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Let F(z) = |z|2g(z) + h(z) (]z| < 1) be a biharmonic mapping of the unit disk D, where g and h are harmonic in D. In this paper,
the Landau-type theorems for biharmonic mappings of the form L(F) are provided. Here L represents the linear complex operator

L = (20/0z)—(20/0z) defined on the class of complex-valued C' functions in the plane. The results, presented in this paper, improve

the related results of earlier authors.

1. Introduction

Suppose that f(z) = u(x, y) +iv(x, ),z = x + iy is a four
times continuously differentiable complex-valued function in
a domain D ¢ C. If f satisfies the biharmonic equation
A(Af) = 0, then we call that f is biharmonic, where A
represents the Laplacian operator:

0 o
=4——="—=+—. 1
0z0z 0x* 0y?

Biharmonic functions arise in many physical situations,
particularly in fluid dynamics and elasticity problems, and
have many important applications in engineering (see [1] for
details). It is known that a mapping F is biharmonic in a
simply connected domain D if and only if F has the following
representation:

F(z)=lzl’g(2) + h(2), )

where g(z) and h(z) are complex-valued harmonic functions
in D [1]. Also, it is known that g(z) and h(z) can be expressed

as
9)=g,()+g,(z), ze€D, "
3
h(z)=h,(z)+h,(z), ze€D,

where g,, g,, k;, and k, are analytic in D [2, 3].

For a continuously differentiable mapping f in D, we
define

As(2) = max |f, +e £l = | £ +|fd

0<0<2m
~2if @
As(2) = 0291221”|fz te fz| = I fl = | £l -
We use J; to denote the Jacobian of f
J; (@) =|£@| - (). (5)

In [4], the authors considered the following differential
operator L defined on the class of complex-valued C' func-
tions:

0 0
L=z— —Z—. 6
Zaz ZBE (©)

Evidently, L is a complex linear operator and satisfies the
usual product rule:

L(af +bg) =aL(f)+bL(g),
L(fg) = fL(g) +gL(f),

where a and b are complex constants; f and g are C'
functions. In addition, the operator L possesses a number of

7)
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interesting properties. For instance, it is easy to see that the
operator L preserves both harmonicity and biharmonicity.
Many other basic properties are stated in [4].

Landau’s theorem states that if f is an analytic function on
the unit disk D with f(0) = f'(O) —-1=0and|f(z)| < M for
z € D, then f is univalent in the disk D, = {zeC:lz| <1y}
1/(M + VM? -1), and f(D,,) contains a disk
Dg, with Ry = M re. This result is sharp, with the extremal
function f(z) = Mz((1 — Mz)/(M - z)). Recently, many
authors considered the Landau-type theorems for harmonic
mappings [5-9] and biharmonic mappings [1, 4,10-13]. Chen
etal. [10] obtained the Landau-type theorems for biharmonic
mappings of the form L(F) as follows.

with r, =

Theorem A (see [10]). Let F(z) = |z|2g(z) + h(z) be a
biharmonic mapping of the unit disk D = {z € C : |z| < 1}
such that F(0) = h(0) = 0 and J,(0) = 1, where g(z) and
h(z) are harmonic in D. Assume that both |g(z)| and |h(z)| are
bounded by M. Then there is a constant p, (0 < p; < 1) such
that L(F) is univalent in D, , where p, satisfies the following
equation:

s 6Mp12 4Mp13
AM- (1~ Pl)2 (1- Pl)3
M (8)
6M
~ —5—m, arctan p; — —p13 =0,
4 (1-p1)
where m; = 6.059 is the minimum value of the function
2 — x* + (4/m) arctan x
, )

x(1-x?2)

for 0 < x < 1. The minimum is attained at x = 0.588.
Moreover, the range L(F)(IDPI) contains a schlicht disk Dg,»
where

m 2Mp?  16M
—_—— —2 ™M arctanp, [.  (10)

