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This paper is concerned with the existence of positive solutions of semilinear biharmonic problem whose associated functionals do
not satisfy the Palais-Smale condition.

1. Introduction

We consider the semilinear biharmonic problem

Δ
2
𝑢 = 𝑓 (𝑥, 𝑢) in Ω,

𝑢 = Δ𝑢 = 0 on 𝜕Ω,

(1)

where Ω is a bounded domain with smooth boundary in
R𝑁, 𝑁 ≥ 5.

Problems of this type have been studied in [1–7]. In [6]
Liu andWang studied (1) when𝑓(𝑥, 𝑡) is asymptotically linear
with respect to 𝑡 at infinity. In order to find critical points
of the functional Φ associated with (1), one usually applies
the Mountain Pass Theorem proposed by Ambrosetti and
Rabinowitz [8]. For applying the theorem, one often requires
the following condition, that is, for some 𝜃 > 2 and 𝑀 > 0:

0 < 𝜃𝐹 (𝑥, 𝑡) ≤ 𝑡𝑓 (𝑥, 𝑡) for |𝑡| ≥ 𝑀, (2)

where 𝐹(𝑥, 𝑡) = ∫
𝑡

0
𝑓(𝑥, 𝑠)𝑑𝑠. Condition (2) is important

for ensuring that each Palais-Smale sequence is bounded in
𝐻
2
(Ω)∩𝐻

1

0
(Ω).We sayΦ satisfies the Palais-Smale condition

(henceforth denoted by (PS)) if any sequence {𝑢
𝑛
} for which

Φ(𝑢
𝑛
) is bounded and Φ

󸀠
(𝑢
𝑛
) → 0 as 𝑛 → ∞ possesses a

convergent subsequence. Note that the nonlinear term𝑓(𝑥, 𝑡)

is asymptotically linear, not superlinear, with respect to 𝑡 at
infinity, which means that condition (2) cannot be assumed
in their case. Lin et al. use some tricks and techniques to prove

that the (PS) sequence is bounded. Then they use Mountain
Pass Theorem to get a positive solution to (1).

In [2] Ramos and Rodrigues considered (1) with the
nonlinearity 𝑓(𝑥, 𝑡) = 𝜇𝑡 + 𝑎(𝑥)𝑔(𝑡), where 𝜇 is a real
parameter, 𝑎 ∈ 𝐶

1
(Ω) changes sign in Ω, and 𝑔 ∈ 𝐶

1
(R)

is subcritical and has a superlinear behavior both at zero
and at infinity. They extended for the biharmonic operator
results that were obtained for the corresponding second order
problem in [9]. Their assumptions on 𝑓 do not seem to
imply suitable compactness properties (namely, the so-called
Palais-Smale condition) for the corresponding functional, if
one uses a variational argument.Moreover, due to the absence
of sign in the nonlinear term, it is not clear whether the
geometric structure of the functional associated with (1) falls
into one of the usual schemes used in critical point theory.

In this paper, we suppose that 𝑓 satisfies the following:

(H1) 𝑓 ∈ 𝐶
1
(Ω × R), 𝜕𝑓

󸀠

𝑡
/𝜕𝑥
𝑖

∈ 𝐶(Ω × R)(1 ≤ 𝑖 ≤ 𝑛), and
𝑓(𝑥, 𝑡) ≥ 0 if 𝑡 ≥ 0;

(H2) 𝑓(𝑥, 0) = 𝑓
󸀠

𝑡
(𝑥, 0) = 0 for all 𝑥 ∈ Ω;

(H3) there exist 𝑇 > 0 and 1 < 𝑝 < (𝑁 + 4)/(𝑁 − 4) such
that
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝑡
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶|𝑡|

𝑝−1
,

󵄨󵄨󵄨󵄨∇𝑥𝑓 (𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝐶|𝑡|

𝑝
,

󵄨󵄨󵄨󵄨󵄨
∇
𝑥
𝑓
󸀠

𝑡
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶|𝑡|

𝑝−1

(3)

for |𝑡| ≥ 𝑇 and 𝑥 ∈ Ω;
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(H4) there exist 𝜇 > 0 and 𝑇 > 0 such that 𝑓(𝑥, 𝑡) ≥ 𝜇𝑡
𝑝 for

all 𝑥 ∈ Ω and 𝑡 ≥ 𝑇.

This type of hypotheses assumed here does not imply the
(PS) condition and does not fit in the condition that implies
a priori bounds. Recently, de Figueiredo and Yang [10], Liu
et al. [11], and Ramos et al. [9] have considered semilinear
second order elliptic problems without the (PS) condition.
Our assumptions (H1)–(H4) exactly come from [10]. In [9, 10]
the link between the Morse index and the 𝐿

∞ bounds of
solutions is shown. In [12] Bahri and Lions mentioned that
bounds on Morse indices are useful in some problems to
prove the Palais-Smale compactness condition.

For the reader’s convenience, we give an example:
𝑓(𝑥, 𝑡) = 𝑡

𝑝
[2 + sin(ln 𝑡) cos |𝑥|

2
] for 𝑥 ∈ Ω, 𝑡 ≥ 0, where

𝑝 > 1. Due to advances of our method and our interest in
positive solutions, without loss of generality, we may assume
that 𝑓(𝑥, 𝑡) = 0 for 𝑡 ≤ 0. It is easy to see that 𝑓(𝑥, 𝑡) satisfies
the conditions (H1)–(H4). Moreover, it is obvious that𝑓(𝑥, 𝑡)

does not satisfy the hypothetical conditions on nonlinearity
in [2].

Our main result is the following.

Theorem 1. Suppose 𝑓 satisfies (H1)–(H4). Problem (1) has at
least a positive solution.

The organization of the paper is as follows. In Section 2
we prove some new nonlinear Liouville type theorems which
may be useful in other situations. In Section 3 we prove
Theorem 1. Firstly, we apply the Mountain Pass Theorem to
a suitable sequence of truncated problems. In particular, it
follows that the Morse index of the solutions of the truncated
problems is finite.We use this fact and the blow-up argument
to show that the sequence of the truncated problems is
bounded. A version of the well-known Pohozaev identity is
in turn essential. Throughout this paper, the constant 𝐶 will
denote various generic constants.

2. Liouville Type Theorems

For 𝑅 > 2𝑟 > 0, let 𝜓
𝑟,𝑅

∈ 𝐶
∞

0
(R𝑁) be a cut-off function

satisfying

𝜓
𝑟,𝑅

(𝑥) = 1, 𝑥 ∈ 𝐵
𝑅

\ 𝐵
2𝑟

,

𝜓
𝑟,𝑅

(𝑥) = 0, 𝑥 ∈ 𝐵
𝑟

∪ 𝐵
𝑐

2𝑅
,

󵄨󵄨󵄨󵄨∇𝜓
𝑟,𝑅

󵄨󵄨󵄨󵄨 ≤
𝐶

𝑅
, 𝑥 ∈ 𝐵

𝑐

𝑅
,

󵄨󵄨󵄨󵄨󵄨
𝐷
2
𝜓
𝑟,𝑅

(𝑥)
󵄨󵄨󵄨󵄨󵄨

≤
𝐶

𝑅2
, 𝑥 ∈ 𝐵

𝑐

𝑅
.

(4)

Define

𝐽
󸀠
(𝑢) V = ∫

R𝑁
Δ𝑢ΔV 𝑑𝑥 − ∫

R𝑁
𝑄 (𝑥) 𝑢

𝑝V 𝑑𝑥,

∀V ∈ 𝐶
∞

0
(R
𝑁

) ,

(5)

and then

𝐽
󸀠󸀠

(𝑢) 𝜑
2

= ∫
R𝑁

󵄨󵄨󵄨󵄨Δ𝜑
󵄨󵄨󵄨󵄨

2

𝑑𝑥 − 𝑝 ∫
R𝑁

𝑄 (𝑥) 𝑢
𝑝−1

𝜑
2
𝑑𝑥,

∀𝜑 ∈ 𝐶
∞

0
(R
𝑁

) .

(6)

Lemma 2. Suppose that 𝑄 is a function satisfying 0 < 𝜇 ≤

𝑄 ≤ 𝐶, where 𝜇 and 𝐶 are constants. Let 𝑢 be a nonnegative
solution of the following problem:

Δ
2
𝑢 = 𝑄 (𝑥) 𝑢

𝑝
𝑖𝑛 R
𝑁

, (7)

with finite Morse index, where 1 < 𝑝 < (𝑁 + 4)/(𝑁 − 4). Then
there exists 𝑟

0
> 0 such that 𝐽

󸀠󸀠
(𝑢)(𝜓
2

𝑟0 ,𝑅
𝑢)
2

≥ 0, ∀𝑅 > 2𝑟
0
.

The Morse index of solutions of (7) is defined as the
dimension of the negative space corresponding to the spectral
decomposition of the operator Δ

2
− 𝑝𝑄𝑢

𝑝−1.

