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The Heisenberg uncertainty principle of harmonic analysis plays an important role in modern applied mathematical applications,
signal processing and physics community. The generalizations and extensions of the classical uncertainty principle to the novel
transforms are becoming one of themost hottest research topics recently. In this paper, we firstly obtain the uncertainty principle for
Wigner-Ville distribution and ambiguity function associate with the linear canonical transform, and then the 𝑛-dimensional cases
are investigated in detail based on the proposed Heisenberg uncertainty principle of the 𝑛-dimensional linear canonical transform.

1. Introduction

The Heisenberg uncertainty principle, proposed by the Ger-
man physicist Heisenberg in 1927, is a basic principle of
quantum mechanics, and it means that the position and the
momentum of a particle cannot be determined simultane-
ously in quantum mechanical systems. On the mathematical
side, we can describe the Heisenberg uncertainty principle
as the product of the variance of 𝑓 and F(𝑓) (the Fourier
transform of 𝑓) which cannot be infinitely small. We know
that the variance of 𝑓 and F(𝑓) represents, respectively, the
temporal resolution and the frequency resolution of a signal;
we can therefore obtain that the temporal resolution and
the frequency resolution of any signal cannot be infinitely
improved simultaneously in signal processing community.

The linear canonical transform (LCT) is the general-
ization of the traditional Fourier transform (FT) and the
fractional Fourier transform (FRFT), which is used originally
for solving differential equations and optical systems analysis
[1]. With the rapid development of the fractional Fourier
transform, the LCT has been paid more and more attention
in applied mathematics and signal processing community.
The filtering theory [2], the frame theory [3], the sampling
theory [4–6], the discrete algorithms [7, 8], the Wigner-Ville
distribution in the LCT domain (WDL) [9], and the ambigu-
ity functions in the LCT domain [10] have been investigated

recently. The LCT can be used to radar signal processing,
communication signal processing, optical signal processing,
image encryption, denoising, and so on.

The Heisenberg uncertainty principle associated with
one-dimensional FT [11] plays an important role in modern
applied mathematical community, and the other kinds of
the uncertainty principles, such as the uncertainty principle
associated with the classical WVD [11], are well investigated
and studied.TheHeisenberg uncertainty principle associated
with the one-dimensional LCT for real signals is derived
firstly in [12], and then Zhao et al. derived the similar results
for complex signals [13]. In addition, in [14, 15], Xu et al.
derived uncertainty principle of the LCT in three different
forms. Recently, based on the relationship of the LCT and
the FT, Heisenberg uncertainty principle for the windowed
LCT [16] and the two-dimensional nonseparable LCT [17]
have been obtained. On the other hand, with the increasing
dimension, the calculation of the 𝑛-dimensional Heisenberg
uncertainty principle of the LCT has not been well known.

In this paper, we investigate the uncertainty principle
for the Wiger-Ville distribution associated with the linear
canonical transform (WDL) in detail. Firstly, we obtain the
uncertainty principle of the one-dimensional WDL based on
theMoyal identical equation.Then, we derive the Heisenberg
uncertainty principle of the 𝑛-dimensional LCT and obtain
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the uncertainty principle of the 𝑛-dimensional WDL. The
paper is organized as follows. Section 2 introduces some
general definitions and gives some classical Heisenberg
uncertainty principles. In Section 3, we calculate the uncer-
tainty principle of the WDL. In Section 4, we calculate the
Heisenberg uncertainty principle of the 𝑛-dimensional LCT
and obtain the uncertainty principle of the 𝑛-dimensional
WDL.

2. Preliminaries

Before we proceed, some important definitions and results
related to the LCT and the Heisenberg uncertainty principles
are reviewed in this section.

2.1. The Linear Canonical Transforms (LCT). For each 2𝑛 ×
2𝑛 symplectic matrix 𝑀 = (

𝐴 𝐵

𝐶 𝐷
), where 𝑀⊺

𝐽𝑀 = 𝐽, 𝐽 =
(
0 𝐼
𝑛

−𝐼
𝑛
0
), the 𝑛-dimensional LCT [18, 19] is defined as follows:

̂
𝑓 (𝑞) = [C (𝑀)𝑓] (𝑞) = ∫

R𝑛
𝐶 (𝑀) (𝑞, 𝑞

󸀠
) 𝑓 (𝑞

󸀠
) 𝑑𝑞

󸀠
, (1)

where

𝐶 (𝑀) (𝑞, 𝑞
󸀠
) =

𝑒
(−𝑖𝑛𝜋/4)

(√2𝜋)

𝑛

√det (𝐵)

⋅ 𝑒
𝑖(𝑞
𝑇

𝐷𝐵
−1

𝑞/2−𝑞
𝑇

𝐵
𝑇
−1

𝑞
󸀠

+𝑞
󸀠
𝑇

𝐵
−1

𝐴𝑞
󸀠

/2)
.

(2)

And the inverse transform is

𝑓 (𝑞
󸀠
) = [C (𝑀

−1
)
̂
𝑓] (𝑞

󸀠
) = ∫

R𝑛
𝐶(𝑀

−1
)

∗

(𝑞, 𝑞
󸀠
)
̂
𝑓 (𝑞) 𝑑𝑞.

(3)

We frequently use the one-dimensional LCT in signal
processing [2] as

𝐹
𝑎,𝑏,𝑐,𝑑 (

𝑢)

= [C (𝑀)𝑓 (𝑡)] (𝑢)

=

{
{

{
{

{

∫

∞

−∞

𝑓 (𝑡)√
1

𝑖2𝜋𝑏

𝑒
(𝑖/2)((𝑎/𝑏)𝑡

2

−(2/𝑏)𝑢𝑡+(𝑑/𝑏)𝑢
2

)
𝑑𝑡, 𝑏 ̸= 0

√𝑑𝑒
(𝑖/2)𝑐𝑑𝑢

2

𝑓 (𝑑𝑢) , 𝑏 = 0,

(4)

where𝑀 = (
𝑎 𝑏

𝑐 𝑑
) is the parameter matrix of LCT satisfying

𝑎𝑑 − 𝑏𝑐 = 1; that is, det(𝑀) = 1.
The inverse transform of the one-dimensional LCT

(ILCT) is given by the LCT having parameter 𝐴−1 =

(
𝑑 −𝑏

−𝑐 𝑎
). Hence, the original signal 𝑥(𝑡) can be derived from

C(𝑀)[𝑓](𝑢) via

𝑓 (𝑡) = C (𝑀
−1
) [C (𝑀) [𝑓] (𝑢)] (𝑡)

= √
1

𝑖2𝜋𝑏

𝑒
(−𝑖𝑎/2𝑏)𝑡

2

× ∫

+∞

−∞

C (𝑀) [𝑓] (𝑢) 𝑒
−𝑖(𝑑/2𝑏)𝑢

2

× 𝑒
𝑖(1/𝑏)𝑢𝑡

𝑑𝑢.

