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An analytic function𝑓 defined on the open unit disk is biunivalent if the function𝑓 and its inverse𝑓−1 are univalent inD. Estimates
for the initial coefficients of biunivalent functions 𝑓 are investigated when 𝑓 and 𝑓−1, respectively, belong to some subclasses of
univalent functions. Some earlier results are shown to be special cases of our results.

1. Introduction

Let S be the class of all univalent analytic functions 𝑓 in the
open unit disk D := {𝑧 ∈ C : |𝑧| < 1} and normalized
by the conditions 𝑓(0) = 0 and 𝑓󸀠(0) = 1. For 𝑓 ∈ S,
it is well known that the 𝑛th coefficient is bounded by 𝑛.
The bounds for the coefficients give information about the
geometric properties of these functions. Indeed, the bound
for the second coefficient of functions in the class S gives
rise to the growth, distortion and covering theorems for
univalent functions. In view of the influence of the second
coefficient in the geometric properties of univalent functions,
it is important to know the bounds for the (initial) coefficients
of functions belonging to various subclasses of univalent
functions. In this paper, we investigate this coefficient prob-
lem for certain subclasses of biunivalent functions.

Recall that the Koebe one-quarter theorem [1] ensures
that the image of D under every univalent function 𝑓 ∈ S
contains a disk of radius 1/4. Thus, every univalent function
𝑓 has an inverse 𝑓−1 satisfying 𝑓−1(𝑓(𝑧)) = 𝑧, (𝑧 ∈ D), and

𝑓 (𝑓−1 (𝑤)) = 𝑤, (|𝑤| < 𝑟
0

(𝑓) , 𝑟
0

(𝑓) ≥
1

4
) . (1)

A function 𝑓 ∈ S is biunivalent in D if both 𝑓 and 𝑓−1 are
univalent inD. Let 𝜎 denote the class of biunivalent functions
defined in the unit disk D. Lewin [2] investigated this class
𝜎 and obtained the bound for the second coefficient of the
biunivalent functions. Several authors subsequently studied
similar problems in this direction (see [3, 4]). A function

𝑓 ∈ 𝜎 is bistarlike or strongly bistarlike or biconvex of
order 𝛼 if 𝑓 and 𝑓−1 are both starlike, strongly starlike,
or convex of order 𝛼, respectively. Brannan and Taha [5]
obtained estimates for the initial coefficients of bistarlike,
strongly bistarlike, and biconvex functions. Bounds for the
initial coefficients of several classes of functions were also
investigated in [6–24].

An analytic function 𝑓 is subordinate to an analytic
function 𝑔, written 𝑓(𝑧) ≺ 𝑔(𝑧), if there is an analytic
function 𝑤 : D → D with 𝑤(0) = 0 satisfying 𝑓(𝑧) =
𝑔(𝑤(𝑧)). Ma and Minda [25] unified various subclasses of
starlike (S∗) and convex functions (C) by requiring that
either the quantity 𝑧𝑓󸀠(𝑧)/𝑓(𝑧) or 1 + 𝑧𝑓󸀠󸀠(𝑧)/𝑓󸀠(𝑧) is
subordinate to a more general superordinate function 𝜑 with
positive real part in the unit disk D, 𝜑(0) = 1, 𝜑󸀠(0) >
0, 𝜑 maps D onto a region starlike with respect to 1 and
symmetric with respect to the real axis. The class S∗(𝜑) of
Ma-Minda starlike functions with respect to 𝜑 consists of
functions 𝑓 ∈ S satisfying the subordination 𝑧𝑓󸀠(𝑧)/𝑓(𝑧) ≺
𝜑(𝑧). Similarly, the classC(𝜑) ofMa-Minda convex functions
consists of functions 𝑓 ∈ S satisfying the subordination
1 + 𝑧𝑓󸀠󸀠(𝑧)/𝑓󸀠(𝑧) ≺ 𝜑(𝑧). Ma and Minda investigated growth
and distortion properties of functions in S∗(𝜑) and C(𝜑) as
well as Fekete-Szegö inequalities for S∗(𝜑) and C(𝜑). Their
proof of Fekete-Szegö inequalities requires the univalence of
𝜑. Ali et al. [7] investigated Fekete-Szegö problems for various
other classes and their proof does not require the univalence
or starlikeness of 𝜑. In particular, their results are valid even
if one just assumes the function 𝜑 to have a series expansion
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of the form 𝜑(𝑧) = 1 + 𝐵
1

𝑧 + 𝐵
2

𝑧2 + ⋅ ⋅ ⋅ , 𝐵
1

> 0. So, in this
paper, we assume that 𝜑 has series expansion 𝜑(𝑧) = 1+𝐵

1

𝑧+

𝐵
2

𝑧2 + ⋅ ⋅ ⋅ , 𝐵
1

, 𝐵
2

are real, and 𝐵
1

> 0. A function 𝑓 is Ma-
Minda bistarlike orMa-Minda biconvex if both𝑓 and𝑓−1 are,
respectively, Ma-Minda starlike or convex. Motivated by the
Fekete-Szegö problem for the classes of Ma-Minda starlike
and Ma-Minda convex functions [25], Ali et al. [26] recently
obtained estimates of the initial coefficients for biunivalent
Ma-Minda starlike and Ma-Minda convex functions.