Proof of Lemma 2. Suppose the assertion is false. Then for
𝑟
1

> 0, there exists 𝑅
1

> 2𝑟
1
such that 𝐽

󸀠󸀠
(𝑢)(𝜓
2

𝑟1,𝑅1
𝑢)
2

< 0 and
for 𝑟
2

> 2𝑅
1
, wemay find𝑅

2
> 2𝑟
2
such that 𝐽

󸀠󸀠
(𝑢)(𝜓
2

𝑟2,𝑅2
𝑢)
2

<

0. Then the supports of 𝜓
2

𝑟1,𝑅1
𝑢 and 𝜓

2

𝑟2 ,𝑅2
𝑢 are disjoint, so the

Morse index of 𝑢 is larger than or equal to 2. Iterating the
argument, we may get a contradiction since the Morse index
of 𝑢 is supposed to be finite.

Proposition 3. Let 𝑢 be a bounded nonnegative solution with
finiteMorse index of (7).Then both ‖Δ𝑢‖

𝐿
2
(R𝑁) and ‖𝑢‖

𝐿
𝑝+1
(R𝑁)

are finite.

Proof. By Lemma 2, there exists a 𝑟
0

> 0 such that

𝐽
󸀠󸀠

(𝑢) (𝜓
2

𝑟0 ,𝑅
𝑢)
2

≥ 0, ∀𝑅 > 2𝑟
0
. (8)

That is,

∫
R𝑁

[4(𝜓
𝑟0 ,𝑅

Δ𝜓
𝑟0,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

)

2

𝑢
2

+ 16𝜓
2

𝑟0 ,𝑅
(∇𝜓
𝑟0 ,𝑅

∇𝑢)
2

+ 𝜓
4

𝑟0,𝑅
|Δ𝑢|
2

+ 16 (𝜓
𝑟0 ,𝑅

Δ𝜓
𝑟0 ,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

)

× 𝑢𝜓
𝑟0,𝑅

∇𝜓
𝑟0,𝑅

∇𝑢 + 8𝜓
3

𝑟0 ,𝑅
Δ𝑢∇𝜓

𝑟0,𝑅
∇𝑢

+4 (𝜓
𝑟0 ,𝑅

Δ𝜓
𝑟0,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
2

𝑟0,𝑅
Δ𝑢] 𝑑𝑥

≥ 𝑝 ∫
R𝑁

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑟0 ,𝑅
𝑑𝑥.

(9)

Multiplying (7) by 𝑢𝜓
4

𝑟0 ,𝑅
, we find

∫
R𝑁

[𝜓
4

𝑟0 ,𝑅
+ 8𝜓
3

𝑟0 ,𝑅
Δ𝑢∇𝑢∇𝜓

𝑟0,𝑅

+4 (3𝜓
2

𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

+ 𝜓
3

𝑟0 ,𝑅
Δ𝜓
𝑟0,𝑅

) 𝑢Δ𝑢] 𝑑𝑥

= ∫
R𝑁

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑟0,𝑅
𝑑𝑥.

(10)
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From (9) and (10), it follows that

∫
R𝑁

[4(𝜓
𝑟0,𝑅

Δ𝜓
𝑟0 ,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

)

2

𝑢
2

+ 16𝜓
2

𝑟0 ,𝑅
(∇𝜓
𝑟0,𝑅

∇𝑢)
2

+ 16 (𝜓
𝑟0 ,𝑅

Δ𝜓
𝑟0,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
𝑟0,𝑅

∇𝜓
𝑟0,𝑅

∇𝑢] 𝑑𝑥

≥ (𝑝 − 1) ∫
R𝑁

(𝜓
4

𝑟0 ,𝑅
|Δ𝑢|
2

+ 8𝜓
3

𝑟0 ,𝑅
Δ𝑢∇𝑢∇𝜓

𝑟0,𝑅

+4𝑢𝜓
3

𝑟0,𝑅
Δ𝜓
𝑟0 ,𝑅

Δ𝑢) 𝑑𝑥

+ (12𝑝 − 4) ∫
R𝑁

𝜓
2

𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

𝑢Δ𝑢 𝑑𝑥

≥ (𝑝 − 1) ∫
R𝑁

[𝜓
4

𝑟0 ,𝑅
|Δ𝑢|
2

− 4 (𝜀𝜓
4

𝑟0 ,𝑅
|Δ𝑢|
2

+
1

𝜀
𝜓
2

𝑟0 ,𝑅
|∇𝑢|
2󵄨󵄨󵄨󵄨󵄨

∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

)

−2 (𝜀𝜓
4

𝑟0,𝑅
|Δ𝑢|
2

+
1

𝜀
𝜓
2

𝑟0 ,𝑅
𝑢
2󵄨󵄨󵄨󵄨󵄨

Δ𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

)] 𝑑𝑥

− (6𝑝 − 2) ∫
R𝑁

(𝜀𝜓
4

𝑟0 ,𝑅
|Δ𝑢|
2

+
1

𝜀

󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,R

󵄨󵄨󵄨󵄨󵄨

4

𝑢
2
) 𝑑𝑥,

(11)

where 𝜀 > 0 is small enough. Consequently,

∫
R𝑁

𝜓
4

𝑟0,𝑅
|Δ𝑢|
2
𝑑𝑥

≤ 𝐶 ∫
R𝑁

[(𝜓
𝑟0 ,𝑅

Δ𝜓
𝑟0,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

)

2

𝑢
2

+ 𝜓
2

𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

+ (𝜓
𝑟0 ,𝑅

Δ𝜓
𝑟0,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
𝑟0 ,𝑅

∇𝜓
𝑟0,𝑅

∇𝑢

+𝜓
2

𝑟0 ,𝑅
𝑢
2󵄨󵄨󵄨󵄨󵄨

Δ𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

4

𝑢
2
] 𝑑𝑥.

(12)

Using the value of 𝜓
𝑟0 ,𝑅

, we get

∫
𝐵2𝑅

𝜓
4

𝑟0,𝑅
|Δ𝑢|
2
𝑑𝑥

≤ 𝐶 ∫
𝐵2𝑅

[𝜓
2

𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨
Δ𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

𝑢
2

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

4

𝑢
2

+𝜓
2

𝑟0,𝑅
|∇𝑢|
2󵄨󵄨󵄨󵄨󵄨

∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

] 𝑑𝑥

= 𝐶 [∫
𝐵2𝑟0
\𝐵𝑟0

(𝜓
2

𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨
Δ𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

+ 𝐶
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

4

) 𝑢
2
𝑑𝑥

+ ∫
𝐵2𝑅\𝐵𝑅

(𝜓
2

𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨
Δ𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

4

) 𝑢
2
𝑑𝑥

+ ∫
𝐵2𝑅

𝜓
2

𝑟0 ,𝑅
|∇𝑢|
2󵄨󵄨󵄨󵄨󵄨

∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥]

≤ 𝐶 (1 +
1

𝑅4
∫
𝐵2𝑅

𝑢
2
𝑑𝑥 +

1

𝑅2
∫
𝐵2𝑅

𝜓
2

𝑟0 ,𝑅
|∇𝑢|
2
𝑑𝑥) .

(13)

Using the interpolation inequality (see [13]), we obtain

∫
𝐵2𝑅

𝜓
4

𝑟0 ,𝑅
|Δ𝑢|
2
𝑑𝑥 ≤ 𝐶 (1 +

1

𝑅4
∫
𝐵2𝑅

𝑢
2
𝑑𝑥) . (14)

From (9) and (10), it follows that

(𝑝 − 1) ∫
R𝑁

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑟0 ,𝑅
𝑑𝑥

≤ ∫
R𝑁

[4(𝜓
𝑟0 ,𝑅

Δ𝜓
𝑟0,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

)

2

𝑢
2

+ 16𝜓
2

𝑟0 ,𝑅
(∇𝜓
𝑟0 ,𝑅

∇𝑢)
2

+ 16 (𝜓
𝑟0,𝑅

Δ𝜓
𝑟0 ,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
𝑟0 ,𝑅

∇𝜓
𝑟0 ,𝑅

∇𝑢

−8𝜓
2

𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

𝑢Δ𝑢] 𝑑𝑥.

(15)

Using the value of 𝜓
𝑟0 ,𝑅

again, we have

∫
𝐵𝑅

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑟0 ,𝑅
𝑑𝑥

≤ 𝐶 ∫
𝐵2𝑅

[(𝜓
𝑟0 ,𝑅

Δ𝜓
𝑟0,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0,𝑅

󵄨󵄨󵄨󵄨󵄨

2

)

2

𝑢
2

+ 𝜓
2

𝑟0,𝑅
(∇𝜓
𝑟0,𝑅

∇𝑢)
2

+ (𝜓
𝑟0 ,𝑅

Δ𝜓
𝑟0,𝑅

+
󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
𝑟0,𝑅

∇𝜓
𝑟0,𝑅

∇𝑢

−𝜓
2

𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨
∇𝜓
𝑟0 ,𝑅

󵄨󵄨󵄨󵄨󵄨

2

𝑢Δ𝑢] 𝑑𝑥.

