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Given a vector space𝑋, we investigate the solutions𝑓 : R → 𝑋 of the linear functional equation of third order𝑓 (𝑥) = 𝑝𝑓 (𝑥 − 1)+

𝑞𝑓 (𝑥 − 2) + 𝑟𝑓(𝑥 − 3), which is strongly associated with a well-known identity for the Fibonacci numbers. Moreover, we prove the
Hyers-Ulam stability of that equation.

1. Introduction

The problem of stability of functional equations was moti-
vated by a question of Ulam [1] and a solution to it by Hyers
[2]. Since then, numerous papers have been published on
that subject and we refer to [3–6] for more details, some
discussions, and further references; for examples of very
recent results, see, for example, [7].

In this paper, as usual, C, R, Z, and N stand for the sets
of complex numbers, real numbers, integers, and positive
integers, respectively. For a nonempty subset 𝑆 of a vector
space, let 𝜉 : 𝑆 → 𝑆 be a function. Moreover, 𝜉0(𝑥) = 𝑥,
𝜉
𝑛+1

(𝑥) = 𝜉(𝜉
𝑛
(𝑥)), and (only for bijective 𝜉) 𝜉−𝑛−1(𝑥) =

𝜉
−1
(𝜉
−𝑛
(𝑥)) for 𝑥 ∈ 𝑆 and 𝑛 ∈ N

0
:= N ∪ {0}.

Jung has proved in [3] (see also [8]) some results on
solutions andHyers-Ulam stability of the functional equation

𝑓 (𝑥) = 𝑝𝑓 (𝜉 (𝑥)) − 𝑞𝑓 (𝜉
2
(𝑥)) , (1)

in the case where 𝑆 = R and 𝜉(𝑥) = 𝑥 − 1 for 𝑥 ∈ R.
If 𝑆 := N

0
and 𝑝, 𝑞 ∈ Z, then solutions 𝑥 : N

0
→ Z

of the difference equation 𝑓(𝑥) = 𝑝𝑓(𝑥 − 1) − 𝑞𝑓(𝑥 − 2)

are called the Lucas sequences (see, e.g., [9]). In some special
cases they are called with specific names, for example, the
Fibonacci numbers (𝑝 = 1, 𝑞 = −1, 𝑥(0) = 0, and 𝑥(1) = 1),
the Lucas numbers (𝑝 = 1, 𝑞 = −1, 𝑥(0) = 2, and 𝑥(1) = 1),
the Pell numbers (𝑝 = 2, 𝑞 = −1, 𝑥(0) = 0, and 𝑥(1) = 1), the

Pell-Lucas (or companion Lucas) numbers (𝑝 = 2, 𝑞 = −1,
𝑥(0) = 2, and 𝑥(1) = 2), and the Jacobsthal numbers (𝑝 = 1,
𝑞 = −2, 𝑥(0) = 0, and 𝑥(1) = 1).

For some information and further references concerning
the functional equations in a single variable, we refer to [10–
12]. Let us mention yet that the problem of Hyers-Ulam
stability of functional equations is connected to the notions
of controlled chaos and shadowing (see [13]).

We remark that if 𝜉 : 𝑆 → 𝑆 is bijective, then (1) can be
written in the following equivalent form:

𝑓 (𝜂
2
(𝑥)) = 𝑝𝑓 (𝜂 (𝑥)) − 𝑞𝑓 (𝑥) , (2)

where 𝜂 := 𝜉
−1.

In view of the last remark, the following Hyers-Ulam
stability result concerning (1) can be derived from [14,
Theorem 2] (see also [15]).

Theorem 1. Let 𝑝, 𝑞 ∈ R be given with 𝑞 ̸= 0 and let
𝑆 be a nonempty subset of a vector space. Assume that
𝑎
1
, 𝑎
2

are the complex roots of the quadratic equation
𝑥
2
− 𝑝𝑥 + 𝑞 = 0 with |𝑎

𝑖
| ̸= 1 for 𝑖 ∈ {1, 2}. More-

over, assume that 𝑋 is either a real vector space if 𝑝2 −
4𝑞 > 0 or a complex vector space if 𝑝

2
− 4𝑞 < 0.
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Let 𝜉 : 𝑆 → 𝑆 be bijective. If a function 𝑓 : 𝑆 → 𝑋 satisfies
the inequality

󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) − 𝑝𝑓 (𝜉 (𝑥)) + 𝑞𝑓 (𝜉

2
(𝑥))

󵄩󵄩󵄩󵄩󵄩
≤ 𝜀 (3)

for all 𝑥 ∈ 𝑆 and for some 𝜀 ≥ 0, then there exists a unique
solution 𝐹 : 𝑆 → 𝑋 of (1) with

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩 ≤

𝜀

󵄨󵄨󵄨󵄨(
󵄨󵄨󵄨󵄨𝑎1

󵄨󵄨󵄨󵄨 − 1) (
󵄨󵄨󵄨󵄨𝑎2

󵄨󵄨󵄨󵄨 − 1)
󵄨󵄨󵄨󵄨

(4)

for all 𝑥 ∈ 𝑆.

