝑞,𝑝(𝛼). A function 𝑓 ∈ A𝑝 is said to be in the
class R𝑞,𝑝(𝛼) of 𝑝-valently closed-to-convex with respect to
𝑞-differentiation if and only if

Re{
𝐷𝑞𝑓 (𝑧)

[𝑝]
𝑞
𝑧𝑝−1

} > 𝛼, 𝑧 ∈ D, (19)

where 0 < 𝛼 < 1. In particular, we set R𝑞,1(𝛼) ≡

R𝑞(𝛼). Note that the class R𝑞(𝛼) generalizes the class K𝑞
(with the function 𝑔(𝑧) = 𝑧) which was introduced by
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Raghavendar and Swaminathan [3]. Moreover, we see that
𝐷𝑞𝑓(𝑧) → 𝑓

󸀠
(𝑧), as 𝑞 → 1

−. This implies that an inequality
Re{𝐷𝑞𝑓(𝑧)/[𝑝]𝑞𝑧

𝑝−1
} > 𝛼 becomes Re{𝑓󸀠(𝑧)/𝑝𝑧𝑝−1} >

𝛼. Hence, the class R𝑞,𝑝(𝛼) clearly reduces to R𝑝(𝛼) and
satisfies

⋂

0<𝑞<1

R𝑞,𝑝 (𝛼) ⊂R𝑝 (𝛼) ⊂R𝑝. (20)

Furthermore, by using the operator D𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

defined by
(16) and 𝑞-differentiation, we introduce a new classR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼)

as follows.
Let 𝛿 < 𝑝 + 1, 𝜆, 𝑙 ≥ 0, 0 ≤ 𝛼 < 1, and 𝑚 ∈ N0. Denote

byR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) the class of all functions 𝑓 ∈ A𝑝 satisfying the
condition

Re
{

{

{

𝐷𝑞 (D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧))

[𝑝]
𝑞
𝑧𝑝−1

}

}

}

> 𝛼, 𝑧 ∈ D. (21)

Denote by TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) the class obtained by taking
intersection of the classR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) with the classT𝑝. That is,

TR
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) ≡R

𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) ∩T𝑝. (22)

In particular, we set TR𝛿,0
𝑞,𝜆,𝑙,𝑝

(𝛼) ≡ TR𝑞(𝛼). The special
cases of the class R𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼), as 𝑞 → 1

−, have been studied
by Bulut [38], Al-Oboudi in [15], and Tăut et al. [39] and the
special cases of the classTR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼), as 𝑞 → 1

−, have been
proved by Altintas [40].

3. Main Results

3.1. General Properties. We begin to derive the linear combi-
nation property onR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) in the following result.

Theorem 4. The classR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) is convex.

Proof. Let 𝑓, 𝑔 ∈R𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) of the form

𝑓 (𝑧) = 𝑧
𝑝
+

∞

∑

𝑘=𝑝+1

𝑎𝑘𝑧
𝑘
,

𝑔 (𝑧) = 𝑧
𝑝
+

∞

∑

𝑘=𝑝+1

𝑏𝑘𝑧
𝑘
.

(23)

It is sufficient to show that the function ℎ(𝑧) = 𝜇𝑓(𝑧) + (1 −
𝜇)𝑔(𝑧), where 0 ≤ 𝜇 ≤ 1, is in the class R𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼). By (23),

we see that

ℎ (𝑧) = 𝑧
𝑝
+

∞

∑

𝑘=𝑝+1

[𝜇𝑎𝑘 + (1 − 𝜇) 𝑏𝑘] 𝑧
𝑘
. (24)

Hence

𝐷𝑞 (D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
ℎ (𝑧))

[𝑝]
𝑞
𝑧𝑝−1

= 1 +

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) [𝜇𝑎𝑘 + (1 − 𝜇) 𝑏𝑘] 𝑧

𝑘−𝑝

= 𝜇Re
{

{

{

1 +

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) 𝑎𝑘𝑧

𝑘−𝑝
}

}

}

+ (1 − 𝜇)Re
{

{

{

1 +

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) 𝑎𝑘𝑧

𝑘−𝑝
}

}

}

,

(25)

whereΨ𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝑘) is defined by (18). Since𝑓, 𝑔 ∈R𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼), we
have

Re
{

{

{

𝐷𝑞 (D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧))

[𝑝]
𝑞
𝑧𝑝−1

}

}

}

= Re
{

{

{

1 +

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) 𝑎𝑘𝑧

𝑘−𝑝
}

}

}

> 𝛼,

Re
{

{

{

𝐷𝑞 (D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
𝑔 (𝑧))

[𝑝]
𝑞
𝑧𝑝−1

}

}

}

= Re
{

{

{

1 +

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) 𝑏𝑘𝑧

𝑘−𝑝
}

}

}

> 𝛼.

(26)

Applying (26) to (25), we obtain

Re
{

{

{

𝐷𝑞 (D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
ℎ (𝑧))

[𝑝]
𝑞
𝑧𝑝−1

}

}

}

> 𝜇𝛼 + (1 − 𝜇) 𝛼 = 𝛼. (27)

Now, the proof is completed.

Remark 5. In case 𝑝 = 1, by letting 𝑞 → 1
−, we obtain

Theorem 4.1 in [38]. For 𝑞 → 1
− with 𝛿 = 0, we obtain

Theorem 2.11 in [15]. Moreover, for 𝛿 = 0, 𝜆 = 1, and
𝑞 → 1

−, we obtainTheorem 2.1 in [39].

Next, we derive some sharp coefficient inequalities con-
tained in the following theorem that are useful in the main
results.

Theorem 6. Let 𝑓 ∈ A𝑝 be defined by (1) and satisfy the
inequality

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼, (28)

where Ψ𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝑘) is defined in (18). Then, 𝑓 ∈ R𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼).
Moreover, the converse also holds if𝑓 ∈ T𝑝.The result is sharp.
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Proof. Let the function 𝑓 ∈ A𝑝 be defined by (1). To prove
this, we consider

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷𝑞 (D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧))

[𝑝]
𝑞
𝑧𝑝−1

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) 𝑎𝑘𝑧

𝑘−𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑘−𝑝󵄨󵄨󵄨󵄨󵄨

.

