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We consider the global error bound for the generalized nonlinear complementarity problem over a polyhedral cone (GNCP). By a
new technique, we establish an easier computed global error bound for the GNCP under weaker conditions, which improves the
result obtained by Sun and Wang (2013) for GNCP.

1. Introduction

Let K = {V ∈ 𝑅

𝑚

| 𝐴V ≥ 0, 𝐵V = 0} be a polyhedral cone in
𝑅

𝑚 for matrices 𝐴 ∈ 𝑅

𝑠×𝑚, 𝐵 ∈ 𝑅

𝑡×𝑚, and let K∘ be its dual
cone; that is,

K
∘

= {𝑢 ∈ 𝑅

𝑚

| 𝑢 = 𝐴

⊤

𝜆
1
+ 𝐵

⊤

𝜆
2
, 𝜆
1
∈ 𝑅

𝑠

+
, 𝜆
2
∈ 𝑅

𝑡

} . (1)

For continuous mappings, 𝐹, 𝐺 : 𝑅

𝑛

→ 𝑅

𝑚, the generalized
nonlinear complementarity problem, abbreviated as GNCP,
is to find vector 𝑥∗ ∈ 𝑅

𝑛 such that

𝐹 (𝑥

∗

) ∈ K, 𝐺 (𝑥

∗

) ∈ K
∘

, 𝐹(𝑥

∗

)

⊤

𝐺 (𝑥

∗

) = 0.

(2)

Throughout this paper, the solution set of the GNCP, denoted
by𝑋

∗, is assumed to be nonempty.
The GNCP is a direct generalization of the classical

nonlinear complementarity problem and a special case of the
general variational inequalities problem [1]. The GNCP was
deeply discussed [2–7] after the work in [8]. It is well known
that the global error bound is an important tool for theoretical
analysis andnumerical treatment for amathematical problem
[9, 10]. The global error bound estimation for GNCP with
the mapping being 𝛾-strongly 𝐺-monotone was discussed
in [4], a global error bound estimation for GNCP with the
mapping being 𝛾-strongly monotone and Hölder continuous
was established in [5], and a global error bound for theGNCP

for the linear and monotonic case was also established in
[6, 7].

This paper is a follow-up to [4, 5, 11], as in these papers we
will establish the global error bound estimation of the GNCP
under weaker conditions than that needed in [4, 5, 11]. Based
on a new technique, we establish a global error bound for the
GNCP in terms of an easier computed residual function.The
results obtained in this paper can be taken as an improvement
of the existing results for GNCP and variational inequalities
problem [4, 5, 11–13].

To end this section, we give some notations used in
this paper. Vectors considered in this paper are taken in
Euclidean space 𝑅

𝑛 equipped with the usual inner product,
and the Euclidean 2-norm and 1-norm of vector in 𝑅

𝑛 are,
respectively, denoted by ‖ ⋅ ‖ and ‖ ⋅ ‖

1
. We use 𝑅

𝑛

+
to denote

the nonnegative orthant in𝑅

𝑛 and use𝑥
+
and𝑥
−
to denote the

vectors composed by elements (𝑥
+
)
𝑖
:= max{𝑥

𝑖
, 0}, (𝑥

−
)
𝑖
:=

max{−𝑥
𝑖
, 0} and 1 ≤ 𝑖 ≤ 𝑛, respectively. For simplicity, we use

(𝑥; 𝑦) to denote vector (𝑥⊤, 𝑦⊤)⊤, use 𝐼 to denote the identity
matrix with appropriate dimension, use 𝑥 ≥ 0 to denote a
nonnegative vector 𝑥 ∈ 𝑅

𝑛, and use dist(𝑥, 𝑋∗) to denote the
distance from point 𝑥 to the solution set 𝑋∗.

2. Global Error Bound for the GNCP

First, we give the following definition used in the subsequent.
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Definition 1. The mapping 𝐹 : 𝑅

𝑛

→ 𝑅

𝑚 is said to be 𝛾-
uniform 𝑝-function with respect to𝐺 : 𝑅

𝑛

→ 𝑅

𝑚 if there are
constants 𝑐

1
> 0 and 𝛾 > 0 such that

max
1≤𝑖≤𝑚

{[𝐹 (𝑥) − 𝐹 (𝑦)]

𝑖
[𝐺 (𝑥) − 𝐺 (𝑦)]

𝑖
}

≥ 𝑐
1

󵄩
󵄩
󵄩
󵄩

𝐺 (𝑥) − 𝐺 (𝑦)

󵄩
󵄩
󵄩
󵄩

1+𝛾

,

∀𝑥, 𝑦 ∈ 𝑅

𝑛

.