(16)

Estimating the right side of (16) by the argument exactly as
above and using (14), we have

∫
𝐵𝑅

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑟0 ,𝑅
𝑑𝑥 ≤ 𝐶 (1 +

1

𝑅4
∫
𝐵2𝑅

𝑢
2
𝑑𝑥) , (17)

where 𝐶 does not depend on 𝑅.
Since 𝜓

𝑟0,𝑅
= 1 over 𝐵

𝑅
\ 𝐵
2𝑟0
,

∫
𝐵𝑅

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑟0 ,𝑅
𝑑𝑥

= ∫
𝐵2𝑟0

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑟0 ,𝑅
𝑑𝑥 + ∫

𝐵𝑅\𝐵2𝑟0

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑟0 ,𝑅
𝑑𝑥

= ∫
𝐵𝑅

𝑄 (𝑥) 𝑢
𝑝+1

𝑑𝑥 − ∫
𝐵2𝑟0

𝑄 (𝑥) 𝑢
𝑝+1

(1 − 𝜓
4

𝑟0 ,𝑅
) 𝑑𝑥.

(18)
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By (17), we get

∫
𝐵𝑅

𝑄 (𝑥) 𝑢
𝑝+1

𝑑𝑥 ≤ ∫
𝐵2𝑟0

𝑄 (𝑥) 𝑢
𝑝+1

(1 − 𝜓
4

𝑟0 ,𝑅
) 𝑑𝑥

+ 𝐶 (1 +
1

𝑅4
∫
𝐵2𝑅

𝑢
2
𝑑𝑥) .

(19)

Hence

∫
𝐵𝑅

𝑢
𝑝+1

𝑑𝑥 ≤ 𝐶 (1 +
1

𝑅4
∫
𝐵2𝑅

𝑢
2
𝑑𝑥) , (20)

since 𝜇 ≤ 𝑄(𝑥) ≤ 𝐶 and 𝑢 is bounded.
We will prove ∫

R𝑁
|𝑢|
𝑝+1

𝑑𝑥 < +∞. Assume to the
contrary that ∫

R𝑁
|𝑢|
𝑝+1

𝑑𝑥 is not finite; by (20), we obtain

∫
𝐵𝑅

|𝑢|
𝑝+1

𝑑𝑥 ≤
𝐶

𝑅4
∫
𝐵2𝑅

𝑢
2
𝑑𝑥, (21)

for large 𝑅.
Using Hölder’s inequality, we get

∫
𝐵2𝑅

𝑢
2
𝑑𝑥 ≤ 𝐶(∫

𝐵2𝑅

|𝑢|
𝑝+1

𝑑𝑥)

2/(𝑝+1)

𝑅
𝑁(𝑝−1)/(𝑝+1)

, (22)

Substituting (22) for the right-hand side in (21) gives.

∫
𝐵𝑅

|𝑢|
𝑝+1

𝑑𝑥 ≤ 𝐶𝑅
−4+(𝑁(𝑝−1)/(𝑝+1))

(∫
𝐵2𝑅

|𝑢|
𝑝+1

𝑑𝑥)

2/(𝑝+1)

.

(23)

Let 𝛼 = −4 + (𝑁(𝑝 − 1)/(𝑝 + 1)), 𝛽 = 2/(𝑝 + 1), and 𝐼(𝑅) =

∫
𝐵𝑅

|𝑢|
𝑝+1

𝑑𝑥. Then iterating (23), we get

𝐼 (𝑅) ≤ 𝐶
𝛾
2
𝛼𝛿

𝑅
𝛼𝛾

𝐼(2
𝑘+1

𝑅)
𝛽
𝑘+1

, (24)

where 𝛾 = 1 + 𝛽 + ⋅ ⋅ ⋅ + 𝛽
𝑘
, 𝛿 = 𝛽 + 2𝛽

2
+ ⋅ ⋅ ⋅ + 𝑘𝛽

𝑘.
Since 𝑢 is bounded, the left side of (24) is of the order 𝑅

𝑁,
while the right side is of the order 𝑅

𝑀, where

𝑀 = 𝛼
1 − 𝛽
𝑘+1

1 − 𝛽
+ 𝑁𝛽
𝑘+1

󳨀→
𝛼

1 − 𝛽
, as 𝑘 󳨀→ +∞,

(25)

which yields a contradiction since 𝛼 < 0.
As above using (14), we obtain

∫
𝐵𝑅

|Δ𝑢|
2
𝑑𝑥 ≤ 𝐶 (1 +

1

𝑅4
∫
𝐵2𝑅

𝑢
2
𝑑𝑥) . (26)

Combining (26) and (22), we have

∫
𝐵𝑅

|Δ𝑢|
2
𝑑𝑥

≤ 𝐶 [1 + 𝑅
−4+(𝑁(𝑝−1)/(𝑝+1))

(∫
𝐵2𝑅

|𝑢|
𝑝+1

𝑑𝑥)

2/(𝑝+1)

] .

(27)

Using the already proved fact that ∫
R𝑁

|𝑢|
𝑝+1

𝑑𝑥 is finite, we
obtain ∫

R𝑁
|Δ𝑢|
2
𝑑𝑥 < +∞.

Using an approach similar to the method used in the
proof of Proposition 3, we prove the following proposition.

Proposition 4. Suppose that 𝑄 is a function satisfying 0 <

𝜇 ≤ 𝑄 ≤ 𝐶, where 𝜇 and 𝐶 are constants. Let 𝑢 be a bounded
nonnegative solution with finite Morse index of

Δ
2
𝑢 = 𝑄 (𝑥) 𝑢

𝑝
𝑖𝑛 R
𝑁

+
,

𝑢 = Δ𝑢 = 0 𝑜𝑛 𝜕R
𝑁

+
,

(28)

where 1 < 𝑝 < (𝑁+4)/(𝑁−4) andR𝑁
+

= {𝑥 = (𝑥
1
, . . . , 𝑥

𝑁
) ∈

R𝑁
+

: 𝑥
𝑁

> 0}. Then both ‖Δ𝑢‖
𝐿
2
(R𝑁
+
)
and ‖𝑢‖

𝐿
𝑝+1
(R𝑁
+
)
are finite.

Proposition 5. Let 𝑢 be as in Proposition 3. Suppose that

∫
R𝑁

|Δ𝑢|
2
𝑑𝑥 ≥ ]∫

R𝑁
𝑄 (𝑥) 𝑢

𝑝+1
𝑑𝑥, (29)

where ] > 1. Then 𝑢 ≡ 0.

Proof. By Proposition 3 and (7), we obtain

∫
R𝑁

|Δ𝑢|
2
𝑑𝑥 = ∫

R𝑁
𝑄 (𝑥) 𝑢

𝑝+1
𝑑𝑥. (30)

By (29), it yields

∫
R𝑁

𝑄 (𝑥) 𝑢
𝑝+1

𝑑𝑥 ≥ ]∫
R𝑁

𝑄 (𝑥) 𝑢
𝑝+1

𝑑𝑥. (31)

Then 𝑢 ≡ 0.

Similar arguments are used to prove the following propo-
sition.

Proposition 6. Let 𝑢 be as in Proposition 4. Suppose that

∫
RN
+

|Δ𝑢|
2
𝑑𝑥 ≥ ]∫

R𝑁
+

𝑄 (𝑥) 𝑢
𝑝+1

𝑑𝑥, (32)

where ] > 1. Then 𝑢 ≡ 0.

For future reference, we have the following result at the
end of this section.

Lemma 7. Let 𝑢 be a nonnegative solution of problem (7)with
finite Morse index. Then there exists 𝑟

0
> 0 such that for 𝑅 >

2𝑟
0
one has

𝑅 ∫
𝜕𝐵𝑅

(|∇𝑢|
2

+ |Δ𝑢|
2

+ |∇ (Δ𝑢)|
2

+ 𝑄 (𝑥) 𝑢
𝑝+1

) 𝑑𝑆

≤ 𝐶𝑅
(𝑁(𝑝−1)/(𝑝+1))−4

(∫
R𝑁

𝑢
𝑝+1

)

2/(𝑝+1)

.

(33)

Proof. By Proposition 3, ∫
R𝑁

𝑢
𝑝+1

𝑑𝑥 < ∞. We proceed as in
[10, 12]. Denote by 𝑖(𝑄, 𝑢) the Morse index of 𝑢 with respect



Abstract and Applied Analysis 5

to the operator Δ
2

− 𝑝𝑄𝑢
𝑝−1. Suppose that 0 ≤ 𝑖(𝑄, 𝑢) < 𝑚.