(29)

By assumption (28), (29) can be rewritten as

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷𝑞 (D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧))

[𝑝]
𝑞
𝑧𝑝−1

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼.

(30)

Therefore, we infer that 𝑓 ∈ R𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼). To prove the
converse, we let function𝑓 ∈ T𝑝 be defined by (2) and belong
to the classR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼). Then, we have

R
{

{

{

𝐷𝑞 (D
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
𝑓 (𝑧))

[𝑝]
𝑞
𝑧𝑝−1

}

}

}

= R
{

{

{

1 −

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−𝑝
}

}

}

> 𝛼.

(31)

Or, equivalently,

R
{

{

{

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−𝑝
}

}

}

< 1 − 𝛼. (32)

In (32), by letting 𝑧 → 1
− on the real axis, we obtain

inequality (28) as desired. Finally, we note that assertion (28)
is sharp, the extremal function being

𝑓 (𝑧) = 𝑧
𝑝
−

[𝑝]
𝑞
(1 − 𝛼)

[𝑝 + 1]
𝑞
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

𝑧
𝑝+1
. (33)

Now, the proof is completed.

Corollary 7. If 𝑓 ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼), then for 𝑘 = 𝑝+1, 𝑝+2, . . .,

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤

1 − 𝛼

[𝑘]𝑞Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)
, (34)

where Ψ𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝑘) is defined in (18).

4. Geometric Properties for the Class
TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼)

By observation, Theorem 6 gives the necessary and sufficient
conditions via coefficient bounded for functions to be in the
multivalently analytic function classTR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼). Using this

result, we will discuss standard properties for that class in
sense of 𝑞-theory, such as distortion inequalities, inclusion
relations, extreme points, radii of close-to-convexity, starlike-
ness and convexity, quasi-Hadamard property, and invariant
properties. However, some of the mentioned properties can
be obtained only in case 0 ≤ 𝛿 < 𝑝 + 1 because the
monotonicity of the sequence Ψ𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) is required to prove

those results. The following lemmas guarantee the monotone
increasing property for the sequence Ψ𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) in case 0 ≤

𝛿 ≤ 𝑝 + 1 and monotone decreasing in case 𝛿 < 0.

Lemma 8. Let the sequence (𝑎𝑘)+∞𝑘=𝑝 be defined by

𝑎𝑘 =
Γ𝑞 (𝑘 + 1) Γ𝑞 (𝑝 + 1 − 𝛿)

Γ𝑞 (𝑝 + 1) Γ𝑞 (𝑘 + 1 − 𝛿)
. (35)

(i) If 0 ≤ 𝛿 < 𝑝 + 1, then (𝑎𝑘)+∞𝑘=𝑝 is a nondecreasing
sequence and 1 ≤ 𝑎𝑘 for 𝑘 ≥ 𝑝.

(ii) If 𝛿 < 0, then (𝑎𝑘)+∞𝑘=𝑝 is a decreasing sequence and 𝑎𝑘 ≤
1 for 𝑘 ≥ 𝑝.

Proof. It is clear that the sequence (𝑎𝑘)+∞𝑘=𝑝 is nonnegative for
𝛿 < 𝑝 + 1. We have that

𝑎𝑘+1

𝑎𝑘

=
Γ𝑞 (𝑘 + 2) Γ𝑞 (𝑘 + 1 − 𝛿)

Γ𝑞 (𝑘 + 1) Γ𝑞 (𝑘 + 2 − 𝛿)
. (36)

So, by using (7), we get

𝑎𝑘+1

𝑎𝑘

=
[𝑘 + 1]𝑞

[𝑘 + 1 − 𝛿]𝑞

=
1 − 𝑞
𝑘+1

1 − 𝑞𝑘+1−𝛿
. (37)

Since 0 < 𝑞 < 1, we see that

1 − 𝑞
𝑘+1

1 − 𝑞𝑘+1−𝛿
< 1, for 𝛿 < 0,

1 − 𝑞
𝑘+1

1 − 𝑞𝑘+1−𝛿
≥ 1, for 0 ≤ 𝛿 < 𝑝 + 1.

(38)

Then, for 0 ≤ 𝛿 < 𝑝 + 1, we conclude that (𝑎𝑘)
+∞

𝑘=𝑝
is a

nondecreasing sequence and satisfying 1 = 𝑎𝑝 ≤ 𝑎𝑘 for all
𝑘 ≥ 𝑝. Also, for 𝛿 < 0, the sequence (𝑎𝑘)

+∞

𝑘=𝑝
is a decreasing

sequence and satisfying 𝑎𝑘 ≤ 𝑎𝑝 = 1 for all 𝑘 ≥ 𝑝.

Lemma 9. If 0 ≤ 𝛿 < 𝑝 + 1, then the sequence Ψ𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝑘)

defined in (18) is an increasing sequence and satisfying 1 ≤
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) for all 𝑘 ≥ 𝑝.
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Proof. The result is directly obtained by Lemma 8 and the
following inequality:

1 ≤

[𝑝]
𝑞
+ ([𝑘]𝑞 − [𝑝]𝑞) 𝜆 + 𝑙

[𝑝]
𝑞
+ 𝑙

, (39)

where 𝑙, 𝜆 ≥ 0 and 𝑘 ≥ 𝑝.

4.1. Distortion Inequalities. Next, we derive the distortion
inequalities for functions in the multivalently analytic func-
tions class TR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) that will be given by the following

results.

Theorem 10. For 0 ≤ 𝛿 < 𝑝 + 1, suppose that 𝑓 ∈ T𝑝 is
defined by (2). If 𝑓 ∈ TR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼), then

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤ |𝑧|

𝑝
+

[𝑝]
𝑞

[𝑝 + 1]
𝑞

(1 − 𝛼)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

|𝑧|
𝑝+1
,

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≥ |𝑧|

𝑝
−

[𝑝]
𝑞

[𝑝 + 1]
𝑞

(1 − 𝛼)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

|𝑧|
𝑝+1
.