(5)

For more detailed definitions and properties of the LCT,
one can refer to [20, 21].

2.2. The Wigner-Ville Distributions (WVD). The WVD and
the ambiguity function (AF) are important tools for time-
frequency analysis in the classical Fourier domain.TheWVD
of the signals 𝑓(𝑡) and 𝑔(𝑡) is defined as [11, 22]

𝑊
𝑓,𝑔 (
𝑡, 𝑢) = ∫

R

𝑓(𝑡 +

𝜏

2

) 𝑔
∗
(𝑡 −

𝜏

2

) 𝑒
−𝑖2𝜋𝑢𝜏

𝑑𝜏. (6)

And the AF of the signals 𝑓(𝑡) and 𝑔(𝑡) is defined as

AF
𝑓,𝑔 (
𝑡, 𝑢) = ∫

R

𝑓(𝑡 +

𝜏

2

) 𝑔
∗
(𝑡 −

𝜏

2

) 𝑒
𝑖2𝜋𝑢𝑡

𝑑𝑡. (7)

Based on the above definition, Pei and Ding [23] inves-
tigated the WVD and AF of the signal 𝐹

𝑎,𝑏,𝑐,𝑑
(𝑢), and Zhao

et al. [24] investigated the AF associated with LCT, proposed
the following AF in the LCT domain, and gave the following
definition:

AF(2)
𝐹
𝑎,𝑏,𝑐,𝑑

(𝑡, 𝑢) = ∫

R

𝐹
𝑎,𝑏,𝑐,𝑑

(𝑡 +

𝜏

2

)𝐹
∗

𝑎,𝑏,𝑐,𝑑
(𝑡 −

𝜏

2

) 𝑒
−𝑖2𝜋𝑢𝑡

𝑑𝑡.

(8)

Different from the above definition of the WVD associ-
ated with the LCT, Bai et al. [9] proposed another kind of
definition named theWDL.We have the following definition:

𝑊
𝑓

𝑀
(𝑡, 𝑢)

= √
1

2𝑖𝜋𝑏

∫

R

𝑓(𝑡 +

𝜏

2

)𝑓
∗
(𝑡 −

𝜏

2

) 𝑒
(𝑖/2𝑏)(𝑑𝑢

2

−2𝑢𝜏+𝑎𝜏
2

)
𝑑𝜏,

(9)

where𝑀 = (
𝑎 𝑏

𝑐 𝑑
), 𝑎𝑑−𝑏𝑐 = 1.Then, the 𝑛-dimensionalWDL

is

𝑊
𝑓

𝑀
(𝑡, 𝑢) = ∫

R𝑛
𝑓(𝑡 +

𝜏

2

)𝑓
∗
(𝑡 −

𝜏

2

)𝐶 (𝑀) (𝑢, 𝜏) 𝑑𝜏,

(10)

where 𝐶(𝑀)(𝑢, 𝜏) is the integral kernel of the 𝑛-dimensional
LCT.

The AF associated with the linear canonical transform
(AFL) [10] is

AFL𝑓
𝑀
(𝑡, 𝑢)

= √
1

2𝑖𝜋𝑏

∫

R

𝑓(𝑡 +

𝜏

2

)𝑓
∗
(𝑡 −

𝜏

2

) 𝑒
(𝑖/2𝑏)(𝑑𝑢

2

−2𝑢𝑡+𝑎𝑡
2

)
𝑑𝑡,

(11)

where𝑀 = (
𝑎 𝑏

𝑐 𝑑
), 𝑎𝑑 − 𝑏𝑐 = 1.

For more knowledge of the WVD and the wavelet
transforms, one can refer to [22, 25, 26].

2.3.TheHeisenbergUncertainty Principles. In this subsection,
we review some Heisenberg uncertainty principles. First, the
well-known Heisenberg uncertainty principle of the FT [11]
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is that the product of the variance of 𝑓(𝑡) and the variance
of F(𝑢) = (2𝜋)

−1/2
∫
R
𝑓(𝑡)𝑒

−𝑖𝑡𝑢
𝑑𝑡 is not infinitely small.

Suppose that

Δ
2

𝑡
=

(∫
R
(𝑡 − 𝑡

0
)
2󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡)

(∫
R

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡)

, (12)

where 𝑡
0
= (∫

R
𝑡|𝑓(𝑡)|

2
𝑑𝑡)/(∫

R
|𝑓(𝑡)|

2
𝑑𝑡), and

Δ
2

𝑢
=

(∫
R
(𝑢 − 𝑢

0
)
2
|F (𝑢)|

2
𝑑𝑢)

(∫
R
|F (𝑢)|

2
𝑑𝑢)

, (13)

where 𝑢
0
= (∫

R
𝑢|F(𝑢)|

2
𝑑𝑢)/(∫

R
|F(𝑢)|

2
𝑑𝑢).

Then we have

Δ
2

𝑡
⋅ Δ

2

𝑢
≥

1

4

. (14)

The equality holds if and only if𝑓(𝑡) = 𝐶𝑒−(𝑡−𝑡0)
2

/2 (where𝐶 ∈
R). The Heisenberg uncertainty principle is useful to analyze
the characteristics of a signal.

Based on the above results, in [11] the authors obtained the
Heisenberg uncertainty principle of the WVD, and we have

∫

R2
(|𝑥 − 𝑎|

2
+ |𝑢 − 𝑎|

2
)𝑊

𝑓,𝑓 (
𝑡, 𝑢) 𝑑𝑡 𝑑𝑢

= ∫

R
|𝑥 − 𝑎|

2󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡 + ∫

R
|𝑢 − 𝑏|

2󵄨󵄨
󵄨
󵄨
󵄨

̂
𝑓 (𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑢

≥

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

2

2𝜋

.