(3)

Remark 2. Based on this definition, 𝛾-uniform 𝑝-function
with respect to 𝐺 is weaker than 𝛾-strongly 𝐺-monotonicity
by Definition 1 in [4], and if

𝐹 (𝑥) = 𝑀𝑥 + 𝑝, 𝐺 (𝑥) = 𝑁𝑥 + 𝑞 (4)

with 𝑀,𝑁 ∈ 𝑅

𝑚×𝑛, 𝑝, 𝑞 ∈ 𝑅

𝑚, then the above definition is
equivalent in which the matrix 𝑀

⊤

𝑁 is a 𝑝-matrix [14]. For
example, let

𝑀 = (

1 −4

1 1

) , 𝑁 = (

1 0

0 1

) , 𝑝 = 𝑞 = (

0

0

) . (5)

ByTheorem 2.1.15 in [14], it is easy to verify that𝑀⊤𝑁 is a 𝑝-
matrix. However, letting 𝑥 = (1; 2), we note that 𝑥⊤𝑀⊤𝑁𝑥 =

−1 < 0 which shows that 𝑀⊤𝑁 is not positive definite; that
is, 𝐹 is not strongly monotonicity with respect to mapping 𝐺.

Now, we give some assumptions for our analysis based on
Definition 1.

Assumption 3. For mappings 𝐹, 𝐺 and matrix 𝐴 involved in
the GNCP, we assume that
(A1) mapping 𝐹 is 𝛾-uniform 𝑝-function with respect to

mapping 𝐺;
(A2) matrix 𝐴

⊤ has full-column rank.

In the following, we give the conclusion established in [2].

Theorem 4. A point 𝑥∗ ∈ 𝑅

𝑛 is a solution of the GNCP if and
only if there exist 𝜆∗

1
∈ 𝑅

𝑠 and 𝜆

∗

2
∈ 𝑅

𝑡, such that

𝐴𝐹 (𝑥

∗

) ≥ 0,

𝐵𝐹 (𝑥

∗

) = 0,

𝜆

∗

1
≥ 0,

(𝐹 (𝑥

∗

))

⊤

𝐺 (𝑥

∗

) = 0,

𝐺 (𝑥

∗

) = 𝐴

⊤

𝜆

∗

1
+ 𝐵

⊤

𝜆

∗

2
.

(6)

From Theorem 4, under Assumption 3 (A2), similar to
discussion in [4], we can transform the system (6) into the
following system in which neither 𝜆

1
nor 𝜆
2
is involved:

𝐴𝐹 (𝑥) ≥ 0,

𝐵𝐹 (𝑥) = 0,

(𝐹 (𝑥))

⊤

𝐺 (𝑥) = 0,

𝑈𝐺 (𝑥) ≥ 0,

𝑉𝐺 (𝑥) = 0,

(7)

where

𝑈 = {−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
} ,

𝑉={𝐴

⊤

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] − 𝐼} .

(8)

For the ease of description, let 𝜇 = 𝐹(𝑥) and ] = 𝐺(𝑥).
Then, system (7) can be written as

𝐴𝜇 ≥ 0,

𝐵𝜇 = 0,

𝜇

⊤] = 0,

𝑈] ≥ 0,

𝑉] = 0,

(9)

where the solution set of (9) is denoted by Ω

∗.
In the following, we give the error bound for a single

quadratic function to reach our aims.

Lemma 5. Let 𝑆
1
:= {𝜔 ∈ 𝑅

2𝑚

| 𝑓(𝜔) = 0}. Then, one has

dist (𝜔, 𝑆
1
) ≤ 𝜏

󵄩
󵄩
󵄩
󵄩

𝑓(𝜔)

󵄩
󵄩
󵄩
󵄩

1/2

, (10)

where 𝜏 > 0 is a constant, 𝜔 = (𝜇; ]), and 𝑓(𝜔) = 𝜇

⊤].

Proof. For any 𝜔 ∈ 𝑅

2𝑚, let 𝜇 = (𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑚
)

⊤, ] =

(]
1
, ]
2
, . . . , ]

𝑚
)

⊤, and

𝜔
𝑖
= {

𝜇
𝑖

1 ≤ 𝑖 ≤ 𝑚,

]
𝑖

𝑚 + 1 ≤ 𝑖 ≤ 2𝑚.