In [16, Theorem 1.4], the method presented in [3] was
modified so as to prove a theorem which is a complement of
Theorem 1. Note that, for bijective 𝜉, the following theorem
improves the estimation (4) in some cases (e.g., 𝑎

1
= 3/2,

𝑎
2
= −3/2, or 𝑎

1
= 1/2, 𝑎

2
= −1/2). However, in some

other situations (e.g., 𝑎
1
= 3, 𝑎

2
= −3), the estimation (4)

is better than (5). The following theorem also complements
Theorem 1, because 𝜉 can be quite arbitrary in the case of (𝛼).

Theorem 2. Given 𝑝, 𝑞 ∈ R with 𝑞 ̸= 0, assume that the
distinct complex roots 𝑎

1
, 𝑎
2
of the quadratic equation 𝑥2−𝑝𝑥+

𝑞 = 0 satisfy one of the following two conditions:

(𝛼) |𝑎
𝑖
| < 1 for 𝑖 ∈ {1, 2};

(𝛽) |𝑎
𝑖
| ̸= 1 for 𝑖 ∈ {1, 2} and 𝜉 : 𝑆 → 𝑆 is bijective.

Moreover, assume that 𝑋 is either a real vector space if 𝑝2 −
4𝑞 > 0 or a complex vector space if 𝑝2 − 4𝑞 < 0. If a function
𝑓 : 𝑆 → 𝑋 satisfies inequality (3), then there exists a solution
𝐹 : 𝑆 → 𝑋 of (1) such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩 ≤

𝜀

󵄨󵄨󵄨󵄨𝑎1 − 𝑎
2

󵄨󵄨󵄨󵄨

(

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨 − 1

󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 − 1

󵄨󵄨󵄨󵄨

) (5)

for all 𝑥 ∈ 𝑆. Moreover, if the condition (𝛽) is true, then the 𝐹
is the unique solution of (1) satisfying (5).

In this paper, we investigate the solutions of the functional
equation

𝑓 (𝑥) = 𝑝𝑓 (𝑥 − 1) + 𝑞𝑓 (𝑥 − 2) + 𝑟𝑓 (𝑥 − 3) , (6)

where 𝑝, 𝑞, 𝑟 are real constants. Moreover, we also prove the
Hyers-Ulam stability of that equation. Equation (6) is a kind
of linear functional equations of third order because it is of
the form

𝑓 (𝑥) = 𝑎
1
(𝑥) 𝑓 (𝜉 (𝑥)) + 𝑎

2
(𝑥) 𝑓 (𝜉

2
(𝑥)) + 𝑎

3
(𝑥) 𝑓 (𝜉

3
(𝑥))

(7)

for the case of 𝑎
1
(𝑥) = 𝑝, 𝑎

2
(𝑥) = 𝑞, 𝑎

3
(𝑥) = 𝑟, and 𝜉(𝑥) =

𝑥 − 1.

2. General Solution

In the following theorem, we apply [16, Theorem 1.1] for the
investigation of general solutions of the functional equation
(6).

Theorem 3. Let 𝑝, 𝑞, 𝑟 be real constants such that the cubic
equation

𝑥
3
+ 𝑝𝑥
2
− 𝑞𝑥 + 𝑟 = 0 (8)

has the following properties:
(i) 𝛼
1
and𝛼
2
are two distinct nonzero real roots of the cubic

equation (8);
(ii) it holds true that either (𝛼

𝑖
+𝑝)
2
+4𝑟/𝛼

𝑖
> 0 for 𝑖 ∈ {1, 2}

or (𝛼
𝑖
+ 𝑝)
2
+ 4𝑟/𝛼

𝑖
< 0 for 𝑖 ∈ {1, 2}.

Let 𝑋 be either a real vector space if (𝛼
𝑖
+ 𝑝)
2
+ 4𝑟/𝛼

𝑖
> 0 for

𝑖 ∈ {1, 2} or a complex vector space if (𝛼
𝑖
+ 𝑝)
2
+ 4𝑟/𝛼

𝑖
< 0

for 𝑖 ∈ {1, 2}. Then, a function 𝑓 : R → 𝑋 is a solution of
the functional equation (6) if and only if there exist functions
ℎ
1
, ℎ
2
: [−1, 1) → 𝑋 such that

𝑓 (𝑥) =
𝛼
1

𝛼
1
− 𝛼
2

𝑉
[𝑥]+1

ℎ
2
(𝑥 − [𝑥])

+
𝛼
1
𝑟

𝛼
2
(𝛼
1
− 𝛼
2
)
𝑉
[𝑥]
ℎ
2
(𝑥 − [𝑥] − 1)

−
𝛼
2

𝛼
1
− 𝛼
2

𝑈
[𝑥]+1

ℎ
1
(𝑥 − [𝑥])

−
𝛼
2
𝑟

𝛼
1
(𝛼
1
− 𝛼
2
)
𝑈
[𝑥]
ℎ
1
(𝑥 − [𝑥] − 1) ,

(9)

where [𝑥] denotes the largest integer not exceeding 𝑥, and 𝑈
𝑛
,

𝑉
𝑛
are defined in (13) and (23).