(15)

The equality holds if and only if 𝑓(𝑡) = 𝐶𝑒
2𝜋𝑖𝑢
0
𝑒
−(𝑡−𝑡
0
)
2

/2

(where 𝐶 ∈ R), and it means that 𝑊
𝑓,𝑓
(𝑡, 𝑢) cannot be too

sharply localized.
With the development of the LCT, the Heisenberg uncer-

tainty principle is also extended to the one-dimensional LCT
[15]. Suppose that

Δ
2

𝑡
=

(∫
R
(𝑡 − 𝑡

0
)
2󵄨
󵄨
󵄨
󵄨
𝑓(𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡)

(∫
R

󵄨
󵄨
󵄨
󵄨
𝑓(𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡)

, (16)

where 𝑡
0
= (∫

R
𝑡|𝑓(𝑡)|

2
𝑑𝑡)/(∫

R
|𝑓(𝑡)|

2
𝑑𝑡), and

Δ
2

𝑢
=

(∫
R
(𝑢 − 𝑢

0
)
2󵄨󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑢)

(∫
R

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑢)

, (17)

where 𝑢
0
= (∫

R
𝑢|
̂
𝑓(𝑢)|

2

𝑑𝑢)/(∫
R
|
̂
𝑓(𝑢)|

2

𝑑𝑢).
Then we have

Δ
2

𝑡
⋅ Δ

2

𝑢
≥

𝑏
2

4

. (18)

Furthermore, if 𝑓(𝑡) is a real signal, the Heisenberg uncer-
tainty principle of the LCT satisfies [12]

Δ
2

𝑡
⋅ Δ

2

𝑢
≥

𝑏
2

4

+ (𝑎Δ
2

𝑡
)

2

. (19)

In addition to the above uncertainty principles, there
are the logarithm uncertainty principle and the entropy
uncertainty principle, and one can find in [21].

3. The Main Results

3.1. Uncertainty Principles for the WDL and the AFL. It is
shown in [9] that the WDL can be looked as the generaliza-
tion of the classicalWVDand can also be thought as the affine
transform of the autocorrelation function of𝑓(𝑥) in the time-
frequency plane.The associatedMoyal identical equations are
obtained as [9]

∫

R2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 =
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

4

2

∫

R2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 =

󵄩
󵄩
󵄩
󵄩
󵄩

̂
𝑓

󵄩
󵄩
󵄩
󵄩
󵄩

4

2
.

(20)

We can regard𝑊𝑓

𝑀
(𝑡, 𝑢) as a function of the time domain

and𝑊𝑓

𝑀
(𝑡, 𝑢) as a function of the frequency domain, and then

based on the above equation we obtain the following.

Theorem 1. Suppose that 𝑓(𝑡) ∈ 𝐿2(R), ̂𝑓 = [C(𝑀)𝑓](𝑢),
𝑀 ∈ 𝑆𝐿(2) = 𝑆𝑝(2,R), and ‖𝑓‖

2
= 1. Then the following

inequality is satisfied:

∫

R2
(𝑡 − 𝑡

0
)
2󵄨󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 − 𝑢

0
)
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 ≥

|𝑏|

4

,

(21)

where 𝑡
0
= ∫

R
𝑡|𝑓(𝑡)|

2
𝑑𝑡 and 𝑢

0
= ∫

R
𝑢|
̂
𝑓(𝑢)|

2

𝑑𝑢.

Proof. Firstly, assume that 𝑡
0
= 0 and 𝑢

0
= 0; thus the ine-

quality becomes

∫

R2
𝑡
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 + ∫

R2
𝑢
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 ≥

|𝑏|

4

.

(22)

Depending on the parameter 𝑏, the LCT has two different
expressions. First, if 𝑏 ̸= 0, then we have

∫

R2
𝑡
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 + ∫

R2
𝑢
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R2

𝑡
2

2𝜋 |𝑏|

∫

R

𝑓(𝑡 +

𝜏

2

)𝑓
∗
(𝑡 −

𝜏

2

) 𝑒
(𝑖/2𝑏)(−2𝑢𝜏+𝑎𝜏

2

)
𝑑𝜏

× ∫

R

𝑓
∗
(𝑡 +

𝜏
󸀠

2

)𝑓(𝑡 −

𝜏
󸀠

2

) 𝑒
(𝑖/2𝑏)(2𝑢𝜏

󸀠

−𝑎(𝜏
󸀠

)
2

)
𝑑𝜏
󸀠
𝑑𝑡 𝑑𝑢

+ ∫

R2

𝑢
2

2𝜋 |𝑏|

∫

R

̂
𝑓(𝑢 +

𝜏

2

)
̂
𝑓
∗
(𝑢 −

𝜏

2

) 𝑒
(𝑖/2𝑏)(−2𝑡𝜏+𝑎𝜏

2

)
𝑑𝜏

× ∫

R

̂
𝑓
∗
(𝑢 +

𝜏
󸀠

2

)
̂
𝑓(𝑢 −

𝜏
󸀠

2

) 𝑒
(𝑖/2𝑏)(2𝑡𝜏

󸀠

−𝑎(𝜏
󸀠

)
2

)
𝑑𝜏
󸀠
𝑑𝑡 𝑑𝑢
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= ∫

R3

𝑡
2

2𝜋 |𝑏|

𝑓 (𝑡 +

𝜏

2

)𝑓
∗
(𝑡 −

𝜏

2

) 𝑒
(𝑖𝑎𝜏
2

/2𝑏)
𝑑𝜏

× 𝑓
∗
(𝑡 +

𝜏
󸀠

2

)𝑓(𝑡 −

𝜏
󸀠

2

) 𝑒
−𝑖𝑎(𝜏
󸀠

)
2

/2𝑏
𝑑𝜏
󸀠

× ∫

R

𝑒
𝑖𝑢(𝜏
󸀠

−𝜏)/𝑏
𝑑𝑢 𝑑𝑡

+ ∫

R3

𝑢
2

2𝜋 |𝑏|

̂
𝑓 (𝑢 +

𝜏

2

)
̂
𝑓
∗
(𝑢 −

𝜏

2

) 𝑒
𝑖𝑎𝜏
2

/2𝑏
𝑑𝜏

×
̂
𝑓
∗
(𝑢 +

𝜏
󸀠

2

)
̂
𝑓(𝑢 −

𝜏
󸀠

2

) 𝑒
−𝑖𝑎(𝜏
󸀠

)
2

/2𝑏
𝑑𝜏
󸀠

× ∫

R

𝑒
𝑖𝑡(𝜏
󸀠

−𝜏)/𝑏
𝑑𝑡 𝑑𝑢

= ∫

R3
𝑡
2
𝑓(𝑡 +

𝜏

2

)𝑓
∗
(𝑡 −

𝜏

2

) 𝑒
𝑖𝑎𝜏
2

/2𝑏

× 𝛿 (𝜏 − 𝜏
󸀠
) 𝑓

∗
(𝑡 +

𝜏
󸀠

2

)𝑓(𝑡 −

𝜏
󸀠

2

)