The present work is motivated by the results of
Kędzierawski [27] who considered functions 𝑓 belonging to
certain subclasses of univalent functions while their inverses
𝑓−1 belong to some other subclasses of univalent functions.
Among other results, he obtained the following coefficient
estimates.

Theorem 1 (see [27]). Let 𝑓 ∈ 𝜎 with Taylor series 𝑓(𝑧) =
𝑧 + 𝑎
2

𝑧2 + ⋅ ⋅ ⋅ and 𝑔 = 𝑓−1. Then,

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤

{{{{
{{{{
{

1.5894 if 𝑓 ∈ S, 𝑔 ∈ S,

√2 if 𝑓 ∈ S∗, 𝑔 ∈ S∗,

1.507 if 𝑓 ∈ S∗, 𝑔 ∈ S,

1.224 if 𝑓 ∈ C, 𝑔 ∈ S.

(2)

We need the following classes investigated in [6, 7, 26].

Definition 2. Let 𝜑 : D → C be analytic and 𝜑(𝑧) = 1+𝐵
1

𝑧+

𝐵
2

𝑧2 + ⋅ ⋅ ⋅ with 𝐵
1

> 0 and 𝐵
2

∈ R. For 𝛼 ≥ 0, let

M (𝛼, 𝜑) := {𝑓 ∈ S : (1 − 𝛼)
𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)

+𝛼(1 +
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
) ≺ 𝜑 (𝑧)} ,

L (𝛼, 𝜑)

:= {𝑓 ∈ S : (
𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
)

𝛼

(1 +
𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
)

1−𝛼

≺ 𝜑 (𝑧)} ,

P (𝛼, 𝜑) := {𝑓 ∈ S :
𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+ 𝛼

𝑧2𝑓󸀠󸀠 (𝑧)

𝑓 (𝑧)
≺ 𝜑 (𝑧)} .

(3)
In this paper, we obtain the estimates for the second and

third coefficients of functions 𝑓 when
(i) 𝑓 ∈ P(𝛼, 𝜑) and𝑔 := 𝑓−1 ∈ P(𝛽, 𝜓), or𝑔 ∈M(𝛽, 𝜓),

or 𝑔 ∈L(𝛽, 𝜓),
(ii) 𝑓 ∈M(𝛼, 𝜑) and 𝑔 ∈M(𝛽, 𝜓), or 𝑔 ∈L(𝛽, 𝜓),
(iii) 𝑓 ∈L(𝛼, 𝜑) and 𝑔 ∈L(𝛽, 𝜓).

2. Coefficient Estimates

In the sequel, it is assumed that 𝜑 and𝜓 are analytic functions
of the form

𝜑 (𝑧) = 1 + 𝐵
1

𝑧 + 𝐵
2

𝑧2 + 𝐵
3

𝑧3 + ⋅ ⋅ ⋅ (𝐵
1

> 0) ,

𝜓 (𝑧) = 1 + 𝐷
1

𝑧 + 𝐷
2

𝑧2 + 𝐷
3

𝑧3 + ⋅ ⋅ ⋅ (𝐷
1

> 0) .
(4)

Theorem 3. Let 𝑓 ∈ 𝜎 and 𝑔 = 𝑓−1. If 𝑓 ∈ P(𝛼, 𝜑), 𝑔 ∈
P(𝛽, 𝜓) and 𝑓is of the form

𝑓 (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎
𝑛

𝑧𝑛, (5)

then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ (𝐵

1

𝐷
1

√𝐵
1

(1 + 3𝛽) + 𝐷
1

(1 + 3𝛼))

× (
󵄨󵄨󵄨󵄨󵄨𝜎𝐵
2

1

𝐷2
1

− (1 + 2𝛼)
2 (1 + 3𝛽) (𝐵

2

− 𝐵
1

)𝐷2
1

−(1 + 2𝛽)
2

(1 + 3𝛼) (𝐷
2

− 𝐷
1

) 𝐵2
1

󵄨󵄨󵄨󵄨󵄨)
−1/2

,

(6)

2𝜎
󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ 𝐵1 (3 + 10𝛽) + 𝐷1 (1 + 2𝛼) + (3 + 10𝛽)

󵄨󵄨󵄨󵄨𝐵2 − 𝐵1
󵄨󵄨󵄨󵄨

+
(1 + 2𝛽)

2

𝐵2
1

󵄨󵄨󵄨󵄨𝐷2 − 𝐷1
󵄨󵄨󵄨󵄨

𝐷2
1

(1 + 2𝛼)
,

(7)

where 𝜎 := 2 + 7𝛼 + 7𝛽 + 24𝛼𝛽.