(11)

Set 𝜇
𝑖
= 𝜉
𝑖
+ 𝜉
𝑚+𝑖

, ]
𝑖
= 𝜉
𝑖
− 𝜉
𝑚+𝑖

, 𝑖 = 1, 2, . . . , 𝑚, and 𝜉 =

(𝜉
1
, 𝜉
2
, . . . , 𝜉

2𝑚
)

⊤. Obviously, this linear transformation is an
invertible; that is, there exists an invertiblematrix𝑃 ∈ 𝑅

2𝑚×2𝑚

such that 𝜔 = 𝑃𝜉, and one has

𝑓 (𝜔) = 𝜇

⊤] =

𝑚

∑

𝑖=1

𝜇
𝑖
]
𝑖
=

𝑚

∑

𝑖=1

𝜉

2

𝑖
−

2𝑚

∑

𝑖=𝑚+1

𝜉

2

𝑖
=: 𝑔 (𝜉) . (12)

Without loss of generality, we assume 𝑓(𝜔) > 0. Define

𝜃 = (

∑

2𝑚

𝑖=𝑚+1
𝜉

2

𝑖

𝑔(𝜉) + ∑

2𝑚

𝑖=𝑚+1
𝜉

2

𝑖

)

1/2

= (

∑

2𝑚

𝑖=𝑚+1
𝜉

2

𝑖

∑

𝑚

𝑖=1
𝜉

2

𝑖

)

1/2

,

𝜉
𝑖
= {

𝜃𝜉
𝑖

1 ≤ 𝑖 ≤ 𝑚,

𝜉
𝑖

𝑚 + 1 ≤ 𝑖 ≤ 2𝑚.

(13)
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It is easy to verify that 0 ≤ 𝜃 ≤ 1 and

𝑔 (𝜉) = 𝜃

2

𝑚

∑

𝑖=1

𝜉

2

𝑖
−

2𝑚

∑

𝑖=𝑚+1

𝜉

2

𝑖

= (

∑

2𝑚

𝑖=𝑚+1
𝜉

2

𝑖

∑

𝑚

𝑖=1
𝜉

2

𝑖

)

𝑚

∑

𝑖=1

𝜉

2

𝑖
−

2𝑚

∑

𝑖=𝑚+1

𝜉

2

𝑖

=

2𝑚

∑

𝑖=𝑚+1

𝜉

2

𝑖
−

2𝑚

∑

𝑖=𝑚+1

𝜉

2

𝑖

= 0.

(14)

Let 𝜔 = 𝑃𝜉, and one has 𝑓(𝜔) = 𝑔(𝜉) = 0. Therefore, 𝜔 ∈ 𝑆
1
.

Moreover, one has

‖𝜔 − 𝜔‖

=

󵄩
󵄩
󵄩
󵄩
󵄩

𝑃𝜉 − 𝑃𝜉

󵄩
󵄩
󵄩
󵄩
󵄩

≤ ‖𝑃‖

󵄩
󵄩
󵄩
󵄩
󵄩

𝜉 − 𝜉

󵄩
󵄩
󵄩
󵄩
󵄩

= ‖𝑃‖(

2𝑚

∑

𝑖=1

(𝜉
𝑖
− 𝜉
𝑖
)

2

)

1/2

= ‖𝑃‖(

𝑚

∑

𝑖=1

(𝜉
𝑖
− 𝜃𝜉
𝑖
)

2

)

1/2

= ‖𝑃‖ (1 − 𝜃)(

𝑚

∑

𝑖=1

𝜉

2

𝑖
)

1/2

= ‖𝑃‖

(1 − 𝜃

2

)

1 + 𝜃

(

𝑚

∑

𝑖=1

𝜉

2

𝑖
)

1/2

=

‖𝑃‖

1 + 𝜃

(1 −

∑

2𝑚

𝑖=𝑚+1
𝜉

2

𝑖

𝑔 (𝜉) + ∑

2𝑚

𝑖=𝑚+1
𝜉

2

𝑖

)(

𝑚

∑

𝑖=1

𝜉

2

𝑖
)

1/2

=

‖𝑃‖ 𝑔 (𝜉)

(1 + 𝜃) (∑

𝑚

𝑖=1
𝜉

2

𝑖
)

(

𝑚

∑

𝑖=1

𝜉

2

𝑖
)

1/2

=

‖𝑃‖ 𝑔 (𝜉)

(1 + 𝜃) (∑

𝑚

𝑖=1
𝜉

2

𝑖
)

1/2

=

‖𝑃‖ 𝑔 (𝜉)

(∑

𝑚

𝑖=1
𝜉

2

𝑖
)

1/2

+ 𝜃(∑

𝑚

𝑖=1
𝜉

2

𝑖
)

1/2

=

‖𝑃‖ 𝑔 (𝜉)

(∑

𝑚

𝑖=1
𝜉

2

𝑖
)

1/2

+ ((∑

2𝑚

𝑖=𝑚+1
𝜉

2

𝑖
) / (∑

𝑚

𝑖=1
𝜉

2

𝑖
))

1/2

(∑

𝑚

𝑖=1
𝜉

2

𝑖
)

1/2

=

‖𝑃‖ 𝑔 (𝜉)

(∑

𝑚

𝑖=1
𝜉

2

𝑖
)

1/2

+ (∑

2𝑚

𝑖=𝑚+1
𝜉

2

𝑖
)

