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We consider the so-called covariance set of Moore-Penrose inverses in rings with an involution. We deduce some new results
concerning covariance set. We will show that if 𝑎 is a regular element in a 𝐶∗-algebra, then the covariance set of 𝑎 is closed in the
set of invertible elements (with relative topology) of 𝐶∗-algebra and is a cone in the 𝐶∗-algebra.

1. Introduction

Suppose thatR is a ring with unity 1 ̸= 0. A mapping ∗ : 𝑥 󳨃→
𝑥
∗ ofR into itself is called an involution if

(𝑥
∗

)
∗

= 𝑥, (𝑥 + 𝑦)
∗

= 𝑥
∗

+ 𝑦
∗

,

(𝑥𝑦)
∗

= 𝑦
∗

𝑥
∗

,

(1)

for all 𝑥 and 𝑦 inR. A ringR with an involution ∗ is called
∗-ring. Throughout this paperR is a ∗-ring.

An element 𝑎 ∈ R is called regular if it has a generalized
inverse (in the sense of von Neumann) in R; that is, there
exists 𝑏 ∈ R such that

𝑎𝑏𝑎 = 𝑎. (2)

Note that such 𝑏 is not unique [1, 2].

Definition 1. LetR be a ∗-ring and 𝑎 ∈ R.

(i) 𝑎 is calledMoore-Penrose invertible if there exists 𝑏 ∈
R such that

𝑎𝑏𝑎 = 𝑎, 𝑏𝑎𝑏 = 𝑏, (𝑎𝑏)
∗

= 𝑎𝑏, (𝑏𝑎)
∗

= 𝑏𝑎.

(3)

(ii) 𝑎 is called Drazin invertible if there exists 𝑏 ∈ R such
that

𝑏𝑎𝑏 = 𝑏, 𝑎𝑏 = 𝑏𝑎, 𝑎
𝑘+1

𝑏 = 𝑎
𝑘 (4)

for some nonnegative integer 𝑘.The least such 𝑘 is the Drazin
index of 𝑎, denoted by ind(𝑎).

Obviously, ind(𝑎) = 0 if and only if 𝑎 is invertible and in
this case the Drazin inverses of 𝑎 and 𝑎−1 coincide. If ind(𝑎) ≤
1, then the Drazin inverse is known as the group inverse.

It is well known that the Moore-Penrose inverse (briefly,
MP-inverse) and the Drazin inverse are unique if they exist.
We reserve the notations 𝑎† and 𝑎𝐷 for the MP-inverse and
Drazin inverse of 𝑎, respectively. According to the uniqueness
of the notion under consideration, if 𝑎 has aMP-inverse, then
𝑎
∗ and 𝑎† also have MP-inverses. Moreover

(𝑎
†

)

†

= 𝑎, (𝑎
†

)

∗

= (𝑎
∗

)
†

, 𝑎
∗

= 𝑎
†

𝑎𝑎
∗

= 𝑎
∗

𝑎𝑎
†

.

(5)

In what follows, we will denote by R−1 the subset of
invertible elements of R and by R† the set of all MP-
invertible elements of R. An element 𝑥 in R is called
idempotent if 𝑥2 = 𝑥. A projection 𝑝 ∈ R satisfies 𝑝 = 𝑝∗ =
𝑝
2. Note that if 𝑥 ∈ R†, then 𝑥𝑥† and 𝑥†𝑥 are projections. In

addition,

(𝑥𝑥
†

)

†

= 𝑥𝑥
†

, (𝑥
†

𝑥)

†

= 𝑥
†

𝑥. (6)

The commutator of a pair of elements 𝑥 and 𝑦 in R is given
by

[𝑥, 𝑦] = 𝑥𝑦 − 𝑦𝑥. (7)
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Note that [𝑥, 𝑦] = 0 if and only if 𝑥 and 𝑦 commute. Also, it
is well known that if 𝑥, 𝑦, and 𝑧 are inR, then

[𝑥, 𝑦𝑧] = [𝑥, 𝑦] 𝑧 + 𝑦 [𝑥, 𝑧] ,

[𝑥𝑦, 𝑧] = 𝑥 [𝑦, 𝑧] + [𝑥, 𝑧] 𝑦.