× 𝑒
−𝑖𝑎(𝜏
󸀠

)
2

/2𝑏
𝑑𝜏 𝑑𝜏

󸀠
𝑑𝑡

+ ∫

R3
𝑢
2 ̂
𝑓(𝑢 +

𝜏

2

)
̂
𝑓
∗
(𝑢 −

𝜏

2

) 𝑒
𝑖𝑎𝜏
2

/2𝑏

× 𝛿 (𝜏 − 𝜏
󸀠
)
̂
𝑓
∗
(𝑢 +

𝜏
󸀠

2

)
̂
𝑓(𝑢 −

𝜏
󸀠

2

)

× 𝑒
−𝑖𝑎(𝜏
󸀠

)
2

/2𝑏
𝑑𝜏 𝑑𝜏

󸀠
𝑑𝑢

= ∫

R2
𝑡
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
∗
(𝑡 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜏 𝑑𝑡

+ ∫

R2
𝑢
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓 (𝑢 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
∗
(𝑢 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜏 𝑑𝑢

= ∫

R2
(

𝑡 + 𝜏/2 + 𝑡 − 𝜏/2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
∗
(𝑡 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜏 𝑑𝑡

+ ∫

R2
(

𝑢 + 𝜏/2 + 𝑢 − 𝜏/2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓 (𝑢 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
∗
(𝑢 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜏 𝑑𝑢.

(23)
Let 𝑥 = 𝑢 + 𝜏/2 and let 𝑦 = 𝑢 − 𝜏/2, and then we get

∫

R2
𝑡
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 + ∫

R2
𝑢
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R2
(

𝑥 + 𝑦

2

)

2
󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑦

+ ∫

R2
(

𝑤 + V
2

)

2
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓 (V)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤𝑑V

= ∫

R2
(

𝑥
2
+ 𝑦

2
+ 2𝑥𝑦

4

)
󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑦

+ ∫

R2
(

𝑤
2
+ V2 + 2𝑤V
4

)

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓 (V)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤𝑑V

= ∫

R2

𝑥
2

4

󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑦

+ ∫

R2

𝑦
2

4

󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑦

+ ∫

R2

𝑥𝑦

2

󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑦

+ ∫

R2

𝑤
2

4

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑤)

̂
𝑓(V)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤𝑑V

+ ∫

R2

V2

4

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑤)

̂
𝑓(V)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤𝑑V

+ ∫

R2

𝑤V
2

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑤)

̂
𝑓(V)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤𝑑V

= ∫

R

𝑥
2

2

󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 + ∫

R

𝑤
2

2

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤

≥ (∫

R

𝑥
2

2

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 ⋅ ∫

R

𝑤
2

2

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓 (𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤)

1/2

.

(24)

This is the uncertainty principle of the LCT, and we know
that this inequality must be ≥ |𝑏|/4. And the inequality
achieves the minimum |𝑏|/4 if and only if 𝑓 = 𝑒2𝜋𝑖√𝑏𝑥𝑒−]𝑥

2

,
] > 0.

If 𝑏 = 0, then ̂𝑓 = √𝑑𝑓(𝑑𝑢)𝑒𝑖(𝑐𝑎𝑢
2

/2), and hence

∫

R2
𝑡
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 + ∫

R2
𝑢
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R2
𝑡
2
|𝑑|

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡 +

𝑑𝑢

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡 −

𝑑𝑢

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
𝑢
2
|𝑑|

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑢 +

𝑑𝑡

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑢 −

𝑑𝑡

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R2
(

𝑥 + 𝑦

2

)

2
󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑦

+ ∫

R2
(

𝑤 + V
2

)

2
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(V)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤𝑑V

= ∫

R2
(

𝑥 + 𝑦

2

)

2
󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑦

+ ∫

R2
(

𝑤 + V
2

)

2

|𝑑|
2󵄨
󵄨
󵄨
󵄨
𝑓(𝑑 ⋅ 𝑤)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓(𝑑 ⋅ V)󵄨󵄨󵄨

󵄨

2
𝑑𝑤𝑑V

=

1

2

(1 +

1

|𝑑|
2
)∫

R

𝑡
2󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡 ≥ 0.

(25)
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The inequality achieves the minimum 0 if and only if the
variance of 𝑓 is zero.

Secondly, if 𝑡
0
̸= 0 and 𝑢

0
̸= 0, for 𝑏 ̸= 0, then we have

∫

R2
(𝑡 − 𝑡

0
)
2󵄨󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 − 𝑢

0
)
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R

(𝑥 − 𝑡
0
)
2

2

󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 + ∫

R

(𝑤 − 𝑢
0
)
2

2

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤

≥ (∫

R

(𝑥 − 𝑡
0
)
2

2

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 ⋅ ∫

R

(𝑤 − 𝑢
0
)
2

2

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓 (𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤)

1/2

≥

|𝑏|

4

.

(26)

And, for 𝑏 = 0, we have

∫

R2
(𝑡 − 𝑡

0
)
2󵄨󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 − 𝑢

0
)
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R2
(

𝑥 − 𝑡
0
+ 𝑦 − 𝑡

0

2

)

2
󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑦

+ ∫

R2
(

𝑤 − 𝑢
0
+ V − 𝑢

0

2

)

2

|𝑑|
2

×
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑑 ⋅ 𝑤)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓 (𝑑 ⋅ V)󵄨󵄨󵄨

󵄨

2
𝑑𝑤𝑑V ≥ 0.