Proof. Assume that 𝑓 : R → 𝑋 is a solution of (6). If we
define an auxiliary function 𝑔

1
: R → 𝑋 by

𝑔
1
(𝑥) := 𝑓 (𝑥) + 𝛼

1
𝑓 (𝑥 − 1) , (10)

then it follows from (6) that 𝑔
1
satisfies

𝑔
1
(𝑥) = (𝛼

1
+ 𝑝) 𝑔

1
(𝑥 − 1) +

𝑟

𝛼
1

𝑔
1
(𝑥 − 2) (11)

for any 𝑥 ∈ R. According to [16, Theorem 1.1] or [3, Theorem
2.1], there exists a function ℎ

1
: [−1, 1) → 𝑋 such that

𝑔
1 (𝑥) = 𝑓 (𝑥) + 𝛼

1
𝑓 (𝑥 − 1)

= 𝑈
[𝑥]+1

ℎ
1
(𝑥 − [𝑥]) +

𝑟

𝛼
1

𝑈
[𝑥]
ℎ
1
(𝑥 − [𝑥] − 1)

(12)

for all 𝑥 ∈ R, where

𝑈
𝑛
=
𝑎
𝑛
− 𝑏
𝑛

𝑎 − 𝑏
(𝑛 ∈ Z) (13)

and 𝑎, 𝑏 are the distinct roots of the quadratic equation

𝑥
2
− (𝛼
1
+ 𝑝) 𝑥 −

𝑟

𝛼
1

= 0, (14)

that is,

𝑎 =
𝛼
1
+ 𝑝

2
+ √(

𝛼
1
+ 𝑝

2
)

2

+
𝑟

𝛼
1

,

𝑏 =
𝛼
1
+ 𝑝

2
− √(

𝛼
1
+ 𝑝

2
)

2

+
𝑟

𝛼
1

.

(15)
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Since 𝑎 is a root of the quadratic equation (14), we have

𝑎
2
= (𝛼
1
+ 𝑝) 𝑎 +

𝑟

𝛼
1

. (16)

We multiply both sides of (16) with 𝑎 and make use of (16)
and (i) to get

𝑎
3
= 𝑝𝑎
2
+ 𝛼
1
𝑎
2
+

𝑟

𝛼
1

𝑎

= 𝑝𝑎
2
+ 𝛼
1
((𝛼
1
+ 𝑝) 𝑎 +

𝑟

𝛼
1

) +
𝑟

𝛼
1

𝑎

= 𝑝𝑎
2
+

𝑎

𝛼
1

(𝛼
3

1
+ 𝑝𝛼
2

1
+ 𝑟) + 𝑟

= 𝑝𝑎
2
+ 𝑞𝑎 + 𝑟.

(17)

Similarly, we also obtain

𝑏
3
= 𝑝𝑏
2
+ 𝑞𝑏 + 𝑟. (18)

Using (13), (17), and (18), we have

𝑝𝑈
𝑛−1

+ 𝑞𝑈
𝑛−2

+ 𝑟𝑈
𝑛−3

=

(𝑝𝑎
2
+ 𝑞𝑎 + 𝑟) 𝑎

𝑛−3
− (𝑝𝑏

2
+ 𝑞𝑏 + 𝑟) 𝑏

𝑛−3

𝑎 − 𝑏

=
𝑎
𝑛
− 𝑏
𝑛

𝑎 − 𝑏
= 𝑈
𝑛

(19)

for all 𝑛 ∈ Z.
If we define an auxiliary function 𝑔

2
: R → 𝑋 by

𝑔
2
(𝑥) := 𝑓 (𝑥) + 𝛼

2
𝑓 (𝑥 − 1) , (20)

then it follows from (6) that 𝑔
2
satisfies

𝑔
2
(𝑥) = (𝛼

2
+ 𝑝) 𝑔

2
(𝑥 − 1) +

𝑟

𝛼
2

𝑔
2
(𝑥 − 2) (21)

for any 𝑥 ∈ R. According to [16, Theorem 1.1] or [3, Theorem
2.1], there exists a function ℎ

2
: [−1, 1) → 𝑋 such that

𝑔
2
(𝑥) = 𝑓 (𝑥) + 𝛼

2
𝑓 (𝑥 − 1)

= 𝑉
[𝑥]+1

ℎ
2
(𝑥 − [𝑥]) +

𝑟

𝛼
2

𝑉
[𝑥]
ℎ
2
(𝑥 − [𝑥] − 1)

(22)

for all 𝑥 ∈ R, where

𝑉
𝑛
=
𝑐
𝑛
− 𝑑
𝑛

𝑐 − 𝑑
(𝑛 ∈ Z) (23)

and 𝑐, 𝑑 are the distinct roots of the quadratic equation

𝑥
2
− (𝛼
2
+ 𝑝) 𝑥 −

𝑟

𝛼
2

= 0, (24)

that is,

𝑐 =
𝛼
2
+ 𝑝

2
+ √(

𝛼
2
+ 𝑝

2
)

2

+
𝑟

𝛼
2

,

𝑑 =
𝛼
2
+ 𝑝

2
− √(

𝛼
2
+ 𝑝

2
)

2

+
𝑟

𝛼
2

.