Proof. Since 𝑓 ∈ P(𝛼, 𝜑) and 𝑔 ∈ P(𝛽, 𝜓), 𝑔 = 𝑓−1, then
there exist analytic functions 𝑢, V : D → D, with 𝑢(0) =
V(0) = 0, satisfying

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+
𝛼𝑧2𝑓󸀠󸀠 (𝑧)

𝑓 (𝑧)
= 𝜑 (𝑢 (𝑧)) ,

𝑤𝑔󸀠 (𝑤)

𝑔 (𝑤)
+
𝛽𝑤2𝑔󸀠󸀠 (𝑤)

𝑔 (𝑤)
= 𝜓 (V (𝑤)) .

(8)

Define the functions 𝑝
1

and 𝑝
2

by

𝑝
1

(𝑧) :=
1 + 𝑢 (𝑧)

1 − 𝑢 (𝑧)
= 1 + 𝑐

1

𝑧 + 𝑐
2

𝑧2 + ⋅ ⋅ ⋅ ,

𝑝
2

(𝑧) :=
1 + V (𝑧)
1 − V (𝑧)

= 1 + 𝑏
1

𝑧 + 𝑏
2

𝑧2 + ⋅ ⋅ ⋅ ,

(9)

or, equivalently,

𝑢 (𝑧) =
𝑝
1

(𝑧) − 1

𝑝
1

(𝑧) + 1
=
1

2
(𝑐
1

𝑧 + (𝑐
2

−
𝑐2
1

2
) 𝑧2 + ⋅ ⋅ ⋅ ) ,

V (𝑧) =
𝑝
2

(𝑧) − 1

𝑝
2

(𝑧) + 1
=
1

2
(𝑏
1

𝑧 + (𝑏
2

−
𝑏2
1

2
) 𝑧2 + ⋅ ⋅ ⋅ ) .

(10)

Then, 𝑝
1

and 𝑝
2

are analytic in D with 𝑝
1

(0) = 1 = 𝑝
2

(0).
Since 𝑢, V : D → D, the functions 𝑝

1

and 𝑝
2

have positive
real part in D, and |𝑏

𝑖

| ≤ 2 and |𝑐
𝑖

| ≤ 2. In view of (8) and
(10), it is clear that

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+
𝛼𝑧2𝑓󸀠󸀠 (𝑧)

𝑓 (𝑧)
= 𝜑(

𝑝
1

(𝑧) − 1

𝑝
1

(𝑧) + 1
) ,

𝑤𝑔󸀠 (𝑤)

𝑔 (𝑤)
+
𝛽𝑤2𝑔󸀠󸀠 (𝑤)

𝑔 (𝑤)
= 𝜓(

𝑝
2

(𝑤) − 1

𝑝
2

(𝑤) + 1
) .

(11)
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Using (10) together with (4), it is evident that

𝜑(
𝑝
1

(𝑧) − 1

𝑝
1

(𝑧) + 1
) = 1 +

1

2
𝐵
1

𝑐
1

𝑧

+ (
1

2
𝐵
1

(𝑐
2

−
𝑐2
1

2
) +

1

4
𝐵
2

𝑐2
1

)𝑧2 + ⋅ ⋅ ⋅ ,

𝜓 (
𝑝
2

(𝑤) − 1

𝑝
2

(𝑤) + 1
) = 1 +

1

2
𝐷
1

𝑏
1

𝑤

+ (
1

2
𝐷
1

(𝑏
2

−
𝑏2
1

2
) +

1

4
𝐷
2

𝑏2
1

)𝑤2 + ⋅ ⋅ ⋅ .

(12)

Since 𝑓 has the Maclaurin series given by (5), a computation
shows that its inverse 𝑔 = 𝑓−1 has the expansion

𝑔 (𝑤) = 𝑓
−1

(𝑤) = 𝑤 − 𝑎
2

𝑤2 + (2𝑎2
2

− 𝑎
3

)𝑤3 + ⋅ ⋅ ⋅ . (13)

Since

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+
𝛼𝑧2𝑓󸀠󸀠 (𝑧)

𝑓 (𝑧)

= 1 + 𝑎
2

(1 + 2𝛼) 𝑧

+ (2 (1 + 3𝛼) 𝑎
3

− (1 + 2𝛼) 𝑎
2

2

) 𝑧2 + ⋅ ⋅ ⋅ ,

𝑤𝑔󸀠 (𝑤)

𝑔 (𝑤)
+
𝛽𝑤2𝑔󸀠󸀠 (𝑤)

𝑔 (𝑤)

= 1 − (1 + 2𝛽) 𝑎
2

𝑤

+ ((3 + 10𝛽) 𝑎2
2

− 2 (1 + 3𝛽) 𝑎
3

)𝑤2 + ⋅ ⋅ ⋅ ,

(14)

it follows from (11) and (12) that

𝑎
2

(1 + 2𝛼) =
1

2
𝐵
1

𝑐
1

, (15)