(8)

Let 𝑎 be an element in R−1; its inverse 𝑎−1 is covariant
with respect toR−1; that is, for all 𝑏 ∈ R−1, we have

(𝑏𝑎𝑏
−1

)

−1

= 𝑏𝑎
−1

𝑏
−1

. (9)

In general, the elements of R† are not covariant under
R−1 (see [2–4]). For a given element 𝑎 ∈ R† withMP-inverse
𝑎
† we define its covariance set

C (𝑎) = {𝑏 ∈ R
−1

: (𝑏𝑎𝑏
−1

)

†

= 𝑏𝑎
†

𝑏
−1

} . (10)

Schwerdtfeger [4] described the class C(𝑎) for the matri-
ces of rank 1 or 2. The characterization of the covariance
set C(𝑎) for an algebra of matrices was studied by Robinson
[2] and some interesting results of C(𝑎) were presented by
Meenakshi and Chinnadurai [3].

The paper is organized as follows. The endeavour in
Section 2 is to show how the results of [3] can be extended
to MP-inverses in ∗-rings. Moreover, we show that Drazin
inverses are covariant under the group of invertible elements
of ∗-rings. In Section 3 we prove that the covariance set is a
closed set in A−1 and is a cone in A. Furthermore, we show
that if {𝑎

𝑛
} is a sequence of MP-invertible elements of a 𝐶∗-

algebra such that their MP-inverses norm is bounded and 𝑎
𝑛

converges to 𝑎, then there is some kind of convergence of
C(𝑎
𝑛
) to C(𝑎).

2. Covariance Set of Moore-Penrose
Inverses in ∗-Rings

Many of the results of this section are essentially due to
[3], withthe main difference being that in [3] one considers
covariance set for matrices. In this section we generalized
these results to any ∗-ring.

The next proposition describes a relation between the
covariance set C(𝑎) and commutators. It was also shown
in [2–4] in the special case of matrices. Here, we include a
shorter proof for the sake of completeness.

Proposition 2. LetR be ∗-ring and 𝑎 ∈ R† with MP-inverse
𝑎
†. Then the following statements are equivalent:

(i) 𝑏 ∈ C(𝑎);
(ii) [𝑏∗𝑏, 𝑎𝑎†] = 0 and [𝑏∗𝑏, 𝑎†𝑎] = 0.

Proof. (i)⇒(ii) Suppose that 𝑏 ∈ C(𝑎). Then (𝑏𝑎𝑏−1)† =
𝑏𝑎
†

𝑏
−1. Set 𝑝 = (𝑏𝑎𝑏

−1

)(𝑏𝑎𝑏
−1

)

†. Then 𝑝 is projection, so
𝑝 = 𝑝

∗ and 𝑝 = 𝑏𝑎𝑎
†

𝑏
−1. From here we get 𝑏𝑎𝑎†𝑏−1 =

(𝑏
−1

)

∗

𝑎𝑎
†

𝑏
∗. This implies that [𝑏∗𝑏, 𝑎𝑎†] = 0. Similarly by

putting 𝑞 = (𝑏𝑎𝑏−1)†(𝑏𝑎𝑏−1), we conclude that [𝑏∗𝑏, 𝑎†𝑎] = 0.

(ii)⇒(i) From the assumptions it is not hard to see that
𝑏𝑎
†

𝑏
−1 is the MP-inverse of 𝑏𝑎𝑏−1. By the uniqueness of

Moore-Penrose inverse we get (𝑏𝑎𝑏−1)† = 𝑏𝑎
†

𝑏
−1; that is,

𝑏 ∈ C(𝑎).

From Proposition 2 we deduce the following result.

Corollary 3. LetR be ∗-ring and 𝑎 ∈ R† withMP-inverse 𝑎†.
Then

𝑏
−1

∈ C (𝑎) iff [𝑏𝑏∗, 𝑎𝑎†] = 0,

[𝑏𝑏
∗

, 𝑎
†

𝑎] = 0.

(11)

Combining the above corollary and Proposition 2, we get
the following corollary.

Corollary 4. If 𝑏 is normal, then

𝑏 ∈ C (𝑎) iff 𝑏−1 ∈ C (𝑎) . (12)

We now have some equalities for the covariance sets. See
also [3].

Proposition 5. LetR be ∗-ring and 𝑎 ∈ R† with MP-inverse
𝑎
†. Then

C (𝑎) = C (𝑎
†

) = C (𝑎
∗

) = C (𝑎𝑎
†

) ∩ C (𝑎
†

𝑎) . (13)

Proof. By replacing 𝑎 with 𝑎†, part (ii) of Proposition 2 does
not change so the first equality holds. Since (𝑎∗)†𝑎∗ = 𝑎𝑎†

and 𝑎∗(𝑎∗)† = 𝑎†𝑎, Proposition 2 yields the second equality.
Also 𝑎 = 𝑎𝑎†𝑎 and 𝑎†𝑎𝑎† = 𝑎†, again from Proposition 2 we
get the last equality.