Let 𝜓
𝑖
, 𝑖 = 1, 2, . . ., be smooth functions such that

𝜓
1

= 1 on 𝐵
1
,

supp𝜓
1

⊂ 𝐵
3/2

,

𝜓
1

= 1 on 𝐷
𝑖
:= {𝑥 ∈ R

𝑁
: 2 (𝑖 − 1) ≤ |𝑥| ≤ 2𝑖 − 1} ,

for 𝑖 ≥ 2,

supp𝜓
𝑖
⊂ 𝐴
𝑖
:= {𝑥 ∈ R

𝑁
: 2𝑖 −

5

2
< |𝑥| < 2𝑖 −

1

2
} ,

for 𝑖 ≥ 2,

󵄨󵄨󵄨󵄨∇𝜓
𝑖

󵄨󵄨󵄨󵄨 ≤ 𝐶,
󵄨󵄨󵄨󵄨Δ𝜓
𝑖

󵄨󵄨󵄨󵄨 ≤ 𝐶, for 𝑖 ≥ 1.

(34)

Denote 𝜓
𝑖,𝑅

= 𝜓
𝑖
(𝑥/𝑅) for 𝑅 > 0. For each 𝑅 > 0, there exists

𝑖 = 𝑖(𝑅) such that

∫
R𝑁

[4(𝜓
𝑖,𝑅

Δ𝜓
𝑖,𝑅

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

)
2

𝑢
2

+ 16𝜓
2

𝑖,𝑅
(∇𝜓
𝑖,𝑅

∇𝑢)
2

+ 𝜓
4

𝑖,𝑅
|Δ𝑢|
2

+ 16 (𝜓
𝑖,𝑅

Δ𝜓
𝑖,𝑅

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
𝑖,𝑅

∇𝜓
𝑖,𝑅

∇𝑢

+ 8𝜓
3

𝑖,𝑅
Δ𝑢∇𝜓

𝑖,𝑅
∇𝑢

+4 (𝜓
𝑖,𝑅

Δ𝜓
𝑖,𝑅

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
2

𝑖,𝑅
Δ𝑢] 𝑑𝑥

≥ 𝑝 ∫
R𝑁

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑖,𝑅
𝑑𝑥.

(35)

So we deduce as (12) and (15) that

∫
R𝑁

𝜓
4

𝑖,𝑅
|Δ𝑢|
2
𝑑𝑥

≤ 𝐶 ∫
R𝑁

[(𝜓
𝑖,𝑅

Δ𝜓
𝑖,𝑅

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

)
2

𝑢
2

+ 𝜓
2

𝑖,𝑅
(∇𝜓
𝑖,𝑅

∇𝑢)
2

+ (𝜓
𝑖,𝑅

Δ𝜓
𝑖,𝑅

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

)

× 𝑢𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 ⋅ |∇𝑢| + 𝜓
2

𝑖,𝑅
|∇𝑢|
2󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

+𝜓
2

𝑖,𝑅
𝑢
2󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

𝑢
2
] 𝑑𝑥,

∫
R𝑁

𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑖,𝑅
𝑑𝑥

≤ 𝐶 ∫
R𝑁

[(𝜓
𝑖,𝑅

Δ𝜓
𝑖,𝑅

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

)
2

𝑢
2

+ 𝜓
2

𝑖,𝑅
(∇𝜓
𝑖,𝑅

∇𝑢)
2

+ (𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 ⋅ |∇𝑢|

+8𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

𝑢 |Δ𝑢| ] 𝑑𝑥.

(36)

By (36), we have

∫
R𝑁

(𝜓
4

𝑖,𝑅
|Δ𝑢|
2

+ 𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑖,𝑅
) 𝑑𝑥

≤ 𝐶 ∫
R𝑁

[(𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

)
2

𝑢
2

+ 𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

+ (𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
𝑖,𝑟

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 ⋅ |∇𝑢|

+ 𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

𝑢 |Δ𝑢| + 𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

𝑢
2

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

𝑢
2
] 𝑑𝑥

≤ 𝐶 ∫
R𝑁

[(𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

)
2

𝑢
2

+ 𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

+ (𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

⋅ |∇𝑢| + 𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

𝑢
2

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

𝑢
2

+
1

2
𝜀𝜓
4

𝑖,𝑅
|Δ𝑢|
2

+
1

2𝜀

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

𝑢
2
] 𝑑𝑥,

(37)

where 𝜀 > 0 is small enough.
Thus

∫
R𝑁

(𝜓
4

𝑖,𝑅
|Δ𝑢|
2

+ 𝑄 (𝑥) 𝑢
𝑝+1

𝜓
4

𝑖,𝑅
) 𝑑𝑥

≤ 𝐶 ∫
R𝑁

[(𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

)
2

𝑢
2

+ 𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

+ (𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

) 𝑢𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

⋅ |∇𝑢| + 𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

𝑢
2

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

𝑢
2
] 𝑑𝑥

≤ 𝐶 ∫
R𝑁

[(𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

)
2

𝑢
2

+ 𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

|∇𝑢|
2

+𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

𝑢
2

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

𝑢
2
] 𝑑𝑥.

(38)

Integrating by parts, we obtain

∫
R𝑁

𝑢𝜓
4

𝑖,𝑅
Δ𝑢 𝑑𝑥 = − ∫

R𝑁
(|∇𝑢|
2
𝜓
4

𝑖,𝑅
+ 4𝜓
3

𝑖,𝑅
𝑢∇𝑢∇𝜓

𝑖,𝑅
) 𝑑𝑥.

(39)

Consequently,

∫
R𝑁

|∇𝑢|
2
𝜓
4

𝑖,𝑅
𝑑𝑥

≤ 𝐶 (∫
R𝑁

|Δ𝑢| 𝑢𝜓
4

𝑖,𝑅
𝑑𝑥 + ∫

R𝑁
𝜓
3

𝑖,𝑅
𝑢 |∇𝑢| ⋅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 𝑑𝑥)

≤ 𝐶 (∫
R𝑁

(𝜓
4

𝑖,𝑅
|Δ𝑢|
2

+ 𝑢
2
𝜓
4

𝑖,𝑅
) 𝑑𝑥 + 𝜀 ∫

R𝑁
|∇𝑢|
2
𝜓
4

𝑖,𝑅
𝑑𝑥

+𝜀
−1

∫
R𝑁

𝜓
2

𝑖,𝑅
𝑢
2󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

𝑑𝑥) .

(40)
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Hence

∫
R𝑁

|∇𝑢|
2
𝜓
4

𝑖,𝑅

≤ 𝐶 (∫
R𝑁

𝜓
4

𝑖,𝑅
|Δ𝑢|
2
𝑑𝑥 + ∫

R𝑁
𝑢
2
𝜓
4

𝑖,𝑅
𝑑𝑥

+ ∫
R𝑁

𝑢
2󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

𝑑𝑥)

≤ 𝐶 (∫
R𝑁

(𝜓
4

𝑖,𝑅
|Δ𝑢|
2

+ 𝑢
2󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

) 𝑑𝑥

+ ∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
Δ (𝑢𝜓

2

𝑖,𝑅
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

≤ 𝐶 (∫
R𝑁

(𝜓
4

𝑖,𝑅
|Δ𝑢|
2

+ 𝑢
2󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

) 𝑑𝑥

+ ∫
R𝑁

(𝜓
2

𝑖,𝑅
Δ𝑢 + 2𝑢𝜓

𝑖,𝑅
Δ𝜓
𝑖,𝑅

+ 2𝑢𝜓
𝑖,𝑅

Δ𝜓
𝑖,𝑅

+2𝑢
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

+ 4𝜓
𝑖,𝑅

∇𝑢∇𝜓
𝑖,𝑅

)
2

𝑑𝑥)

≤ 𝐶 ∫
R𝑁

(𝜓
4

𝑖,𝑅
|Δ𝑢|
2

+ 𝑢
2󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

+ 𝑢
2
𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

+𝜓
2

𝑖,𝑅
|∇𝑢|
2󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

) 𝑑𝑥.

(41)

Multiplying (7) by 𝜓
4

𝑖,𝑅
Δ𝑢 and integrating by parts, we obtain

∫
R𝑁

𝜓
4

𝑖,𝑅
|∇ (Δ𝑢)|

2
𝑑𝑥 = −4 ∫

R𝑁
𝜓
3

𝑖,𝑅
Δ𝑢∇𝜓

𝑖,𝑅
⋅ ∇ (Δ𝑢) 𝑑𝑥

− ∫
R𝑁

𝑄𝑢
𝑝
𝜓
4

𝑖,𝑅
Δ𝑢𝑑𝑥.

(42)

Consequently,

∫
R𝑁

𝜓
4

𝑖,𝑅
|∇ (Δ𝑢)|

2
𝑑𝑥

≤ 𝐶 ∫
R𝑁

[𝜓
3

𝑖,𝑅
|Δ𝑢| ⋅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨 ⋅ |∇ (Δ𝑢)| + 𝑄𝑢
𝑝
𝜓
4

𝑖,𝑅
|Δ𝑢|] 𝑑𝑥

≤ 𝐶 ∫
R𝑁

[𝜀𝜓
4

𝑖,𝑅
|∇ (Δ𝑢)|

2
+ 𝜀
−1

𝜓
2

i,𝑅|Δ𝑢|
2󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

+ 𝑄
2
𝑢
2𝑝

𝜓
4

𝑖,𝑅
+ 𝜓
4

𝑖,𝑅
|Δ𝑢|
2
] 𝑑𝑥.