(40)

Generally,

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑛

𝑞
𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨

≤

[𝑝]
𝑞
!

[𝑝 − 𝑛]
𝑞
!
|𝑧|
𝑝−𝑛

+ [𝑝]
𝑞

[𝑝]
𝑞
!

[𝑝 − 𝑛 + 1]
𝑞
!

(1 − 𝛼)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

|𝑧|
𝑝−𝑛+1

,

(41)

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑛

𝑞
𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨

≥

[𝑝]
𝑞
!

[𝑝 − 𝑛]
𝑞
!
|𝑧|
𝑝−𝑛

− [𝑝]
𝑞

[𝑝]
𝑞
!

[𝑝 − 𝑛 + 1]
𝑞
!

(1 − 𝛼)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

|𝑧|
𝑝−𝑛+1

,

(42)

where [𝑛]𝑞! = [𝑛]𝑞[𝑛−1]𝑞 ⋅ ⋅ ⋅ [1]𝑞.The estimations in (40)–(42)
are sharp.

Proof. Let the function 𝑓 ∈ T𝑝 be defined by (2) and belong
to the classR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼). In virtue of Theorem 6 and Lemma 9,

we have

[𝑝 + 1]
𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆
(𝑘)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼.

(43)

From (43), the consequence is that
∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ (1 − 𝛼)

[𝑝]
𝑞

[𝑝 + 1]
𝑞

1

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

. (44)

Since 𝑓 ∈ T𝑝, it is easy to see that

|𝑧|
𝑝
− |𝑧|
𝑝+1

∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 ≤ |𝑧|
𝑝
+ |𝑧|
𝑝+1

∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 .

(45)

The conjunction of (44) and (45) yields assertions (40) of
Theorem 10. Hence, (41) and (42) follow from
󵄨󵄨󵄨󵄨󵄨
𝐷
𝑛

𝑞
𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨

≤

[𝑝]
𝑞
!

[𝑝 − 𝑛]
𝑞
!
|𝑧|
𝑝−𝑛
+

[𝑝 + 1]
𝑞
!

[𝑝 − 𝑛 + 1]
𝑞
!
|𝑧|
𝑝−𝑛+1

∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑛

𝑞
𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨

≥

[𝑝]
𝑞
!

[𝑝 − 𝑛]
𝑞
!
|𝑧|
𝑝−𝑛
−

[𝑝 + 1]
𝑞
!

[𝑝 − 𝑛 + 1]
𝑞
!
|𝑧|
𝑝−𝑛+1

∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 .

(46)

Finally, we note that assertions (40)–(42) are sharp, since
equalities are attained by the function

𝑓 (𝑧) = 𝑧
𝑝
−

[𝑝]
𝑞

[𝑝 + 1]
𝑞

(1 − 𝛼)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

𝑧
𝑝+1
. (47)

Now, the proof is completed.

Remark 11. By letting 𝑧 → 1
−,Theorem 10 demonstrates that

the disk |𝑧| < 1 is mapped onto a domain that contains the
disk

|𝑤| < 1 −

[𝑝]
𝑞

[𝑝 + 1]
𝑞

(1 − 𝛼)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

, (48)

under any multivalently analytic function 𝑓 ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼),
and onto a domain that contains the disk

|𝑤| < 1 − (1 − 𝛼)
1 − 𝑞
𝑝

1 − 𝑞𝑝+1
, (49)

by any 𝑓 ∈ TR𝑞,𝑝(𝛼).

4.2. Inclusion Relation. In the following results, we obtain
some inclusion relation for the parameters 𝑚, 𝜆, and 𝑙 of the
classTR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼).

Theorem 12. If 0 ≤ 𝑙1 ≤ 𝑙2 and 0 ≤ 𝜆1 ≤ 𝜆2, then

TR
𝛿,𝑚

𝑞,𝜆
2

,𝑙
2

,𝑝
(𝛼) ⊂ TR

𝛿,𝑚

𝑞,𝜆
1

,𝑙
1

,𝑝
(𝛼) , (50)

andTR𝛿,𝑚
𝑞,𝜆
2

,𝑙
2

,𝑝
(𝛼) ̸= TR𝛿,𝑚

𝑞,𝜆
1

,𝑙
1

,𝑝
(𝛼) if those parameters satisfy

either 𝑙1 ̸= 𝑙2 or 𝜆1 ̸= 𝜆2.
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Proof. The inclusion relation is directly obtained by
Theorem 6 and the inequality

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆
1

,𝑙
1

,𝑝
(𝑘)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆
2

,𝑙
2

,𝑝
(𝑘)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 .

(51)

In case 𝑙1 ̸= 𝑙2 or 𝜆1 ̸= 𝜆2, we see that

𝑓0 (𝑧) = 𝑧
𝑝
−

[𝑝]
𝑞

[𝑝 + 1]
𝑞

(1 − 𝛼)

Ψ
𝛿,𝑚

𝑞,𝜆
1

,𝑙
1

,𝑝
(𝑝 + 1)

𝑧
𝑝+1 (52)

belongs to the class TR𝛿,𝑚
𝑞,𝜆
1

,𝑙
1

,𝑝
(𝛼) but does not belong to

the class TR𝛿,𝑚
𝑞,𝜆
2

,𝑙
2

,𝑝
(𝛼), which implies that TR𝛿,𝑚

𝑞,𝜆
2

,𝑙
2

,𝑝
(𝛼) ̸=

TR𝛿,𝑚
𝑞,𝜆
1

,𝑙
1

,𝑝
(𝛼). Now, the proof is completed.

Applying Theorem 6 and Lemma 9, we obtain another
inclusion relation as follows.

Theorem 13. If 0 ≤ 𝛿 < 𝑝 + 1, then

TR
𝛿,𝑚+1

𝑞,𝜆,𝑙,𝑝
(𝛼) ⊂ TR

𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) . (53)

4.3. Extreme Points. Now, let us determine extreme points of
the classTR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼).

