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We first give the block style spectral decomposition of arbitrary block skew circulant matrix with skew circulant blocks. Secondly,
we obtain the singular value of block skew circulant matrix with skew circulant blocks as well. Finally, based on the block style
spectral decomposition, we deal with the optimal backward perturbation analysis for the block skew circulant linear system with
skew circulant blocks.

1. Introduction

A block skew circulant matrix with skew circulant blocks
with the first row (𝑎

11
, . . . , 𝑎

1𝑚
, 𝑎
21
, . . . , 𝑎

2𝑚
, . . . , 𝑎

𝑛1
, . . . , 𝑎

𝑛𝑚
)

is meant a square matrix of the following form:

(

𝐴
1

𝐴
2

⋅ ⋅ ⋅ 𝐴
𝑛−1

𝐴
𝑛

−𝐴
𝑛

𝐴
1

𝐴
2

⋅ ⋅ ⋅ 𝐴
𝑛−1

... d d d
...

−𝐴
3

⋅ ⋅ ⋅ −𝐴
𝑛

𝐴
1

𝐴
2

−𝐴
2

−𝐴
3

⋅ ⋅ ⋅ −𝐴
𝑛

𝐴
1

), (1)

and for any 𝑘 = 1, 2, . . . , 𝑛,

𝐴
𝑘
= (

𝑎
𝑘1

𝑎
𝑘2

⋅ ⋅ ⋅ 𝑎
𝑘(𝑚−1)

𝑎
𝑘𝑚

−𝑎
𝑘𝑚

𝑎
𝑘1

𝑎
𝑘2

⋅ ⋅ ⋅ 𝑎
𝑘(𝑚−1)

... d d d
...

−𝑎
𝑘3

⋅ ⋅ ⋅ −𝑎
𝑘𝑚

𝑎
𝑘1

𝑎
𝑘2

−𝑎
𝑘2

−𝑎
𝑘3

⋅ ⋅ ⋅ −𝑎
𝑘𝑚

𝑎
𝑘1

), (2)

denoted by BC𝑛,𝑚
−1,−1

(𝑎
11
, . . . , 𝑎

1𝑚
, . . . , 𝑎

𝑛1
, . . . , 𝑎

𝑛𝑚
). Note that

in this paper all facts are based on real field.
Skew circulant matrices have important applications in

various disciplines including image processing, signal pro-
cessing, solving Toeplitz matrix problems, preconditioner,
and solving least squares problems in [1–10].

Liu and Guo [11] gave the optimal backward perturbation
analysis for a block circulant linear system. Li et al. [12] gave
the style spectral decomposition of skew circulant matrix
firstly and then dealt with the optimal backward perturbation
analysis for the skew circulant linear system. The optimal
backward perturbation bounds for underdetermined systems
are studied by J.G. Sun and Z. Sun in [13]. Some new
theorems generalizing a result ofOettli and Prager are applied
to a posteriori analysis of the compatibility of a computed
solution to the uncertain data of a linear system by Rigal
and Gaches in [14]. Systems with BC structure appear in
the context of multichannel signal estimation [15, 16], image
restoration [17], cyclic convolution filter banks [18], texture
synthesis and recognition [19], and so on.

The block skew circulant matrix with skew circulant
blocks is an extension of skew circulantmatrix andwe believe
the block skew circulant linear system with skew circulant
blocks can be used in those fields as well. In this paper, firstly,
by using the style spectral decomposition of a special skew
circulant matrix 𝐶 in [12], we get the block style spectral
decomposition of arbitrary block skew circulant matrix with
skew circulant blocks. Secondly, we obtain the singular value
of block skew circulant matrix with skew circulant blocks as
well. Finally, we deal with the optimal backward perturbation
analysis for the block skew circulant linear system with
skew circulant blocks on the base of its block style spectral
decomposition.
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2. The Block Style Spectral Decomposition
of Block Skew Circulant Matrix with Skew
Circulant Blocks

Let matrix 𝐴 be a block skew circulant matrix with skew
circulant blocks as in the form of (1); then by using the
properties of Kronecker products in [20], the matrix 𝐴 can
be decomposed as

𝐴 =

𝑛

∑
𝑘=1

(𝐶
𝑘−1

𝑛×𝑛
⊗ 𝐴
𝑘
) , (3)

where

𝐶
𝑛×𝑛

= (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0
... d d d

...
0 ⋅ ⋅ ⋅ 0 0 1

−1 0 ⋅ ⋅ ⋅ 0 0

)

𝑛×𝑛

. (4)

According to the style spectral decomposition of basic skew
circulant (please refer to equations (10) and (11) in [12]), the
style spectral decomposition of the matrix 𝐶𝑘