(43)
Hence

∫
R𝑁

𝜓
4

𝑖,𝑅
|∇ (Δ𝑢)|

2
𝑑𝑥

≤ 𝐶 [
1

𝑅2
∫
R𝑁

𝜓
2

𝑖,𝑅
|Δ𝑢|
2
𝑑𝑥

+ ∫
R𝑁

(𝑄𝑢
𝑝+1

𝜓
4

𝑖,𝑅
+ 𝜓
4

𝑖,𝑅
|Δ𝑢|
2
) 𝑑𝑥] .

(44)

By (38)–(44), we have

∫
R𝑁

(𝜓
4

𝑖,𝑅
+ 𝜓
4

𝑖,𝑅
+ 𝜓
4

𝑖,𝑅
|∇ (Δ𝑢)|

2
+ 𝑄 (𝑥) 𝑢

𝑝+1
𝜓
4

𝑖,𝑅
) 𝑑𝑥

≤ [
1

𝑅2
∫
R𝑁

𝜓
2

𝑖,𝑅
|Δ𝑢|
2
𝑑𝑥

+ ∫
R𝑁

(𝜓
4

𝑖,𝑅

󵄨󵄨󵄨󵄨Δ𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

4

) 𝑢
2
𝑑𝑥

+ ∫
R𝑁

𝜓
2

𝑖,𝑅

󵄨󵄨󵄨󵄨∇𝜓
𝑖,𝑅

󵄨󵄨󵄨󵄨

2

|∇𝑢|
2
𝑑𝑥] .

(45)

By the definition of 𝜓
𝑖,𝑅
, it follows that

∫
𝑅𝐷𝑖

(|∇𝑢|
2

+ |Δ𝑢|
2

+ |∇ (Δ𝑢)|
2

+ 𝑄 (𝑥) 𝑢
𝑝+1

) 𝑑𝑥

≤
𝐶

𝑅4
∫
𝑅𝐴𝑖\𝑅𝐷𝑖

𝑢
2
𝑑𝑥.

(46)

This implies by Hölder’s inequality that

∫
𝑅𝐷𝑖

(|∇𝑢|
2

+ |Δ𝑢|
2

+ |∇ (Δ𝑢)|
2

+ 𝑄 (𝑥) 𝑢
𝑝+1

) 𝑑𝑥

≤
1

𝑅4
(∫
𝑅𝐴𝑖\𝑅𝐷𝑖

𝑢
𝑝+1

𝑑𝑥)

2/(𝑝+1)

× [mes (𝑅𝐴
𝑖
\ 𝑅𝐷
𝑖
)]
(𝑝−1)/(𝑝+1)

≤ 𝐶𝑅
(𝑁(𝑝−1)/(𝑝+1))−4

(∫
R𝑁

𝑢
𝑝+1

𝑑𝑥)

2/(𝑝+1)

.

(47)

Hence, there exists 𝑅 ∈ (𝑅, (2𝑚 − 1)𝑅) such that

𝑅 ∫
𝜕𝐵
𝑅

(|∇𝑢|
2

+ |Δ𝑢|
2

+ |∇ (Δ𝑢)|
2

+ 𝑄 (𝑥) 𝑢
𝑝+1

) 𝑑𝑆

≤ 𝐶𝑅
(𝑁(𝑝−1)/(𝑝+1))−4

(∫
R𝑁

𝑢
𝑝+1

𝑑𝑥)

2/(𝑝+1)

.

(48)

The assertion follows.

3. Proof of Theorem 1

Let us first note that hypotheses (H1)–(H4) imply that there
exist a sequence {𝑡

𝑛
}, 𝑡
𝑛

→ +∞ as 𝑛 → ∞ and a continuous
function 𝑐 such that

𝑓
󸀠

𝑡
(𝑥, 𝑡
𝑛
) > 0, lim

𝑛→∞

𝑓
󸀠

𝑡
(𝑥, 𝑡
𝑛
)

𝑡
𝑝−1

𝑛

= 𝑐 (𝑥)

uniformly in 𝑥 ∈ Ω.

(49)

Using L’Hospital’s rule, we obtain

lim
𝑛→∞

𝑓 (𝑥, 𝑡
𝑛
)

𝑡
𝑝

𝑛

= lim
𝑛→∞

𝑓
󸀠

𝑡
(𝑥, 𝑡
𝑛
)

𝑝𝑡
𝑝−1

𝑛

=
1

𝑝
𝑐 (𝑥) . (50)
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Without loss of generality, we may assume that 𝑓(𝑥, 𝑡) = 0, if
𝑡 ≤ 0. Define a truncation of 𝑓 by

𝑓
𝑛

(𝑥, 𝑡) =

{{{{{{{{{

{{{{{{{{{

{

𝑓 (𝑥, 𝑡
𝑛
) −

1

𝑝
𝑡
𝑛
𝑓
󸀠

𝑡
(𝑥, 𝑡
𝑛
)

+
1

𝑝

𝑓
󸀠

𝑡
(𝑥, 𝑡
𝑛
)

𝑡
𝑝−1

𝑛

𝑡
𝑝 if 𝑡 > 𝑡

𝑛
,

𝑓 (𝑥, 𝑡) if 0 ≤ 𝑡 ≤ 𝑡
𝑛
,

0 if 𝑡 < 0.

(51)

Note that 𝑓
𝑛

∈ 𝐶
1 in the variable 𝑡.

Let us consider the truncated problem

Δ
2
𝑢 = 𝑓
𝑛

(𝑥, 𝑢) in Ω,

𝑢 = Δ𝑢 = 0 on 𝜕Ω.

(52)

Lemma 8. Problem (52) possesses at least one positive solution
with finite Morse index.

Proof. Consider the functional associated with problem (52)

𝐽
𝑛

(𝑢) =
1

2
∫
Ω

|Δ𝑢|
2
𝑑𝑥 − ∫

Ω

𝐹
𝑛

(𝑥, 𝑢) 𝑑𝑥, (53)

where 𝐹
𝑛
(𝑥, 𝑡) = ∫

𝑡

0
𝑓
𝑛
(𝑥, 𝑠)𝑑𝑠. We will use the Mountain

Pass Theorem by Ambrosetti and Rabinowitz [8] to obtain
existence result for problem (52). One can easily check that
there exist 𝜃 > 2 and 𝑀 > 0 such that for |𝑡| ≥ M,

0 < 𝜃𝐹
𝑛

(𝑥, 𝑡) ≤ 𝑡𝑓
𝑛

(𝑥, 𝑡) . (54)

We note that condition (54) is important for ensuring that 𝐽
𝑛

has a Mountain Pass geometry and satisfies the Palais-Smale
condition. So, using theMountain PassTheorem, we obtain a
nontrivial weak solution𝑢

𝑛
of (52). By LemmaB3 in [14],𝑢

𝑛
is

a classical solution of (52). By the maximum principle for Δ
2

with Navier boundary conditions we get that 𝑢
𝑛
is positive.

The geometry of the Mountain Pass, described in [15, 16],
implies that the Morse indices of 𝑢

𝑛
are less than or equal to

1. Thus Lemma 8 is proven.

Let𝑔 be a function satisfying (H1)–(H3), and consider the
problem

Δ
2
𝑢 = 𝑔 (𝑥

0
+ 𝑎𝑥, 𝑏𝑢) in Ω,

𝑢 = Δ𝑢 = 0, on 𝜕Ω,

(55)

where 𝑎, 𝑏 are positive constants and 𝑥
0

∈ R𝑁.

Lemma 9. Let 𝑢 be a solution of (55). Then for any ball
𝐵
𝑅
(0) ⊂ Ω one has

𝑏
−1

𝑁 ∫
𝐵𝑅

𝐺 (𝑥
0

+ 𝑎𝑥, 𝑏𝑢) 𝑑𝑥

+ 𝑅 ∫
𝜕𝐵𝑅

[2
𝜕𝑢

𝜕n
𝜕 (Δ𝑢)

𝜕n
− ⟨∇ (Δ𝑢) , ∇𝑢⟩] 𝑑𝑆

+ (𝑁 − 2) ∫
𝜕𝐵𝑅

Δ𝑢
𝜕𝑢

𝜕n
𝑑𝑆 +

1

2
𝑅 ∫
𝜕𝐵𝑅

|Δ𝑢|
2
𝑑𝑆

+ 𝑎𝑏
−1

∫
𝐵𝑅

⟨𝑥, ∇
𝑥
𝐺 (𝑥
0

+ 𝑎𝑥, 𝑏𝑢)⟩ 𝑑𝑥

=
𝑁 − 4

2
∫
𝐵𝑅

|Δ𝑢|
2
𝑑𝑥 + 𝑏

−1
𝑅 ∫
𝜕𝐵𝑅

𝐺 (𝑥
0

+ 𝑎𝑥, 𝑏𝑢) 𝑑𝑆,

(56)

where 𝐺(𝑥, 𝑢) = ∫
𝑢

0
𝑔(𝑥, 𝑡)𝑑𝑡 and n denotes the unit outward

normal to 𝜕𝐵
𝑅
.