Theorem 14 (extreme points). Let 𝑓𝑝(𝑧) = 𝑧𝑝 and

𝑓𝑘 (𝑧) = 𝑧
𝑝
−

[𝑝]
𝑞
(1 − 𝛼)

[𝑘]𝑞Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)
𝑧
𝑘
, 𝑘 ≥ 𝑝 + 1. (54)

Then 𝑓(𝑧) is in the class TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) if and only if it can be
expressed in the form

𝑓 (𝑧) = 𝜇𝑝𝑧
𝑝
+

∞

∑

𝑘=𝑝+1

𝜇𝑘𝑓𝑘 (𝑧) , (55)

where 𝜇𝑘 ≥ 0 and ∑
∞

𝑘=𝑝
𝜇𝑘 = 1.

Proof. Let the function 𝑓(𝑧) ∈ T𝑝 be defined by (2). Since
∑
∞

𝑘=𝑝+1
𝜇𝑘 = 1, we then have

𝑓 (𝑧) = 𝑧
𝑝
−

∞

∑

𝑘=𝑝+1

𝜇𝑘

[𝑝]
𝑞
(1 − 𝛼)

[𝑘]𝑞Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)
𝑧
𝑘
. (56)

Now, we obtain

(1 − 𝛼)

∞

∑

𝑘=𝑝+1

[𝑘]𝑞Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

[𝑝]
𝑞
(1 − 𝛼)

𝜇𝑘

[𝑝]
𝑞
(1 − 𝛼)

[𝑘]𝑞Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

= (1 − 𝛼)

∞

∑

𝑘=𝑝+1

𝜇𝑘 ≤ 1 − 𝛼.

(57)

Thus, 𝑓 ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) by Theorem 6. Conversely, suppose
that 𝑓 ∈ TR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼). We may set

𝜇𝑘 =
[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

(1 − 𝛼)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 , 𝑘 ≥ 𝑝 + 1 (58)

and 𝜇𝑝 = 1 − ∑
∞

𝑘=𝑝+1
𝜇𝑘. Then we have 𝑓(𝑧) = 𝜇𝑝𝑧

𝑝
−

∑
∞

𝑘=𝑝+1
𝜇𝑘𝑓𝑘(𝑧). This completes the proof ofTheorem 14.

4.4. Radii of Generalized Close-to-Convexity, Starlikeness,
and Convexity. Now, the discussions on radii of generalized
close-to-convexity, starlikeness, and convexity for the class
TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) are given by the following results. In order to
establish, we will also require the use of those classes of
functions. First of all, a function 𝑓 ∈ A𝑝 is said to be
in the class S∗

𝑞,𝑝
(𝛽) of 𝑝-valently starlike with respect to 𝑞-

differentiation of order 𝛽 (0 ≤ 𝛽 < 𝑝) if it satisfies the
inequality

Re{
𝑧𝐷𝑞 (𝑓 (𝑧))

𝑓 (𝑧)
} > 𝛽, 𝑧 ∈ D. (59)

Furthermore, a function 𝑓 ∈ A𝑝 is said to be in the class
C𝑞,𝑝(𝛽) of 𝑝-valently convex with respect to 𝑞-differentiation
of order 𝛽 (0 ≤ 𝛽 < 𝑝) if it satisfies the inequality

Re{1 +
𝑧𝐷
2

𝑞
(𝑓 (𝑧))

𝐷𝑞 (𝑓 (𝑧))
} > 𝛽, 𝑧 ∈ D. (60)

Both S∗
𝑞,𝑝
(𝛽) andC𝑞,𝑝(𝛽) were introduced by Selvakumaran

et al. [8]. However, we consider the case 0 ≤ 𝛽 < [𝑝]𝑞 instead
of 0 ≤ 𝛽 < 𝑝. The definition of 𝑞-analogous of 𝑝-valently
closed-to-convex was already recalled in (19).

Theorem 15. For 0 ≤ 𝛿 < 𝑝+ 1, if 𝑓 ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼), then 𝑓 is
𝑝-valently closed-to-convex with respect to 𝑞-differentiation of
order 𝛼.

Proof. ByTheorem 13, we obtain

TR
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) ⊂ TR

𝛿,𝑚−1

𝑞,𝜆,𝑙,𝑝
(𝛼) ⊂ ⋅ ⋅ ⋅ ⊂ TR𝑞,𝑝 (𝛼) . (61)

This completes the proof.

In general, for 0 ≤ 𝛼 < 𝛽 < 1, the function𝑓 ∈ TR𝑞,𝑝(𝛼)
does not necessarily belong to the class TR𝑞,𝑝(𝛽). We then
derive the radii of generalized close-to-convexity order 0 ≤
𝛼 < 𝛽 < 1 for the function 𝑓 ∈ TR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼).

Theorem 16. For 0 ≤ 𝛿 < 𝑝+1, if 𝑓 ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼), then 𝑓 is
𝑝-valently closed-to-convex with respect to 𝑞-differentiation of
order 𝛽 in |𝑧| < 𝑟1, where

𝑟1 = inf
𝑘≥𝑝+1

(
1 − 𝛽

1 − 𝛼
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘))

1/(𝑘−𝑝)

. (62)
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Proof. It is sufficient to show that |𝐷𝑞𝑓(𝑧)/([𝑝]𝑞𝑧
𝑝
−1)−1| <

1 − 𝛽. That is,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷𝑞𝑓 (𝑧)

[𝑝]
𝑞
𝑧𝑝−1

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

|𝑎|𝑘 |𝑧|
𝑘−𝑝
≤ 1 − 𝛽. (63)

Since 𝑓 ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) and by application of Theorem 6, we
obtain

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘) |𝑎|𝑘 ≤ 1 − 𝛼. (64)

Hence, (63) is true if

|𝑧| ≤ (
1 − 𝛽

1 − 𝛼
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘))

1/(𝑘−𝑝)

, 𝑘 ≥ 𝑝 + 1. (65)

This completes the proof.