(25)

As in the first part, we verify that

𝑉
𝑛
= 𝑝𝑉
𝑛−1

+ 𝑞𝑉
𝑛−2

+ 𝑟𝑉
𝑛−3 (26)

for all 𝑛 ∈ Z.
We now multiply (12) with 𝛼

2
and (22) with 𝛼

1
, we

subtract the former from the latter, and we then divide the
resulting equation by (𝛼

1
− 𝛼
2
) to get (9).

We assume that a function 𝑓 : R → 𝑋 is given by (9),
where ℎ

1
, ℎ
2
: [−1, 1) → 𝑋 are arbitrarily given functions

and 𝑈
𝑛
, 𝑉
𝑛
are given by (13) and (23), respectively. Then, by

(9), (19), and (26), we have

𝑝𝑓 (𝑥 − 1) + 𝑞𝑓 (𝑥 − 2) + 𝑟𝑓 (𝑥 − 3)

=
𝛼
1

𝛼
1
− 𝛼
2

(𝑝𝑉
[𝑥]

+ 𝑞𝑉
[𝑥]−1

+ 𝑟𝑉
[𝑥]−2

) ℎ
2
(𝑥 − [𝑥])

+
𝛼
1
𝑟

𝛼
2
(𝛼
1
− 𝛼
2
)
(𝑝𝑉
[𝑥]−1

+ 𝑞𝑉
[𝑥]−2

+ 𝑟𝑉
[𝑥]−3

)

× ℎ
2 (𝑥 − [𝑥] − 1)

−
𝛼
2

𝛼
1
− 𝛼
2

(𝑝𝑈
[𝑥]

+ 𝑞𝑈
[𝑥]−1

+ 𝑟𝑈
[𝑥]−2

) ℎ
1
(𝑥 − [𝑥])

−
𝛼
2
𝑟

𝛼
1
(𝛼
1
− 𝛼
2
)
(𝑝𝑈
[𝑥]−1

+ 𝑞𝑈
[𝑥]−2

+ 𝑟𝑈
[𝑥]−3

)

× ℎ
1
(𝑥 − [𝑥] − 1)

=
𝛼
1

𝛼
1
− 𝛼
2

𝑉
[𝑥]+1

ℎ
2 (𝑥 − [𝑥])

+
𝛼
1
𝑟

𝛼
2
(𝛼
1
− 𝛼
2
)
𝑉
[𝑥]
ℎ
2 (𝑥 − [𝑥] − 1)

−
𝛼
2

𝛼
1
− 𝛼
2

𝑈
[𝑥]+1

ℎ
1
(𝑥 − [𝑥])

−
𝛼
2
𝑟

𝛼
1
(𝛼
1
− 𝛼
2
)
𝑈
[𝑥]
ℎ
1
(𝑥 − [𝑥] − 1) = 𝑓 (𝑥)

(27)

for all 𝑥 ∈ R, which implies that 𝑓 is a solution of (6).

According to [17, p. 92], the Fibonacci numbers 𝐹
𝑛
satisfy

the identity

𝐹
2

𝑛
= 2𝐹
2

𝑛−1
+ 2𝐹
2

𝑛−2
− 𝐹
2

𝑛−3
(28)

for all integers 𝑛 > 3. We can easily notice that the linear
equation of third order

𝑓 (𝑥) = 2𝑓 (𝑥 − 1) + 2𝑓 (𝑥 − 2) − 𝑓 (𝑥 − 3) (29)

is strongly related to identity (28).
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Corollary 4. Let𝑋 be a real vector space. A function𝑓 : R →

𝑋 is a solution of the functional equation (29) if and only if
there exist functions ℎ

1
, ℎ
2
: [−1, 1) → 𝑋 such that

𝑓 (𝑥) =
5 + 3√5

10
𝑈
[𝑥]+1

ℎ
1 (𝑥 − [𝑥])

+
15 + 7√5

10
𝑈
[𝑥]
ℎ
1
(𝑥 − [𝑥] − 1)

+
5 − 3√5

10
𝑉
[𝑥]+1

ℎ
2
(𝑥 − [𝑥])

+
15 − 7√5

10
𝑉
[𝑥]
ℎ
2
(𝑥 − [𝑥] − 1) ,

(30)

where 𝑈
𝑛
and 𝑉

𝑛
are defined in (33).