Proof. By standard procedures, one can prove the Pohozaev
type identity. We give the proof for completeness and for the
reader’s convenience.

By Proposition 2.2 in [17], we have

∫
𝐵𝑅

Δ
2
𝑢 ⟨𝑥, ∇𝑢⟩ 𝑑𝑥

= −
1

2
∫
𝜕𝐵𝑅

|Δ𝑢|
2

⟨𝑥,n⟩ 𝑑𝑆

+ ∫
𝜕𝐵𝑅

{
𝜕 (Δ𝑢)

𝜕n ⟨𝑥, ∇𝑢⟩ +
𝜕𝑢

𝜕n ⟨𝑥, ∇ (Δ𝑢)⟩

− ⟨∇ (Δ𝑢) , ∇𝑢⟩ ⟨𝑥,n⟩ } 𝑑𝑆 +
𝑁

2
∫
𝐵𝑅

|Δ𝑢|
2
𝑑𝑥

+ (𝑁 − 2) ∫
𝐵𝑅

⟨∇ (Δ𝑢) , ∇𝑢⟩ 𝑑𝑥.

(57)

It is clear that

𝑔 (𝑥
0

+ 𝑎𝑥, 𝑏𝑢) ⟨𝑥, ∇𝑢⟩

= 𝑏
−1 div (𝑥𝐺 (𝑥

0
+ 𝑎𝑥, 𝑏𝑢)) − 𝑏

−1
𝑁𝐺 (𝑥

0
+ 𝑎𝑥, 𝑏𝑢)

− 𝑎𝑏
−1

⟨𝑥, ∇
𝑥
𝐺 (𝑥
0

+ 𝑎𝑥, 𝑏𝑢)⟩ .

(58)

By (55), we have

∫
𝐵𝑅

Δ
2
𝑢⟨𝑥, ∇𝑢⟩𝑑𝑥 = ∫

𝐵𝑅

𝑔 (𝑥
0

+ 𝑎𝑥, 𝑏𝑢) ⟨𝑥, ∇𝑢⟩𝑑𝑥. (59)

Substituting (57) and (58) into (59) and using the divergence
theorem, we find

−
1

2
∫
𝜕𝐵𝑅

|Δ𝑢|
2

⟨𝑥,n⟩ 𝑑𝑆

+ ∫
𝜕𝐵𝑅

{
𝜕 (Δ𝑢)

𝜕n ⟨𝑥, ∇𝑢⟩ +
𝜕𝑢

𝜕n ⟨𝑥, ∇ (Δ𝑢)⟩

− ⟨∇ (Δ𝑢) , ∇𝑢⟩ ⟨𝑥,n⟩ } 𝑑𝑆 +
𝑁

2
∫
𝐵𝑅

|Δ𝑢|
2
𝑑𝑥

+ (𝑁 − 2) ∫
𝐵𝑅

⟨∇ (Δ𝑢) , ∇𝑢⟩ 𝑑𝑥

= 𝑏
−1

∫
𝜕𝐵𝑅

𝐺 (𝑥
0

+ 𝑎𝑥, 𝑏𝑢) ⟨𝑥,n⟩ 𝑑𝑆
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− 𝑏
−1

𝑁 ∫
𝐵𝑅

𝐺 (𝑥
0

+ 𝑎𝑥, 𝑏𝑢) 𝑑𝑥

− 𝑎𝑏
−1

∫
𝐵𝑅

⟨𝑥, ∇
𝑥
𝐺 (𝑥
0

+ 𝑎𝑥, 𝑏𝑢)⟩ 𝑑𝑥.

(60)

Using the Green’s formula, we obtain

∫
𝐵𝑅

⟨∇ (Δ𝑢) , ∇𝑢⟩ 𝑑𝑥 = − ∫
𝐵𝑅

Δ𝑢 ⋅ Δ𝑢 𝑑𝑥 + ∫
𝜕𝐵𝑅

Δ𝑢
𝜕𝑢

𝜕n
𝑑𝑆.

(61)

Substituting (61) into (60) and using n = 𝑥/𝑅 on 𝜕𝐵
𝑅
, we

obtain (56).

If it happens that ‖𝑢
𝑛
‖ ≤ 𝑡

𝑛
, for some 𝑛, then 𝑢

𝑛
is

also a solution of (1), and the proof of Theorem 1 will be
completed.Thus it suffices to prove the following proposition.
We prove the proposition by the blow-up technique of Gidas
and Spruck [18].

Proposition 10. Suppose that 𝑢
𝑛
is a solution of (52) with

finiteMorse index.Then there exists a 𝑡
𝑛

> 0 such that ‖𝑢
𝑛
‖
∞

≤

𝑡
𝑛
.

Proof. Assume by contradiction that there does not exist such
a 𝑡
𝑛
. So we should have ‖𝑢

𝑛
‖ > 𝑡
𝑛
, for all 𝑛. Then ‖𝑢

𝑛
‖ → ∞

as 𝑛 → ∞.
Let 𝑀

𝑛
= max

Ω
𝑢
𝑛
(𝑥) = 𝑢

𝑛
(𝑥
𝑛
), 𝑥
𝑛

∈ Ω. Define

V
𝑛

(𝑦) = 𝑀
−1

𝑛
𝑢
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦) ,

𝑦 ∈ Ω
𝑛

:= 𝑀
(𝑝−1)/4

𝑛
(Ω − 𝑥

𝑛
) ,

(62)

which satisfies

Δ
2V
𝑛

= 𝑀
−𝑝

𝑛
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
) in Ω

𝑛
,

V
𝑛

= ΔV
𝑛

= 0 on 𝜕Ω
𝑛
,

(63)

and V
𝑛

≤ 1 in Ω
𝑛
, V
𝑛
(0) = 1.

Due to compactness of Ω we may also assume that
𝑥
𝑛

→ 𝑥
0

∈ Ω. So there are two cases to be considered,𝑥
0

∈ Ω

and 𝑥
0

∈ 𝜕Ω.

Case 1. 𝑥
0

∈ Ω.
Given 𝑅 > 0 there is an 𝑛

0
∈ N such that 𝐵

2𝑅
(0) ⊂ Ω

𝑛
for

all 𝑛 ≥ 𝑛
0
. By the 𝐿

𝑝-estimates due to Agmon et al. [19], we
have that for all 𝛾 > 1

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩𝑊4,𝛾(𝐵𝑅)

≤ 𝐶 {
󵄩󵄩󵄩󵄩󵄩
𝑀
−𝑝

𝑛
𝑓
𝑛
(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)
󵄩󵄩󵄩󵄩󵄩𝐿𝛾(𝐵2𝑅)

+
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩𝐿𝛾(𝐵2𝑅)
} .

(64)

By assumptions (H1)–(H3) and the definition of 𝑓
𝑛
, it follows

that
󵄨󵄨󵄨󵄨𝑓𝑛 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶 (1 + |𝑡|
𝑝
) , (65)

and then for large 𝑛,
󵄨󵄨󵄨󵄨󵄨
𝑀
−𝑝

𝑛
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
−𝑝

𝑛
𝐶 (1 +

󵄨󵄨󵄨󵄨𝑀𝑛V𝑛
󵄨󵄨󵄨󵄨

𝑝

)

≤ 𝐶 (𝑀
−𝑝

𝑛
+

󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝑝

) ≤ 2𝐶.

(66)

So we obtain that
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩𝑊4,𝛾(𝐵𝑅)
≤ 𝐶 uniformly in 𝑛. (67)

Choosing 𝛾 > 𝑛, it follows from standard embedding
theorems that {V

𝑛
} is uniformly bounded in𝐶

3,𝛼
(𝐵
𝑅
), 0 < 𝛼 <

1. By the Schauder estimate of Agmon et al. [19] one has
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩4,𝛼,𝐵(1/2)𝑅
≤ 𝐶 {

󵄩󵄩󵄩󵄩󵄩
𝑀
−𝑝

𝑛
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)
󵄩󵄩󵄩󵄩󵄩𝛼,𝐵𝑅

+
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩0,𝐵𝑅
} .

(68)

Next we claim that
󵄩󵄩󵄩󵄩󵄩
𝑀
−𝑝

𝑛
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)
󵄩󵄩󵄩󵄩󵄩𝛼,𝐵𝑅

≤ 𝐶. (69)

In order to do that we write
𝑓
𝑛

(𝑥
𝑛

+ 𝑚
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛

(𝑦))

− 𝑓
𝑛

(𝑥
𝑛

+ 𝑚
−((𝑝−1)/4)

𝑛
𝑧, 𝑀
𝑛
V
𝑛

(𝑧))

= [𝑓
𝑛

(𝑥
𝑛

+ 𝑚
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛

(𝑦))

−𝑓
𝑛

(𝑥
𝑛

+ 𝑚
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛

(𝑧))]

+ [𝑓
𝑛

(𝑥
𝑛

+ 𝑚
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛

(𝑧))

−𝑓
𝑛

(𝑥
𝑛

+ 𝑚
−((𝑝−1)/4)

𝑛
𝑧, 𝑀
𝑛
V
𝑛

(𝑧))]

:= 𝐼
1

+ 𝐼
2
.