2
M (1 - p1)

Theorem B (see [10]). Let F(z) = |z|2g(z) be a biharmonic
mapping in D such that g(0) = 0, ]g(O) =1, and |g(z)| < M,
where g(z) is harmonic in D. Then there is a constant p, (0 <
p, < 1) such that L(F) is univalent in D, , where p, satisfies
the following equation:

m 4A8M 2Mp,
IM T o Marctanp, - ﬁ =0, (11)
P2

where m, is defined as in Theorem A. Moreover, L(F)(IDPZ)
contains a disk Dy, with

s 16M
R, = p23 YT ?ml arctan p, | . (12)

However, these results are not sharp. The main object of
this paper is to improve Theorems A and B. We get three
versions of Landau-type theorems for biharmonic mappings
of the form L(F), where F belongs to the class of biharmonic
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mappings, and Theorems 11 and 14 improve Theorems A and
B. In order to establish our main results, we need to recall the
following lemmas.

Lemma 1 (see [6, 14]). Suppose that f(z) is a harmonic
mapping of the unit disk D such that | f(z)| < M for all D.
Then

4M

Ap@) s ————,
A n(1-12l)

z € D. 13)

The inequality is sharp.

Lemma 2 (see [9,12,15]). Suppose that f(z) = h(z) + g(z) is
a harmonic mapping of the unit disk D such that | f(z)| < M
forall z € D with h(z) = Y2y a,2" and g(z) = Y2 b,2".
Then |ay| < M and for anyn > 1

(14)

4M
|an| + |bn| < 7

These estimates are sharp.

Lemma 3 (see [8,11]). Suppose that f is a harmonic mapping
of D with f(0) = A,(0) =1 =0.If Ay < A for z € D; then

A -1
s + ] < =,

n=2,3.... (15)
These estimates are sharp.

Lemma 4 (see [11]). Suppose that f(z) = h(z) + g(z) i
a harmonic mapping of the unit disk D such that | f(z)|
M for all z € D with h(z) = Y, a,z" and g(z)
Yoo b2 IfIJf(O)I = 1; then Af(O) > Ao(M), where M,

7/23V27% — 16 ~ 1.1296 and

2
_ V2 —, I<M<M,
Ao (M) = \{TM—1+\/M +1 (16)
M > M,.

N &

aM’

Lemma 5 (see [13]). Suppose that f(z) = h(z) + g(z) is a
harmonic mapping of the unit disk D with h(z) = Y 2 a,2"

and g(z) = Y2, b,2" If f satisfies | f(z)| < M forallz € D
and |]f(0)| =1, then

0 1/2
(Zz(lanlﬂbnl)z) <YM -1-A,(0).  (17)

Lemma 6. Suppose that M > 0, A > 1. Then the equation

12M7? SMr® A*-1 2r—+*
pr)=1- N 3 ’ ;=0
n(l-r*) n(l-r) A (1-7)

(18)

has a unique root in (0, 1).

Proof . 1t is easy to prove that the function ¢ is continuous

and strictly decreasing on [0,1), ¢(0) = 1 > 0, and
lim, ,,-¢(r) = —o0o. Hence, the assertion follows from the
mean value theorem. This completes the proof. O
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Lemma 7. Suppose that M, > 0, M,
defined by (16). Then the equation

2 1, and Ay(M,) is

12M,r*  8Mr’
Ao (M) - - — L A (M) M -1
0( 2) 7'[(1—1’2) 7'[(1—7’)3 0( 2) 2
(19)
[2r\/4r2+r4+1 . r\/r4—3r2+4] B
(1 _ }"2)5/2 (1 _ }"2)3/2
has a unique root in (0, 1).
Lemma 8. Let M > 1. Then the equation
N v |:3r\/r4 - 31"32/2+4 . 2r Var? +r;2+ 1] B
(1-7?) (1-7?)
(20)
has a unique root in (0, 1).
Lemma9. Foranyz,#z,inD, (0 <r < 1), we have
! z| +|z
J |tz, + (1 - t)z, [ dt > M >0. (21
0 3(lz] + |z2])

2. Main Results

We first establish a new version of the Landau-type theorem
for biharmonic mappings on the unit disk D as follows.

