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This paper is concerned with formally J-self-adjoint discrete linear Hamiltonian systems on finite or infinite intervals.Theminimal
and maximal subspaces are characterized, and the defect indices of the minimal subspaces are discussed. All the J-self-adjoint
subspace extensions of theminimal subspace are completely characterized in terms of the square summable solutions and boundary
conditions. As a consequence, characterizations of all the J-self-adjoint subspace extensions are given in the limit point and limit
circle cases.

1. Introduction

Consider the following discrete linear Hamiltonian system:

JΔ𝑦 (𝑡) = (𝑃 (𝑡) + 𝜆𝑊 (𝑡)) 𝑅 (𝑦) (𝑡) , 𝑡 ∈ I, (1𝜆)

whereI := {𝑡}
𝑏

𝑡=𝑎
, 𝑎 is a finite integer or 𝑎 = −∞, 𝑏 is a finite

integer or 𝑏 = +∞, and 𝑏 − 𝑎 ≥ 1; Δ is the forward difference
operator, that is, Δ𝑦(𝑡) = 𝑦(𝑡 + 1) − 𝑦(𝑡); J is the canonical
symplectic matrix, that is,

J = (
0 −𝐼𝑛

𝐼𝑛 0
) , (1)

where 𝐼𝑛 is the 𝑛 × 𝑛 unit matrix; the weighted function𝑊(𝑡)

is a 2𝑛 × 2𝑛 real symmetric matrix with 𝑊(𝑡) ≥ 0 for 𝑡 ∈ I,
and it is of the block diagonal form,

𝑊(𝑡) = diag {𝑊1 (𝑡) ,𝑊2 (𝑡)} , (2)

where 𝑃(𝑡) is a 2𝑛 × 2𝑛 complex symmetric matrix, that is,
𝑃
𝑇
(𝑡) = 𝑃(𝑡).Thepartial right shift operator𝑅(𝑦)(𝑡) = (𝑢

𝑇
(𝑡+

1), V𝑇(𝑡))𝑇 with 𝑦(𝑡) = (𝑢
𝑇
(𝑡), V𝑇(𝑡))𝑇 and 𝑢(𝑡), V(𝑡) ∈ C𝑛; 𝜆 is

a complex spectral parameter.
For briefness, denote I = [𝑎, 𝑏] in the case where 𝑎 and

𝑏 are finite integers;I = [𝑎, +∞) in the case where 𝑎 is finite

and 𝑏 = +∞; I = (−∞, 𝑏] in the case where 𝑎 = −∞ and
𝑏 is finite; I = (−∞, +∞) in the case where 𝑎 = −∞ and
𝑏 = +∞.

Since 𝑃(𝑡) is symmetric, it can be blocked as

𝑃 (𝑡) = (
−𝐶 (𝑡) 𝐴

𝑇
(𝑡)

𝐴 (𝑡) 𝐵 (𝑡)

) , (3)

where 𝐴, 𝐵, and 𝐶 are 𝑛 × 𝑛 complex-valued matrices with
𝐶
𝑇
= 𝐶 and 𝐵

𝑇
= 𝐵. Then, (1𝜆) can be rewritten as

(𝐼𝑛 − 𝐴 (𝑡)) 𝑢 (𝑡 + 1) = 𝑢 (𝑡) + (𝐵 (𝑡) + 𝜆𝑊2 (𝑡)) V (𝑡) ,

V (𝑡 + 1) = (𝐶 (𝑡) − 𝜆𝑊1 (𝑡)) 𝑢 (𝑡 + 1)

+ (𝐼𝑛 − 𝐴
𝑇
(𝑡)) V (𝑡) , 𝑡 ∈ I.