(70)

Then we have
󵄨󵄨󵄨󵄨𝐼1

󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑓
𝑛

𝜕𝑡
(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)

×𝑀
𝑛

(V
𝑛

(𝑦) − V
𝑛

(𝑧))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 (1 +
󵄨󵄨󵄨󵄨𝑀𝑛𝑤𝑛

󵄨󵄨󵄨󵄨

𝑝−1

) 𝑀
𝑛

󵄨󵄨󵄨󵄨V𝑛 (𝑦) − V
𝑛

(𝑧)
󵄨󵄨󵄨󵄨

≤ 𝐶 (1 + 𝑀
𝑝

𝑛
)

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨

𝛼

.

(71)

According to the definition of 𝑓
𝑛
, we divide the estimate of 𝐼

1

into three cases.
(i) If 𝑀

𝑛
V
𝑛
(𝑧) ≤ 𝑇, then since 𝑓

𝑛
is 𝐶
1 we get

󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨 ≤ 𝐶𝑀

−((𝑝−1)/4)

𝑛

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 . (72)

(ii) If 𝑇 ≤ 𝑀
𝑛
V
𝑛
(𝑧) ≤ 𝑡

𝑛
, we use condition (H3) to get

󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
∇
𝑥
𝑓 (𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑤
𝑛
, 𝑀
𝑛
V
𝑛

(𝑧))
󵄨󵄨󵄨󵄨󵄨

⋅ 𝑀
−((𝑝−1)/4)

𝑛

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨

≤ 𝐶𝑀
−((𝑝−1)/4)

𝑛

󵄨󵄨󵄨󵄨𝑀𝑛V𝑛 (𝑧)
󵄨󵄨󵄨󵄨

𝑝

⋅
󵄨󵄨󵄨󵄨𝑦 − 𝑧

󵄨󵄨󵄨󵄨 .

(73)
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(iii) If 𝑡
𝑛

≤ 𝑀
𝑛
V
𝑛
(𝑧), by the definition of 𝑓

𝑛
, we have

󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑡
𝑛
)

−𝑓 (𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑧, 𝑡
𝑛
)
󵄨󵄨󵄨󵄨󵄨

+
1

𝑝
𝑡
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝑡
(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑦, 𝑡
𝑛
)

−𝑓
󸀠

𝑡
(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑧, 𝑡
𝑛
)
󵄨󵄨󵄨󵄨󵄨

+
1

𝑝
(𝑀
𝑛
V
𝑛

(𝑧))
𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓
󸀠

𝑡
(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑡
𝑛
)

𝑡
𝑝−1

𝑛

−
1

𝑝

𝑓
󸀠

𝑡
(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑧, 𝑡
𝑛
)

𝑡
𝑝−1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
∇
𝑥
𝑓 (𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑤
𝑛
, 𝑡
𝑛
)
󵄨󵄨󵄨󵄨󵄨
⋅ 𝑀
−((𝑝−1)/4)

𝑛

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨

+
1

𝑝
𝑡
𝑛

󵄨󵄨󵄨󵄨󵄨
∇
𝑥
𝑓
󸀠

𝑡
(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑤
𝑛
, 𝑡
𝑛
)
󵄨󵄨󵄨󵄨󵄨

⋅ 𝑀
−((𝑝−1)/4)

𝑛

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨

+
1

𝑝
⋅

1

𝑡
𝑝−1

𝑛

𝑀
𝑝

𝑛

󵄨󵄨󵄨󵄨󵄨
∇
𝑥
𝑓
󸀠

𝑡
(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑤
𝑛
, 𝑡
𝑛
)
󵄨󵄨󵄨󵄨󵄨

⋅ 𝑀
−((𝑝−1)/4)

𝑛

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨

≤ 𝐶𝑀
(3𝑝+1)/4

𝑛

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 .

(74)

By (71)–(74), we obtain
󵄨󵄨󵄨󵄨𝐼1 + 𝐼

2

󵄨󵄨󵄨󵄨 ≤ 𝑀
𝑝

𝑛

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 , (75)

which proves (69), and therefore
󵄩󵄩󵄩󵄩V𝑛

󵄩󵄩󵄩󵄩4,𝛼,𝐵(1/2)𝑅
≤ 𝐶 uniformly in 𝑛. (76)

Using Arzela-Ascoli Theorem and (69) and (76), we obtain a
subsequence of V

𝑛
still denoted by V

𝑛
, such that

V
𝑛

󳨀→ V in 𝐶
4,𝛼
󸀠

(𝐵
(1/2)𝑅

) , (77)

𝑀
−𝑝

𝑛
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛

(𝑦)) 󳨀→ 𝐴 (𝑦)

in 𝐶
0,𝛼
󸀠

(𝐵
(1/2)𝑅

) ,

(78)

where 0 < 𝛼
󸀠

< 𝛼 < 1, as 𝑛 → ∞.
Assume that 𝛽 = lim

𝑛→∞
𝑡
𝑛
/𝑀
𝑛
. By (65), we have

𝑀
−𝑝

𝑛
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛

(𝑦))

≤ 𝐶𝑀
−𝑝

𝑛
(𝑀
𝑛
V
𝑛
)
𝑝

= 𝐶V𝑝
𝑛
.

(79)

By (77), we have

V
𝑛

(𝑦) < 𝛽, 𝑦 ∈ {𝑦 : V (𝑦) < 𝛽} , (80)

for large 𝑛. Consequently,

V
𝑛

≤
𝑡
𝑛

𝑀
𝑛

. (81)

That is,

𝑀
𝑛
V
𝑛

≤ 𝑡
𝑛
. (82)

Then, by the definition of𝑓
𝑛
and the assumption (H4), we get

𝜇V𝑝
𝑛

≤ 𝑀
−𝑝

𝑛
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛

(𝑦)) , (83)

for large 𝑛. Combining (79) and (83) and letting 𝑛 → ∞, we
obtain

𝜇V𝑝 (𝑦) ≤ 𝐴 (𝑦) ≤ 𝐶V𝑝 (𝑦) , 𝑦 ∈ {𝑦 : V (𝑦) < 𝛽} . (84)

Define

𝑄 (𝑦) =

{{{{{{{{

{{{{{{{{

{

lim inf
𝑧→𝑦

𝑧∈𝜔

𝐴 (𝑧)

V𝑝 (𝑧)
if 𝑦 ∈ 𝜔 := {𝑦 : V (𝑦) = 0} ,

𝐴 (𝑦) V−𝑝 (𝑦) if 𝑦 ∈ {𝑦 : 0 < V (𝑦) < 𝛽} ,

1

𝑝
𝑐 (𝑥
0
) if 𝑦 ∈ {𝑦 : V (𝑦) = 𝛽} .

(85)

Then there exist positive constants 𝜎 and 𝛾 such that 𝜎 ≤

𝑄(𝑦) ≤ 𝛾, ∀ ∈ 𝐵
(1/2)𝑅

. Passing to the limit in (63) and using
(77) and (78), we conclude that V satisfies

Δ
2V = 𝑄 (𝑦) V𝑝 in 𝐵

(1/2)𝑅
. (86)

By a diagonal process, it follows that

Δ
2V = 𝑄 (𝑦) V𝑝 in R

𝑁
. (87)

Next we claim that the Morse index of V is finite. If
𝑦 ∈ 𝐵

(1/2)𝑅
\ Ω, by the L’Hospital’s rule we have

𝑄 (𝑦) V𝑝 (𝑦)

= lim
𝑛→∞

𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)

𝑀
𝑝

𝑛

= lim
𝑛→∞

1

𝑝𝑀
𝑝−1

𝑛

[V
𝑛

𝜕

𝜕𝑡
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)

−
𝑝 − 1

4
∇
𝑥
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)

×𝑀
−((𝑝+3)/4)

𝑛
𝑦] .

(88)

By (H3) for 𝑦 ∈ 𝐵
(1/2)𝑅

,
󵄨󵄨󵄨󵄨󵄨
𝑀
−𝑝+1

𝑛
∇
𝑥
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
) 𝑀
−((𝑝+3)/4)

𝑛
𝑦

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑀
−((𝑝−1)/4)

𝑛
.

(89)
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Then, by (88), we get

𝑀
−𝑝+1

𝑛

𝜕

𝜕𝑡
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
) 󳨀→ 𝑝𝑄 (𝑦) V𝑝−1 (𝑦) .