Note that if 𝑢 is any unitary element in R−1 , the 𝑢∗𝑢 =
𝑢𝑢
∗

= 1; thus 𝑢 ∈ C(𝑎) for every 𝑎 ∈ R†. This implies that
C(𝑎) ̸= 0 for each 𝑎 ∈ R†.

In the next proposition, we will show that if 𝑎 ∈ R is
Drazin invertible with Drazin inverse 𝑎𝐷, then {𝑏 ∈ R−1 :
(𝑏𝑎𝑏)
𝐷

= 𝑏𝑎
𝐷

𝑏
−1

} = R−1. For this reason, the notion of
covariance sets is not studied to Drazin inverses.

Proposition 6. Suppose that R is a ∗-ring and 𝑎 is a Drazin
invertible element inR. Then 𝑎𝐷 is covariant underR−1; that
is,

(𝑏𝑎𝑏
−1

)

𝐷

= 𝑏𝑎
𝐷

𝑏
−1

, ∀𝑏 in R
−1

. (14)

Proof. Suppose that 𝑎𝐷 is the Drazin inverse of 𝑎 and 𝑏 is an
arbitrary element in R−1. For simplicity of calculations, set
𝑋 = 𝑏𝑎𝑏

−1 and 𝑌 = 𝑏𝑎𝐷𝑏−1. By hypothesis, 𝑎𝐷𝑎𝑎𝐷 = 𝑎𝐷,
𝑎
𝐷

𝑎 = 𝑎𝑎
𝐷, and 𝑎𝑘+1𝑎𝐷 = 𝑎𝑘; thus

𝑌𝑋𝑌 = (𝑏𝑎
𝐷

𝑏
−1

) (𝑏𝑎𝑏
−1

) (𝑏𝑎
𝐷

𝑏
−1

)

= 𝑏𝑎
𝐷

𝑎𝑎
𝐷

𝑏
−1

= 𝑏𝑎
𝐷

𝑏
−1

= 𝑌;



Abstract and Applied Analysis 3

𝑌𝑋 = (𝑏𝑎
𝐷

𝑏
−1

) (𝑏𝑎𝑏
−1

) = 𝑏𝑎
𝐷

𝑎𝑏
−1

= 𝑏𝑎𝑎
𝐷

𝑏
−1

= 𝑋𝑌;

𝑋
𝑘+1

𝑌 = 𝑏𝑎
𝑘+1

𝑎
𝐷

𝑏
−1

= 𝑏𝑎
𝑘

𝑏
−1

= (𝑏𝑎𝑏
−1

)

𝑘

= 𝑋
𝑘

.

(15)

Now the uniqueness of the Drazin inverse implies that 𝑌 =
𝑋
𝐷; that is, 𝑎𝐷 is covariant underR−1.

In particular, by applying the above proposition, if 𝑎 is
group invertible with the group inverse 𝑎♯ ∈ R, then 𝑎♯ is
also covariant underR−1.

We reproduce the following definition from [5].

Definition 7. Let R be a ring; 𝑎 ∈ R is called simply polar if
it has a commuting generalized inverse (in the sense of von
Neumann); that is, if 𝑏 is any generalized inverse of 𝑎, then
[𝑎, 𝑏] = 0.

Some authors used the expression EP instead of simply
polar. Indeed, they called 𝑎 ∈ R† with MP-inverse 𝑎† is EP if
and only if 𝑎𝑎† = 𝑎†𝑎.

The next remark provides a large class of simply polar
elements and some related properties.

Remark 8. Let 𝑎 ∈ R† with MP-inverse 𝑎†.