1/2

≤

‖𝑃‖ 𝑔 (𝜉)

(∑

𝑚

𝑖=1
𝜉

2

𝑖
+ ∑

2𝑚

𝑖=𝑚+1
𝜉

2

𝑖
)

1/2

≤

‖𝑃‖ 𝑔 (𝜉)

𝑔(𝜉)

1/2

= ‖𝑃‖ 𝑔(𝜉)

1/2

= ‖𝑃‖𝑓(𝜔)

1/2

,

(15)

where the third equality follows from the definition of 𝜉,
the sixth and tenth equations are due to the definition of 𝜃,
respectively, the second inequality follows from the fact that

𝑎

1/2

+ 𝑏

1/2

≥ (𝑎 + 𝑏)

1/2

, ∀𝑎, 𝑏 ∈ 𝑅
+
, (16)

and the third inequality follows from the fact that

𝑔 (𝜉) ≤

𝑚

∑

𝑖=1

𝜉

2

𝑖
+

2𝑚

∑

𝑖=𝑚+1

𝜉

2

𝑖
. (17)

And, letting 𝜏 = ‖𝑃‖, then the desired result follows.

To establish a global error bound for GNCP, we also
give the following result from [15] on the error bound for a
polyhedral cone.

Lemma 6. For polyhedral cone 𝑃 = {𝑥 ∈ 𝑅

𝑛

| 𝐷
1
𝑥 =

𝑑
1
, 𝐵
1
𝑥 ≤ 𝑏

1
} with 𝐷

1
∈ 𝑅

𝑙×𝑛, 𝐵
1

∈ 𝑅

𝑚×𝑛, 𝑑
1

∈ 𝑅

𝑙, and
𝑏
1
∈ 𝑅

𝑚, there exists a constant 𝑐
2
> 0 such that

dist (𝑥, 𝑃) ≤ 𝑐
2
[

󵄩
󵄩
󵄩
󵄩

𝐷
1
𝑥 − 𝑑
1

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(𝐵
1
𝑥 − 𝑏
1
)

+

󵄩
󵄩
󵄩
󵄩

] , ∀𝑥 ∈ 𝑅

𝑛

.

(18)

Before proceeding, we present the following definition
introduced in [16] with constant 𝛿 = 1.

Definition 7. The mapping 𝐺 : 𝑅

𝑛

→ 𝑅

𝑚 is said to be 𝛿-
strongly nonexpanding with a constant 𝛼 > 0, if ‖𝐺(𝑥) −

𝐺(𝑦)‖ ≥ 𝛼‖𝑥 − 𝑦‖

𝛿, where 𝛿 > 0.

Now, we are at the position to state our main results in
this paper.

Theorem 8. Suppose that 𝐹 is 𝛾-uniform 𝑝-function with
respect to mapping 𝐺 with positive constants 𝑐

1
and 𝛾, respec-

tively, and𝐺 is 𝛿-strongly nonexpandingwith positive constants
𝛼 and 𝛿, respectively.Then there exists constant𝜌

1
> 0 such that

dist (𝑥,𝑋∗) ≤ 𝜌
1
{

󵄩
󵄩
󵄩
󵄩

[𝐴𝐹 (𝑥)]
−

󵄩
󵄩
󵄩
󵄩

+ ‖𝐵𝐹 (𝑥)‖

+

󵄩
󵄩
󵄩
󵄩

[𝑈𝐺 (𝑥)]
−

󵄩
󵄩
󵄩
󵄩

+ ‖𝑉𝐺 (𝑥)‖

+

󵄩
󵄩
󵄩
󵄩
󵄩

[𝐹(𝑥)

⊤

𝐺 (𝑥)]

󵄩
󵄩
󵄩
󵄩
󵄩

1/2

}

2/(1+𝛾)𝛿

, ∀𝑥 ∈ 𝑅

𝑛

.

(19)

Proof. Using Lemma 5, for any 𝜔 ∈ 𝑅

2𝑚, there exists 𝜔 ∈ 𝑆
1

such that

‖𝜔 − 𝜔‖ ≤ 𝜏

󵄩
󵄩
󵄩
󵄩

[𝑓 (𝜔)]

󵄩
󵄩
󵄩
󵄩

1/2

, (20)
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where 𝑆
1
is defined in Lemma 5. Let

Ω = {𝜔 ∈ 𝑅

2𝑚

| 𝐴 (𝐼, 0) 𝜔 ≥ 0, 𝐵 (𝐼, 0) 𝜔 = 0,

𝑈 (0, 𝐼) 𝜔 ≥ 0, 𝑉 (0, 𝐼) 𝜔 = 0} .

(21)

From (9), we haveΩ

∗

= Ω⋂𝑆
1
. For convenience, we also let

Ψ (𝜔) = (−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)
+
.