𝑛×𝑛
is

𝐶
𝑘

𝑛×𝑛
= 𝑄𝐶

𝑘

0
𝑄
𝑇
, (5)

where 𝑄 is an orthogonal matrix, 𝜃
𝑗
= ((2𝑗 − 1)/𝑛)𝜋,

𝐶
𝑘

0
= (

𝐶𝑘
1

𝐶𝑘
2

d
𝐶𝑘
𝑛/2

), (𝑛 is even) ,

𝐶
𝑘

0
= (

𝐶𝑘
1

d
𝐶
𝑘

(𝑛−1)/2

(−1)
𝑘

), (𝑛 is odd) ,

𝐶
𝑘

𝑗
= (

cos 𝑘𝜃
𝑗

sin 𝑘𝜃
𝑗

− sin 𝑘𝜃
𝑗
cos 𝑘𝜃

𝑗

) ,

(6)

𝑗 =

{{{

{{{

{

1, 2, . . . ,
𝑛

2
, when 𝑛 is even,

1, 2, . . . ,
𝑛 − 1

2
, when 𝑛 is odd.

(7)

Consider (3) and (5); the matrix 𝐴 can be decomposed as

𝐴 =

𝑛

∑
𝑘=1

(𝐶
𝑘−1

𝑛×𝑛
⊗ 𝐴
𝑘
) =

𝑛

∑
𝑘=1

(𝑄𝐶
𝑘−1

0
𝑄
𝑇
) ⊗ 𝐴

𝑘

=

𝑛

∑
𝑘=1

(𝑄 ⊗ 𝐼
𝑚
) (𝐶
𝑘−1

0
⊗ 𝐴
𝑘
) (𝑄
𝑇
⊗ 𝐼
𝑚
)

= (𝑄 ⊗ 𝐼
𝑚
)(

𝑛

∑
𝑘=1

𝐶
𝑘−1

0
⊗ 𝐴
𝑘
)(𝑄
𝑇
⊗ 𝐼
𝑚
) .

(8)

Noticing that 𝑄 ⊗ 𝐼
𝑚
is an orthogonal matrix, so (8) is the

block style spectral decomposition of the matrix 𝐴.

3. The Structured Perturbation Analysis

In this section, we give the structured perturbation analysis
for the block skew circulant linear systems with skew circu-
lant blocks.

3.1. Condition Number and Relative Error of Block Skew Cir-
culant Linear System with Skew Circulant Blocks. Consider

𝐴𝑥 = 𝑏, (9)

where 𝐴 is defined in (1).
From (8) and the property of Kronecker products in [20],

we express the matrix 𝐴 by using the elements in its first row
as

𝐴 =

𝑛

∑
𝑘=1

(𝐶
𝑘−1

𝑛×𝑛
⊗ 𝐴
𝑘
)

=

𝑛

∑
𝑘=1

[𝐶
𝑘−1

𝑛×𝑛
⊗ (

𝑚

∑
𝑙=1

𝑎
𝑘𝑙
𝐶
𝑙−1

𝑚×𝑚
)]

=

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝑎
𝑘𝑙
(𝐶
𝑘−1

𝑛×𝑛
⊗ 𝐶
𝑙−1

𝑚×𝑚
) ,

(10)

where

𝐶
𝑚×𝑚

= (

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0
... d d d

...
0 ⋅ ⋅ ⋅ 0 0 1

−1 0 ⋅ ⋅ ⋅ 0 0

)

𝑚×𝑚

. (11)

We denote the eigenvalues of matrix 𝐶
𝑛×𝑛

as 𝜀
𝑖
(𝑖 =

1, 2, . . . , 𝑛), and denote the eigenvalues of matrix 𝐶
𝑚×𝑚

as 𝛿
𝑗

(𝑗 = 1, 2, . . . , 𝑚); then the eigenvalues of 𝐴 are (regarding
more properties, please refer to [20, 21])

𝜆
𝑖𝑗
=

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝑎
𝑘𝑙
𝜀
𝑘−1

𝑖
𝛿
𝑙−1

𝑗
. (12)

Lemma 1. 𝐴 is an invertible matrix if and only if 𝑓(𝜀
𝑖
, 𝛿
𝑗
) ̸= 0

(𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚), where

𝑓 (𝜀
𝑖
, 𝛿
𝑗
) = 𝜆
𝑖𝑗
=

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝑎
𝑘𝑙
𝜀
𝑘−1

𝑖
𝛿
𝑙−1

𝑗
. (13)

Let

𝜎
𝑖𝑗
=
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜀
𝑖
, 𝛿
𝑗
)
󵄨󵄨󵄨󵄨󵄨
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚,

K =
max {𝜎

𝑖𝑗
}

min {𝜎
𝑖𝑗
}
.