Proof. If we set 𝑝 = 2, 𝑞 = 2, and 𝑟 = −1 in (8), then the cubic
equation

𝑥
3
+ 2𝑥
2
− 2𝑥 − 1 = 0 (31)

has three distinct nonzero roots including

𝛼
1
= −

3

2
+
√5

2
, 𝛼

2
= −

3

2
−
√5

2
. (32)

Moreover, it holds that (𝛼
1
+ 𝑝)
2
+ 4𝑟/𝛼

1
> 0 and (𝛼

2
+ 𝑝)
2
+

4𝑟/𝛼
2
> 0. By (13), (15), (23), and (25), we have

𝑈
𝑛
=
𝑎
𝑛
− 𝑏
𝑛

𝑎 − 𝑏
, 𝑉

𝑛
=
𝑐
𝑛
− 𝑑
𝑛

𝑐 − 𝑑
, (33)

where we make use of (15) and (25) to calculate

𝑎 =
3 + √5

2
, 𝑏 = −1, 𝑐 =

3 − √5

2
, 𝑑 = −1.

(34)

Finally, in view of Theorem 3, we conclude that the
assertion of our corollary is true.

Corollary 5. If a function 𝑓 : R → R is a solution of
functional equation (29), then there exist real constants 𝜇

1
, 𝜇
2
,

]
1
, and ]

2
such that

𝑓 (𝑛) =
5 + 3√5

10
𝜇
1
𝑈
𝑛+1

+
15 + 7√5

10
𝜇
2
𝑈
𝑛

+
5 − 3√5

10
]
1
𝑉
𝑛+1

+
15 − 7√5

10
]
2
𝑉
𝑛

(35)

for all 𝑛 ∈ Z, where 𝑈
𝑛
and 𝑉

𝑛
are defined in (33).

3. Hyers-Ulam Stability

We apply the classical direct method to the proof of the
following theorem. The classical direct method was first
proposed by Hyers [2].

Theorem 6. Let 𝑝, 𝑞, 𝑟 be real constants with 𝑟 ̸= 0, let 𝛼 be a
nonzero root of the cubic equation (8), and let 𝑎, 𝑏 be the roots of

the quadratic equation 𝑥2−(𝛼+𝑝)𝑥−𝑟/𝛼 = 0with |𝑎| > 1 and
0 < |𝑏| < 1. Let 𝑋 be either a real Banach space if (𝛼 + 𝑝)

2
+

4𝑟/𝛼 > 0 or a complex Banach space if (𝛼 + 𝑝)
2
+ 4𝑟/𝛼 < 0. If

a function 𝑓 : R → 𝑋 satisfies the inequality
󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑝𝑓 (𝑥 − 1) − 𝑞𝑓 (𝑥 − 2) − 𝑟𝑓 (𝑥 − 3)

󵄩󵄩󵄩󵄩 ≤ 𝜀 (36)

for all 𝑥 ∈ R and for some 𝜀 ≥ 0, then there exists a solution
𝐺 : R → 𝑋 of (6) such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) + 𝛼𝑓 (𝑥 − 1) − 𝐺 (𝑥)
󵄩󵄩󵄩󵄩 ≤

|𝑎| − |𝑏|

|𝑎 − 𝑏|

𝜀

(|𝑎| − 1) (1 − |𝑏|)

(37)

for all 𝑥 ∈ R.

Proof. If we define an auxiliary function 𝑔 : R → 𝑋 by

𝑔 (𝑥) := 𝑓 (𝑥) + 𝛼𝑓 (𝑥 − 1) , (38)

then, as we did in (11), it follows from (36) that 𝑔 satisfies the
inequality

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔 (𝑥) − (𝛼 + 𝑝) 𝑔 (𝑥 − 1) −

𝑟

𝛼
𝑔 (𝑥 − 2)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜀 (39)

or
󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑎𝑔 (𝑥 − 1) − 𝑏 [𝑔 (𝑥 − 1) − 𝑎𝑔 (𝑥 − 2)]

󵄩󵄩󵄩󵄩 ≤ 𝜀 (40)

for any 𝑥 ∈ R.
If we replace 𝑥 with 𝑥 − 𝑘 in the last inequality, then we

have
󵄩󵄩󵄩󵄩𝑔 (𝑥 − 𝑘) − 𝑎𝑔 (𝑥 − 𝑘 − 1)

−𝑏 [𝑔 (𝑥 − 𝑘 − 1) − 𝑎𝑔 (𝑥 − 𝑘 − 2)]
󵄩󵄩󵄩󵄩 ≤ 𝜀

(41)

for all 𝑥 ∈ R. Furthermore, we get
󵄩󵄩󵄩󵄩󵄩
𝑏
𝑘
[𝑔 (𝑥 − 𝑘) − 𝑎𝑔 (𝑥 − 𝑘 − 1)]