(i) If 𝑎 is self-adjoint, then it is simply polar, since

𝑎𝑎
†

= (𝑎𝑎
†

)

∗

= (𝑎
†

)

∗

𝑎
∗

= 𝑎
†

𝑎. (16)

(ii) If 𝑎 is normal, then it is simply polar, since

𝑎 = 𝑎(𝑎
†

𝑎)

∗

= 𝑎𝑎
∗

(𝑎
†

)

∗

= 𝑎
∗

𝑎(𝑎
†

)

∗

= (𝑎
†

𝑎)

∗

𝑎
∗

𝑎(𝑎
†

)

∗

= (𝑎
†

𝑎) (𝑎
∗

𝑎)
∗

(𝑎
†

)

∗

= (𝑎
†

𝑎) (𝑎
†

𝑎𝑎
∗

)

∗

= (𝑎
†

𝑎) (𝑎
∗

)
∗

= 𝑎
†

𝑎
2

;

(17)

thus 𝑎 = 𝑎†𝑎2. In a similar manner we get 𝑎 = 𝑎2𝑎†.
Therefore

𝑎𝑎
†

= 𝑎
†

𝑎
2

𝑎
†

= 𝑎
†

𝑎. (18)

(iii) It is easy to check that simply polar properties of 𝑎, 𝑎∗

and 𝑎† are equivalent; that is, if one of them is simply
polar, then two others are also simply polar.

(iv) If 𝑎 is simply polar, then

(𝑎𝑎
†

)

2

= 𝑎
2

(𝑎
†

)

2

= (𝑎
†

)

2

𝑎
2

. (19)

(v) If 𝑎 is simply polar, then Proposition 5 implies that
C(𝑎) = C(𝑎𝑎†).

For finding more equivalent statements about the simply
polar elements see [1, Theorem 2.3 and final remark].

Proposition 9. Let 𝑎, 𝑏 ∈ R† with MP-inverses 𝑎† and 𝑏†,
respectively. If 𝑎†𝑏 = 0 = 𝑎𝑏† and 𝑏𝑎† = 0 = 𝑏†𝑎, then C(𝑎) ∩
C(𝑏) ⊂ C(𝑎 + 𝑏).

Proof. The assumptions, after some easy calculations, imply
that 𝑎†+𝑏† is theMP-inverse of 𝑎+𝑏.Thus (𝑎 + 𝑏)† = 𝑎†+𝑏†.
Suppose that 𝑥 ∈ C(𝑎) ∩ C(𝑏). Then Proposition 2 implies
that

[𝑥
∗

𝑥, 𝑎𝑎
†

] = 0, [𝑥
∗

𝑥, 𝑎
†

𝑎] = 0,

[𝑥
∗

𝑥, 𝑏𝑏
†

] = 0, [𝑥
∗

𝑥, 𝑏
†

𝑏] = 0.

(20)

Since 𝑎†𝑏 = 0 = 𝑎𝑏† and 𝑏𝑎† = 0 = 𝑏†𝑎, we have (𝑎 + 𝑏)(𝑎† +
𝑏
†

) = 𝑎𝑎
†

+ 𝑏𝑏
† and (𝑎† + 𝑏†)(𝑎 + 𝑏) = 𝑎†𝑎 + 𝑏†𝑏. From the

linearity of commutator we obtain

[𝑥
∗

𝑥, (𝑎 + 𝑏) (𝑎
†

+ 𝑏
†

)] = 0,

[𝑥
∗

𝑥, (𝑎
†

+ 𝑏
†

) (𝑎 + 𝑏)] = 0.

(21)

Again by applying Proposition 2, we get 𝑥 ∈ C(𝑎 + 𝑏).

Corollary 10. Let 𝑎, 𝑏 ∈ R† with MP-inverses 𝑎† and 𝑏†,
respectively. If 𝑎 and 𝑏 are self adjoint and 𝑏𝑎† = 0 = 𝑏†𝑎,
then C(𝑎) ∩ C(𝑏) ⊂ C(𝑎 + 𝑏).

Proof. By assumption 𝑎 and 𝑏 are self adjoint.Thus 𝑏𝑎† = 0 =
𝑏
†

𝑎 implies that 𝑎†𝑏 = 0 = 𝑎𝑏†. The result now follows from
Proposition 9.

The next example shows that in Proposition 9 inclusion
can be proper.

Example 11. Set 𝑎 = [ 0 0
1 0
] and 𝑏 = [ 0 1

0 0
].Then 𝑎† = [ 0 1

0 0
] = 𝑏,

𝑏
†

= 𝑎, and 𝑎†𝑏 = 0 = 𝑎𝑏†, and 𝑎+𝑏 = [ 0 1
1 0
] is invertible; thus

C(𝑎 + 𝑏) = R−1. Now if we set 𝑦 = [ 1 1
0 1
] then 𝑦 is invertible:

𝑦
∗

= [

1 0

1 1
] , 𝑦𝑦

∗

= [

2 1

1 1
] . (22)

On the other hand 𝑎𝑎† = [ 0 0
0 1
]; therefore

𝑎𝑎
†

𝑦𝑦
∗

= [

0 0

1 1
] , but 𝑦𝑦

∗

𝑎𝑎
†

= [

0 1

0 1
] . (23)

From here we conclude that [𝑎𝑎†, 𝑦𝑦∗] ̸= 0. Thus 𝑦 ∉ C(𝑎).