2 (1 + 3𝛼) 𝑎
3

− (1 + 2𝛼) 𝑎
2

2

=
1

2
𝐵
1

(𝑐
2

−
𝑐2
1

2
) +

1

4
𝐵
2

𝑐2
1

,

(16)

− (1 + 2𝛽) 𝑎
2

=
1

2
𝐷
1

𝑏
1

, (17)

(3 + 10𝛽) 𝑎2
2

− 2 (1 + 3𝛽) 𝑎
3

=
1

2
𝐷
1

(𝑏
2

−
𝑏2
1

2
) +

1

4
𝐷
2

𝑏2
1

.

(18)

It follows from (15) and (17) that

𝑏
1

= −
𝐵
1

(1 + 2𝛽)

𝐷
1

(1 + 2𝛼)
𝑐
1

. (19)

Equations (15), (16), (18), and (19) lead to

𝑎2
2

= 𝐵2
1

𝐷2
1

[𝐵
1

(1 + 3𝛽) 𝑐
2

+ 𝐷
1

(1 + 3𝛼) 𝑏
2

]

× (2 [𝜎𝐵2
1

𝐷2
1

− (1 + 2𝛼)
2 (1 + 3𝛽) (𝐵

2

− 𝐵
1

)𝐷2
1

−(1 + 2𝛽)
2

(1 + 3𝛼) (𝐷
2

− 𝐷
1

) 𝐵2
1

])
−1

,

(20)

where 𝜎 := 2 + 7𝛼 + 7𝛽 + 24𝛼𝛽, which, in view of |𝑏
2

| ≤ 2
and |𝑐

2

| ≤ 2, gives us the desired estimate on |𝑎
2

| as asserted
in (6).

By using (16), (18), and (19), we get

2𝜎𝑎
3

=
1

2
[𝐵
1

(3 + 10𝛽) 𝑐
2

+ 𝐷
1

(1 + 2𝛼) 𝑏
2

]

+
𝑐2
1

4
[(3 + 10𝛽) (𝐵

2

− 𝐵
1

)+
(1 + 2𝛽)

2

𝐵2
1

(𝐷
2

− 𝐷
1

)

𝐷2
1

(1 + 2𝛼)
] ,

(21)

and this yields the estimate given in (7).

Remark 4. When 𝛼 = 𝛽 = 0 and 𝐵
1

= 𝐵
2

= 2, 𝐷
1

= 𝐷
2

=
2, then (6) reduces to Theorem 1. When 𝛽 = 𝛼 and 𝜓 = 𝜑,
Theorem 3 reduces to [26, Theorem 2.2].

Theorem 5. Let 𝑓 ∈ 𝜎 and 𝑔 = 𝑓−1. If 𝑓 ∈ P(𝛼, 𝜑) and
𝑔 ∈M(𝛽, 𝜓), then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ (𝐵1𝐷1√𝐵1 (1 + 2𝛽) + 𝐷1 (1 + 3𝛼))

× (
󵄨󵄨󵄨󵄨󵄨 𝜎𝐵
2

1

𝐷2
1

− (1 + 2𝛼)2 (1 + 2𝛽) (𝐵
2

− 𝐵
1

)𝐷2
1

−(1 + 𝛽)
2

(1 + 3𝛼) (𝐷
2

− 𝐷
1

) 𝐵2
1

󵄨󵄨󵄨󵄨󵄨)
−1/2

,

(22)

2𝜎
󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ 𝐵1 (3 + 5𝛽) + 𝐷1 (1 + 2𝛼) + (3 + 5𝛽)

󵄨󵄨󵄨󵄨𝐵2 − 𝐵1
󵄨󵄨󵄨󵄨

+
(1 + 𝛽)

2

𝐵2
1

󵄨󵄨󵄨󵄨𝐷2 − 𝐷1
󵄨󵄨󵄨󵄨

𝐷2
1

(1 + 2𝛼)
,

(23)

where 𝜎 := 2 + 7𝛼 + 3𝛽 + 11𝛼𝛽.

Proof. Let 𝑓 ∈ P(𝛼, 𝜑) and 𝑔 ∈ M(𝛽, 𝜓), 𝑔 = 𝑓−1. Then,
there exist analytic functions 𝑢, V : D → D, with 𝑢(0) =
V(0) = 0, such that

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+
𝛼𝑧2𝑓󸀠󸀠 (𝑧)

𝑓 (𝑧)
= 𝜑 (𝑢 (𝑧)) ,

(1 − 𝛽)
𝑤𝑔󸀠 (𝑤)

𝑔 (𝑤)
+ 𝛽(1 +

𝑤𝑔󸀠󸀠 (𝑤)

𝑔󸀠 (𝑤)
) = 𝜓 (V (𝑤)) .