−𝑏
𝑘+1

[𝑔 (𝑥 − 𝑘 − 1) − 𝑎𝑔 (𝑥 − 𝑘 − 2)]
󵄩󵄩󵄩󵄩󵄩
≤ |𝑏|
𝑘
𝜀

(42)

for all 𝑥 ∈ R and 𝑘 ∈ Z. By (42), we obviously have
󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑎𝑔 (𝑥 − 1) − 𝑏

𝑛
[𝑔 (𝑥 − 𝑛) − 𝑎𝑔 (𝑥 − 𝑛 − 1)]

󵄩󵄩󵄩󵄩

≤

𝑛−1

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝑏
𝑘
[𝑔 (𝑥 − 𝑘) − 𝑎𝑔 (𝑥 − 𝑘 − 1)]

−𝑏
𝑘+1

[𝑔 (𝑥 − 𝑘 − 1) − 𝑎𝑔 (𝑥 − 𝑘 − 2)]
󵄩󵄩󵄩󵄩󵄩

≤

𝑛−1

∑

𝑘=0

|𝑏|
𝑘
𝜀

(43)

for 𝑥 ∈ R and 𝑛 ∈ N.
For any 𝑥 ∈ R, (42) implies that the sequence {𝑏𝑛[𝑔(𝑥 −

𝑛)−𝑎𝑔(𝑥−𝑛−1)]} is a Cauchy sequence (note that 0 < |𝑏| < 1).
Therefore, we can define a function 𝐺

1
: R → 𝑋 by

𝐺
1
(𝑥) := lim

𝑛→∞
𝑏
𝑛
[𝑔 (𝑥 − 𝑛) − 𝑎𝑔 (𝑥 − 𝑛 − 1)] , (44)
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since𝑋 is complete. In view of the definition of 𝐺
1
and using

the relations, 𝑎 + 𝑏 = 𝛼 + 𝑝 and 𝑎𝑏 = −𝑟/𝛼, we obtain

(𝛼 + 𝑝)𝐺
1
(𝑥 − 1) +

𝑟

𝛼
𝐺
1
(𝑥 − 2)

= (𝑎 + 𝑏) 𝐺
1
(𝑥 − 1) − 𝑎𝑏𝐺

1
(𝑥 − 2)

=
𝑎 + 𝑏

𝑏
lim
𝑛→∞

𝑏
𝑛+1

[𝑔 (𝑥 − (𝑛 + 1)) − 𝑎𝑔 (𝑥 − (𝑛 + 1) − 1)]

−
𝑎𝑏

𝑏2
lim
𝑛→∞

𝑏
𝑛+2

[𝑔 (𝑥 − (𝑛 + 2)) − 𝑎𝑔 (𝑥 − (𝑛 + 2) − 1)]

=
𝑎 + 𝑏

𝑏
𝐺
1
(𝑥) −

𝑎

𝑏
𝐺
1
(𝑥) = 𝐺

1
(𝑥)

(45)

for all 𝑥 ∈ R. Since 𝛼 is a nonzero root of the cubic equation
(8), it follows from (45) that

𝐺
1
(𝑥) − 𝑝𝐺

1
(𝑥 − 1) − 𝑞𝐺

1
(𝑥 − 2) − 𝑟𝐺

1
(𝑥 − 3)

= (𝛼 + 𝑝)𝐺
1 (𝑥 − 1) +

𝑟

𝛼
𝐺
1 (𝑥 − 2) − 𝑝𝐺

1 (𝑥 − 1)

− 𝑞𝐺
1
(𝑥 − 2) − 𝑟𝐺

1
(𝑥 − 3)

= 𝛼𝐺
1
(𝑥 − 1) + (−𝑞 +

𝑟

𝛼
)𝐺
1
(𝑥 − 2) − 𝑟𝐺

1
(𝑥 − 3)

= 𝛼𝐺
1 (𝑥 − 1) + (−𝛼

2
− 𝑝𝛼)𝐺

1 (𝑥 − 2) − 𝑟𝐺
1 (𝑥 − 3)

= 𝛼 ((𝛼 + 𝑝)𝐺
1
(𝑥 − 2) +

𝑟

𝛼
𝐺
1
(𝑥 − 3))

− 𝛼 (𝛼 + 𝑝)𝐺
1
(𝑥 − 2) − 𝑟𝐺

1
(𝑥 − 3) = 0

(46)

for all 𝑥 ∈ R. Hence, we conclude that 𝐺
1
is a solution of (6).