(2𝜆)

To ensure the existence and uniqueness of the solution of
any initial value problem for (1𝜆), we always assume in the
present paper that

(𝐴1) 𝐼𝑛 − 𝐴(𝑡) is invertible inI.
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It can be easily verified that (1𝜆) contains the following
complex coefficients vector difference equation of order 2𝑚:

𝑚

∑

𝑗=0

(−1)
𝑗
Δ
𝑗
[𝑝𝑗 (𝑡) Δ

𝑗
𝑧 (𝑡 − 𝑗)] = 𝜆𝑤 (𝑡) 𝑧 (𝑡) , 𝑡 ∈ I,

(3𝜆)

where 𝑝𝑗(𝑡) are 𝑙 × 𝑙 complex-valued matrices with 𝑝
𝑇

𝑗
(𝑡) =

𝑝𝑗(𝑡), 0 ≤ 𝑗 ≤ 𝑚; 𝑝𝑚(𝑡) is invertible inI; 𝑤(𝑡) is an 𝑙 × 𝑙 real-
valued with 𝑤(𝑡) ≥ 0. In fact, by letting 𝑦 = (𝑢

𝑇
, V𝑇)𝑇 with

𝑢 = (𝑢
𝑇

1
, 𝑢
𝑇

2
, . . . , 𝑢

𝑇

𝑚
)
𝑇, V = (V𝑇

1
, V𝑇
2
, . . . , V𝑇

𝑚
)
𝑇, and

𝑢𝑗 (𝑡) = Δ
𝑗−1

𝑧 (𝑡 − 𝑗) ,

V𝑗 (𝑡) =

𝑚

∑

𝑘=𝑗

(−1)
𝑘−𝑗

Δ
𝑘−𝑗

(𝑝𝑘 (𝑡) Δ
𝑘
𝑧 (𝑡 − 𝑘))

(4)

for 1 ≤ 𝑗 ≤ 𝑚, (3𝜆) can be converted into (1𝜆), as well as (2𝜆),
with

−𝐶 (𝑡) = diag {𝑝0 (𝑡) , 𝑝1 (𝑡) , . . . , 𝑝𝑚−1 (𝑡)} ,

𝐴 (𝑡) = (
0 𝐼𝑙(𝑚−1)

0 0
) ,

𝐵 (𝑡) = diag {0, . . . , 0, 𝑝
−1

𝑚
(𝑡)} ,

𝑊 (𝑡) = diag {𝑤 (𝑡) , 0, . . . , 0} .

(5)

It is obvious that (𝐴1) is satisfied for (3𝜆).
The spectral theory of self-adjoint operators and self-

adjoint extensions of symmetric operators (i.e., densely
defined Hermitian operators) in Hilbert spaces has been well
developed (cf. [1–4]). In general, under certain definiteness
conditions, a formally self-adjoint differential expression can
generate a minimal operator which is symmetric, and the
defect index of the minimal operator is equal to the number
of linearly independent square integrable solutions. All the
characterizations of self-adjoint extensions of differential
equation are obtained [5–8].

However, for difference equations, it was found in [9]
that the minimal operator defined in [10] may be neither
densely defined nor single-valued even if the definiteness
condition is satisfied.This is an important difference between
the differential and difference equations. In order to study the
self-adjoint extensions of nondensely defined or multivalued
Hermitian operators, some scholars tried to extend the
concepts and theory for densely defined Hermitian opera-
tors to Hermitian subspaces [11–15]. Recently, Shi extended
the Glazman-Krein-Naimark (GKN) theory for symmetric
operators to Hermitian subspaces [9]. Applying this GKN
theory, the first author, with Shi and Sun, gave complete
characterizations of self-adjoint extensions for second-order
formally self-adjoint difference equations and general linear
discrete Hamiltonian systems, separately [16, 17].