(24)
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Since

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+
𝛼𝑧2𝑓󸀠󸀠 (𝑧)

𝑓 (𝑧)

= 1 + 𝑎
2

(1 + 2𝛼) 𝑧

+ (2 (1 + 3𝛼) 𝑎
3

− (1 + 2𝛼) 𝑎
2

2

) 𝑧2 + ⋅ ⋅ ⋅ ,

(1 − 𝛽)
𝑤𝑔󸀠 (𝑤)

𝑔 (𝑤)
+ 𝛽(1 +

𝑤𝑔󸀠󸀠 (𝑤)

𝑔󸀠 (𝑤)
)

= 1 − (1 + 𝛽) 𝑎
2

𝑤

+ ((3 + 5𝛽) 𝑎2
2

− 2 (1 + 2𝛽) 𝑎
3

)𝑤2 + ⋅ ⋅ ⋅ ,

(25)

(12) and (24) yield

𝑎
2

(1 + 2𝛼) =
1

2
𝐵
1

𝑐
1

, (26)

2 (1 + 3𝛼) 𝑎
3

− (1 + 2𝛼) 𝑎
2

2

=
1

2
𝐵
1

(𝑐
2

−
𝑐2
1

2
) +

1

4
𝐵
2

𝑐2
1

,

(27)

− (1 + 𝛽) 𝑎
2

=
1

2
𝐷
1

𝑏
1

, (28)

(3 + 5𝛽) 𝑎2
2

− 2 (1 + 2𝛽) 𝑎
3

=
1

2
𝐷
1

(𝑏
2

−
𝑏2
1

2
) +

1

4
𝐷
2

𝑏2
1

.

(29)

It follows from (26) and (28) that

𝑏
1

= −
𝐵
1

(1 + 𝛽)

𝐷
1

(1 + 2𝛼)
𝑐
1

. (30)

Hence, (26), (27), (29), and (30) lead to

𝑎2
2

= (𝐵2
1

𝐷2
1

[𝐵
1

(1 + 2𝛽) 𝑐
2

+ 𝐷
1

(1 + 3𝛼) 𝑏
2

])

× (2 [𝜎𝐵2
1

𝐷2
1

− (1 + 2𝛼)
2 (1 + 2𝛽) (𝐵

2

− 𝐵
1

)𝐷2
1

−(1 + 2𝛽)
2

(1 + 3𝛼) (𝐷
2

− 𝐷
1

) 𝐵2
1

])
−1

,

(31)

which gives us the desired estimate on |𝑎
2

| as asserted in (22)
when |𝑏

2

| ≤ 2 and |𝑐
2

| ≤ 2.
Further, (27), (29), and (30) give

2𝜎𝑎
3

=
1

2
[𝐵
1

(3 + 5𝛽) 𝑐
2

+ 𝐷
1

(1 + 2𝛼) 𝑏
2

]

+
𝑐2
1

4
[(3 + 5𝛽) (𝐵

2

− 𝐵
1

) +
(1 + 𝛽)

2

𝐵2
1

(𝐷
2

− 𝐷
1

)

𝐷2
1

(1 + 2𝛼)
] ,

(32)

and this yields the estimate given in (23).

Theorem 6. Let 𝑓 ∈ 𝜎 and 𝑔 = 𝑓−1. If 𝑓 ∈ P(𝛼, 𝜑) and
𝑔 ∈L(𝛽, 𝜓), then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ (𝐵

1

𝐷
1

√2 [𝐵
1

(3 − 2𝛽) + 𝐷
1

(1 + 3𝛼)])

× (
󵄨󵄨󵄨󵄨󵄨𝜎𝐵
2

1

𝐷2
1

− 2(1 + 2𝛼)
2 (3 − 2𝛽) (𝐵

2

− 𝐵
1

)𝐷2
1

−2(2 − 𝛽)
2

(1 + 3𝛼) (𝐷
2

− 𝐷
1

) 𝐵2
1

󵄨󵄨󵄨󵄨󵄨)
−1/2

,

󵄨󵄨󵄨󵄨𝜎𝑎3
󵄨󵄨󵄨󵄨 ≤

1

2
𝐵
1

(𝛽2 − 11𝛽 + 16) + 𝐷
1

(1 + 2𝛼)

+
1

2
(𝛽2 − 11𝛽 + 16)

󵄨󵄨󵄨󵄨𝐵2 − 𝐵1
󵄨󵄨󵄨󵄨

+
(2 − 𝛽)

2

𝐵2
1

󵄨󵄨󵄨󵄨𝐷2 − 𝐷1
󵄨󵄨󵄨󵄨

𝐷2
1

(1 + 2𝛼)
,

(33)

where 𝜎 := 10 + 36𝛼 − 7𝛽 − 25𝛼𝛽 + 𝛽2 + 3𝛼𝛽2.