(27)

When 𝑏 → 0, in case of 𝑏 ̸= 0, we obtain

∫

R2
(𝑡 − 𝑡

0
)
2󵄨󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 − 𝑢

0
)
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 ≥ 0.

(28)

Hence for both cases we obtain

∫

R2
(𝑡 − 𝑡

0
)
2󵄨󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 − 𝑢

0
)
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 ≥

|𝑏|

4

.

(29)

This completes the proof of this theorem.

When𝑀 = (
0 1/2𝜋

−2𝜋 0
), then we have

𝑊
𝑓

𝑀
(𝑡, 𝑢) = √

1

𝑖

∫

R

𝑓(𝑡 +

𝜏

2

)𝑓
∗
(𝑡 −

𝜏

2

) 𝑒
−2𝜋𝑖𝑢𝜏

𝑑𝜏. (30)

This is theWVD; hence we obtain a new uncertainty relation
for the WVD.

Corollary 2. Suppose that 𝑓(𝑡) ∈ 𝐿2(R), ‖𝑓‖
2
= 1. Then the

following inequality is satisfied:

∫

R2
(𝑡 − 𝑡

0
)
2󵄨󵄨
󵄨
󵄨
󵄨
𝑊
𝑓,𝑓
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 − 𝑢

0
)
2󵄨󵄨
󵄨
󵄨
󵄨
𝑊F(𝑓),F(𝑓) (𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 ≥

1

8𝜋

,

(31)

where 𝑡
0
= ∫

R
𝑡|𝑓(𝑡)|

2
𝑑𝑡 and 𝑢

0
= ∫

R
𝑢|
̂
𝑓(𝑢)|

2

𝑑𝑢.

From the proof, one can find that the essence of this
uncertainty principle is theMoyal identical equation, and the
Moyal identical equations are also correct for the AF and the
AFL [10]; hence we also obtain the uncertainty principle of
the AFL as follows.

Theorem 3. Suppose that 𝑓 ∈ 𝐿
2
(R), 𝑀 ∈ 𝑆𝐿(2), ‖𝑓‖

2
=

1, and both 𝑡
0
= ∫

R
𝑡|𝑓(𝑡)|

2
𝑑𝑡 and 𝑢

0
= ∫

R
𝑢|
̂
𝑓(𝑢)|

2

𝑑𝑢 exist.
Then the following inequality is satisfied:

∫

R2
(𝑡 − 𝑡

0
)
2󵄨󵄨
󵄨
󵄨
󵄨
󵄨

𝐴𝐹𝐿
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 − 𝑢

0
)
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐴𝐹𝐿
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 ≥

|𝑏|

4

.

(32)

The proof is similar to Theorem 1. Denoting

𝑊
𝑓,𝑔

𝑀
(𝑡, 𝑢) = √

1

2𝑖𝜋𝑏

∫

R

𝑓(𝑡 +

𝜏

2

) 𝑔
∗
(𝑡 −

𝜏

2

)

× 𝑒
(𝑖/2𝑏)(𝑑𝑢

2

−2𝑢𝜏+𝑎𝜏
2

)
𝑑𝜏

(33)

we obtain the following.

Theorem 4. Suppose that, if 𝑓
1
(𝑡), 𝑓

2
(𝑡) ∈ 𝐿

2
(R), ̂𝑓

𝑖
=

[C(𝑀)𝑓
𝑖
](𝑢), (𝑖 = 1, 2), 𝑀 ∈ 𝑆𝐿(2), ‖𝑓

𝑖
‖
2
= 1, and both

𝑡
𝑖
= ∫

R
𝑡|𝑓

𝑖
(𝑡)|

2
𝑑𝑡 and 𝑢

𝑖
= ∫

R
𝑢|
̂
𝑓
𝑖
(𝑢)|

2

𝑑𝑢 exist, the following
inequality is satisfied:

∫

R2
(𝑡 −

𝑡
1
+ 𝑡

2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓
1
,𝑓
2

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 −

𝑢
1
+ 𝑢

2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓
1
,𝑓
2

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 ≥

|𝑏|

4

.

(34)

Proof. For the case of 𝑏 ̸= 0, we have

∫

R2
(𝑡 −

𝑡
1
+ 𝑡

2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓
1
,𝑓
2

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 −

𝑢
1
+ 𝑢

2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓
1
,𝑓
2

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R2
(

𝑡 + 𝜏/2 + 𝑡 − 𝜏/2

2

−

𝑡
1
+ 𝑡

2

2

)

2

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
1
(𝑡 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
∗

2
(𝑡 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜏𝑑𝑡
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+ ∫

R2
(

𝑢 + 𝜏/2 + 𝑢 − 𝜏/2

2

−

𝑢
1
+ 𝑢

2

2

)

2

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
1
(𝑢 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
∗

2
(𝑢 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜏

= ∫

R

(𝑥 − 𝑡
1
)
2

4

󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑥)
󵄨
󵄨
󵄨
󵄨

2
+

(𝑥 − 𝑡
2
)
2

4

󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

2

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥

+ ∫

R

(𝑤 − 𝑢
1
)
2

4

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
1
(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

(𝑤 − 𝑢
2
)
2

4

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
2
(𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑤

≥

|𝑏|

4

.

(35)

And for the case of 𝑏 = 0, we have

∫

R2
(𝑡 −

𝑡
1
+ 𝑡

2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓
1
,𝑓
2

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 −

𝑢
1
+ 𝑢

2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓
1
,𝑓
2

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R2
(

𝑥 − 𝑡
1
+ 𝑦 − 𝑡

2

2

)

2
󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑥)
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓
2
(𝑦)
󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 𝑑𝑦

+∫

R2
(

𝑤 − 𝑢
1
+ V − 𝑢

2

2

)

2

𝑑
2󵄨
󵄨
󵄨
󵄨
𝑓
1
(𝑑 ⋅ 𝑤)

󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
𝑓
2
(𝑑 ⋅ V)󵄨󵄨󵄨

󵄨

2
𝑑𝑤𝑑V

≥ 0.

(36)

When 𝑏 → 0, in case of 𝑏 ̸= 0, we have

∫

R2
(𝑡 −

𝑡
1
+ 𝑡

2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓
1
,𝑓
2

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 −

𝑢
1
+ 𝑢

2

2

)

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓
1
,𝑓
2

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 ≥ 0.