Let𝑋 and 𝑌 be two subsets ofR. We recall that

𝑋 + 𝑌 = {𝑥 + 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} ,

𝑋𝑌 = {𝑥𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} .

(24)

Note that the reverse order rule for the MP-inverse, that
is, (𝑎𝑏)† = 𝑏†𝑎†, is valid under certain conditions on MP-
invertible elements; see [6].
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Remark 12. Let 𝑎, 𝑏 ∈ R† with MP-inverses 𝑎† and 𝑏†,
respectively. One can easily check the following.

(i) If 𝑎†𝑏 = 0 = 𝑎𝑏† and 𝑏𝑎† = 0 = 𝑏†𝑎, then C(𝑎) ∩
C(𝑏) ∩ (C(𝑎) + C(𝑏)) = C(𝑎) ∩ C(𝑏) ∩ C(𝑎 + 𝑏).

(ii) If (𝑎𝑏)† = 𝑏†𝑎†, then C(𝑎) ∩ C(𝑏) ∩ (C(𝑏)C(𝑎)) =
C(𝑎) ∩ C(𝑏) ∩ C(𝑎𝑏).

(iii) Generally, there is no subset relation betweenC(𝑎+𝑏)
and C(𝑎) + C(𝑏). For instance, if we put 𝑏 = −𝑎, then
0 ∈ C(𝑎) + C(−𝑎) which is not a subset of R−1 but
C(𝑎 + 𝑏) = C(0) = R−1.

(iv) Generally, there is no subset relation between C(𝑎𝑏)

andC(𝑎)C(𝑏). Set 𝑎 = [ 0 0
1 0
] as Example 11. Then 𝑎2 =

0, and so C(𝑎2) = R−1 ̸=C(𝑎)C(𝑎).

Proposition 13. Let 𝑎, 𝑏 ∈ R† with MP-inverses 𝑎† and 𝑏†,
respectively. If 𝑎R = 𝑏R, then 𝑎𝑎† = 𝑏𝑏†, where 𝑎R = {𝑎𝑥 :

𝑥 ∈ R}.

Proof. By assumption 𝑎R = 𝑏R, so there exists 𝑥 in R such
that 𝑎 = 𝑏𝑥 = 𝑏𝑏†𝑏𝑥. Therefore 𝑎 = 𝑏𝑏†𝑎, and so 𝑎𝑎† =
𝑏𝑏
†

𝑎𝑎
†. In a similar manner we get 𝑏𝑏† = 𝑎𝑎†𝑏𝑏†. Since 𝑎𝑎†

is projection, 𝑎𝑎† = 𝑏𝑏†.

Corollary 14. Let 𝑎, 𝑏 ∈ R† with MP-inverses 𝑎† and 𝑏†,
respectively. If 𝑎R = 𝑏R and 𝑎†R = 𝑏

†R, then C(𝑎) = C(𝑏).

Proof. The proof is an immediate consequence of Proposi-
tions 5 and 13.

The following corollary was also proved for matrices in
[3].

Corollary 15. Let 𝑎, 𝑏 ∈ R† be simply polar and 𝑎R = 𝑏R.
Then C(𝑎) = C(𝑏).

According to the above corollary and Remark 8, we have
the following.

Corollary 16. If 𝑎 ∈ R† and 𝑎 is simply polar, then C(𝑎) =

C(𝑎2) = C(𝑎4) = ⋅ ⋅ ⋅ = C(𝑎2𝑛) for each 𝑛 ∈ N.

Corollary 17. If 𝑎 ∈ R† and 𝑎 is normal, thenC(𝑎) = C(𝑎2) =

C(𝑎4) = ⋅ ⋅ ⋅ = C(𝑎2𝑛) for each 𝑛 ∈ N.

Note that Example 11 shows that the converses of the two
last corollaries do not hold. Indeed, if we set 𝑎 = [ 0 0

1 0
], then

𝑎 is neither simply polar nor normal and 𝑦 ∉ C(𝑎) but 𝑦 ∈
C(𝑎2) = C(0) = R−1.