We note that when the coefficient 𝑃(𝑡) in (1𝜆) is not a
Hermitian matrix, that is, 𝑃∗(𝑡) ̸= 𝑃(𝑡), system (1𝜆) is not
formally self-adjoint, and the minimal subspace generated

by (1𝜆) is not Hermitian. Hence the spectral theory of self-
adjoint operators or self-adjoint subspaces is not applicable.
To solve this problem, Glazman introduced a concept of
𝐽-symmetric operators in [3, 18] where 𝐽 is an operator.
The minimal operators generated by certain differential
expressions are 𝐽-symmetric operators in the related Hilbert
spaces [19, 20]. Monaquel and Schmidt [21] discussed the𝑀-
functions of the following discrete Hamiltonian system:

J(
Δ𝑧1 (𝑡)

∇𝑧2 (𝑡)
) = (𝑄 (𝑡) + 𝜆𝐻 (𝑡)) (

𝑧1 (𝑡)

𝑧2 (𝑡)
) , 𝑡 ∈ [0, +∞) ,

(4𝜆)

where ∇ is the backward difference operator, that is, ∇𝑧(𝑡) =

𝑧(𝑡) − 𝑧(𝑡 − 1), and weighted function 𝐻(𝑡) = diag{𝐻1(𝑡),
𝐻2(𝑡)}. By letting 𝑧1(𝑡) = V(𝑡), 𝑧2(𝑡) = 𝑢(𝑡 + 1), (1𝜆) can be
converted into (4−𝜆) with

𝑄 (𝑡) = (
−𝐵 (𝑡) −𝐴 (𝑡)

−𝐴
𝑇
(𝑡) 𝐶 (𝑡)

) ,

𝐻 (𝑡) = (
𝑊2 (𝑡) 0

0 𝑊1 (𝑡)
) .

(6)

In [22], the result that every 𝐽-Hermitian subspace has
a 𝐽-self-adjoint subspace extension has been given. Further-
more, a result about 𝐽-self-adjoint subspace extension was
obtained [22], which can be regarded as a GKN theorem for
𝐽-Hermitian subspaces.

In the present paper, enlightened by the methods used
in the study of self-adjoint subspace extensions of Hermitian
subspaces, we will study the 𝐽-self-adjoint subspace exten-
sions of the minimal operator corresponding to system (1𝜆).
A complete characterization of them in terms of boundary
conditions is given by employing the GKN theorem for 𝐽-
Hermitian subspaces. The rest of this paper is organized as
follows. In Section 2, some basic concepts and useful results
about subspaces are briefly recalled. In Section 3, a conju-
gation operator 𝐽 is defined in the corresponding Hilbert
space, and themaximal andminimal subspaces are discussed.
In Section 4, the description of the minimal subspaces is
given by the properties of their elements at the endpoints of
the discussed intervals, the defect indices of minimal sub-
spaces are discussed, and characterizations of the maximal
subspaces are established. Section 5 pays attention to two
characterizations of all the self-adjoint subspace extensions
of the minimal subspace in terms of boundary conditions
via linearly independent square summable solutions of (1𝜆).
As a consequence, characterizations of all the self-adjoint
subspace extensions are given in two special cases: the limit
point and limit circle cases.

2. Fundamental Results on Subspaces

In this section, we recall some basic concepts and useful
results about subspaces. For more results about nondensely
defined 𝐽-Hermitian operators or 𝐽-Hermitian subspaces, we
refer to [17–19, 22] and some references cited therein. In
addition, some properties of solutions of (1𝜆) and a result
about matrices are given at the end of this section.
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By R and C we denote the sets of the real and the
complex numbers, respectively. Let 𝑋 be a complex Hilbert
space equipped with inner product ⟨⋅, ⋅⟩, 𝑇 and 𝑆 two linear
subspaces (briefly, subspace) in 𝑋

2
:= 𝑋 × 𝑋, and 𝜆 ∈ C.

Denote

Dom 𝑇 := {𝑥 ∈ 𝑋 : (𝑥, 𝑓) ∈ 𝑇 for some 𝑓 ∈ 𝑋} ,

Ran 𝑇 := {𝑓 ∈ 𝑋 : (𝑥, 𝑓) ∈ 𝑇 for some 𝑥 ∈ 𝑋} ,

Ker 𝑇 := {𝑥 ∈ 𝑋 : (𝑥, 0) ∈ 𝑇} ,

𝑇
∗
:= {(𝑥, 𝑓) ∈ 𝑋

2
: ⟨𝑥, 𝑔⟩ = ⟨𝑓, 𝑦⟩ ∀ (𝑦, 𝑔) ∈ 𝑇} ,

𝑇 − 𝜆𝐼 := {(𝑥, 𝑓 − 𝜆𝑥) : (𝑥, 𝑓) ∈ 𝑇} .