Next, we obtain the radii of generalized starlikeness of
order 𝛽 in the following result.

Theorem 17. For 0 ≤ 𝛿 < 𝑝 + 1, if 𝑓 ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼), then 𝑓
is 𝑝-valently starlike with respect to 𝑞-differentiation of order
𝛽 (0 ≤ 𝛽 < [𝑝]𝑞) in |𝑧| < 𝑟2 where

𝑟2 = inf
𝑘≥𝑝+1

[

[

1

1 − 𝛼
⋅

[𝑘]𝑞 ([𝑝]𝑞 − 𝛽)

[𝑝]
𝑞
([𝑘]𝑞 − 𝛽)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)]

]

1/(𝑘−𝑝)

.

(66)

Proof. Wehave to show that |𝑧𝐷𝑞𝑓(𝑧)/𝑓(𝑧)−[𝑝]𝑞| < [𝑝]𝑞−𝛽.
That is,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝐷𝑞𝑓 (𝑧)

𝑓 (𝑧)
− [𝑝]
𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧 ([𝑝]
𝑞
𝑧
𝑝−1
− ∑
∞

𝑘=𝑝+1
[𝑘]𝑞

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−1
)

𝑧𝑝 − ∑
∞

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘

− [𝑝]
𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∑
∞

𝑘=𝑝+1
([𝑘]𝑞 − [𝑝]𝑞)

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−𝑝

1 − ∑
∞

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−𝑝

≤ [𝑝]
𝑞
− 𝛽.

(67)

Hence, (67) is true if
∞

∑

𝑘=𝑝+1

([𝑘]𝑞 − 𝛽)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−𝑝
≤ [𝑝]
𝑞
− 𝛽. (68)

By using (64), we can say (68) is true if

|𝑧| < [

[

1

1 − 𝛼

[𝑘]𝑞 ([𝑝]𝑞 − 𝛽)

[𝑝]
𝑞
([𝑘]𝑞 − 𝛽)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)]

]

1/(𝑘−𝑝)

, 𝑘 ≥ 𝑝 + 1,

(69)

which completes the proof.

Corollary 18. If 0 ≤ 𝛿 < 𝑝 + 1, then

TR
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) ⊂ S

∗

𝑞,𝑝
. (70)

Proof. By Theorem 17, we see that a function 𝑓 ∈

TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) is 𝑝-valently starlike with respect to 𝑞-
differentiation (𝛽 = 0) in |𝑧| < 𝑟2 where

𝑟2 = inf
𝑘≥𝑝+1

(
1

1 − 𝛼
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘))

1/(𝑘−𝑝)

≥ inf
𝑘≥𝑝+1

(
1

1 − 𝛼
)

1/(𝑘−𝑝)

⋅ inf
𝑘≥𝑝+1

(Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘))
1/(𝑘−𝑝)

.

(71)

It is easy to see that (1/(1−𝛼))1/(𝑘−𝑝) is a decreasing sequence
and lim𝑘→+∞(1/(1 − 𝛼))

1/(𝑘−𝑝)
= 1. This implies

inf
𝑘≥𝑝+1

(
1

1 − 𝛼
)

1/(𝑘−𝑝)

= lim
𝑘→+∞

(
1

1 − 𝛼
)

1/(𝑘−𝑝)

= 1. (72)

Moreover, by using Lemma 9, we obtain

inf
𝑘≥𝑝+1

(Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘))
1/(𝑘−𝑝)

≥ 1. (73)

Then, we have 𝑟2 ≥ 1. That is, 𝑓 ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) is 𝑝-valently
starlike with respect to 𝑞-differentiation in 𝑧 ∈ D. The proof
is completed.

Next, we obtain the radii of generalized convexity of order
𝛽, where 𝛽 ≤ 2[𝑝]𝑞 − [𝑝 − 1]𝑞 − 1, in the following result.

Theorem 19. For 0 ≤ 𝛿 < 𝑝 + 1 and 𝛽 ≤ 2[𝑝]𝑞 − [𝑝 − 1]𝑞 − 1,
if 𝑓 ∈ TR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼), then 𝑓 is 𝑝-valently convex with respect to

𝑞-differentiation of order 𝛽 (0 ≤ 𝛽 < [𝑝]𝑞) in |𝑧| < 𝑟3, where

𝑟3

= inf
𝑘≥𝑝+1

[

[

1

1 − 𝛼

⋅

(2 [𝑝]
𝑞
− [𝑝 − 1]

𝑞
− 𝛽 − 1)

(1 + [𝑘 − 1]𝑞 − 𝛽)
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)]

]

1/(𝑘−𝑝)

.

(74)

Proof. We have to show that |1 + 𝑧𝐷2
𝑞
𝑓(𝑧)/𝐷𝑞𝑓(𝑧) − [𝑝]𝑞| <

[𝑝]𝑞 − 𝛽. That is,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 +

𝑧𝐷
2

𝑞
𝑓 (𝑧)

𝐷𝑞𝑓 (𝑧)
− [𝑝]
𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 + 𝑧([𝑝]
𝑞
[𝑝 − 1]

𝑞
𝑧
𝑝−2

−

∞

∑

𝑘=𝑝+1

[𝑘]𝑞 [𝑘 + 1]𝑞
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−2
)
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⋅ ([𝑝]
𝑞
𝑧
𝑝−1
−

∞

∑

𝑘=𝑝+1

[𝑘]𝑞
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘−1
)

−1

− [𝑝]
𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ([𝑝]
𝑞
(1 + [𝑝 − 1]

𝑞
− [𝑝]
𝑞
)

+

∞

∑

𝑘=𝑝+1

[𝑘]𝑞 (1 + [𝑘 − 1]𝑞 − [𝑝]𝑞)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−𝑝
)

⋅ ([𝑝]
𝑞
−

∞

∑

𝑘=𝑝+1

[𝑘]𝑞
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−𝑝
)

−1

≤ [𝑝]
𝑞
− 𝛽.