We know that if either 𝑎 = 0 or 𝑎 ∈ R−1, then C(𝑎) =
R−1. One can easily check that if R is a ∗-ring with no
nonzero nilpotent element, then C(𝑝) = R−1 where 𝑝 ∈

R† and it is an idempotent element of ring. In all cases, we
consider thatC(𝑎) has a group structure. But in generalC(𝑎)
is not a group; see for instance [3]. Our purpose is to find a
subset ofC(𝑎)which hasmathematical (group) structure. For

this purpose, let 𝑎 be an element inR†, with MP-inverse 𝑎†.
We define𝐻(𝑎) (as it is defined in [3] for matrices) by

𝐻(𝑎) = {𝑥 ∈ R
−1

: [𝑥, 𝑎𝑎
†

] = 0, [𝑥, 𝑎
†

𝑎] = 0} . (25)

In the next proposition we collect some interesting
properties of𝐻(𝑎).

Proposition 18. Let 𝑎 be an element in R† with MP-inverse
𝑎
†. Then

(i) if 𝑏 ∈ 𝐻(𝑎), then 𝑏∗ ∈ 𝐻(𝑎);
(ii) 𝐻(𝑎) ⊂ C(𝑎);
(iii) 𝐻(𝑎) is a group;
(iv) 𝑎† is covariant under𝐻(𝑎);
(v) if 𝑏, 𝑐 ∈ 𝐻(𝑎) such that 𝑏+ 𝑐 ∈ R−1, then 𝑏+ 𝑐 ∈ 𝐻(𝑎);
(vi) if 𝑏 ∈ 𝐻(𝑎), then 𝑃(𝑏) ∈ 𝐻(𝑎), where 𝑃(𝑏) is a

polynomial in 𝑏;
(vii) if 𝑏 ∈ C(𝑎) and 𝑐 ∈ 𝐻(𝑎), then 𝑏𝑐 ∈ C(𝑎).

Proof. (i) Assume that 𝑏 ∈ 𝐻(𝑎). Then [𝑏, 𝑎𝑎†] = 0 and
so 𝑏𝑎𝑎† = 𝑎𝑎

†

𝑏. By taking the adjoint it follows that
𝑎𝑎
†

𝑏
∗

= 𝑏
∗

𝑎𝑎
†.Thus [𝑏∗, 𝑎𝑎†] = 0. In a similarmanner, from

[𝑏, 𝑎
†

𝑎] = 0, we obtain [𝑏∗, 𝑎†𝑎] = 0. Therefore 𝑏∗ ∈ 𝐻(𝑎).
(ii) Let 𝑏 ∈ 𝐻(𝑎) by part (i) and definition of 𝐻(𝑎); we

have

[𝑏, 𝑎𝑎
†

] = 0, [𝑏
∗

, 𝑎𝑎
†

] = 0,

[𝑏, 𝑎
†

𝑎] = 0, [𝑏
∗

, 𝑎
†

𝑎] = 0.

(26)

From (8) and (26) we conclude that

[𝑏
∗

𝑏, 𝑎
†

𝑎] = 0, [𝑏
∗

𝑏, 𝑎𝑎
†

] = 0. (27)

Therefore 𝑏 ∈ C(𝑎).
(iii) Suppose that 𝑏, 𝑐 ∈ 𝐻(𝑎). Then

[𝑏, 𝑎𝑎
†

] = 0, [𝑏, 𝑎
†

𝑎] = 0,

[𝑐, 𝑎𝑎
†

] = 0, [𝑐, 𝑎
†

𝑎] = 0.

(28)

From (8) and (28) we get

[𝑏c, 𝑎𝑎†] = 0, [𝑏𝑐, 𝑎
†

𝑎] = 0. (29)

Thismeans that 𝑏𝑐 ∈ 𝐻(𝑎). If 𝑏 ∈ 𝐻(𝑎).Then [𝑏, 𝑎𝑎†] = 0 and
so 𝑏𝑎𝑎† = 𝑎𝑎†𝑏. Multiply this from left and right to 𝑏−1; we
obtain [𝑏−1, 𝑎𝑎†] = 0. Similarly we have [𝑏−1, 𝑎†𝑎] = 0. This
means that 𝑏−1 ∈ 𝐻(𝑎). Therefore,𝐻(𝑎) is subgroup of R−1.