(90)

If 𝑦 ∈ 𝜔∩𝐵
(1/2)𝑅

, then V
𝑛
(𝑦) → 0 as 𝑛 → ∞. By assumption

(H3), we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀
−𝑝+1

𝑛

𝜕

𝜕𝑡
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
) 𝑦, 𝑀

𝑛
V
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
−𝑝+1

𝑛
𝐶(𝑀
𝑛
V
𝑛
)
𝑝−1

= 𝐶V𝑝−1
𝑛

󳨀→ 0

(91)

as 𝑛 → 0. Therefore, (90) holds for all 𝑥 ∈ 𝐵
(1/2)𝑅

. By the
diagonal process, one knows that (90) holds also in R𝑁 and
it converges uniformly on compact sets of R𝑁 as 𝑛 → ∞.

The uniform convergence of V
𝑛
to V on compact sets

implies that the Morse index of V is finite. To handle this, we
set

𝐽
𝑛

(𝑢) 𝜑
2

= ∫
R𝑁

󵄨󵄨󵄨󵄨Δ𝜑
󵄨󵄨󵄨󵄨

2

𝑑𝑥

− ∫
R𝑁

𝑀
−𝑝+1

𝑛

𝜕

𝜕𝑡
𝑓
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

n 𝑥, 𝑀
𝑛
𝑢) 𝜑
2
𝑑𝑥,

∀𝜑 ∈ 𝐶
∞

0
(R
𝑁

) .

(92)

Let 𝜓 ∈ 𝐶
∞

0
(R𝑁) be such that 𝐽

󸀠󸀠
(V)𝜓2 < 0. The uniform

convergence of V
𝑛
to V on compact sets and the fact that (90)

holds on compact sets imply

𝐽
󸀠󸀠

𝑛
(V
𝑛
) 𝜓
2

< 0 (93)
for large 𝑛. Since the Morse index of V

𝑛
is finite, it follows

easily that theMorse index of V is finite. Proposition 3 implies
that ‖V‖

𝐿
𝑝+1
(R𝑁) is finite.We claim that there exists a𝜆 > 1 such

that

∫
R𝑁

|ΔV|2𝑑𝑥 ≥ 𝜆 ∫
R𝑁

𝑄V𝑝+1𝑑𝑦. (94)

Then Proposition 5 yields V ≡ 0, which contradicts V(0) = 1.
Now, we prove (94). Applying Lemma 9 to (63) in the ball

𝐵
𝑅
(0) for fixed 𝑅 > 0, we obtain

𝑀
−𝑝−1

𝑛
𝑁 ∫
𝐵𝑅

𝐹
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
) 𝑑𝑦

+ 𝑅 ∫
𝜕𝐵𝑅

[2
𝜕V
𝑛

𝜕n
𝜕 (ΔV
𝑛
)

𝜕n
− ⟨∇ (ΔV

𝑛
) , ∇V
𝑛
⟩] 𝑑𝑆

+ (𝑁 − 2) ∫
𝜕𝐵𝑅

ΔV
𝑛

𝜕V
𝑛

𝜕n
+

1

2
𝑅 ∫
𝜕𝐵𝑅

󵄨󵄨󵄨󵄨ΔV𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑆 + 𝑀
−((5𝑝+3)/4)

𝑛

× ∫
𝐵𝑅

⟨𝑦, ∇
𝑥
𝐹
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)⟩ 𝑑𝑦

=
𝑁 − 4

2
∫
𝐵𝑅

󵄨󵄨󵄨󵄨ΔV𝑛
󵄨󵄨󵄨󵄨

2

𝑑𝑦 + 𝑀
−𝑝−1

𝑛
𝑅

× ∫
𝜕𝐵𝑅

𝐹
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
) 𝑑S.

(95)

By (H3), we estimate
󵄨󵄨󵄨󵄨󵄨
⟨𝑦, ∇
𝑥
𝐹
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)⟩

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑅𝑀

𝑝+1

𝑛
. (96)

Therefore

𝑀
−((5𝑝+3)/4)

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐵𝑅

⟨𝑦, ∇
𝑥
𝐹
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)⟩ 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝑅
𝑁+1

𝑀
−((𝑝−1)/4)

𝑛
,

(97)

which tends to zero as 𝑛 → ∞.
Using a similar argument that leads to (69) we can prove

󵄩󵄩󵄩󵄩󵄩
𝑀
−𝑝−1

𝑛
𝐹
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
)
󵄩󵄩󵄩󵄩󵄩𝛼,𝐵𝑅

≤ 𝐶 uniformly in 𝑛.

(98)

Then its limit exists as 𝑛 → ∞. Using L’Hospital’s rule as (88)
we get

𝑀
−𝑝−1

𝑛
𝐹
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
) 󳨀→

1

𝑝 + 1
𝑄 (𝑦) V𝑝+1 (𝑦)

uniformly in 𝐵
𝑅
,

(99)

as 𝑛 → ∞. Therefore, by the Lebesgue dominated conver-
gence theorem, we obtain

lim
𝑛→∞

𝑀
−𝑝−1

𝑛
∫
𝐵𝑅

𝐹
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀
𝑛
V
𝑛
) 𝑑𝑦

=
1

𝑝 + 1
∫
𝐵𝑅

𝑄 (𝑦) V𝑝+1𝑑𝑦,

lim
𝑛→∞

𝑀
−𝑝−1

𝑛
∫
𝜕𝐵𝑅

𝐹
𝑛

(𝑥
𝑛

+ 𝑀
−((𝑝−1)/4)

𝑛
𝑦, 𝑀𝑛V

𝑛
) 𝑑𝑆

=
1

𝑝 + 1
∫
𝜕𝐵𝑅

𝑄 (𝑦) V𝑝+1 (𝑦) 𝑑𝑆.

(100)

Letting 𝑛 → ∞ in (95), we get

𝑁

𝑝 + 1
∫
𝐵𝑅

𝑄 (𝑦) V𝑝+1 (𝑦) 𝑑𝑦

+ 𝑅 ∫
𝜕𝐵𝑅

[2
𝜕V
𝜕n

𝜕 (ΔV)
𝜕n

− ⟨∇ (ΔV) , ∇V⟩] 𝑑𝑆

+ (𝑁 − 2) ∫
𝜕𝐵𝑅

ΔV
𝜕V
𝜕n

𝑑𝑆 +
1

2
𝑅 ∫
𝜕𝐵𝑅

|ΔV|2𝑑𝑆

=
𝑁 − 4

2
∫
𝐵𝑅

|ΔV|2𝑑𝑦 +
𝑅

𝑝 + 1
∫
𝜕𝐵𝑅

𝑄 (𝑦) V𝑝+1 (𝑦) 𝑑𝑆.

(101)

By Lemma 7, there exists 𝑅 ≥ 2𝑟
0
such that

𝑅 ∫
𝜕𝐵𝑅

(|∇V|2 + |ΔV|2 + |∇ (ΔV)|2 + 𝑄 (𝑦) V𝑝+1) 𝑑𝑆

≤ 𝐶𝑅
(𝑁(𝑝−1)/(𝑝+1))−4

(∫
R𝑁

V𝑝+1𝑑𝑦)

2/(𝑝+1)

.

(102)
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Since (𝑁(𝑝 − 1)/(𝑝 + 1)) − 4 < 0, this implies that

lim
𝑅→∞

𝑅 ∫
𝜕𝐵𝑅

(|∇V|2 + |ΔV|2 + |∇ (ΔV)|2 + 𝑄 (𝑦) V𝑝+1) 𝑑𝑆 = 0.

(103)

Taking the limit 𝑅 → ∞ in (101), one has
2𝑁

𝑁 − 4
⋅

1

𝑝 + 1
∫
R𝑁

𝑄 (𝑦) V𝑝+1 (𝑦) 𝑑𝑦 = ∫
R𝑁

|ΔV|2𝑑𝑦.

(104)

Assertion (94) follows.
Case 2. 𝑥

0
∈ 𝜕Ω.

Two cases may occur: either 𝑑(𝑥
𝑛
, 𝜕Ω)𝑀

−((𝑝−1)/4)

𝑛
→

+∞ or 𝑑(𝑥
𝑛
, 𝜕Ω)𝑀

−((𝑝−1)/4)

𝑛
→ 𝐿 ≥ 0 as 𝑛 → ∞.

If 𝑑(𝑥
𝑛
, 𝜕Ω)𝑀

−((𝑝−1)/4)

𝑛
→ +∞ as 𝑛 → ∞, then for all

𝑅 > 0 the ball 𝐵
𝑅
is contained in Ω

𝑛
for 𝑛 large enough. We

also obtain a contradiction as in Case 1.
If 𝑑(𝑥

𝑛
, 𝜕Ω)𝑀

−((𝑝−1)/4)

𝑛
→ 𝐿 ≥ 0 as 𝑛 → ∞, by the

blow-up argument we get a solution V of

Δ
2V = 𝑄 (𝑦) V𝑝 in Π,

V = ΔV = 0, on 𝜕Π,

(105)

with V ≤ 1 in Π, V(0) = 1, and the Morse index being finite,
where Π = {𝑥 ∈ R𝑁 : 𝑥

𝑁
> −𝐿}. We may deduce as Case

1 that V ≡ 0. This is a contradiction since V(0) = 1. Thus the
proof of Proposition 10 is completed.
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