(37)

Therefore, we finish the proof of Theorem 4. From
Theorem 4, we know that the lower bound of this uncertainty
principle is only related to𝑀.

Next, when we use ̂𝑓 = [C(𝑀
1
)𝑓](𝑢),𝑀

1
= (

𝑎
1
𝑏
1

𝑐
1
𝑑
1

) ̸=

𝑀
2
= (

𝑎
2
𝑏
2

𝑐
2
𝑑
2

),𝑀
1
,𝑀

2
∈ 𝑆𝐿(2), we obtain the following.

Theorem 5. Suppose that, if𝑓(𝑡) ∈ 𝐿2(R), ̂𝑓 = [C(𝑀
1
)𝑓](𝑢),

‖𝑓‖
2
= 1, and both 𝑡

0
= ∫

R
𝑡|𝑓(𝑡)|

2
𝑑𝑡 and 𝑢

0
= ∫

R
𝑢|
̂
𝑓(𝑢)|

2

𝑑𝑢

exist, the following inequality is satisfied:

∫

R2
(𝑡 − 𝑡

0
)
2󵄨󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
2

(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2
(𝑢 − 𝑢

0
)
2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
2

(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢 ≥

󵄨
󵄨
󵄨
󵄨
𝑏
1

󵄨
󵄨
󵄨
󵄨

4

.

(38)

The proof is similar toTheorem 4.Theorem 5 implies that
the minimum of this inequality is determined only by𝑀

1
.

If let 𝑓(𝑥) ∈ 𝐿2(R𝑛), we can also obtain the similar result,
but we need the Heisenberg uncertainty principles of the 𝑛-
dimensional LCT. However, so far, there is no result about the
Heisenberg uncertainty principles of the 𝑛-dimensional LCT;
hence in the following subsectionwe calculate theHeisenberg
uncertainty principles of the 𝑛-dimensional LCT.

3.2. The Heisenberg Uncertainty Principles of the 𝑛-Dimen-
sional LCT. In this subsection, we calculate the Heisenberg
uncertainty principle of the 𝑛-dimensional LCT. Our idea is
to convert the LCT to the FT, and then we use the Heisenberg
uncertainty principle of the one-dimensional FT to obtain the
Heisenberg uncertainty principle of the 𝑛-dimensional LCT.
Through calculating the Heisenberg uncertainty principle of
the 𝑛-dimensional LCT, we see that the uncertainty principles
of the 𝑛-dimensional LCT are essentially the uncertainty
principles of the 𝑛-dimensional FT, since the decision effected
in the LCT is the FT. We will obtain the following.

Theorem 6. Suppose that 𝑓(𝑡
1
, . . . , 𝑡

𝑛
) ∈ 𝐿

2
(R𝑛) and 𝑀 ∈

𝑆𝑝(2𝑛,R). Then one has

Δ
2

𝑡
⋅ Δ

2

𝑢
=

∫
R𝑛
(𝑡 − 𝑡

0
)
⊺
(𝑡 − 𝑡

0
)
󵄨
󵄨
󵄨
󵄨
𝑓(𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡

∫
R𝑛
󵄨
󵄨
󵄨
󵄨
𝑓(𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡

⋅

∫
R𝑛
(𝑢 − 𝑢

0
)
⊺
(𝑢 − 𝑢

0
)

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑢

∫
R𝑛

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑢

≥ (

√𝜆
1

2

+ ⋅ ⋅ ⋅ +

√𝜆
𝑛

2

)

2

,

(39)

where 𝑡
0
= (∫

R𝑛
𝑡
1
|𝑓(𝑡)|

2
𝑑𝑡, . . . , ∫

R𝑛
𝑡
𝑛
|𝑓(𝑡)|

2
𝑑𝑡)

⊺, 𝑢
0
=

(∫
R𝑛
𝑢
1
|
̂
𝑓(𝑢)|

2

𝑑𝑢, . . . , ∫
R𝑛
𝑢
𝑛
|
̂
𝑓(𝑢)|

2

𝑑𝑢)
⊺, and 𝜆

󸀠

𝑖
𝑠 are the

eigenvalues of 𝐵⊺𝐵.

Proof. Here we assume that ∫
R𝑛
|𝑓(𝑡)|

2
𝑑𝑡 = 1; then by the

Parseval identical equation, we have that ‖ ̂𝑓‖
2
= ‖𝑓‖

2
= 1.

Because the LCT has the time shifting property, we only need
to discuss 𝑡

0
= 0, 𝑢

0
= 0. Thus we only need to prove the

following:

Δ
2

𝑡
⋅ Δ

2

𝑢
= ∫

R𝑛
𝑡
⊺
𝑡
󵄨
󵄨
󵄨
󵄨
𝑓(𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡

⋅ ∫

R𝑛
𝑢
⊺
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓 (𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑢 ≥ (

√𝜆
1

2

+ ⋅ ⋅ ⋅ +

√𝜆
𝑛

2

)

2

.

(40)

When selecting different 𝐵, we have different expressions
of the LCT. Therefore, we need to discuss different cases. For
the case of det(𝐵) ̸= 0, we have

Δ
2

𝑡
⋅ Δ

2

𝑢

= ∫

R𝑛
𝑡
⊺
𝑡
󵄨
󵄨
󵄨
󵄨
𝑓(𝑡)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑡 ⋅ ∫

R𝑛
𝑢
⊺
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑢

= ∫

R𝑛
𝑥
⊺
𝑥
󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥
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⋅ ∫

R𝑛
𝑢
⊺
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛
𝑓 (𝑥)

𝑒
(−𝑖𝑛𝜋/4)

(√2𝜋)

𝑛

√det (𝐵)

× 𝑒
(−𝑖𝑢
⊺

𝐵
⊺−1

𝑥+𝑖(𝑥
⊺

𝐵
−1

𝐴𝑥/2))
𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑢

= ∫

R𝑛
𝑥
⊺
𝑥
󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥 ⋅ ∫

R𝑛
V⊺𝐵⊺𝐵V

1

(2𝜋)
𝑛

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛
𝑓(𝑥)𝑒

(−𝑖V−1𝑥+𝑖(𝑥⊺𝐵−1𝐴𝑥/2))
𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑V

= ∫

R𝑛
𝑥
⊺
𝑥

󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥

⋅ ∫

R𝑛
V⊺𝐵⊺𝐵V

1

(2𝜋)
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛

̃
𝑓(𝑥)𝑒

−𝑖V−1𝑥
𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑V.