Theorem 10. Let F(z) = Izlzg(z) + h(z) be a biharmonic

mapping of the unit disk D, with F(0) = h(0) = Az(0) -1 =0,

lg(2)] < M, and A, (z) < A forz € D, where M > 0,A > 1

Then L(F) is univalent in the disk D, , where 1, is the unique

root in (0, 1) of the equation

2 3 2 2

1- 2Mr” 8Mr” A" -1 J2r-r —0, (22)
n(1-r*) a(l-r’ A (1-r)?

and L(F)([D,O) contains a schlicht disk Dy, where

A* -1 T, AMr?
Oy =19 |1~ o Eo1. (@23)
A 1=1 g(l-r1y)

1z1%g(2) + h(z) satisfy the hypothesis of

Proof. Let F(z) =
Theorem 10, where

9(2)=g,(2)+ 7, (2) = Zaz +sz,

n=0
(24)

h(z) =h, (z)+h (z)—Zcz +Zdz

n=1

are harmonic in D. As L is linear and L(|z]?) = 0, we may set

H:=L(F) = |zI’L(g) + L(h). (25)

Then we have

H, =2lzI’g, +|2|*2g,, - Z°g + h, + zh

22 (26)

H; = -2lz’g; - |2|’Zg; > + 2°g, — bz — Zh.

Note that A;(0) = [l¢;| - |d,|| = 1,(0) = 1; by Lemma 3,
we have

n=23,.... (27)

A? -
o+ 4] <« =,

Thus, for z; #z, in D, (0 < r < r;y), we have

|H (z,) - H(Zz)| =

J H, (2)dz + H (2) dz
[21,2,]

|
[z1,2,]

Z

-2 J |2* (g.dz - g:dz)
[z1,2,]
- |Z| Zgzzdz - zngdg)
[21,2,]
’ (28)
- J 2h, dz - zhdz‘
[z1,2,]
- J 2’g,dz - 7' gdz
[z
Al mo)e
[z Zz]
— (hz = h; (0)) dz|.
Let
I - J h, (0)dz — ho (0) dZ]
[21,2,]
L= J |21’ (9.dz - gzdZ)|,
[21,2,]
I - j 12 (29,.dz - Zg.=dZ)|,
[21,2,]
(29)
I, - J 2h, dz - Zho_dz],
[z1,2,]
I = J 2’ g,dz - Z° g.dz|,
[z1,2,]
=] -h@)dz- (- he
[z1,2,]




By Lemmas 1, 2, and 3, elementary calculations yield that

I > J[ ]/\h (0)|dz] = A, (0) |z, — 25| = |21 — 23|
2152y

Le| 1P (gl idel + loc]1d2)
[21,2,]

<r |Z1 _Z2|Ag (z) < |Z1

aMr?

_Z2|—

m(l-r2)

o0
L < |z, - 7, Zn(n — 1) (|a,| + b))
n=2

8Mr®
(1l - r)3 ’

<z — 2|

I, < |z - 2, Zn(n = 1) (|e,| + |d,.]) P

n=2

A% -1 r

< |zy — 2|

A (-

r)2 ’

e[ (1P gz + g =)
[21’22]

<z -2|A,(2) <z

AMr?

_Zz|—

m(1-12)

- 1
Is < |z, - 2, Z”(|Cn| +|d,|) "
n=2

< |z, - 2| 1

A -1 r

1-r

Using these estimates and Lemma 6, we obtain

|H () _H(Zz)l
>I -2, -, -1, - I, - I,

12Mr?
> |z, — 2| 1_—n(1—r2)
SMr? A-1 2r—+*
nl-r A (1-r)

which implies H(z,) # H(z,).

(30)

>0,

(31)
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For any z such that z € dD, , by Lemmas 2, 4, and 5, we
obtain

H (2)| = ||zl (29, - Zgz) + (zh, - Zh;)|

> |zh, (0) - zh; (0)]

|z (h, = h, (0)) -z (h; - h; (0))|

~ 121 (9. - 242)

=7, [1 - 020: (| + |dn|)nrg_1 (32)

n=2

-5 ol |

A -1 7, 4Mr}
21,1~ : - 5 | = Oo-
A I-10 7(1-r,)
This completes the proof. O

Next we improve Theorem A as follows.