(14)

Theorem 2. If𝐴 = 𝐵𝐶𝑛,𝑚
−1,−1

(𝑎
11
, . . . , 𝑎

1𝑚
, . . . , 𝑎

𝑛1
, . . . , 𝑎

𝑛𝑚
) is a

block skew circulantmatrix with skew circulant blocks, then the
singular values of matrix 𝐴 are 𝜎

11
, . . . , 𝜎

1𝑚
, 𝜎
21
, . . . , 𝜎

2𝑚
, . . . ,

𝜎
𝑛1
, . . . , 𝜎

𝑛𝑚
.
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Proof. Obviously, the matrix 𝐴 has a form as (1) and the
conjugate transpose of 𝐴 is

𝐴
∗
=

(
(
(
(

(

𝐴
∗

1
−𝐴∗
𝑛

⋅ ⋅ ⋅ −𝐴∗
3

−𝐴∗
2

𝐴∗
2

𝐴∗
1

d
... −𝐴∗

3

... 𝐴∗
2

d −𝐴∗
𝑛

...

𝐴∗
𝑛−1

... d 𝐴∗
1

−𝐴∗
𝑛

𝐴∗
𝑛

𝐴∗
𝑛−1

⋅ ⋅ ⋅ 𝐴∗
2

𝐴∗
1

)
)
)
)

)

. (15)

Through a direct calculation, we can get 𝐴𝐴∗ = 𝐴∗𝐴, and
thatmeans that𝐴 is a normalmatrix. By usingTheorem 2.5.4

in [22], we know that 𝐴 is unitarily diagonalizable. That is,
there is a unitary matrix U ∈ 𝑀

𝑚𝑛
such that

U
∗
𝐴U = Λ = diag (𝜆

11
, . . . , 𝜆

1𝑚
, . . . , 𝜆

𝑛1
, . . . , 𝜆

𝑛𝑚
) . (16)

where 𝜆
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚) are the eigenvalues

of 𝐴. Taking a conjugate transpose at both sides of (16),

U
∗
𝐴
∗
U = Λ

∗
= diag (𝜆

11
, . . . , 𝜆

1𝑚
, . . . , 𝜆

𝑛1
, . . . , 𝜆

𝑛𝑚
) , (17)

and so, we have

U
∗
(𝐴
∗
𝐴)U

= (U
∗
𝐴
∗
U) (U

∗
𝐴U)

= diag (󵄨󵄨󵄨󵄨𝜆11
󵄨󵄨󵄨󵄨
2

, . . . ,
󵄨󵄨󵄨󵄨𝜆1𝑚

󵄨󵄨󵄨󵄨
2

, . . . ,
󵄨󵄨󵄨󵄨𝜆𝑛1

󵄨󵄨󵄨󵄨
2

, . . . ,
󵄨󵄨󵄨󵄨𝜆𝑛𝑚

󵄨󵄨󵄨󵄨
2

) .

(18)

Hence, for any 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, the eigenvalues
of matrix 𝐴∗𝐴 are

𝜆
𝑖𝑗
(𝐴
∗
𝐴) =

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

2

. (19)

Therefore, we can get the singular value of 𝐴 as

𝜎
𝑖𝑗
(𝐴) = [𝜆

𝑖𝑗
(𝐴
∗
𝐴)]
1/2

=
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
. (20)

Recalling (13) and (14), the proof is completed.

Since the spectral norm of matrix 𝐴 is defined as

‖𝐴‖2 = max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

[𝜆
𝑖𝑗
(𝐴
∗
𝐴)]
1/2

, (21)

by usingTheorem 2, we have the following corollary.

Corollary 3. Let 𝐴 = 𝐵𝐶𝑛,𝑚
−1,−1

(𝑎
11
, . . . , 𝑎

1𝑚
, . . . , 𝑎

𝑛1
, . . . , 𝑎

𝑛𝑚
)

be a block skew circulant matrix with skew circulant blocks;
then the spectral norm of matrix 𝐴 is

‖𝐴‖2 = max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎
𝑖𝑗
} . (22)

By using equations (10) and (11) in [12], we can express the
matrix 𝐶

𝑛×𝑛
and 𝐶

𝑚×𝑚
as

𝐶
𝑛×𝑛

= 𝑄
𝑛
𝐶
𝑛0
𝑄
𝑇

𝑛
, 𝐶

𝑚×𝑚
= 𝑄
𝑚
𝐶
𝑚0

𝑄
𝑇

𝑚
, (23)

where

𝐶
𝑛0

= (

𝐶
11

𝐶
22

d
𝐶
𝑡𝑡

),

𝐶
𝑚0

= (

𝐷
11

𝐷
22

d
𝐷
𝑠𝑠

),

𝐶
ℎℎ

= (
cos 𝜃
ℎ

sin 𝜃
ℎ

− sin 𝜃
ℎ

cos 𝜃
ℎ

) , ℎ = 1, 2, . . . , 𝑡.

𝐷
𝑟𝑟
= (

cos 𝜃
𝑟

sin 𝜃
𝑟

− sin 𝜃
𝑟
cos 𝜃
𝑟

) , 𝑟 = 1, 2, . . . , 𝑠.