(41)

Notice that 𝐵⊺𝐵 is symmetric; then there exists an
orthogonal matrix 𝑃 so that 𝐵⊺𝐵 = 𝑃⊺Λ𝑃, where 𝜆󸀠

𝑖
𝑠 are the

eigenvalues of 𝐵⊺𝐵 and 𝜆󸀠
𝑖
𝑠 are nonnegative. As a result, we

have
Δ
2

𝑡
⋅ Δ

2

𝑢

= ∫

R𝑛
𝑥
⊺
𝑥

󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥

⋅ ∫

R𝑛
V⊺𝑃⊺Λ𝑃V

1

(2𝜋)
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛

̃
𝑓(𝑥)𝑒

−𝑖V−1𝑥
𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑V

= ∫

R𝑛
𝑥
⊺
𝑥

󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥

⋅ ∫

R𝑛
𝜔
⊺
Λ𝜔

1

(2𝜋)
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛

̃
𝑓(𝑥)𝑒

−𝑖𝜔
⊺

𝑃𝑥
𝑑𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

= ∫

R𝑛
𝑦
⊺
𝑦

󵄨
󵄨
󵄨
󵄨
󵄨

̃
𝑓(𝑃

⊺
𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑦

⋅ ∫

R𝑛
𝜔
⊺
Λ𝜔

1

(2𝜋)
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛

̃
𝑓(𝑃

⊺
𝑦)𝑒

−𝑖𝜔
⊺

𝑦
𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

= ∫

R𝑛
(𝑦
2

1
+ ⋅ ⋅ ⋅ + 𝑦

2

𝑛
)
󵄨
󵄨
󵄨
󵄨
ℎ(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑦

⋅ ∫

R𝑛
(𝜆
1
𝜔
2

1
+ ⋅ ⋅ ⋅ + 𝜆

𝑛
𝜔
2

𝑛
)

1

(2𝜋)
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛
ℎ(𝑦)𝑒

−𝑖𝜔
⊺

𝑦
𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝜔

= ∫

R𝑛
(𝑦
2

1
+ ⋅ ⋅ ⋅ + 𝑦

2

𝑛
)
󵄨
󵄨
󵄨
󵄨
ℎ(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑦

× ∫

R𝑛
(𝜆

1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜔
1
∫

R𝑛
ℎ(𝑦)𝑒

−2𝜋𝑖𝜔
⊺

𝑦
𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

+ ⋅ ⋅ ⋅ + 𝜆
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜔
𝑛
∫

R𝑛
ℎ(𝑦)𝑒

−2𝜋𝑖𝜔
⊺

𝑦
𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

)𝑑𝜔

= ∫

R𝑛
(𝑦
2

1
+ ⋅ ⋅ ⋅ + 𝑦

2

𝑛
)
󵄨
󵄨
󵄨
󵄨
ℎ(𝑦)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑦

× ∫

R𝑛
(𝜆

1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛
ℎ
1
(𝑦)𝑒

−𝑖2𝜋𝜔
⊺

𝑦
𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

+ ⋅ ⋅ ⋅ + 𝜆
𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛
ℎ
𝑛
(𝑦) 𝑒

−2𝜋𝑖𝜔
⊺

𝑦
𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

)𝑑𝜔.

(42)

By using the Cauchy inequality, we get

Δ
2

𝑡
⋅ Δ

2

𝑢

≥ (∫

R𝑛
(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
1
ℎ (𝑦)√𝜆

1
ℎ
∗

1
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ ⋅ ⋅ ⋅ +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑦
𝑛
ℎ (𝑦)√𝜆

𝑛
ℎ
∗

𝑛
(𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) 𝑑𝑦)

2

= (√𝜆
1
∫

R𝑛

󵄨
󵄨
󵄨
󵄨
𝑦
1
ℎ (𝑦) ℎ

∗

1
(𝑦)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦 + ⋅ ⋅ ⋅ + √𝜆

𝑛

× ∫

R𝑛

󵄨
󵄨
󵄨
󵄨
𝑦
𝑛
ℎ (𝑦) ℎ

∗

𝑛
(𝑦)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦)

2

= (

√𝜆
1

2

+ ⋅ ⋅ ⋅ +

√𝜆
𝑛

2

)

2

,

(43)

where ̃𝑓(𝑥) = 𝑓(𝑥)𝑒
𝑖(𝑥
⊺

𝐵
−1

𝐴𝑥/2), ℎ(𝑥) = ̃
𝑓(𝑃

⊺
𝑥), ℎ

𝑖
(𝑦) =

(𝜕ℎ(𝑦)/𝜕𝑦
𝑖
). This inequality achieves the minimum (√𝜆

1
/2+

⋅ ⋅ ⋅ + √𝜆
𝑛
/2)

2 if and only if ℎ = 𝑒−∑ ]
𝑖
𝑥
2

𝑖
(] > 0).

Here we have omitted some steps in the proof, and if
one is familiar with the proof of the Heisenberg uncertainty
principle of the FT, one can obviously see the result. Next, we
discuss the case of det(𝐵) = 0. First, when 𝐵 = 0, by using
̂
𝑓(𝑢) = √det(𝐷)𝑓(𝐷𝑢)𝑒𝑖(𝑢

⊺

𝐶(𝐴
⊺

)
−1

𝑢/2), we have

Δ
2

𝑥
⋅ Δ

2

𝑢

= ∫

R𝑛
𝑥
⊺
𝑥
󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥

⋅ ∫

R𝑛
𝑢
⊺
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

√det (𝐷)𝑓(𝐷𝑢)𝑒𝑖(𝑢
⊺

𝐶(𝐴
⊺

)
−1

𝑢/2)
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑢

= ∫

R𝑛
𝑥
⊺
𝑥
󵄨
󵄨
󵄨
󵄨
𝑓(𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥

⋅ ∫

R𝑛
𝑢
⊺
𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
√det(𝐷)𝑓(𝐷𝑢)󵄨󵄨󵄨󵄨

󵄨

2

𝑑𝑢

≥ 𝜆(∫

R𝑛
𝑥
⊺
𝑥
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

2
𝑑𝑥)

2

≥ 0,

(44)

where 𝜆 is the minimum eigenvalue of (𝐷−1)⊺𝐷−1 and the
inequality gets the minimum 0 if and only if the variance of
𝑓 is 0. The Heisenberg uncertainty principle can be zero; the
reason is that the LCT is only a scaling transform.