Proof. Let 𝑓 ∈ P(𝛼, 𝜑) and 𝑔 ∈ L(𝛽, 𝜓), 𝑔 = 𝑓−1. Then,
there are analytic functions 𝑢, V : D → D, with 𝑢(0) = V(0) =
0, satisfying

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+
𝛼𝑧2𝑓󸀠󸀠 (𝑧)

𝑓 (𝑧)
= 𝜑 (𝑢 (𝑧)) ,

(
𝑤𝑔󸀠 (𝑤)

𝑔 (𝑤)
)

𝛽

(1 +
𝑤𝑔󸀠󸀠 (𝑤)

𝑔󸀠 (𝑤)
)

1−𝛽

= 𝜓 (V (𝑤)) .

(34)

Using

𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+
𝛼𝑧2𝑓󸀠󸀠 (𝑧)

𝑓 (𝑧)

= 1 + 𝑎
2

(1 + 2𝛼) 𝑧

+ (2 (1 + 3𝛼) 𝑎
3

− (1 + 2𝛼) 𝑎
2

2

) 𝑧2 + ⋅ ⋅ ⋅ ,

(
𝑤𝑔󸀠 (𝑤)

𝑔 (𝑤)
)

𝛽

(1 +
𝑤𝑔󸀠󸀠 (𝑤)

𝑔󸀠 (𝑤)
)

1−𝛽

= 1 − (2 − 𝛽) 𝑎
2

𝑤

+ ((8 (1 − 𝛽) +
1

2
𝛽 (𝛽 + 5)) 𝑎2

2

− 2 (3 − 2𝛽) 𝑎
3

)𝑤2

+ ⋅ ⋅ ⋅ ,

(35)

and (12) and (34) will yield

𝑎
2

(1 + 2𝛼) =
1

2
𝐵
1

𝑐
1

,

2 (1 + 3𝛼) 𝑎
3

− (1 + 2𝛼) 𝑎
2

2

=
1

2
𝐵
1

(𝑐
2

−
𝑐2
1

2
) +

1

4
𝐵
2

𝑐2
1

,

− (2 − 𝛽) 𝑎
2

=
1

2
𝐷
1

𝑏
1

,
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[8 (1 − 𝛽) +
𝛽

2
(𝛽 + 5)] 𝑎2

2

− 2 (3 − 2𝛽) 𝑎
3

=
1

2
𝐷
1

(𝑏
2

−
𝑏2
1

2
) +

1

4
𝐷
2

𝑏2
1

.

(36)

Further implication of (36) and applying the fact that |𝑏
2

| ≤ 2
and |𝑐

2

| ≤ 2 give the estimates in (33).

Theorem 7. Let 𝑓 ∈ 𝜎 and 𝑔 = 𝑓−1. If 𝑓 ∈ M(𝛼, 𝜑), 𝑔 ∈
M(𝛽, 𝜓), then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ (𝐵

1

𝐷
1

√𝐵
1

(1 + 2𝛽) + 𝐷
1

(1 + 2𝛼))

× (
󵄨󵄨󵄨󵄨󵄨𝜎𝐵
2

1

𝐷2
1

− (1 + 𝛼)
2 (1 + 2𝛽) (𝐵

2

− 𝐵
1

)𝐷2
1

−(1 + 𝛽)
2

(1 + 2𝛼) (𝐷
2

− 𝐷
1

) 𝐵2
1

󵄨󵄨󵄨󵄨󵄨)
−1/2

,

2𝜎
󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 ≤ 𝐵1 (3 + 5𝛽) + 𝐷1 (1 + 3𝛼) + (3 + 5𝛽)

󵄨󵄨󵄨󵄨𝐵2 − 𝐵1
󵄨󵄨󵄨󵄨

+
(1 + 𝛽)

2

(1 + 3𝛼) 𝐵2
1

󵄨󵄨󵄨󵄨𝐷2 − 𝐷1
󵄨󵄨󵄨󵄨

𝐷2
1

(1 + 𝛼)2
,

(37)

where 𝜎 := 2 + 3𝛼 + 3𝛽 + 4𝛼𝛽.

Proof. For 𝑓 ∈ M(𝛼, 𝜑) and 𝑔 ∈ M(𝛽, 𝜓), 𝑔 = 𝑓−1, there
exist analytic functions 𝑢, V : D → D, with 𝑢(0) = V(0) = 0,
satisfying

(1 − 𝛼)
𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+ 𝛼(1 +

𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
) = 𝜑 (𝑢 (𝑧)) ,

(1 − 𝛽)
𝑤𝑔󸀠 (𝑤)

𝑔 (𝑤)
+ 𝛽(1 +

𝑤𝑔󸀠󸀠 (𝑤)

𝑔󸀠 (𝑤)
) = 𝜓 (V (𝑤)) .