𝑡 =

{{{

{{{

{

𝑛

2
, when 𝑛 is even,

𝑛 − 1

2
+ 1, when 𝑛 is odd,

𝑠 =

{{{

{{{

{

𝑚

2
, when 𝑚 is even,

𝑚 − 1

2
+ 1, when 𝑚 is odd.

(24)

So, we can get

𝐴 = Q(

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝑎
𝑘𝑙
𝐶
𝑘−1

𝑛0
⊗ 𝐶
𝑙−1

𝑚0
)Q
𝑇
, (25)

whereQ = (𝑄
𝑛
⊗ 𝐼
𝑚
)(𝐼
𝑛
⊗ 𝑄
𝑚
),

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝑎
𝑘𝑙
𝐶
𝑘−1

𝑛0
⊗ 𝐶
𝑙−1

𝑚0
= (

𝐵
11

d
𝐵
𝑡𝑡

) , (26)

and 𝐵
𝑝𝑝

= ∑
𝑛

𝑘=1
∑
𝑚

𝑙=1
𝑎
𝑘𝑙
𝐶
𝑝𝑝

⊗ 𝐶𝑙−1
𝑚0

, 𝑝 = 1, 2, . . . , 𝑡.
Let Δ𝐴, Δ𝑏 be the perturbation of the coefficient matrix

𝐴 and vector 𝑏, respectively, where Δ𝐴 = BC𝑛,𝑚
−1,−1

(𝛿𝑎
11
, . . . ,

𝛿𝑎
1𝑚

, . . . , 𝛿𝑎
𝑛1
, . . . , 𝛿𝑎

𝑛𝑚
) is a block skew circulant matrix

with skew circulant blocks, has the form as follows:

Δ𝐴 = (

Δ𝐴
1

⋅ ⋅ ⋅ Δ𝐴
𝑛−1

Δ𝐴
𝑛

−Δ𝐴
𝑛

Δ𝐴
1

⋅ ⋅ ⋅ Δ𝐴
𝑛−1

... d d
...

−Δ𝐴
2

⋅ ⋅ ⋅ −Δ𝐴
𝑛

Δ𝐴
1

),

Δ𝐴
𝑘
= (

𝛿𝑎
𝑘1

⋅ ⋅ ⋅ 𝛿𝑎
𝑘(𝑚−1)

𝛿𝑎
𝑘𝑚

−𝛿𝑎
𝑘𝑛

𝛿𝑎
𝑘1

⋅ ⋅ ⋅ 𝛿𝑎
𝑘(𝑚−1)

... d d
...

−𝛿𝑎
𝑘2

⋅ ⋅ ⋅ −𝛿𝑎
𝑘𝑚

𝛿𝑎
𝑘1

),

𝑘 = 1, 2, . . . , 𝑛.

(27)
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Let

𝐴 = 𝐴 + Δ𝐴, 𝑏̂ = 𝑏 + Δ𝑏,

𝑓 (𝜀
𝑖
, 𝛿
𝑗
) =

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

(𝑎
𝑘𝑙
+ 𝛿𝑎
𝑘𝑙
) 𝜀
𝑘−1

𝑖
𝛿
𝑙−1

𝑗
.

(28)

If
𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

󵄨󵄨󵄨󵄨𝛿𝑎𝑘𝑙
󵄨󵄨󵄨󵄨 < min
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎
𝑖𝑗
} , (29)

then

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜀
𝑖
, 𝛿
𝑗
)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

(𝑎
𝑘𝑙
+ 𝛿𝑎
𝑘𝑙
) 𝜀
𝑘−1

𝑖
𝛿
𝑘−1

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝑎
𝑘𝑙
𝜀
𝑘−1

𝑖
𝛿
𝑙−1

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

󵄨󵄨󵄨󵄨𝛿𝑎𝑘𝑙
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨
𝑘−1󵄨󵄨󵄨󵄨󵄨

𝛿
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑙−1

≥ min
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎
𝑖𝑗
} −

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

󵄨󵄨󵄨󵄨𝛿𝑎𝑘𝑙
󵄨󵄨󵄨󵄨 > 0.

(30)

By using Lemma 1, we know that𝐴 is an invertiblematrix. Let

𝜎min = min
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎
𝑖𝑗
} , Δ =

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

󵄨󵄨󵄨󵄨𝛿𝑎𝑘𝑙
󵄨󵄨󵄨󵄨 . (31)

By 𝐴𝑥 = 𝑏, 𝐴𝑥 = 𝑏̂, we get

𝑥 − 𝑥 = 𝐴
−1
𝑏̂ − 𝐴
−1
𝑏

= 𝐴
−1

(𝑏 + 𝛿𝑏) − 𝐴
−1
𝑏

= 𝐴
−1
𝛿𝑏 + (𝐴

−1
− 𝐴
−1
) 𝑏

= 𝐴
−1
𝛿𝑏 + (𝐴

−1
− 𝐴
−1
)𝐴𝑥

= 𝐴
−1
𝛿𝑏 + 𝐴

−1
(𝐴 − 𝐴) 𝑥

‖𝑥 − 𝑥‖2 ≤
󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩2

‖𝛿𝑏‖2 +
󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝐴

󵄩󵄩󵄩󵄩󵄩2
‖𝑥‖2.