For the case of det(𝐵) = 0 but 𝐵 ̸= 0, we see that 𝐵 =

𝑈 (
Λ
𝑚
0

0 0
)𝑉, 𝑈,𝑉 ∈ 𝑆𝑂(𝑛), 𝑚 = rank(𝐵). Similarly, as
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the proof of the case of det(𝐵) ̸= 0, we haveΔ2
𝑡
⋅Δ
2

𝑢
≥ (√𝜆

1
/2+

⋅ ⋅ ⋅ +√𝜆
𝑚
/2)

2, where 𝜆󸀠
𝑖
𝑠 are the nonzero eigenvalues of 𝐵⊺𝐵.

If 𝐵 → 0, then we have that Δ2
𝑡
⋅ Δ
2

𝑢
≥ 0; hence we obtain

Δ
2

𝑡
⋅ Δ

2

𝑢
≥ (

√𝜆
1

2

+ ⋅ ⋅ ⋅ +

√𝜆
𝑛

2

)

2

. (45)

When 𝑛 = 1, we see thatΔ2
𝑡
⋅Δ
2

𝑢
≥ (√𝜆/2)

2, where 𝜆 = 𝑏2.
This just is the Heisenberg uncertainty principle of the one-
dimensional LCT.

We have finished the Heisenberg uncertainty principle of
the 𝑛-dimensional LCT, and this uncertainty principle is also
called the Heisenberg-Weyl inequality.

3.3. The Heisenberg Uncertainty Principles of the 𝑛-Dimen-
sional WDL. By Theorem 6, now we can obtain the Heisen-
berg uncertainty principles of the 𝑛-dimensional WDL.

Theorem 7. Suppose that 𝑓(𝑡) ∈ 𝐿2(R𝑛), ̂𝑓 = [C(𝑀)𝑓](𝑢),
𝑀 = (

𝐴 𝐵

𝐶 𝐷
), det(𝐵) ̸= 0, ‖𝑓‖2

2
= 1, and both 𝑡

0
=

(∫
R
𝑡
1
|𝑓(𝑡)|

2
𝑑𝑡, . . . , ∫

R
𝑡
𝑛
|𝑓(𝑡)|

2
𝑑𝑡)

⊺ and𝑢
0
= (∫

R
𝑢
1
|
̂
𝑓(𝑢)|

2

𝑑𝑢,

. . . , ∫
R
𝑢
𝑛
|
̂
𝑓(𝑢)|

2

𝑑𝑢)
⊺ exist. Then the following inequality is

satisfied:

∫

R2𝑛
(𝑡 − 𝑡

0
)
⊺
(𝑡 − 𝑡

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2𝑛
(𝑢 − 𝑢

0
)
⊺
(𝑢 − 𝑢

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

≥

√𝜆
1

4

+ ⋅ ⋅ ⋅ +

√𝜆
𝑛

4

,

(46)

where 𝜆󸀠
𝑖
𝑠 are the eigenvalues of 𝐵⊺𝐵.

Proof. Because of det(𝐵) ̸= 0, we have that

∫

R2𝑛
(𝑡 − 𝑡

0
)
⊺
(𝑡 − 𝑡

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2𝑛
(𝑢 − 𝑢

0
)
⊺
(𝑢 − 𝑢

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑊
𝑓

𝑀
(𝑡, 𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R2𝑛
(𝑡 − 𝑡

0
)
⊺
(𝑡 − 𝑡

0
)

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛
𝑓(𝑡 +

𝜏

2

)𝑓
∗
(𝑡 −

𝜏

2

)𝐶 (𝑀) (𝑢, 𝜏) 𝑑𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2𝑛
(𝑢 − 𝑢

0
)
⊺
(𝑢 − 𝑢

0
)

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

R𝑛

̂
𝑓(𝑢 +

𝜏

2

)
̂
𝑓
∗
(𝑢 −

𝜏

2

)𝐶 (𝑀) (𝑢, 𝜏) 𝑑𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

= ∫

R2𝑛
(𝑡 − 𝑡

0
)
⊺
(𝑡 − 𝑡

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
∗
(𝑡 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

+ ∫

R2𝑛
(𝑢 − 𝑢

0
)
⊺
(𝑢 − 𝑢

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓 (𝑢 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
∗
(𝑢 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢

≥ (∫

R2𝑛
(𝑡 − 𝑡

0
)
⊺
(𝑡 − 𝑡

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑓
∗
(𝑡 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢)

1/2

× (∫

R2𝑛
(𝑢 − 𝑢

0
)
⊺
(𝑢 − 𝑢

0
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓 (𝑢 +

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝑓
∗
(𝑢 −

𝜏

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝑢)

1/2

≥

√𝜆
1

4

+ ⋅ ⋅ ⋅ +

√𝜆
𝑛

4

.

(47)

This uncertainty principle is based on theMoyal identical
equation, which can be regarded as the inner product of the
WDL, and it shows that the WDL of a signal in the time
domain may be sharply localized. However, the WDL of its
LCT in the frequency domain cannot be sharply localized
simultaneously.

4. Conclusion

In this paper, we first establish an uncertainty principle
for the one-dimensional WDL, then we obtain the Heisen-
berg uncertainty principle of the 𝑛-dimensional LCT, and
furthermore we obtain the uncertainty principle of the 𝑛-
dimensional WDL. Although the 𝑛-dimensional WDL has
4𝑛
2 parameters, the lower bound of the uncertainty principle

of the 𝑛-dimensional WDL only depends on 𝐵, and we also
discuss the case of 𝐵 = 0. The uncertainty principle of the
WDL is different from the uncertainty principle of the WVD
(18), while it reveals the uncertainty relations of 𝑊𝑓

𝑀
(𝑡, 𝑢)

and 𝑊𝑓

𝑀
(𝑡, 𝑢). The applications of the derived Heisenberg

uncertainty principle of theWDL and the AFLwill be studied
in our future papers.
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