(22)

Using Lemma 6, for any 𝜔 ∈ 𝑆
1
, there exists 𝜔

∗

∈ Ω

∗ such
that

󵄩
󵄩
󵄩
󵄩

𝜔 − 𝜔

∗󵄩
󵄩
󵄩
󵄩

≤ 𝑐
3
[

󵄩
󵄩
󵄩
󵄩

(−𝐴 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(−𝑈 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+ ‖𝐵 (𝐼, 0) 𝜔‖ + ‖𝑉 (0, 𝐼) 𝜔‖]

≤ 𝑐
3
[

󵄩
󵄩
󵄩
󵄩

(−𝐴 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(−𝑈 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(𝐵 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(−𝐵 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(𝑉 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(−𝑉 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

]

≤ 𝑐
3
{

󵄩
󵄩
󵄩
󵄩

(−𝐴 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩1

+

󵄩
󵄩
󵄩
󵄩

(−𝑈 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩1

+

󵄩
󵄩
󵄩
󵄩

(𝐵 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩1

+

󵄩
󵄩
󵄩
󵄩

(−𝐵 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩1

+

󵄩
󵄩
󵄩
󵄩

(𝑉 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩1

+

󵄩
󵄩
󵄩
󵄩

(−𝑉 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩1
}

= 𝑐
3
‖Ψ(𝜔)‖

1

≤ 𝑐
3
√
2𝑠 + 2𝑡 + 2𝑚 ‖Ψ (𝜔)‖ ,

(23)

where 𝑐
3
is a positive constant and the third and fourth

inequalities follow from the fact that ‖𝑥‖ ≤ ‖𝑥‖
1

≤ √𝑛‖𝑥‖,
for all 𝑥 ∈ 𝑅

𝑛.
Furthermore,

‖Ψ (𝜔) − Ψ (𝜔)‖

=

󵄩
󵄩
󵄩
󵄩

(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉(0, 𝐼)𝜔, 𝐵(𝐼, 0)𝜔, 𝑉(0, 𝐼)𝜔)
+

− (−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉(0, 𝐼)𝜔, 𝐵(𝐼, 0)𝜔, 𝑉(0, 𝐼)𝜔)
+

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩

𝑃
𝑅
2𝑠+2𝑡+2𝑚

+

{(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

− 𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}

− 𝑃
𝑅
2𝑠+2𝑡+2𝑚

+

{(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

− 𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}

󵄩
󵄩
󵄩
󵄩
󵄩

≤ ‖{(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

− 𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}

− {(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

− 𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}‖

≤ ‖𝐴 (𝐼, 0) 𝜔 − 𝐴 (𝐼, 0) 𝜔‖ + 2 ‖𝐵 (𝐼, 0) 𝜔 − 𝐵 (𝐼, 0) 𝜔‖

+ ‖𝑈 (0, 𝐼) 𝜔 − 𝑈 (0, 𝐼) 𝜔‖ + 2 ‖𝑉 (0, 𝐼) 𝜔 − 𝑉 (0, 𝐼) 𝜔‖

≤ (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖

+2 ‖𝑉 (0, 𝐼)‖) ‖𝜔 − 𝜔‖ ,

(24)

where the second equality follows from the fact that

min {𝑎, 𝑏} = 𝑎 − 𝑃
𝑅
+
(𝑎 − 𝑏) , ∀𝑎, 𝑏 ∈ 𝑅, (25)

and the first inequality is by nonexpanding property of
projection operator. Combining (24), one has

‖Ψ (𝜔)‖ ≤ ‖Ψ (𝜔)‖

+ (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖) ‖𝜔 − 𝜔‖ .

(26)

Combining (23) with (26), for any 𝜔 ∈ 𝑅

2𝑚, we have
󵄩
󵄩
󵄩
󵄩

𝜔 − 𝜔

∗󵄩
󵄩
󵄩
󵄩

≤ ‖𝜔 − 𝜔‖ +

󵄩
󵄩
󵄩
󵄩

𝜔 − 𝜔

∗󵄩
󵄩
󵄩
󵄩

≤ ‖𝜔 − 𝜔‖ + 𝜎 ‖Ψ (𝜔)‖

≤ ‖𝜔 − 𝜔‖

+ 𝜎 (‖Ψ (𝜔)‖ + (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖

+ 2 ‖𝑉 (0, 𝐼)‖) ‖𝜔 − 𝜔‖)

≤ 𝜎 ‖Ψ (𝜔)‖

+ [𝜎 (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖) + 1] ‖𝜔 − 𝜔‖

≤ 𝜎 ‖Ψ (𝜔)‖

+ [𝜎 (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖

+2 ‖𝑉 (0, 𝐼)‖) + 1] 𝜏

󵄩
󵄩
󵄩
󵄩

[𝑓 (𝜔)]