(75)

Hence, (75) is true if

[𝑝]
𝑞
(1 + [𝑝 − 1]

𝑞
− [𝑝]
𝑞
)

+

∞

∑

𝑘=𝑝+1

[𝑘]𝑞 (1 + [𝑘 − 1]𝑞 − [𝑝]𝑞)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−𝑝

≤ ([𝑝]
𝑞
− 𝛽)[

[

[𝑝]
𝑞
−

∞

∑

𝑘=𝑝+1

[𝑘]𝑞
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−𝑝]

]

,

(76)

or equivalently
∞

∑

𝑘=𝑝+1

[𝑘]𝑞 (1 + [𝑘 − 1]𝑞 − 𝛽)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 |𝑧|
𝑘−𝑝

≤ [𝑝]
𝑞
(2 [𝑝]

𝑞
− [𝑝 − 1]

𝑞
− 𝛽 − 1) .

(77)

Since 𝛽 ≤ 2[𝑝]𝑞 − [𝑝 − 1]𝑞 − 1, by using (64), we can say (77)
is true if

|𝑧| < [

[

1

1 − 𝛼

(2 [𝑝]
𝑞
− [𝑝 − 1]

𝑞
− 𝛽 − 1)

(1 + [𝑘 − 1]𝑞 − 𝛽)
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)]

]

1/(𝑘−𝑝)

,

𝑘 ≥ 𝑝 + 1.

(78)

The proof is completed.

4.5. Quasi-Hadamard Properties. In this section, we derive
the quasi-Hadamard (convolution) properties. Before we
derive the result, we recall the definition of the quasi-
Hadamard properties. For any functions 𝑓𝑗 ∈ T𝑝, 𝑗 =

1, 2, 3, . . . , 𝑛 of the form

𝑓𝑗 (𝑧) = 𝑧
𝑝
−

∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑘,𝑗

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑘
, (79)

the quasi-Hadamard product (𝑓1 ⊗𝑓2 ⊗ ⋅ ⋅ ⋅ ⊗𝑓𝑛)(𝑧) is defined
by

(𝑓1 ⊗ 𝑓2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓𝑛) (𝑧) = 𝑧
𝑝
−

∞

∑

𝑘=𝑝+1

(

𝑛

∏

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑘,𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝑧
𝑘
,

𝑧 ∈ D.

(80)

Next, we derive the quasi-Hadamard properties for the
classTR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼). Using the techniques of Schild and Silver-

man [41] withTheorem 6, we prove the following results.

Theorem 20. For 0 ≤ 𝛿 < 𝑝 + 1, suppose that 𝑓𝑗 ∈
TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼𝑗), 𝑗 = 1, 2, . . . , 𝑛; then (𝑓1 ⊗ 𝑓2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓𝑛) ∈
TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛾), where

𝛾 = 1 − [

[

[𝑝]
𝑞

[𝑝 + 1]
𝑞
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

]

]

𝑛−1
𝑛

∏

𝑗=1

(1 − 𝛼𝑗) . (81)

Proof. To prove this theorem, we use the principle of mathe-
matical induction on 𝑗. Let the functions𝑓𝑗 ∈ T𝑝, for 𝑗 = 1, 2
of the form

𝑓𝑗 (𝑧) = 𝑧
𝑝
−

∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨󵄨
𝑎𝑘,𝑗

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑘
, (82)

for 𝑗 = 1, 2 and 𝑘 ≥ 2. Since 𝑓𝑗 ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼𝑗) for 𝑗 = 1, 2,
by Theorem 6, we see that

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

1 − 𝛼𝑗

𝑎𝑘,𝑗 ≤ 1, for 𝑗 = 1, 2. (83)

According toTheorem 6, it is sufficient to prove that

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

1 − 𝛾
𝑎𝑘,1𝑎𝑘,2 ≤ 1, (84)

where 𝛾 is defined in (81). Applying Cauchy-Schwarz’s
inequality to (83) for 𝑗 = 1, 2, we have the following
inequality:

∞

∑

𝑘=𝑝+1

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

√(1 − 𝛼1) (1 − 𝛼2)

√𝑎𝑘,1𝑎𝑘,2

≤ √

∞

∑

𝑘=2

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

1 − 𝛼1

𝑎𝑘,1
√

∞

∑

𝑘=2

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

1 − 𝛼2

𝑎𝑘,2 ≤ 1.

(85)

From (84) and (85), if the following inequality

√(1 − 𝛼1) (1 − 𝛼2)

1 − 𝛾
√𝑎𝑘,1𝑎𝑘,2 ≤ 1,

(86)
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for all 𝑘 ≥ 𝑝+1, is satisfied, it can be concluded that (𝑓1⊗𝑓2) ∈
TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛾). Now, applying Corollary 7, inequality (86) will
be held if

[𝑝]
𝑞

[𝑘]𝑞

(1 − 𝛼1) (1 − 𝛼2)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

≤ 1 − 𝛾. (87)

By Lemma 9, we see that

[𝑝]
𝑞

[𝑘]𝑞

(1 − 𝛼1) (1 − 𝛼2)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)

≤

[𝑝]
𝑞

[𝑝 + 1]
𝑞

(1 − 𝛼1) (1 − 𝛼2)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

:= 1 − 𝛾.

(88)

This yields our desired inequality (86). Now, we have (𝑓1 ⊗
𝑓2) ∈ TR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛾). Next, we let the functions 𝑓𝑗 ∈ T𝑝, for

𝑗 = 1, 2, . . . , 𝑁+1 and𝑓𝑗 ∈ TR𝛿,𝑚
𝑞,𝜆
(𝛼𝑗) for 𝑗 = 1, 2, . . . , 𝑁+1.