(7)

If 𝑇 ∩ 𝑆 = {0}, we write

𝑇 ∔ 𝑆 := {(𝑥 + 𝑦, 𝑓 + 𝑔) : (𝑥, 𝑓) ∈ 𝑇, (𝑦, 𝑔) ∈ 𝑆} , (8)

which is denoted by 𝑇 ⊕ 𝑆 in the case that 𝑇 and 𝑆 are
orthogonal.

Denote

𝑇 (𝑥) := {𝑓 ∈ 𝑋 : (𝑥, 𝑓) ∈ 𝑇} . (9)

It can be easily verified that 𝑇(0) = {0} if and only if 𝑇 can
determine a unique linear operator from Dom 𝑇 into 𝑋

whose graph is just 𝑇. For convenience, we will identify a
linear operator in 𝑋 with a subspace in𝑋

2 via its graph.

Definition 1 (see [11]). Let 𝑇 be a subspace in𝑋
2.

(1) 𝑇 is said to be a Hermitian subspace if 𝑇 ⊂ 𝑇
∗.

Furthermore,𝑇 is said to be a Hermitian operator if it
is an operator, that is, 𝑇(0) = {0}.

(2) 𝑇 is said to be a self-adjoint subspace if 𝑇 = 𝑇
∗.

Furthermore, 𝑇 is said to be a self-adjoint operator if
it is an operator, that is, 𝑇(0) = {0}.

(3) Let 𝑇 be a Hermitian subspace. 𝑇1 is said to be a self-
adjoint subspace extension (briefly, SSE) of𝑇 if𝑇 ⊂ 𝑇1

and 𝑇1 is a self-adjoint subspace.
(4) Let 𝑇 be a Hermitian operator. 𝑇1 is said to be a self-

adjoint operator extension (briefly, SOE) of 𝑇 if 𝑇 ⊂

𝑇1 and 𝑇1 is a self-adjoint operator.

Lemma 2 (see [11]). Let 𝑇 be a subspace in 𝑋
2. Then

(1) 𝑇
∗ is a closed subspace in 𝑋

2;

(2) 𝑇
∗
= (𝑇)
∗ and 𝑇

∗∗
= 𝑇, where 𝑇 is the closure of 𝑇;

(3) Ker 𝑇
∗
= (Ran 𝑇)

⊥
= (Ran 𝑇)

⊥.

In [19], an operator 𝐽 defined in 𝑋 is said to be a
conjugation operator if for all 𝑥, 𝑦 ∈ 𝑋,

⟨𝐽𝑥, 𝐽𝑦⟩ = ⟨𝑦, 𝑥⟩ , 𝐽
2
𝑥 = 𝑥. (10)

Definition 3. Let𝑇 be a subspace in𝑋
2 and 𝐽 be a conjugation

operator.

(1) The 𝐽-adjoint of 𝑇 is defined by

𝑇
∗

𝐽
:= {(𝑦, 𝑔) ∈ 𝑋

2
: ⟨𝑓, 𝐽𝑦⟩ = ⟨𝑥, 𝐽𝑔⟩ ∀ (𝑥, 𝑓) ∈ 𝑇} . (11)

(2) 𝑇 is said to be a 𝐽-Hermitian subspace if 𝑇 ⊂ 𝑇
∗

𝐽
.

Furthermore, 𝑇 is said to be a 𝐽-Hermitian operator
if it is an operator, that is, 𝑇(0) = {0}.

(3) 𝑇 is said to be a 𝐽-self-adjoint subspace if 𝑇 = 𝑇
∗

𝐽
.