(38)

Since

(1 − 𝛼)
𝑧𝑓󸀠 (𝑧)

𝑓 (𝑧)
+ 𝛼(1 +

𝑧𝑓󸀠󸀠 (𝑧)

𝑓󸀠 (𝑧)
)

= 1 + (1 + 𝛼) 𝑎
2

𝑧

+ (2 (1 + 2𝛼) 𝑎
3

− (1 + 3𝛼) 𝑎
2

2

) 𝑧2 + ⋅ ⋅ ⋅ ,

(1 − 𝛽)
𝑤𝑔󸀠 (𝑤)

𝑔 (𝑤)
+ 𝛽(1 +

𝑤𝑔󸀠󸀠 (𝑤)

𝑔󸀠 (𝑤)
)

= 1 − (1 + 𝛽) 𝑎
2

𝑤

+ ((3 + 5𝛽) 𝑎2
2

− 2 (1 + 2𝛽) 𝑎
3

)𝑤2 + ⋅ ⋅ ⋅ ,

(39)

then (12) and (38) yield

𝑎
2

(1 + 𝛼) =
1

2
𝐵
1

𝑐
1

,

2 (1 + 2𝛼) 𝑎
3

− (1 + 3𝛼) 𝑎
2

2

=
1

2
𝐵
1

(𝑐
2

−
𝑐2
1

2
) +

1

4
𝐵
2

𝑐2
1

,

− (1 + 𝛽) 𝑎
2

=
1

2
𝐷
1

𝑏
1

,

(3 + 5𝛽) 𝑎2
2

− 2 (1 + 2𝛽) 𝑎
3

=
1

2
𝐷
1

(𝑏
2

−
𝑏2
1

2
) +

1

4
𝐷
2

𝑏2
1

.

(40)

Further implication of (40) and applying the fact that |𝑏
2

| ≤ 2
and |𝑐

2

| ≤ 2 give the estimates in (37).

Remark 8. When 𝛽 = 𝛼 and 𝜓 = 𝜑, Theorem 7 reduces to
[26, Theorem 2.3].

The following theorems give the estimates for the second
and third coefficients of functions 𝑓 when (i) 𝑓 ∈ M(𝛼, 𝜑)
and 𝑔 ∈ L(𝛽, 𝜓) and (ii) 𝑓 ∈ L(𝛼, 𝜑) and 𝑔 ∈ L(𝛽, 𝜓). The
proofs are similar as for the theorems above; hence, they are
omitted here.

Theorem 9. Let 𝑓 ∈ 𝜎 and 𝑔 = 𝑓−1. If 𝑓 ∈ M(𝛼, 𝜑) and
𝑔 ∈L(𝛽, 𝜓), then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ (𝐵

1

𝐷
1

√2 [𝐵
1

(3 − 2𝛽) + 𝐷
1

(1 + 2𝛼)])

× (
󵄨󵄨󵄨󵄨󵄨𝜎𝐵
2

1

𝐷2
1

− 2(1 + 𝛼)
2 (3 − 2𝛽) (𝐵

2

− 𝐵
1

)𝐷2
1

−2(2 − 𝛽)
2

(1 + 2𝛼) (𝐷
2

− 𝐷
1

) 𝐵2
1

󵄨󵄨󵄨󵄨󵄨)
−1/2

,

󵄨󵄨󵄨󵄨𝜎𝑎3
󵄨󵄨󵄨󵄨 ≤

𝐵
1

2
(𝛽2 − 11𝛽 + 16) + 𝐷

1

(1 + 3𝛼)

+
1

2
(𝛽2 − 11𝛽 + 16)

󵄨󵄨󵄨󵄨𝐵2 − 𝐵1
󵄨󵄨󵄨󵄨

+
(2 − 𝛽)

2

(1 + 3𝛼) 𝐵2
1

󵄨󵄨󵄨󵄨𝐷2 − 𝐷1
󵄨󵄨󵄨󵄨

𝐷2
1

(1 + 𝛼)2
,

(41)

where 𝜎 := 10 + 14𝛼 − 7𝛽 + 𝛽2 + 2𝛼𝛽2 − 10𝛼𝛽.

Theorem 10. Let 𝑓 ∈ 𝜎 and 𝑔 = 𝑓−1. If 𝑓 ∈ L(𝛼, 𝜑) and
𝑔 ∈L(𝛽, 𝜓), then

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 ≤ (𝐵

1

𝐷
1

√2 [𝐵
1

(3 − 2𝛽) + 𝐷
1

(3 − 2𝛼)])

× (
󵄨󵄨󵄨󵄨󵄨𝜎𝐵
2

1

𝐷2
1

− 2(2 − 𝛼)
2 (3 − 2𝛽) (𝐵

2

− 𝐵
1

)𝐷2
1

−2(2 − 𝛽)
2

(3 − 2𝛼) (𝐷
2

− 𝐷
1

) 𝐵2
1

󵄨󵄨󵄨󵄨󵄨)
−1/2

,

(42)
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2
󵄨󵄨󵄨󵄨𝜎𝑎3

󵄨󵄨󵄨󵄨 ≤ 𝐵1 (𝛽
2 − 11𝛽 + 16) + 𝐷

1

(8 − 5𝛼 − 𝛼2)