Suppose that

𝑓1 ⊗ 𝑓2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓𝑁 ∈ TR
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛾) , (89)

where

𝛾 := 1 − [

[

[𝑝]
𝑞

[𝑝 + 1]
𝑞
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

]

]

𝑁−1
𝑁

∏

𝑗=1

(1 − 𝛼𝑗) . (90)

Then, by means of the above technique, it can be shown that

𝑓1 ⊗ 𝑓2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓𝑁 ⊗ 𝑓𝑁+1 ∈ TR
𝛿,𝑚

𝑞,𝜆
(𝛾
󸀠
) , (91)

where

𝛾
󸀠
:= 1 −

[𝑝]
𝑞

[𝑝 + 1]
𝑞

(1 − 𝛼𝑁+1) (1 − 𝛾)

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

= 1 − [

[

[𝑝]
𝑞

[𝑝 + 1]
𝑞
Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑝 + 1)

]

]

𝑁
𝑁+1

∏

𝑗=1

(1 − 𝛼𝑗) .

(92)

By Lemma 9, we have 0 < 𝛾 < 1. This completes the proof of
the theorem.

4.6. Invariant Properties. In the following results, we discuss
invariant properties of the class TR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) via Theorem 6.

We consider the formerly studied operators in terms of
the standard convolution formula; we choose 𝑔 as a fixed
function in A𝑝 such that (𝑓 ∗ 𝑔)(𝑧) exists for any 𝑓 ∈ A𝑝.
For various choices of 𝑔 we get different linear operators that
have been studied in the recent past.

According to Theorem 6, we easily obtain the following
properties.

Theorem 21. For 𝛿 < 𝑝 + 1, if the function 𝑔 ∈ A𝑝 is of the
form

𝑔 (𝑧) = 𝑧
𝑝
+

∞

∑

𝑘=𝑝+1

󵄨󵄨󵄨󵄨𝜇𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘
, (93)

where |𝜇𝑘| ≤ 1 for 𝑘 ≥ 𝑝 + 1, then (𝑓 ∗ 𝑔) ∈ TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) for
each 𝑓 ∈ TR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼).

Next, we recall the definition of Bernardi’s integral opera-
tor. For nonnegative real number 𝛾 and 𝑓 ∈ A𝑝, Bernardi-
Libera’s integral operator 𝐿𝛾𝑓 : A𝑝 → A𝑝 is defined as
follows:

𝐿𝛾𝑓 (𝑧) =
𝛾 + 1

𝑧𝛾
∫

𝑧

0

𝑡
𝛾−1
𝑓 (𝑡) 𝑑𝑡, (94)

which was studied by Bernardi in [42]. Also, their properties
for 𝛾 = 1 are reported in [43, 44]. By using the concept of
𝑞-calculus, we introduce 𝑞-analogous to Bernardi’s integral
operator defined by

𝐿𝑞,𝛾𝑓 (𝑧) =

[𝛾 + 1]
𝑞

𝑧𝛾
∫

𝑧

0

𝑡
𝛾−1
𝑓 (𝑡) 𝑑𝑞𝑡.

(95)

From (95), we have verified that

𝐿𝑞,𝛾𝑓 (𝑧) =

[𝛾 + 𝑝]
𝑞

𝑧𝛾
𝑧 (1 − 𝑞)

∞

∑

𝑗=0

𝑞
𝑗
(𝑧𝑞
𝑗
)
𝛾−1

𝑓 (𝑧𝑞
𝑗
)

= [𝛾 + 𝑝]
𝑞
(1 − 𝑞)

∞

∑

𝑗=0

𝑞
𝑗𝛾
𝑓 (𝑧𝑞

𝑗
)

= [𝛾 + 𝑝]
𝑞
(1 − 𝑞)

∞

∑

𝑗=0

𝑞
𝑗𝛾

∞

∑

𝑘=𝑝

𝑞
𝑗𝑘
𝑎𝑘𝑧
𝑘
, 𝑎𝑝 = 1

= [𝛾 + 𝑝]
𝑞

∞

∑

𝑘=𝑝

∞

∑

𝑗=0

(1 − 𝑞) 𝑞
𝑗(𝛾+𝑘)

𝑎𝑘𝑧
𝑘

= 𝑧
𝑝
+

∞

∑

𝑘=𝑝+1

[𝛾 + 𝑝]
𝑞

[𝛾 + 𝑘]
𝑞

𝑎𝑘𝑧
𝑘
.

(96)

That is,

𝐿𝑞,𝛾𝑓 (𝑧) := (𝑓 ∗ 𝑔) (𝑧) = 𝑧
𝑝
+

∞

∑

𝑘=𝑝+1

[𝛾 + 𝑝]
𝑞

[𝛾 + 𝑘]
𝑞

𝑎𝑘𝑧
𝑘
, (97)

where 𝑔 = 𝑧𝑝 + ∑∞
𝑘=𝑝+1

([𝛾 + 𝑝]𝑞/[𝛾 + 𝑘]𝑞)𝑧
𝑘. It is clear that

[𝛾 + 𝑝]𝑞/[𝛾 + 𝑘]𝑞 ≤ 1 for 𝑘 ≥ 𝑝 + 1. Then, we obtain the
invariant properties under integral operator 𝐿𝑞,𝛾 as follows.

Theorem22. For 𝛿 < 𝑝+1, and 𝛾 > 0, the classTR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) is
invariant under the integral operator 𝐿𝑞,𝛾 defined in (95). That
is,

𝐿𝑞,𝛾 [TR
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼)] ⊂ TR

𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) . (98)

Moreover, in the view of the definition of fractional 𝑞-
integral and Lemma 8, we obtain the invariant properties
under fractional 𝑞-integral.

Theorem 23. For 𝛿 < 𝑝+1, the classTR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) is invariant
under the integral operator 𝐼𝛿

𝑞,𝑧
defined in (11). That is,

𝐼
𝛿

𝑞,𝑧
[TR

𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼)] ⊂ TR

𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) . (99)
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5. Observation and Concluding Remark

In this section we briefly point out some consequences of
the results derived in the proceeding sections. If we let
𝑞 → 1

−, we observe that the function classes R𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼)

and TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) provide the 𝑞-extensions of both known
and newly obtained. By assigning appropriated values to the
parameters𝑚, 𝑙, 𝛾, 𝛿, and 𝑝, we can derive the corresponding
results for several simpler subclasses of the class T𝑝 from
each of our theorems, especially as indicated in Altintas [40].
Therefore, it leads to the 𝑞-extension of the former results.