Furthermore, 𝑇 is said to be a 𝐽-self-adjoint operator
if it is an operator, that is, 𝑇(0) = {0}.

(4) Let 𝑇 be a 𝐽-Hermitian subspace. 𝑇1 is said to be a 𝐽-
self-adjoint subspace extension (briefly, 𝐽-SSE) of 𝑇 if
𝑇 ⊂ 𝑇1 and 𝑇1 is a 𝐽-self-adjoint subspace.

(5) Let 𝑇 be a 𝐽-Hermitian operator. 𝑇1 is said to be a 𝐽-
self-adjoint operator extension (briefly, 𝐽-SOE) of 𝑇 if
𝑇 ⊂ 𝑇1 and 𝑇1 is a 𝐽-self-adjoint operator.

Remark 4. (1) It can be easily verified that 𝑇
∗

𝐽
is a closed

subspace. Consequently, a 𝐽-self-adjoint subspace 𝑇 is a
closed subspace since 𝑇 = 𝑇

∗

𝐽
. In addition, 𝑆∗

𝐽
⊂ 𝑇
∗

𝐽
if 𝑇 ⊂ 𝑆.

(2) From the definition, we have that ⟨𝑓, 𝐽𝑦⟩ = ⟨𝑥, 𝐽𝑔⟩

holds for all (𝑥, 𝑓) ∈ 𝑇 and (𝑦, 𝑔) ∈ 𝑇
∗

𝐽
, and that 𝑇 is a 𝐽-

Hermitian subspace if and only if ⟨𝑓, 𝐽𝑦⟩ = ⟨𝑥, 𝐽𝑔⟩ for all
(𝑥, 𝑓), (𝑦, 𝑔) ∈ 𝑇.

Lemma 5 (see [22]). Let 𝑇 be a subspace in 𝑋
2. Then

(1) 𝑇
∗
:= {(𝐽𝑦, 𝐽𝑔) : (𝑦, 𝑔) ∈ 𝑇

∗

𝐽
};

(2) 𝑇
∗

𝐽
:= {(𝐽𝑦, 𝐽𝑔) : (𝑦, 𝑔) ∈ 𝑇

∗
}.

It follows from Lemmas 2 and 5 that 𝑇∗
𝐽

= (𝑇)
∗

𝐽
, and 𝑇 is

𝐽-Hermitian if 𝑇 is 𝐽-Hermitian.

Lemma 6 (see [22]). Every J-Hermitian subspace has a 𝐽-SSE.

Definition 7. Let T be a 𝐽-Hermitian subspace. Then 𝑑(𝑇) =

(1/2) dim 𝑇
∗

𝐽
/𝑇 is called to be the defect index of 𝑇.

Next, we introduce a form on𝑋
2
× 𝑋
2 by

[(𝑥, 𝑓) : (𝑦, 𝑔)] := ⟨𝑓, 𝐽𝑦⟩ − ⟨𝑥, 𝐽𝑔⟩ ,

(𝑥, 𝑓) , (𝑦, 𝑔) ∈ 𝑋
2
.

(12)

Lemma 8 (see [22]). Let 𝑇 be a 𝐽-Hermitian subspace. Then

𝑇 = {(𝑥, 𝑓) ∈ 𝑇
∗

𝐽
: [(𝑥, 𝑓) : (𝑦, 𝑔)] = 0, ∀ (𝑦, 𝑔) ∈ 𝑇

∗

𝐽
} .