+ (𝛽2 − 11𝛽 + 16)
󵄨󵄨󵄨󵄨𝐵2 − 𝐵1

󵄨󵄨󵄨󵄨

+
(2 − 𝛽)

2

(𝛼2 + 5𝛼 − 8) 𝐵2
1

󵄨󵄨󵄨󵄨𝐷2 − 𝐷1
󵄨󵄨󵄨󵄨

𝐷2
1

(2 − 𝛼)2
,

(43)

where 𝜎 := 24 + 3𝛼2 + 3𝛽2 − 17𝛼− 17𝛽− 2𝛽𝛼2 − 2𝛼𝛽2 + 12𝛼𝛽.

Remark 11. When 𝛽 = 𝛼 and 𝜓 = 𝜑, Theorem 10 reduces to
[26, Theorem 2.4].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research of the first and last authors is supported, respec-
tively, by FRGS Grant and MyBrain MyPhD Programme of
the Ministry of Higher Education, Malaysia.

References

[1] P. L. Duren, Univalent Functions, vol. 259, Springer, New York,
NY, USA, 1983.

[2] M. Lewin, “On a coefficient problem for bi-univalent functions,”
Proceedings of the American Mathematical Society, vol. 18, pp.
63–68, 1967.

[3] D. A. Brannan, J. Clunie, and W. E. Kirwan, “Coefficient
estimates for a class of star-like functions,” Canadian Journal of
Mathematics, vol. 22, pp. 476–485, 1970.

[4] E. Netanyahu, “The minimal distance of the image boundary
from the origin and the second coefficient of a univalent
function in |𝑧| < 1,” Archive for Rational Mechanics and
Analysis, vol. 32, pp. 100–112, 1969.

[5] D. A. Brannan and T. S. Taha, “On some classes of bi-univalent
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“Fekete-Szegő problem for subclasses of starlike functions with
respect to symmetric points,” Bulletin of the Korean Mathemat-
ical Society, vol. 43, no. 3, pp. 589–598, 2006.

[11] H. M. Srivastava, “Some inequalities and other results associ-
ated with certain subclasses of univalent and bi-univalent ana-
lytic functions,” in Nonlinear Analysis, vol. 68 of Springer Series

on Optimization and Its Applications, pp. 607–630, Springer,
Berlin, Germany, 2012.

[12] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, “Certain
subclasses of analytic and bi-univalent functions,” Applied
Mathematics Letters, vol. 23, no. 10, pp. 1188–1192, 2010.

[13] Q.-H. Xu, H.-G. Xiao, and H. M. Srivastava, “A certain general
subclass of analytic and bi-univalent functions and associated
coefficient estimate problems,” Applied Mathematics and Com-
putation, vol. 218, no. 23, pp. 11461–11465, 2012.

[14] Q.-H.Xu,Y.-C.Gui, andH.M. Srivastava, “Coefficient estimates
for a certain subclass of analytic and bi-univalent functions,”
Applied Mathematics Letters, vol. 25, no. 6, pp. 990–994, 2012.

[15] G. Murugusundaramoorthy, N. Magesh, and V. Prameela,
“Coefficient bounds for certain subclasses of bi-univalent func-
tion,”Abstract and Applied Analysis, vol. 2013, Article ID 573017,
3 pages, 2013.

[16] H. Tang, G.-T. Deng, and S.-H. Li, “Coefficient estimates for
new subclasses of Ma-Minda bi-univalent functions,” Journal of
Inequalities and Applications, vol. 2013, article 317, 2013.

[17] S. G. Hamidi, S. A. Halim, and J. M. Jahangiri, “Coefficent esti-
mates for bi-univalent strongly starlike andBazilevic functions,”
International Journal of Mathematics Research, vol. 5, no. 1, pp.
87–96, 2013.

[18] S. Bulut, “Coefficient estimates for initial Taylor-Maclaurin
coefficients for a subclass of analytic and bi-univalent functions
defined byAl-Oboudi differential operator,”TheScientificWorld
Journal, vol. 2013, Article ID 171039, 6 pages, 2013.

[19] S. Bulut, “Coefficient estimates for a class of analytic and bi-
univalent functions,” Novi Sad Journal of Mathematics, vol. 43,
no. 2, pp. 59–65, 2013.

[20] N. Magesh, T. Rosy, and S. Varma, “Coefficient estimate prob-
lem for a new subclass of biunivalent functions,” Journal of
Complex Analysis, vol. 2013, Article ID 474231, 3 pages, 2013.

[21] H. M. Srivastava, G. Murugusundaramoorthy, and N. Magesh,
“On certain subclasses of bi-univalent functions associated with
Hohlov operator,” Global Journal of Mathematical Analysis, vol.
1, no. 2, pp. 67–73, 2013.
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