(32)

Since 𝐴−1 ⋅ 𝐴 = 𝐼
𝑚𝑛

and ‖𝐼
𝑚𝑛

‖
2

= 1, so we have
‖𝐴−1‖

2
‖𝐴‖
2
≤ 1. Besides, we know that

󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩2

= max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜀
𝑖
, 𝛿
𝑗
)
󵄨󵄨󵄨󵄨󵄨
≥ 𝜎min − Δ > 0. (33)

So, we obtain

󵄩󵄩󵄩󵄩󵄩
𝐴
−1󵄩󵄩󵄩󵄩󵄩2

≤
1

󵄩󵄩󵄩󵄩󵄩
𝐴
󵄩󵄩󵄩󵄩󵄩2

≤
1

𝜎min − Δ
. (34)

Hence,

‖𝑥 − 𝑥‖2 ≤
‖𝛿𝑏‖2

𝜎min − Δ
+

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝐴

󵄩󵄩󵄩󵄩󵄩2
‖𝑥‖2

𝜎min − Δ
,

‖𝑥 − 𝑥‖2

‖𝑥‖2
≤

‖𝛿𝑏‖2

(𝜎min − Δ) ‖𝑥‖2
+

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝐴

󵄩󵄩󵄩󵄩󵄩2

𝜎min − Δ

=
‖𝐴‖2

𝜎min − Δ
[

[

‖𝛿𝑏‖
2

‖𝐴‖2‖𝑥‖2
+

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝐴

󵄩󵄩󵄩󵄩󵄩2

‖𝐴‖2

]

]

≤
‖𝐴‖2

𝜎min − Δ
[

[

‖𝛿𝑏‖2

‖𝑏‖2
+

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝐴

󵄩󵄩󵄩󵄩󵄩2

‖𝐴‖2

]

]

,

(35)

where

‖𝐴‖2 = max
1≤𝑖≤𝑛

1≤𝑗≤𝑚

{𝜎
𝑖𝑗
} . (36)

Notice that 𝐴 − 𝐴 = Δ𝐴 is a block skew circulant matrix
with skew circulant blocks, and ‖𝐴 − 𝐴‖

2
= | − 1|‖𝐴 − 𝐴‖

2
=

‖𝐴 − 𝐴‖
2
. So, we get

󵄩󵄩󵄩󵄩󵄩
𝐴 − 𝐴

󵄩󵄩󵄩󵄩󵄩2
= max
1≤𝑗≤𝑛

1≤𝑗≤𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝛿𝑎
𝑘𝑙
𝜀
𝑘−1

𝑖
𝛿
𝑙−1

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max
1≤𝑗≤𝑛

1≤𝑗≤𝑚

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

󵄨󵄨󵄨󵄨𝛿𝑎𝑘𝑙
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜀𝑖
󵄨󵄨󵄨󵄨
𝑘−1󵄨󵄨󵄨󵄨󵄨

𝛿
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑙−1

=

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

󵄨󵄨󵄨󵄨𝛿𝑎𝑘𝑙
󵄨󵄨󵄨󵄨 = Δ.

(37)

Hence, we have the following theorem.

Theorem 4. Let 𝐴,𝐴, 𝛿𝑏, Δ, 𝜎min be defined as above. If Δ <

𝜎min, then

‖𝑥 − 𝑥‖2

‖𝑥‖2
≤

𝜎max
𝜎min − Δ

(
‖𝛿𝑏‖2

‖𝑏‖2
+

Δ

𝜎max
) , (38)

where

𝜎max = ‖𝐴‖2. (39)

Remark 5. From (38) and (39), the condition number K of
the block skew circulant linear system with skew circulant
blocks can be easily computed, as well as the bound of
perturbation (38).

3.2. Optimal Backward Perturbation Bound of the Block Skew
Circulant Linear System with Skew Circulant Blocks. Let 𝑥 be
an approximate solution to 𝐴𝑥 = 𝑏 and let

Ω ≡ {(Δ𝐴, Δ𝑏) | (𝐴 + Δ𝐴) 𝑥 = 𝑏 + Δ𝑏} ,

𝜂 (𝑥) ≡ inf
(Δ𝐴,Δ𝑏)∈Ω

‖Δ𝐴, Δ𝑏‖ ,

(𝐴 + Δ𝐴) 𝑥 = 𝑏 + Δ𝑏,

(40)
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which is equivalent to

(Δ𝐴, Δ𝑏) (
𝑥

−1
) = 𝑏 − 𝐴𝑥. (41)

Due to [14], we have

𝜂 (𝑥) =
‖𝑏 − 𝐴𝑥‖2

√1 + ‖𝑥‖
2

2

,

(‖ ‖ being any unitary invariant norm) .