󵄩
󵄩
󵄩
󵄩

1/2

≤ 𝜂 (‖Ψ (𝜔)‖ +

󵄩
󵄩
󵄩
󵄩

[𝑓(𝜔)]

󵄩
󵄩
󵄩
󵄩

1/2

)

≤ 𝜂 (‖Ψ(𝜔)‖
1
+

󵄩
󵄩
󵄩
󵄩

[𝑓(𝜔)]

󵄩
󵄩
󵄩
󵄩

1/2

)

≤ 𝜂 (

󵄩
󵄩
󵄩
󵄩

(−𝐴 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩1

+

󵄩
󵄩
󵄩
󵄩

(−𝑈 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩1

+ ‖𝐵 (𝐼, 0) 𝜔‖
1

+ ‖𝑉(0, 𝐼)𝜔‖
1
+

󵄩
󵄩
󵄩
󵄩

[𝑓 (𝜔)]

󵄩
󵄩
󵄩
󵄩

1/2

)
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≤ 𝜂 (√𝑠

󵄩
󵄩
󵄩
󵄩

(−𝐴 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+ √𝑠

󵄩
󵄩
󵄩
󵄩

(−𝑈 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+
√
𝑡 ‖𝐵 (𝐼, 0) 𝜔‖

+ √𝑚‖𝑉 (0, 𝐼) 𝜔‖ +

󵄩
󵄩
󵄩
󵄩

[𝑓(𝜔)]

󵄩
󵄩
󵄩
󵄩

1/2

)

≤ 𝑐
4
(

󵄩
󵄩
󵄩
󵄩

(−𝐴 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(−𝑈 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+ ‖𝐵 (𝐼, 0) 𝜔‖

+ ‖𝑉 (0, 𝐼) 𝜔‖ +

󵄩
󵄩
󵄩
󵄩

[𝑓 (𝜔)]

󵄩
󵄩
󵄩
󵄩

1/2

) ,

(27)

where the second inequality follows from (23) with constants
𝜎 = 𝑐

3
√2𝑠 + 2𝑡 + 2𝑚 and 𝜔 = 𝜔, the third inequality uses

(26), the fifth inequality follows from (20), the sixth inequality
follows from the fact that

𝜂 = max {𝜎, [𝜎 (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖) + 1] 𝜏} ,

(28)

the seventh and ninth inequalities follow from the fact that

‖𝑥‖ ≤ ‖𝑥‖
1
≤ √𝑛 ‖𝑥‖ , ∀𝑥 ∈ 𝑅

𝑛

, (29)

and the last inequality follows by letting 𝑐
4

= 𝜂max{√𝑠,
√𝑡,√𝑚, 1}.

For any 𝑥 ∈ 𝑅

𝑛, let 𝜔 = (𝜇, ]) = (𝐹(𝑥), 𝐺(𝑥)) ∈ 𝑅

2𝑚. Then
there exists 𝜔∗ = (𝜇

∗

, ]∗) = (𝐹(𝑥

∗

), 𝐺(𝑥

∗

)) ∈ Ω

∗ such that

dist(1+𝛾)𝛿 (𝑥,𝑋∗)

≤

󵄩
󵄩
󵄩
󵄩

𝑥 − 𝑥

∗󵄩
󵄩
󵄩
󵄩

(1+𝛾)𝛿

≤

1

𝛼

1+𝛾

󵄩
󵄩
󵄩
󵄩

𝐺(𝑥) − 𝐺(𝑥

∗

)

󵄩
󵄩
󵄩
󵄩

1+𝛾

≤

1

𝑐
1
𝛼

1+𝛾
max
1≤𝑖≤𝑛

{[𝐹 (𝑥) − 𝐹 (𝑦)]

𝑖
[𝐺 (𝑥) − 𝐺 (𝑦)]

𝑖
}

≤

1

𝑐
1
𝛼

1+𝛾

󵄩
󵄩
󵄩
󵄩

𝐹 (𝑥) − 𝐹 (𝑥

∗

)

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩

𝐺 (𝑥) − 𝐺 (𝑥

∗

)

󵄩
󵄩
󵄩
󵄩

≤

1

2𝑐
1
𝛼

1+𝛾
{

󵄩
󵄩
󵄩
󵄩

𝐹 (𝑥) − 𝐹 (𝑥

∗

)

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩

𝐺 (𝑥) − 𝐺 (𝑥

∗

)

󵄩
󵄩
󵄩
󵄩

2

}

=

1

2𝑐
1
𝛼

1+𝛾

󵄩
󵄩
󵄩
󵄩

𝜔 − 𝜔

∗󵄩
󵄩
󵄩
󵄩

2

≤

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

4
(

󵄩
󵄩
󵄩
󵄩

(−𝐴 (𝐼, 0) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(−𝑈 (0, 𝐼) 𝜔)
+

󵄩
󵄩
󵄩
󵄩

+ ‖𝐵 (𝐼, 0) 𝜔‖

+ ‖𝑉(0, 𝐼)𝜔‖ +

󵄩
󵄩
󵄩
󵄩

[𝑓(𝜔)]