Furthermore, we let 𝑓 ∈ T𝑛,𝑝, whereT𝑛,𝑝 is a subclass of
T𝑝 consisting of functions of the form

𝑓 (𝑧) = 𝑧
𝑝
−

∞

∑

𝑘=𝑛+𝑝

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑧
𝑘
. (100)

Theorem 6 can indeed be generalized further by considering
the class of multivalent function T𝑛,𝑝 in place of T𝑝. That
leads to the following corollary.

Corollary 24. Let 𝑓 ∈ T𝑛,𝑝 be defined by (100); then 𝑓 ∈

R𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼) if and only if 𝑓 satisfies the inequality

∞

∑

𝑘=𝑛+𝑝

[𝑘]𝑞

[𝑝]
𝑞

Ψ
𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝑘)
󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 ≤ 1 − 𝛼, (101)

whereΨ𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝑘) is defined in (18). Moreover, the result is sharp.

By previous argument in this paper, Corollary 24 can
fruitfully be used in investigating the geometric properties for
several subclasses ofR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) ∩T𝑛,𝑝. Then the 𝑞-extension

of the former results, such as Sarangi and Uralegaddi [45],
Aouf et al. [46], and Aouf [47], is obtained.

We conclude this paper by remarking that the results
presented in this paper give various 𝑞-extension properties of
different classes of analytic and multivalent function. Here,
our results generalize several formerly known results. We
introduce 𝑞-extension of the general differential operator,
which is generalized from Bulut operator [17], in sense of 𝑞-
theory. The new subclass of multivalently analytic function
is proposed consequently by joining the class of 𝑞-analogue
to close-to-convexity together with our 𝑞-extension of Bulut
operator [17]. We discuss the linear combination property
and coefficient estimate for the class R𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼). By making

use of the coefficient estimate and the concept of 𝑞-theory, we
obtain the 𝑞-extension of geometric properties for the class
TR𝛿,𝑚
𝑞,𝜆,𝑙,𝑝

(𝛼). We give the 𝑞-analogue to distortion properties
and the radii of 𝑞-analogue starlikeness and convexity which
were defined in [8]. Moreover, we consider the radii of 𝑞-
analogue close-to-convexity that replace usual derivative by
𝑞-derivative operator. We also use the concept of 𝑞-theory
to extend the Bernardi integral operator. As a consequence,
the invariant property forTR𝛿,𝑚

𝑞,𝜆,𝑙,𝑝
(𝛼) under such 𝑞-integral

operator is obtained. Finally, the presented results can be
extended to investigate the function on T𝑛,𝑝 which gives
generalized formerly known and newly obtained results.

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgment

This research was supported by the Department of Mathe-
matics, Faculty of Science, Chiang Mai University.

References

[1] M. E. Ismail, E. Merkes, and D. Styer, “A generalization of
starlike functions,” Complex Variables, Theory and Application,
vol. 14, no. 1–4, pp. 77–84, 1990.

[2] S. Agrawal and S. K. Sahoo, “On a generalization of close-to-
convex functions,” Annales Polonici Mathematici, vol. 113, no. 1,
pp. 93–108, 2015.

[3] K. Raghavendar and A. Swaminathan, “Close-to-convexity of
basic hypergeometric functions using their Taylor coefficients,”
Journal of Mathematics and Applications, vol. 35, pp. 111–125,
2012.

[4] H. Al Dweby and M. Darus, “On harmonic meromorphic
functions associated with basic hypergeometric functions,”The
Scientific World Journal, vol. 2013, Article ID 164287, 7 pages,
2013.

[5] H. Aldweby and M. Darus, “Some subordination results on
q-analogue of Ruscheweyh differential operator,” Abstract and
Applied Analysis, vol. 2014, Article ID 958563, 6 pages, 2014.

[6] G. Murugusundaramoorthy, C. Selvaraj, and O. S. Babu, “Sub-
classes of starlike functions associatedwith fractionalq-calculus
operators,” Journal of Complex Analysis, vol. 2013, Article ID
572718, 8 pages, 2013.

[7] K. A. Selvakumaran, S. D. Purohit, and A. Secer, “Majorization
for a class of analytic functions defined by 𝑞 -differentiation,”
Mathematical Problems in Engineering, vol. 2014, Article ID
653917, 5 pages, 2014.

[8] K. A. Selvakumaran, S. D. Purohit, A. Secer, and M. Bayram,
“Convexity of certain 𝑞-integral operators of 𝑝-valent func-
tions,” Abstract and Applied Analysis, vol. 2014, Article ID
925902, 7 pages, 2014.

[9] G. S. Salagean, “Subclasses of univalent functions,” in Complex
Analysis—Fifth Romanian-Finnish Seminar, vol. 1013 of Lecture
Notes in Mathematics, pp. 362–372, Springer, Berlin, Germany,
1983.

[10] K. Al-Shaqsi, M. Darus, and O. A. Fadipe-Joseph, “A new sub-
class of Salagean-type harmonic univalent functions,” Abstract
and Applied Analysis, vol. 2010, Article ID 821531, 12 pages, 2010.

[11] R. M. El-Ashwah, M. K. Aouf, A. A. Hassan, and A. H. Hassan,
“A new class of analytic functions defined by using Salagean
operator,” International Journal of Analysis, vol. 2013, Article ID
153128, 10 pages, 2013.

[12] M. K. Aouf, “Subordination properties for a certain class of
analytic functions defined by the Salagean operator,” Applied
Mathematics Letters, vol. 22, no. 10, pp. 1581–1585, 2009.

[13] P. Goswami and M. K. Aouf, “Majorization properties for cer-
tain classes of analytic functions using the Salagean operator,”
Applied Mathematics Letters, vol. 23, no. 11, pp. 1351–1354, 2010.

[14] M. K. Aouf and T. M. Seoudy, “On differential Sandwich
theorems of analytic functions defined by generalized Sălăgean
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