(13)

Lemma9 (see [22]). Let𝑇 be a closed 𝐽-Hermitian subspace in
𝑋
2 and satisfy 𝑑 = 𝑑(𝑇) < +∞. Then a subspace 𝑇1 is a 𝐽-SSE

of 𝑇 if and only if 𝑇 ⊂ 𝑇1 ⊂ 𝑇
∗

𝐽
and there exists {(𝑥𝑗, 𝑓𝑗)}

𝑑

𝑗=1
⊂

𝑇
∗

𝐽
such that

(1) (𝑥1, 𝑓1), (𝑥2, 𝑓2), . . . , (𝑥𝑑, 𝑓𝑑) are linearly independent
in 𝑇
∗

𝐽
(modulo 𝑇);

(2) [(𝑥𝑗, 𝑓𝑗) : (𝑥𝑘, 𝑓𝑘)] = 0, 1 ≤ 𝑗, 𝑘 ≤ 𝑑;
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(3) 𝑇1 = {(𝑦, 𝑔) ∈ 𝑇
∗

𝐽
: [(𝑦, 𝑔) : (𝑥𝑗, 𝑓𝑗)] = 0, 1 ≤ 𝑗 ≤ 𝑑}.

Lemma 9 can be regarded as a GKN theorem for 𝐽-
Hermitian subspaces. A set of {(𝑥𝑗, 𝑓𝑗)}

𝑑

𝑗=1
⊂ 𝑇
∗

𝐽
which is sat-

isfying (1) and (2) in Lemma 9 is called a GKN set of 𝑇.

Definition 10. Let 𝑇 be a subspace in𝑋
2.

(1) The set

𝜌 (𝑇) := {𝜆 ∈ C : (𝑇 − 𝜆)
−1

is a bounded linear operator defined in 𝑋}

(14)

is called the resolvent set of 𝑇.

(2) The set 𝜎(𝑇) := C \ 𝜌(𝑇) is called the spectrum of 𝑇.

(3) The set

Γ (𝑇) := {𝜆 ∈ C : ∃𝑐 (𝜆) > 0 s.t.
󵄩󵄩󵄩󵄩𝑓 − 𝜆𝑥

󵄩󵄩󵄩󵄩 ≥ 𝑐 (𝜆) ‖𝑥‖ , ∀ (𝑥, 𝑓) ∈ 𝑇}

(15)

is called to be the regularity field of 𝑇.

It is evident that 𝜌(𝑇) ⊂ Γ(𝑇) for any subspace 𝑇 in𝑋
2.

Lemma 11 (see [22]). Let 𝑇 be a 𝐽-Hermitian subspace in 𝑋
2

with Γ(𝑇) ̸= 0, and 𝜆 ∈ Γ(𝑇). Then

𝑇
∗

𝐽
= 𝑇 ∔ {(𝑦, 𝑔) ∈ 𝑇

∗

𝐽
: 𝑔 − 𝜆𝑦 ∈ Ker (𝑇∗ − 𝜆)} ,

𝑑 (𝑇) = dim Ran (𝑇 − 𝜆)
⊥
= dim Ker (𝑇∗ − 𝜆) .

(16)

The following is a well-known result on the rank of
matrices.

Lemma 12. Let 𝐴 be an 𝑚 × 𝑙 matrix and 𝐵 an 𝑙 × 𝑛 matrix.
Then

rank 𝐴 + rank 𝐵 − 𝑙 ≤ rank (𝐴𝐵)

≤ min {rank 𝐴, rank 𝐵} .

(17)

In particular, if 𝐴𝐵 = 0, then

rank 𝐴 + rank 𝐵 ≤ 𝑙. (18)

3. Relationship between the Maximal and
Minimal Subspaces

This section is divided into three subsections. In the first sub-
section, we define a conjugation operator in a Hilbert space.
In the second subsection, we define maximal and minimal
subspaces generated by (1𝜆) and discuss relationship between
them. In the last subsection, we discuss the definiteness
condition corresponding to (1𝜆).

3.1. Conjugation Operator. In this subsection, we define a
conjugation operator in a Hilbert space and then discuss its
properties.

Since 𝑏 and 𝑎 may be finite or infinite, we introduce the
following conventions for briefness: 𝑏 + 1 means +∞ in the
case of 𝑏 = +∞ and 𝑎 − 1 means −∞ in the case of 𝑎 = −∞.
Denote

I
∗
:= {𝑡}
𝑏+1

𝑡=𝑎
,

𝑙 (I) := {𝑦 : 𝑦 = {𝑦 (𝑡)}
𝑡∈I∗

⊂ C
2𝑛
} .