(42)

Let 𝑥 be an approximate solution to 𝐴𝑥 = 𝑏, where 𝐴 is
defined in (1), as follows:

Ω ≡ {(Δ𝐴, Δ𝑏) | (𝐴 + Δ𝐴) 𝑥 = 𝑏 + Δ𝑏,

Δ𝐴 is a block skew circulant matrix

with skew circulant blocks}

𝜂 (𝑥) ≡ inf
(Δ𝐴,Δ𝑏)∈Ω

{‖Δ𝐴, Δ𝑏‖𝐹} .

(43)

Then Ω ̸= 𝜙 (such as Δ𝐴 = 0 is a block skew circulant matrix
with skew circulant blocks, Δ𝑏 = 𝐴𝑥 − 𝑏)

𝜂
2
(𝑥) = inf

(Δ𝐴,Δ𝑏)∈Ω

{‖Δ𝐴‖
2

𝐹
+ ‖Δ𝐴𝑥 + 𝐴𝑥 − 𝑏‖

2

𝐹
} . (44)

Since

‖Δ𝐴‖
2

𝐹
= 𝑚𝑛

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

(𝛿𝑎
𝑘𝑙
)
2

,

Δ𝐴 = Q(

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝛿𝑎
𝑘𝑙
𝐶
𝑘−1

𝑛0
⊗ 𝐶
𝑙−1

𝑚0
)Q
𝑇
,

(45)

so

‖Δ𝐴𝑥 + 𝐴𝑥 − 𝑏‖
2

𝐹

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

Q(

𝛿𝐵
11

d
𝛿𝐵
𝑡𝑡

)Q
𝑇
𝑥 + 𝐴𝑥 − 𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝛿𝐵
11

d
𝛿𝐵
𝑡𝑡

)(

𝑥
(0)

1

...
𝑥(0)
𝑡

)− 𝑟
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
(

(

(

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝛿𝑎
𝑘𝑙
𝐶𝑘−1
11

⊗ 𝐶𝑙−1
𝑚0

)𝑥
(0)

1

...

(

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

𝛿𝑎
𝑘𝑙
𝐶
𝑘−1

𝑡𝑡
⊗ 𝐶
𝑙−1

𝑚0
)𝑥
(0)

𝑡

)
)

)

− 𝑟
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝐺
0
(𝛿𝑎
11
, . . . , 𝛿𝑎

1𝑚
, . . . , 𝛿𝑎

𝑛1
, . . . , 𝛿𝑎

𝑛𝑚
)
𝑇

− 𝑟
0

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

,

(46)

where 𝑟
0

= Q𝑇(𝑏 − 𝐴𝑥), Q𝑇𝑥 = (

𝑥
(0)
1

...
𝑥
(0)
𝑡

), 𝐺
0

=

(𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑛
) ∈ R
𝑚𝑛×𝑚𝑛

, and

𝑅
𝑘
= (

𝑃
1,𝑘,1

⋅ ⋅ ⋅ 𝑃
1,𝑘,𝑚

... d
...

𝑃
𝑡,𝑘,1

⋅ ⋅ ⋅ 𝑃
𝑡,𝑘,𝑚

),

𝑃
𝑝,𝑘,𝑙

= 𝐶
𝑘−1

𝑝𝑝
⊗ 𝐶
𝑙−1

𝑚0
𝑥
(0)

𝑝
,

(47)

𝑝 = 1, 2, . . . , 𝑡, 𝑘 = 1, 2, . . . , 𝑛, and 𝑙 = 1, 2, . . . , 𝑚.
Let

𝑓 (𝛿𝑎
11
, . . . , 𝛿𝑎

𝑛𝑚
)

= 𝑚𝑛

𝑛

∑
𝑘=1

𝑚

∑
𝑙=1

(𝛿𝑎
𝑘𝑙
)
2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐺
0
(

𝛿𝑎
11

...
𝛿𝑎
𝑛𝑚

)− 𝑟
0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

,

(48)

then

𝜕𝑓

𝜕𝛿𝑎
𝑘𝑙

= 0, (49)

which is equivalent to

(2𝑚𝑛𝐼
𝑚𝑛

+ 2𝐺
𝑇

0
𝐺
0
)(

𝛿𝑎
11

...
𝛿𝑎
𝑛𝑚

)− 2𝐺
𝑇

0
𝑟
0
= 0,

𝜕2𝑓

𝜕(𝛿𝑎
𝑘𝑙
)
2
= 2𝑚𝑛𝐼

𝑚𝑛
+ 2𝐺
𝑇

0
𝐺
0
> 0.