Theorem 11. Let F(z) = Izlzg(z) + h(z) be a biharmonic
mapping of the unit disk D, with F(0) = h(0) = Jz(0) -1 =0,
lg(z)] < M, and |h(z)| < M, for z € D, where M; > 0,
M, > 1. Then L(F) is univalent in the disk D, , where ry is the
unique root in (0, 1) of the equation

12M,7* 8M,r°
AO (MZ) - 7_[(1 _lrz) - ! /\O (MZ) VMg -1

a(l-r)?

(33)

20Vart + 4+ 1 rVrt=3r2 + 4 B
’ 2N\5/2 + S =0,
(1-7%) (1-7%)

and L(F)(D,,) contains a schlicht disk Dy, where Ay(M,) is
defined by (16) and

05 =13 | Ay (M) = A (M,) \,M% -1
(34)

T3 \/”31 ~3r;+4 4M1r§

(1-r2)° (1 —r)

Proof. Note that J(0) = |cl|2—|d1|2 = J,(0) = I;by Lemma 4,
we have

Ay (0) = A (M,). (35)
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We adopt the same method in Theorem 10, for z, # z, in
D,(0 < r < r;); by Lemmas 1, 2, and 5, we get

1> j 24 O)1dzl = 1,0 - 2],

L[l (gl idzl + loel 20
[21,2,]
aM, r*
<z ~2,| A, (2) < |z - 2, 71(1——11’2)’
o0
I < |z, - 7, Zn(n — 1) (|a,| + b))
n=2

8M,r’
n(1-r)*

< |z - 2
o0
I, < |z, - 7, Zn(n— 1) (|e,| + |da)
n=2
o 12
2
R (Z(|cn| +1d,)) )
n=2
o 1/2
<Zn (n—1) 2(n—1)> (36)
2rVarZ + 4 + 1
<z =25 A, (0) M7~ 1 B 5/2 )

L | (12Pla.l1aE + 2P g |dz|)
2152,

2
<r2|zl—zz|Ag(z)<|Z1—z| M,

2 m(1-12)
Is < |Z1 - Zzl Z”(|Cn| + |dn|) !
n=2

I 1/2
<lai-al (Y lal+ 1)
n=2

0 1/2
( P22 1))
n=2

rvrt —3r2 +4
< |z = 2| A (0) M5 -1 - 3/2

Using these estimates and Lemma 7, by (35), we obtain

|H (z)) - H(z,)|

>I -2, -1, -1, - I, - I

12M,7*

m(1-7r?)
8M, 7’
-, (0) M -1
(1 —r)3 n(0) 2
2rvVar +rt + 1 . rVri—3r2 +4
(1-r2)"? (1-72)*"?
12M, 7
m(1-7r?)

8M,r’
-2 ) (M) MR -1
rr(l—r)3 0( 2) 2

2rVart + 4+ 1 rVrt=3r2 + 4
’ S + S 0,
(1 r ) (1 r )

> |z, - z,| ()Lh 0) -

2 |Zl - Zz| (Ao (M,) -

(37)

which implies H(z,) # H(z,).

For any z such that z € dD, , by (35) and Lemmas 2 and
5, we obtain

HE) >, [Ah -3 (o] + [dyf) nr2
n=2

-3 s

21’3 /\h(O)—)Lh(O)\Mg—l
rs\r; —3r2 +4 AM, 72

-2y a(1-r)
213 | Ay (My) = Ao (M) \/M;‘ -1
ri\rs =312 +4 AM, 1}

(1-r)"  a(l-r)

= 03.
(38)
This completes the proof. O

Setting M, = M, = M in Theorem 11, we have the
following corollary.

Corollary 12. Let F(z) = |z|2g(z) + h(z) be a biharmonic
mapping of the unit disk D, with F(0) = h(0) = Jz(0) -1 =
0, and both g(z) and h(z) are bounded by M. Then L(F) is



univalent in the disk D, , where ry is the minimum root of the
equation

12M7?