If 𝑛 tends to infinity, then (43) yields that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑎𝑔 (𝑥 − 1) − 𝐺
1 (𝑥)

󵄩󵄩󵄩󵄩 ≤
𝜀

1 − |𝑏|
(47)

for every 𝑥 ∈ R.
On the other hand, it also follows from (36) that

󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑏𝑔 (𝑥 − 1) − 𝑎 [𝑔 (𝑥 − 1) − 𝑏𝑔 (𝑥 − 2)]
󵄩󵄩󵄩󵄩 ≤ 𝜀 (48)

for all 𝑥 ∈ R. Analogously to (42), replacing 𝑥 by 𝑥 + 𝑘 in
the last inequality and then dividing by |𝑎|𝑘 both sides of the
resulting inequality, then we have

󵄩󵄩󵄩󵄩󵄩
𝑎
−𝑘
[𝑔 (𝑥 + 𝑘) − 𝑏𝑔 (𝑥 + 𝑘 − 1)]

−𝑎
−𝑘+1

[𝑔 (𝑥 + 𝑘 − 1) − 𝑏𝑔 (𝑥 + 𝑘 − 2)]
󵄩󵄩󵄩󵄩󵄩
≤ |𝑎|
−𝑘
𝜀

(49)

for all 𝑥 ∈ R and 𝑘 ∈ Z. By using (49), we further obtain
󵄩󵄩󵄩󵄩𝑎
−𝑛
[𝑔 (𝑥 + 𝑛) − 𝑏𝑔 (𝑥 + 𝑛 − 1)] − [𝑔 (𝑥) − 𝑏𝑔 (𝑥 − 1)]

󵄩󵄩󵄩󵄩

≤

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝑎
−𝑘
[𝑔 (𝑥 + 𝑘) − 𝑏𝑔 (𝑥 + 𝑘 − 1)]

−𝑎
−𝑘+1

[𝑔 (𝑥 + 𝑘 − 1) − 𝑏𝑔 (𝑥 + 𝑘 − 2)]
󵄩󵄩󵄩󵄩󵄩

≤

𝑛

∑

𝑘=1

|𝑎|
−𝑘
𝜀

(50)

for 𝑥 ∈ R and 𝑛 ∈ N.
On account of (49), we see that the sequence {𝑎−𝑛[𝑔(𝑥 +

𝑛) − 𝑏𝑔(𝑥 + 𝑛 − 1)]} is a Cauchy sequence for any fixed 𝑥 ∈ R

(note that |𝑎| > 1). Hence, we can define a function𝐺
2
: R →

𝑋 by

𝐺
2
(𝑥) := lim

𝑛→∞
𝑎
−𝑛
[𝑔 (𝑥 + 𝑛) − 𝑏𝑔 (𝑥 + 𝑛 − 1)] . (51)

Due to the definition of 𝐺
2
and the relations, 𝑎 + 𝑏 = 𝛼 + 𝑝

and 𝑎𝑏 = −𝑟/𝛼, we get

(𝛼 + 𝑝)𝐺
2
(𝑥 − 1) +

𝑟

𝛼
𝐺
2
(𝑥 − 2)

= (𝑎 + 𝑏) 𝐺
2
(𝑥 − 1) − 𝑎𝑏𝐺

2
(𝑥 − 2)

=
𝑎 + 𝑏

𝑎
lim
𝑛→∞

𝑎
−(𝑛−1)

[𝑔 (𝑥 + 𝑛 − 1) − 𝑏𝑔 (𝑥 + 𝑛 − 2)]

−
𝑎𝑏

𝑎2
lim
𝑛→∞

𝑎
−(𝑛−2)

[𝑔 (𝑥 + 𝑛 − 2) − 𝑏𝑔 (𝑥 + 𝑛 − 3)]

=
𝑎 + 𝑏

𝑎
𝐺
2
(𝑥) −

𝑏

𝑎
𝐺
2
(𝑥) = 𝐺

2
(𝑥)

(52)

for any 𝑥 ∈ R. Similarly as in the first part, we can show that
𝐺
2
is a solution of (6).
If we let 𝑛 tend to infinity, then it follows from (50) that

󵄩󵄩󵄩󵄩𝐺2 (𝑥) − 𝑔 (𝑥) + 𝑏𝑔 (𝑥 − 1)
󵄩󵄩󵄩󵄩 ≤

𝜀

|𝑎| − 1
(53)

for 𝑥 ∈ R.
It follows from (47) and (53) that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑔 (𝑥 − 1) −

1

𝑎 − 𝑏
𝐺
2
(𝑥) +

1

𝑎 − 𝑏
𝐺
1
(𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑎 − 𝑏
𝐺
1
(𝑥) −

1

𝑎 − 𝑏
𝑔 (𝑥) +

𝑎

𝑎 − 𝑏
𝑔 (𝑥 − 1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑎 − 𝑏
𝑔 (𝑥) −

𝑏

𝑎 − 𝑏
𝑔 (𝑥 − 1) −

1

𝑎 − 𝑏
𝐺
2 (𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
|𝑎| − |𝑏|

|𝑎 − 𝑏|

𝜀

(|𝑎| − 1) (1 − |𝑏|)

(54)

for any 𝑥 ∈ R.
Finally, if we define a function 𝐺 : R → 𝑋 by

𝐺 (𝑥) :=
1

𝑎 − 𝑏
𝐺
2
(𝑥 + 1) −

1

𝑎 − 𝑏
𝐺
1
(𝑥 + 1) (55)



6 Abstract and Applied Analysis

for all 𝑥 ∈ R, then 𝐺 is also a solution of (6). Moreover, the
validity of (37) follows from the last inequality.