(50)

Hence 𝑓 is a convex function about (𝛿𝑎
11
, . . . , 𝛿𝑎

𝑛𝑚
), and the

point of minimal value is

(

𝛿𝑎
11

...
𝛿𝑎
𝑛𝑚

) = (𝑚𝑛𝐼
𝑚𝑛

+ 𝐺
𝑇

0
𝐺
0
)
−1

𝐺
𝑇

0
𝑟
0
. (51)

Substituting it into (48), we can get the following.

Theorem 6. Let 𝑟
0
and 𝐺

0
be defined as above; then we have

𝜂(𝑥)
2
= 𝑚𝑛𝑟

𝑇

0
𝐺
0
(𝑚𝑛𝐼
𝑚𝑛

+ 𝐺
𝑇

0
𝐺
0
)
−2

𝐺
𝑇

0
𝑟
0

+
󵄩󵄩󵄩󵄩󵄩󵄩
[𝐺
0
(𝑚𝑛𝐼
𝑚𝑛

+ 𝐺
𝑇

0
𝐺
0
)
−1

𝐺
𝑇

0
− 𝐼
𝑚𝑛

] 𝑟
0

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

.

(52)
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Let 𝐺
0

= 𝑈Σ𝑉𝑇 be the singular value decomposition
of 𝐺
0
, where 𝑈 and 𝑉 are real orthogonal matrices, Σ =

diag(𝜎󸀠
1
, . . . , 𝜎󸀠

𝑛𝑚
), 𝜎󸀠
𝑗
≥ 0 (𝑗 = 1, 2, . . . , 𝑛𝑚), so

𝜂(𝑥)
2
= 𝑚𝑛𝑟

𝑇

0
𝑈Σ𝑉
𝑇
(𝑚𝑛𝐼
𝑚𝑛

+ Σ
2
)
−2

𝑉Σ𝑈
𝑇
𝑟
0

+
󵄩󵄩󵄩󵄩󵄩󵄩
[𝑈Σ𝑉

𝑇
(𝑚𝑛𝐼
𝑚𝑛

+ Σ
2
)
−1

𝑉Σ𝑈
𝑇
− 𝐼
𝑚𝑛

] 𝑟
0

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

= 𝑚𝑛𝑟
𝑇

1
Σ(𝑚𝑛𝐼

𝑚𝑛
+ Σ
2
)
−2

Σ𝑟
1

+
󵄩󵄩󵄩󵄩󵄩󵄩
[Σ(𝑚𝑛𝐼

𝑚𝑛
+ Σ
2
)
−1

Σ − 𝐼
𝑚𝑛

] 𝑟
0

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

= 𝑚𝑛𝑟
𝑇

1
Σ(𝑚𝑛𝐼

𝑚𝑛
+ Σ
2
)
−2

Σ𝑟
1

+
󵄩󵄩󵄩󵄩󵄩󵄩
[Σ(𝑚𝑛𝐼

𝑚𝑛
+ Σ
2
)
−1

Σ − 𝐼
𝑚𝑛

] 𝑟
1

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

= 𝑚𝑛𝑟
𝑇

1
Σ(𝑚𝑛𝐼

𝑚𝑛
+ Σ
2
)
−2

Σ𝑟
1

+ 𝑚
2
𝑛
2
𝑟
𝑇

1
(𝑚𝑛𝐼
𝑚𝑛

+ Σ
2
)
−2

𝑟
1

= 𝑟
𝑇

1
diag (𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑚𝑛
) 𝑟
1
,

(53)

where 𝑟
1
= 𝑈𝑇𝑟

0
, 𝑑
𝑗
= (𝑚𝑛𝜎󸀠2

𝑗
+ 𝑚2𝑛2)/(𝑚𝑛 + 𝜎󸀠2

𝑗
)
2

= 𝑚𝑛/

(𝑚𝑛 + 𝜎󸀠2
𝑗
), 𝑗 = 1, 2, . . . , 𝑚𝑛.

Remark 7. By 𝜎2
𝑗
≤ ‖𝐺
0
‖
2

𝐹
= 𝑚𝑛‖𝑥‖

2

2
, we get 1 + 𝜎󸀠2

𝑗
/𝑚𝑛 ≤

1 + ‖𝑥‖
2

2
, and hence𝑚𝑛/(𝑚𝑛 + 𝜎󸀠2

𝑗
) ≥ 1/(1 + ‖𝑥‖

2

2
).

Algorithm 8. Consider the following.

Step 1. Form the block style spectral decomposition of the
matrix 𝐶

𝑛×𝑛
and 𝐶

𝑚×𝑚
,

𝐶
𝑛×𝑛

= 𝑄
𝑛
(

𝐶
11

𝐶
22

d
𝐶
𝑡𝑡

)𝑄
𝑇

𝑛
,

𝐶
𝑚×𝑚

= 𝑄
𝑚
(

𝐷
11

𝐷
22

d
𝐷
𝑠𝑠

)𝑄
𝑇

𝑚
.

(54)

Step 2. ComputeQ = (𝑄
𝑛
⊗ 𝐼
𝑚
)(𝐼
𝑛
⊗ 𝑄
𝑚
).