󵄩
󵄩
󵄩
󵄩

1/2

)

2

≤

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

4
(

󵄩
󵄩
󵄩
󵄩

(𝐴 (𝐼, 0) 𝜔)
−

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

(𝑈 (0, 𝐼) 𝜔)
−

󵄩
󵄩
󵄩
󵄩

+ ‖𝐵 (𝐼, 0) 𝜔‖

+ ‖𝑉(0, 𝐼)𝜔‖ +

󵄩
󵄩
󵄩
󵄩

[𝑓(𝜔)]

󵄩
󵄩
󵄩
󵄩

1/2

)

2

≤

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

4
{

󵄩
󵄩
󵄩
󵄩

[𝐴𝜇]

−

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

𝐵𝜇

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

[𝑈]]
−

󵄩
󵄩
󵄩
󵄩

+ ‖𝑉]‖

+

󵄩
󵄩
󵄩
󵄩
󵄩

𝜇

⊤]
󵄩
󵄩
󵄩
󵄩
󵄩

1/2

}

2

,

(30)

where the second inequality follows from Definition 7 with
constant 𝛼 > 0, the third inequality follows from Definition 1
with constants 𝑐

1
> 0 and 𝛾 > 0, the fifth inequality follows

from the fact that 𝑎

2

+ 𝑏

2

≥ 2𝑎𝑏, for all 𝑎, 𝑏 ∈ 𝑅, and
the sixth inequality is by (27). By (30) and letting 𝜌

1
=

{(1/(2𝑐
1
𝛼

1+𝛾

))𝑐

2

4
}

1/(1+𝛾)𝛿, then the desired result follows.

Remark 9. Firstly, from remark ofDefinition 1, the conditions
that 𝐹 is 𝛾-uniform 𝑝-function with respect to mapping 𝐺

and 𝐺 is 𝛿-strongly nonexpanding in Theorem 8 are weaker
than the conditions that 𝐹 is 𝛾-strongly 𝐺-monotone and
𝐺 is strongly nonexpanding (i.e., 𝛿 = 1) in Theorem 13 in
[4]. In addition, the result in Theorem 8 is stronger than
that in Theorem 13 in [4]. Thus, Theorem 8 is stronger than
Theorem 13 in [4].

In the following, we also present an example to compare
the condition in Theorem 8 in this paper and that in
Theorem 13 in [4].

Example 10. When K = 𝑅

2

+
, 𝐹(𝑥) = 𝑀𝑥, and 𝐺(𝑥) = 𝑥, the

(2) reduces to the linear complementarity problem (LCP) of
finding vector 𝑥∗ ∈ 𝑅

𝑛 such that

𝐹 (𝑥

∗

) ≥ 0, 𝐺 (𝑥

∗

) ≥ 0, 𝐹(𝑥

∗

)

⊤

𝐺 (𝑥

∗

) = 0, (31)

where𝑀 = (

1 −3

0 1
).

It is easy to see that the solution set of the LCP 𝑋

∗

= {0}.
In fact,

𝑋

∗

= {𝑥 ∈ 𝑅

2

‖ 𝑥 ≥ 0,𝑀𝑥 ≥ 0, 𝑥

⊤

𝑀𝑥 = 0}

= { (𝑥
1
, 𝑥
2
) ∈ 𝑅

2

| 𝑥
1
≥ 0, 𝑥

2
≥ 0, 𝑥

1
≥ 3𝑥
2
,

𝑥
1
=

3 − √5

2

𝑥
2
or 𝑥
1
=

3 + √5

2

𝑥
2
}

= {0} .

(32)

Clearly,𝑀 is a 𝑃matrix [17].Thus, there exists constant 𝜏 > 0

such that

max
1≤𝑖≤2

{(𝑥 − 𝑦)

𝑖
(𝑀𝑥 − 𝑀𝑦)

𝑖
} ≥ 𝜏

󵄩
󵄩
󵄩
󵄩

𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

. (33)



6 Abstract and Applied Analysis

For any 𝑥(𝜖) := (−𝜖; 𝜖), 𝜖 ≥ 0. By Theorem 8, with 𝛾 = 1,
𝛿 = 1, 𝐴 = 𝐼, 𝑈 = 𝐼, 𝐵 = 0, and 𝑉 = 0 and letting 𝜑

1
(𝑥) :=

‖[𝐹(𝑥)]
−
‖ + ‖[𝐺(𝑥)]

−
‖ + ‖[𝐹(𝑥)

⊤

𝐺(𝑥)]‖

1/2, we can obtain

‖𝑥 (𝜖) − 0‖

𝜑
1
(𝑥 (𝜖))

=

√
2𝜖

4𝜖 + 𝜖 + √5𝜖

󳨀→

√
2

5 + √5

(34)

as 𝜖 → 0. Thus,Theorem 8 provides a global error bound for
this LCP.