(19)

For any 2𝑛 × 2𝑛Hermitian matrix𝑊(𝑡) ≥ 0 defined inI, we
define

L
2

𝑊
(I)

:= {𝑦 ∈ 𝑙 (I) : ∑

𝑡∈I

𝑅 (𝑦)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑦) (𝑡) < +∞}

(20)

with the semiscalar product

⟨𝑦, 𝑧⟩ := ∑

𝑡∈I

𝑅
∗
(𝑧) (𝑡)𝑊 (𝑡) 𝑅 (𝑦) (𝑡) . (21)

Furthermore, denote ‖𝑦‖ := (⟨𝑦, 𝑦⟩)
1/2 for 𝑦 ∈ L2

𝑊
(I).

Since the weighted function𝑊(𝑡)may be singular inI, ‖ ⋅ ‖

is a seminorm. Introduce the quotient space

𝐿
2

𝑊
(I) :=

L2
𝑊

(I)

{𝑦 ∈ L2
𝑊

(I) :
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 = 0}
. (22)

Then 𝐿
2

𝑊
(I) is a Hilbert space with the inner product ⟨⋅, ⋅⟩.

For a function𝑦 ∈ L2
𝑊
(I), denote by𝑦𝜋 the correspond-

ing class in 𝐿
2

𝑊
(I). And for any 𝑦

𝜋
∈ 𝐿
2

𝑊
(I), denote by 𝑦 ∈

L2
𝑊
(I) a representative of 𝑦𝜋. It is evident that ⟨𝑦𝜋, 𝑧𝜋⟩ =

⟨𝑦, 𝑧⟩ for any 𝑦
𝜋
, 𝑧
𝜋
∈ 𝐿
2

𝑊
(I).

For any 𝑦 ∈ L2
𝑊
(I), denote by 𝐽0𝑦 the conjugation of 𝑦;

that is,

𝐽0𝑦 := {𝑦 (𝑡)}
𝑡∈I∗

, 𝑦 ∈ L
2

𝑊
(I) . (23)

It can be easily verified that 𝑦 ∈ L2
𝑊
(I) if and only if 𝐽0𝑦 ∈

L2
𝑊
(I). Here 𝑊 is the conjugation of matrix 𝑊. Since each

𝑦
𝜋

∈ 𝐿
2

𝑊
(I) is an equivalent class, we define a operator 𝐽

defined on 𝐿
2

𝑊
(I) by

𝐽 (𝑦
𝜋
) := (𝐽0𝑦)

𝜋
, 𝑦
𝜋
∈ 𝐿
2

𝑊
(I) . (24)

The following result is obtained.

Lemma 13. 𝐽 defined by (24) is a conjugation operator defined
on 𝐿
2

𝑊
(I) if and only if 𝑊(𝑡) is real and symmetric inI.

Proof. Thesufficiency is evident. Next, we consider the neces-
sity. Assume that 𝐽defined by (24) is a conjugation operator in
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𝐿
2

𝑊
(I). Then for any 𝑥

𝜋
, 𝑦
𝜋
∈ 𝐿
2

𝑊
(I), it follows from ⟨𝐽𝑥

𝜋
,

𝐽𝑦
𝜋
⟩ = ⟨𝑦

𝜋
, 𝑥
𝜋
⟩ that

∑

𝑡∈I

𝑅(𝑥)
∗
(𝑡)𝑊
𝑇
(𝑡) 𝑅 (𝑦) (𝑡) = ∑

𝑡∈I

𝑅(𝑥)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑦) (𝑡) .

(25)

By the arbitrariness of 𝑥𝜋, 𝑦𝜋, one has that 𝑊(𝑡) = 𝑊
𝑇
(𝑡).

This, together with 𝑊(𝑡) = 𝑊
∗
(𝑡), yields that 𝑊(𝑡) is real.

The proof is complete.