(iv) It is easy to check that if 𝑎 ∈ R†, then for every 𝑏 ∈
𝐻(𝑎), we have

(𝑏𝑎𝑏
−1

)

†

= 𝑏𝑎
†

𝑏
−1

. (30)

(v) If 𝑏, 𝑐 ∈ 𝐻(𝑎), by linearity of the commutator we get
[𝑏 + 𝑐, 𝑎𝑎

†

] = 0 and [𝑏 + 𝑐, 𝑎†𝑎] = 0. That is, 𝑏 + 𝑐 ∈ 𝐻(𝑎).
(vi) It follows from (ii) and (iv).
(vii) Using (8) and part (i), we see that [(𝑏𝑐)∗𝑏𝑐, 𝑎𝑎†] = 0

and [(𝑏𝑐)∗𝑏𝑐, 𝑎†𝑎] = 0; that is, 𝑏𝑐 ∈ C(𝑎).
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LetR be the set of all 𝑛 × 𝑛matrices. It was shown that in
[3]𝐻(𝑎) is a nonabelian subgroup ofR−1 if and only if 𝑛 > 2.

Proposition 19. Assume that 𝑎 is an element inR† with MP-
inverse 𝑎†. If 𝑏 ∈ C(𝑎) is normal, then ⟨𝑏⟩ ⊂ C(𝑎) where ⟨𝑏⟩ is
the cyclic group generated by 𝑏.

Proof. Using Proposition 2, Corollary 4, and induction, we
can show that for all integer 𝑛, 𝑏𝑛 ∈ C(𝑎).

Note that, in fact if 𝑏 ∈ C(𝑎) is normal, then 𝑃(𝑏) ∈ C(𝑎),
where 𝑃(𝑏) is a polynomial in 𝑏.

3. Covariance Set in 𝐶∗-Algebras

Given unital𝐶∗-algebrasAwith the nonzero element 1A. We
will denote by A−1 and A† the subset of invertible elements
and MP-invertible elements ofA, respectively.

In this section, we find some topological properties for
C(𝑎); for instance, we will show that C(𝑎) is a closed set in
A−1 with respect to the relative topology.

Theorem 20. Suppose that A is a 𝐶∗-algebra and 𝑎 ∈ A†.
ThenC(𝑎) is closed inA−1 with respect to the relative topology.

Proof. Suppose that 𝑏 belongs to the closure of C(𝑎) in A−1.
Then there exists a sequence 𝑏

𝑛
∈ C(𝑎) such that 𝑏

𝑛
→ 𝑏,

from which it follows that 𝑏∗
𝑛
→ 𝑏
∗. Thus

[𝑏
∗

𝑛
𝑏
𝑛
, 𝑎𝑎
†

] = 0, [𝑏
∗

𝑛
𝑏
𝑛
, 𝑎
†

𝑎] = 0 ∀𝑛 ∈ N (31)

by Proposition 2. Therefore

𝑏
∗

𝑛
𝑏
𝑛
𝑎𝑎
†

= 𝑎𝑎
†

𝑏
∗

𝑛
𝑏
𝑛
, 𝑏
∗

𝑛
𝑏
𝑛
𝑎
†

𝑎 = 𝑎
†

𝑎𝑏
∗

𝑛
𝑏
𝑛
∀𝑛 ∈ N. (32)

By taking limits in (32) as 𝑛 → ∞, we get

𝑏
∗

𝑏𝑎𝑎
†

= 𝑎𝑎
†

𝑏
∗

𝑏, 𝑏
∗

𝑏𝑎
†

𝑎 = 𝑎
†

𝑎𝑏
∗

𝑏. (33)

Since 𝑏 and 𝑏∗ are in A−1, again Proposition 2 implies that
𝑏 ∈ C(𝑎). This means that C(𝑎) is closed in A−1 with respect
to the relative topology.

Note that generally C(𝑎) is not a closed set in A. For
example, if we set 𝑎 = [ 1 0

0 1
] and 𝑏

𝑛
= [
1/𝑛 0

0 1/𝑛
], then 𝑏

𝑛
∈ C(𝑎)

for all 𝑛 ∈ N, but lim
𝑛→∞

𝑏
𝑛
= 0 ∉ C(𝑎).

We will now reproduce an important theorem of [7] that
will be crucial to prove the next result.

Theorem 21 ([see [7]). Let 𝑎
𝑛
, 𝑎 be nonzero elements of A

such that 𝑎
𝑛
→ 𝑎 in A. Then the following conditions are

equivalent:

(i) 𝑎†
𝑛
→ 𝑎
†;

(ii) 𝑎†
𝑛
𝑎
𝑛
→ 𝑎
†

𝑎;

(iii) 𝑎
𝑛
𝑎
†

𝑛
→ 𝑎𝑎

†;

(iv) sup
𝑛
‖𝑎
†

𝑛
‖ < ∞.