Ay (M) — - -y (M) VM* -1
o (M) n(l-r%) m(1-r) o (M)
(39)
2rVa4rt + vt +1  rVrt=3r2 + 4
= 0’
(1-r2)" (1-r2)"
and L(F)(D,,) contains a schlicht disk D, , where
oy =1 | Ag (M) = Ay (M) VM* — 1
(40)
1 \/”i1 —3rf +4 4Mr}
(-7 a(1-n)

In order to show Corollary 12 improves Theorem A, we
use Mathematica to compute the approximate values for
various choices of M as in Table 1.

Remark 13. From Table 1 we can see, for the same M,

> prs o, > Ry. (41)

Finally we improve Theorems B as follows.

Theorem 14. Let F(z) = Izlzg(z) be a biharmonic mapping
in D such that g(0) = 0, J40) =1 and |g(z)| < M, where
M = 1 and g(z) is harmonic in D. Then L(F) is univalent in
the disk D, , where r, is the minimum positive root in (0, 1) of
the following equation:

N v [3r\/r4—3r2+4 2r\/4r2+r4+1]_

1-ry? ' a_py"
)

and L(F)(D,,) contains a schlicht disk D, with

o\|1y —3r5 +4
- /—2\/— (43)

0, = 1Ay (M) "
2

where (M) is defined by (16).
Proof. Let

g2 =g (2)+9,(z) = Za Zt+ Zb (44)

n=1
Let H(z) := L(F) = |z|2L(g); then we have

H, = 2lz’g, ~ 2'g; + 2l2l g...
2 2 2 (45)
H; = -2|z|"g; + 2" g, — |z gz=-
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Forz, #z,in D, (0 < r < r,), by Lemmas 4, 5, 8, and 9,
we get
|H (2)) - H (2,))|

1
> |z, — 2| (L |tz + (1 -1t) z2|2dt>

[0 -38ntiat -
n=2

_ Zn(n— 1) (|a,| + |bn|)r"_1]
n=2

|Z1|3 + |Zzl3
3(lz1] + |22])

x [Ag (0) =31, (0) VM* 1.

> |z, - 2|

AR 4

(1—r2)3/2
Va2 + i+ 1
_NMA T JervArm A r T e
M 1 Ag(o) (1—1"2)5/2 ]
ey oy S AL EAREAN Ay (M)
3(Jz] +1z2])
X[ vy rVrt=3r2 +4
e

e Vi
(1=
which implies H(z,) # H(z,).

For any z such that z € 0D, , by Lemmas 4 and 5, we
obtain

|H (2)| = |L(Iz/’g)|

>0,

> ||z|2 (29, (0) - zg; (0))|

9.(0) -z (gz - g: (0)))|

> Ay (0) - Zn(|an| + |bn|)r;’_1]
n=2

~|lz* (z (9. -

ry\[1; —3ry; +4
> 22, (M) | 1- VM 2\/2—2 =0,
’ (1-r2)"?
2
(47)
This completes the proof of Theorem 14. O

In order to show Theorem 14 improves Theorem B, we use
Mathematica to compute the approximate values for various
choices of M as in Table 2.

Remark 15. From Table 2 we can see, for the same M,

> P 0, > R,. (48)
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TaBLE 1: The values of r;, 0, are in Corollary 12. The values of p,, R; are in Theorem A.

M=1 M=2 M=3 M=4 M=5

I 0.0527621 0.0139445 0.00626165 0.00353488 0.0022661
I8 0.357671 0.0593158 0.0269865 0.015355 0.00988556
R, 0.013793 0.00164514 0.00048245 0.00020277 0.00010364
o, 0.216467 0.0119479 0.00357231 0.00151701 0.00077955

TABLE 2: The values of r,, 0, are in Theorem 14. The values of p,, R, are in Theorem B.

M=2 M=3 M=4 M=5

P 0.00623234 0.00277176 0.00155948 0.00099817
7, 0.032209 0.0139701 0.00782686 0.00500376
R, 6.54254 x 10 3.83564 x 10~° 5.12297 x 107 1.07466 x 1071
o, 9.84416 x 10°° 5.35363 x 10”7 7.06092 x 107 1.47596 x 1078
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