Step 3. Compute 𝑟 = 𝑏 − 𝐴𝑥.

Step 4. Compute 𝑟
0
= Q𝑇𝑟.

Step 5. ComputeQ𝑇𝑥 = (𝑥
(0)

1
, . . . , 𝑥(0)

𝑡
)
𝑇

.

Step 6. Form 𝐺
0
.

Step 7. Compute 𝜂2(𝑥).

Table 1

𝜖 K 𝜂
1
(𝑥) 𝜂

2
(𝑥)

Case 0 0 6.472 0 0
Case 1 0.0694 6.193 0.1252 0.2487
Case 2 0.0075 6.438 0.0127 0.0223
Case 3 7.5122 × 10−4 6.468 0.0013 0.0022

3.3. Numerical Example. In this section, we give a simple
numerical example to verify the conclusions above. Suppose
that 𝑛 = 3,𝑚 = 2 in the following example.

If the coefficient matrix of block skew circulant linear
system with skew circulant blocks is 𝐴 = BC3,2

−1,−1
(1, 2, 4.5,

3, 4, 2.5), and the constant vector 𝑏 = (1, 2, 1, 0, 3, 4)
𝑇. Now,

for comparative analysis, we give three perturbations in the
following:

Δ𝐴
1
= BC3,2
−1,−1

(0.01, 0.03, 0.02, −0.05, −0.03, 0.01) ,

Δ𝑏
1
= (0.1, 0.3, 0, −0.2, 0.01, 0.04)

𝑇
,

Δ𝐴
2
= BC3,2
−1,−1

(0.01, 0.01, 0.01, 0.01, 0.01, 0.01) ,

Δ𝑏
2
= (0.01, 0.01, 0.01, 0.01, 0.01, 0.01)

𝑇
,

Δ𝐴
3
= BC3,2
−1,−1

(0.001, 0.001, 0.001, 0.001, 0.001, 0.001) ,

Δ𝑏
3
= (0.001, 0.001, 0.001, 0.001, 0.001, 0.001)

𝑇
,

(55)

then by equation 𝐴𝑥 = 𝑏̂, we get the approximate solution of
𝐴𝑥 = 𝑏 correspondingly as

𝑥 = (

(

−1.0505,

0.6490,

1.0280,

−1.1028,

−0.9215,

1.2482

)

)

, 𝑥
1
= (

(

−1.1526,

0.6358,

1.1192,

−1.0611,

−1.0158,

1.2286

)

)

,

𝑥
2
= (

(

−1.0396,

0.6473,

1.0178,

−1.1003,

−0.9109,

1.2484

)

)

, 𝑥
3
= (

(

−1.0494,

0.6489,

1.0270,

−1.1025,

−0.9204,

1.2482

)

)

,

(56)

where 𝑥 is the solution of 𝐴𝑥 = 𝑏 and 𝑥
𝑖
(𝑖 = 1, 2, 3) is the

solution of (𝐴 + Δ𝐴
𝑖
)𝑥 = 𝑏 + Δ𝑏.

According to the Algorithm, we obtain Table 1, where 𝜖

means relative error of block skew circulant linear system
with skew circulant blocks, K = max{𝜎

𝑖𝑗
}/min{𝜎

𝑖𝑗
} is the

condition number, 𝜂
1
(𝑥) = ‖𝑏 − 𝐴𝑥‖

2
/√1 + ‖𝑥‖

2

2
and 𝜂

2
are

obtained from the Algorithm.
From the tabular, we know that the conclusions above are

right and the Algorithm is efficient.
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4. Conclusion

The related problems of block skew circulant matrix with
skew circulant blocks are considered in this paper. We not
only present block style spectral decomposition and singular
value, but also study backward perturbation analysis for
the block skew circulant linear system with skew circulant
blocks. The reason why we focus our attentions on block
skew circulant matrix with skew circulant blocks is to explore
the application of block skew circulant matrix with skew
circulant blocks in the related field of medicine and real-
time tracking. On the basis of existing application situation
[23], we conjecture that SVD decomposition of block skew
circulant matrix with skew circulant blocks will play an
important role in CT-perfusion imaging of human brain.
On the basis of method [7] and ideas of [24], we will
exploit real-time tracking with kernel matrix of block skew
circulant matrix with skew circulant blocks structure. The
circulant singular value decomposition (cSVD) techniques
with a block-circulant deconvolution matrix [25–29] were
used to perform the deconvolution calculation to obtain
the [rCBF.𝑅(𝑡)] curve [25, 26]. The maximum value of the
[rCBF.𝑅(𝑡)] curve was used as the rCBF. We will exploit the
skew circulant singular value decomposition (scSVD) tech-
niques of a block skew circulant matrix with skew circulant
blocks deconvolution matrix to obtain the [rCBF.𝑅(𝑡)] curve.
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