The next theorem shows that the covariance set, seen as a
multivalued map, has some kind of continuity.

Theorem 22. Let {𝑎
𝑛
} be a sequence of MP-invertible elements

in the 𝐶∗-algebraA such that 𝑎
𝑛
→ 𝑎 and the norms ‖𝑎†

𝑛
‖ are

bounded. If 𝑏
𝑛
∈ C(𝑎

𝑛
) and 𝑏

𝑛
→ 𝑏 ∈ R−1 as 𝑛 → ∞, then

𝑏 ∈ C(𝑎).

Proof. By hypothesis, 𝑎
𝑛
’s are MP-invertible, 𝑎

𝑛
→ 𝑎, and

‖𝑎
†

𝑛
‖ < ∞. By Theorem 21, 𝑎 is MP-invertible and 𝑎†

𝑛
→ 𝑎
†.

Thus

𝑎
†

𝑛
𝑎
𝑛
󳨀→ 𝑎
†

𝑎, 𝑎
𝑛
𝑎
†

𝑛
󳨀→ 𝑎𝑎

†

. (34)

Therefore by Proposition 2

𝑏
𝑛
∈ C (𝑎

𝑛
) ⇐⇒ 𝑏

𝑛
𝑏
∗

𝑛
𝑎
†

𝑛
𝑎
𝑛
= 𝑎
†

𝑛
𝑎
𝑛
𝑏
𝑛
𝑏
∗

𝑛
,

𝑏
𝑛
𝑏
∗

𝑛
𝑎
𝑛
𝑎
†

𝑛
= 𝑎
𝑛
𝑎
†

𝑛
𝑏
𝑛
𝑏
∗

𝑛
.

(35)

Now, letting 𝑛 → ∞ in (35) we get

𝑏𝑏
∗

𝑎
†

𝑎 = 𝑎
†

𝑎𝑏𝑏
∗

, 𝑏𝑏
∗

𝑎𝑎
†

= 𝑎𝑎
†

𝑏𝑏
∗

. (36)

Again by applying Proposition 2 we conclude that 𝑏 ∈ C(𝑎).

We recall that a set 𝐾 ⊂ A is called a cone 𝜆𝑥 ∈ 𝐾

whenever 𝑥 ∈ 𝐾 and 𝜆 > 0.

Proposition 23. Suppose that 𝑎 is a regular element inA and
𝜆 is any nonzero scalar.Then 𝑏 ∈ C(𝑎) if and only if 𝜆𝑏 ∈ C(𝑎).

Proof. Assume that 𝑏 ∈ C(𝑎). Then by Proposition 2,

[𝑏
∗

𝑏, 𝑎𝑎
†

] = 0, [𝑏
∗

𝑏, 𝑎
†

𝑎] = 0. (37)

This is true if and only if

|𝜆|
2

[𝑏
∗

𝑏, 𝑎𝑎
†

] = 0, |𝜆|
2

[𝑏
∗

𝑏, 𝑎
†

𝑎] = 0, (38)

which is equivalent to

[(𝜆𝑏)
∗

(𝜆𝑏) , 𝑎𝑎
†

] = 0, [(𝜆𝑏)
∗

(𝜆𝑏) , 𝑎
†

𝑎] = 0. (39)

Again by Proposition 2, these hold if and only if 𝜆𝑏 ∈ C(𝑎).

Corollary 24. If 𝑎 is regular inA, then C(𝑎) is a cone.

Proof. The proof is an immediate consequence of the above
proposition.

Proposition 25. Suppose that 𝑎 is a regular element inA and
𝜆 is any nonzero scalar. Then C(𝑎) = C(𝜆𝑎).

Proof. By assumption 𝜆 ̸= 0, thus (𝜆𝑎)† = (1/𝜆)𝑎† and so

(𝜆𝑎)
†

(𝜆𝑎) = 𝑎
†

𝑎, (𝜆𝑎) (𝜆𝑎)
†

= 𝑎𝑎
†

. (40)

By applying Proposition 5 we get

C (𝑎) = C (𝑎𝑎
†

) ∩ C (𝑎
†

𝑎)

= C ((𝜆𝑎) (𝜆𝑎)
†

) ∩ C ((𝜆𝑎)
†

(𝜆𝑎)) = C (𝜆𝑎) .

(41)
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