However, letting 𝑥 = (1; 1), we note that 𝑥⊤𝑀𝑥 = −1 < 0

which shows that 𝑀 is not positive definite, so the condition
that 𝐹 is strongly monotone in Theorem 13 in [4] does not
hold. Thus, the result of Theorem 13 in [4] fails in providing
an error bound for this LCP.

Secondly, if 𝐹 is 𝛾-strongly𝐺-monotone and𝐺 is strongly
𝛿-nonexpanding, then it is easy to verify that

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩

≥ 𝑐
5

󵄩
󵄩
󵄩
󵄩

𝐺 (𝑥) − 𝐺 (𝑦)

󵄩
󵄩
󵄩
󵄩

1+𝛾

≥ 𝑐
5
𝛼

1+𝛾󵄩
󵄩
󵄩
󵄩

𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

(1+𝛾)𝛿

, ∀𝑥, 𝑦 ∈ 𝑅

𝑛

,

(35)

where 𝑐
5
> 0 is constant.Moreover, the conditions that both𝐹

and 𝐺 are Hölder continuous (or both 𝐹 and 𝐺 are Lipschitz
continuous) in Theorem 8 in this paper are removed. Thus,
Theorem 8 is stronger thanTheorem 2.5 in [5]. Furthermore,
by Theorem 2.1 in [5], the GNCP can be reformulated as
general variational inequalities problem, and the conditions
in Theorem 8 are also weaker than those in Theorem 3.1 in
[11], Theorem 2 in [12], Theorem 3.1 in [13], and Theorem 3.1
in [16], respectively.

In the end of this paper, we will consider a special case of
GNCP which was discussed in [11].

When K = 𝑅

𝑚

+
, the (2) reduces to the generalization of

the classical nonlinear complementarity problem of finding
vector 𝑥∗ ∈ 𝑅

𝑛 such that

𝐹 (𝑥

∗

) ≥ 0, 𝐺 (𝑥

∗

) ≥ 0, 𝐹(𝑥

∗

)

⊤

𝐺 (𝑥

∗

) = 0. (36)

Combining this with Theorem 8, we can also immediately
obtain the following conclusion.

Corollary 11. Suppose that the hypotheses of Theorem 8 hold.
Then there exists constant 𝜌

2
> 0 such that

dist (𝑥,𝑋∗)

≤ 𝜌
2
{

󵄩
󵄩
󵄩
󵄩

[𝐹 (𝑥)]
−

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

[𝐺 (𝑥)]
−

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩

[𝐹(𝑥)

⊤

𝐺 (𝑥)]

󵄩
󵄩
󵄩
󵄩
󵄩

1/2

}

2/(1+𝛾)𝛿

,

∀𝑥 ∈ 𝑅

𝑛

.

(37)

Remark 12. It is clear that if 𝐹 is 𝛾-uniform 𝑝-function and 𝐺

is strongly 𝛿-nonexpanding, for any 𝑥, 𝑦 ∈ 𝑅

𝑛, then

max
1≤𝑖≤𝑚

{[𝐹 (𝑥) − 𝐹 (𝑦)]

𝑖
[𝐺 (𝑥) − 𝐺 (𝑦)]

𝑖
}

≥ 𝑐
1

󵄩
󵄩
󵄩
󵄩

𝐺(𝑥) − 𝐺(𝑦)

󵄩
󵄩
󵄩
󵄩

1+𝛾

≥ 𝑐
1
𝛼

1+𝛾󵄩
󵄩
󵄩
󵄩

𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

(1+𝛾)𝛿

,

(38)

so the condition in Corollary 11 is largely extended than the
condition that 𝐹 is a uniform 𝑝-function with respect to 𝐺

(i.e., 𝛾 = 1, 𝛿 = 1) in Theorem 3.3 in [11]. Moreover, the
conditions that both 𝐹 and 𝐺 are Lipschitz continuous in
Theorem3.3 in [11] are removed.Thus, Corollary 11 is stronger
thanTheorem 3.3 in [11].

3. Conclusion

In this paper, we established a global error bound on
the generalized nonlinear complementarity problems over
a polyhedral cone, which improves the result obtained for
variational inequalities and the GNCP in [4, 5, 11–13] by
weakening the assumptions. Surely, we may use the error
bound estimation to establish quick convergence rate of the
methods for the GNCP under milder conditions. This is a
topic for future research.
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