The following theorem is the main theorem of this paper.

Theorem 7. Given real constants 𝑝, 𝑞, 𝑟 with 𝑟 ̸= 0, let 𝛼
1
and

𝛼
2
be distinct nonzero roots of cubic equation (8) and let 𝑎

𝑖
, 𝑏
𝑖

be the roots of the quadratic equation 𝑥2 − (𝛼
𝑖
+𝑝)𝑥− 𝑟/𝛼

𝑖
= 0

with |𝑎
𝑖
| > 1 and 0 < |𝑏

𝑖
| < 1 for 𝑖 ∈ {1, 2}. Assume that either

(𝛼
𝑖
+ 𝑝)
2
+4𝑟/𝛼

𝑖
> 0 for all 𝑖 ∈ {1, 2} or (𝛼

𝑖
+ 𝑝)
2
+4𝑟/𝛼

𝑖
< 0 for

all 𝑖 ∈ {1, 2}. Let 𝑋 be either a real Banach space if (𝛼
𝑖
+ 𝑝)
2
+

4𝑟/𝛼
𝑖
> 0 or a complex Banach space if (𝛼

𝑖
+ 𝑝)
2
+ 4𝑟/𝛼

𝑖
< 0.

If a function 𝑓 : R → 𝑋 satisfies inequality (36) for all 𝑥 ∈ R

and for some 𝜀 ≥ 0, then there exists a solution 𝐹 : R → 𝑋 of
(6) such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐹 (𝑥)
󵄩󵄩󵄩󵄩 ≤

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎1 − 𝑏
1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1 − 𝛼
2

󵄨󵄨󵄨󵄨

𝜀

(
󵄨󵄨󵄨󵄨𝑎1

󵄨󵄨󵄨󵄨 − 1) (1 −
󵄨󵄨󵄨󵄨𝑏1

󵄨󵄨󵄨󵄨)

+

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎2 − 𝑏
2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1 − 𝛼
2

󵄨󵄨󵄨󵄨

𝜀

(
󵄨󵄨󵄨󵄨𝑎2

󵄨󵄨󵄨󵄨 − 1) (1 −
󵄨󵄨󵄨󵄨𝑏2

󵄨󵄨󵄨󵄨)

(56)

for all 𝑥 ∈ R.

Proof. According to Theorem 6, there exists a solution 𝐹
𝑖
:

R → 𝑋 of (6) such that

󵄩󵄩󵄩󵄩𝑓 (𝑥) + 𝛼
𝑖
𝑓 (𝑥 − 1) − 𝐹

𝑖 (𝑥)
󵄩󵄩󵄩󵄩 ≤

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑏𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎𝑖 − 𝑏
𝑖

󵄨󵄨󵄨󵄨

𝜀

(
󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 − 1) (1 −

󵄨󵄨󵄨󵄨𝑏𝑖
󵄨󵄨󵄨󵄨)

(57)

for any 𝑥 ∈ R and 𝑖 ∈ {1, 2}. In view of the last inequalities,
we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑥) −
𝛼
1

𝛼
1
− 𝛼
2

𝐹
2
(𝑥) +

𝛼
2

𝛼
1
− 𝛼
2

𝐹
1
(𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
2

𝛼
1
− 𝛼
2

𝐹
1
(𝑥) −

𝛼
2

𝛼
1
− 𝛼
2

𝑓 (𝑥) −
𝛼
1
𝛼
2

𝛼
1
− 𝛼
2

𝑓 (𝑥 − 1)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
1

𝛼
1
− 𝛼
2

𝑓 (𝑥) +
𝛼
1
𝛼
2

𝛼
1
− 𝛼
2

𝑓 (𝑥 − 1) −
𝛼
1

𝛼
1
− 𝛼
2

𝐹
2
(𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎1 − 𝑏
1

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1 − 𝛼
2

󵄨󵄨󵄨󵄨

𝜀

(
󵄨󵄨󵄨󵄨𝑎1

󵄨󵄨󵄨󵄨 − 1) (1 −
󵄨󵄨󵄨󵄨𝑏1

󵄨󵄨󵄨󵄨)

+

󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎2 − 𝑏
2

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛼1 − 𝛼
2

󵄨󵄨󵄨󵄨

𝜀

(
󵄨󵄨󵄨󵄨𝑎2

󵄨󵄨󵄨󵄨 − 1) (1 −
󵄨󵄨󵄨󵄨𝑏2

󵄨󵄨󵄨󵄨)

(58)

for all 𝑥 ∈ R.
If we define a function 𝐹 : R → 𝑋 by

𝐹 (𝑥) :=
𝛼
1

𝛼
1
− 𝛼
2

𝐹
2 (𝑥) −

𝛼
2

𝛼
1
− 𝛼
2

𝐹
1 (𝑥) (59)

for each 𝑥 ∈ R, then 𝐹 is also a solution of (6), and inequality
(56) follows from the last inequality.
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