For any 𝑥, 𝑦 ∈ 𝑙(I), we denote

(𝑥, 𝑦) (𝑡) = 𝑦
𝑇
(𝑡)J𝑥 (𝑡) , 𝑡 ∈ I

∗
, (26)

whereJ is the canonical symplecticmatrix given in Section 1.
In the case of 𝑏 = +∞, if lim𝑡→𝑏(𝑥, 𝑦)(𝑡) exists and is finite,
then its limit is denoted by (𝑥, 𝑦)(+∞). In the case of 𝑎 = −∞,
if lim𝑡→𝑎(𝑥, 𝑦)(𝑡) exists and is finite, then its limit is denoted
by (𝑥, 𝑦)(−∞).

Denote

𝜏 (𝑦) (𝑡) := JΔ𝑦 (𝑡) − 𝑃 (𝑡) 𝑅 (𝑦) (𝑡) ,

𝛿 (𝑦) (𝑡) := JΔ𝑦 (𝑡) − 𝑃 (𝑡) 𝑅 (𝑦) (𝑡) ,

(27)

where 𝜏 and 𝛿 are called the natural difference operators
corresponding to system (1𝜆). The following result can be
easily verified, and so we omit the proof.

Lemma 14. Assume that (𝐴1) holds. Let 𝑥, 𝑦 ∈ 𝑙(I).

(1) 𝛿(𝐽0𝑦) = 𝐽0𝜏(𝑦), 𝜏(𝐽0𝑦) = 𝐽0𝛿(𝑦).
(2) For any 𝑠, 𝑘 ∈ I,

𝑘

∑

𝑡=𝑠

[𝑅(𝐽0𝑦)
∗
(𝑡) 𝜏 (𝑥) (𝑡)

− (𝐽0𝜏 (𝑦))
∗
(𝑡) 𝑅 (𝑥) (𝑡)]

= (𝑥, 𝑦) (𝑡)
󵄨󵄨󵄨󵄨

𝑘+1

𝑠
.

(28)

(3) For any 𝜆 ∈ C, 𝑐0 ∈ I, and any two solutions 𝑥(𝑡) and
𝑦(𝑡) of (1𝜆), it follows that

(𝑥, 𝑦) (𝑡) = (𝑥, 𝑦) (𝑐0) , 𝑡 ∈ I
∗
. (29)

Moreover, let 𝑌(𝑡, 𝜆) be a fundamental solution of (1𝜆),
then

𝑌
𝑇
(𝑡, 𝜆)J𝑌 (𝑡, 𝜆) = 𝑌

𝑇
(𝑐0, 𝜆)J𝑌 (𝑐0, 𝜆) , 𝑡 ∈ I

∗
. (30)

3.2. Relationship between the Maximal and Minimal Sub-
spaces. In this subsection, we first introduce the maximal
andminimal subspaces corresponding to (1𝜆) and then show
that the minimal subspace is 𝐽-Hermitian, and its 𝐽-adjoint
subspace is just the maximal subspace.

Denote

L
2

𝑊,0
(I)

:= {𝑦 ∈ L
2

𝑊
(I) : there exist two integers 𝑠, 𝑘 ∈ I

with 𝑠 ≤ 𝑘 such that 𝑦 (𝑡) = 0 for 𝑡 ≤ 𝑠 and 𝑡 ≥ 𝑘 + 1} ,

(31)

and define

𝐻(𝜏) := {(𝑦
𝜋
, 𝑔
𝜋
) ∈ (𝐿

2

𝑊
(I))
2

: ∃𝑦 ∈ 𝑦
𝜋

s.t. (𝑦) (𝑡) = 𝑊 (𝑡) 𝑅 (𝑔) (𝑡) in I} ,

𝐻00 (𝜏) := {(𝑦
𝜋
,𝑔
𝜋
) ∈ 𝐻 (𝜏) :∃𝑦 ∈ 𝑦

𝜋 s.t. 𝑦 ∈ L
2

𝑊,0
(I) and

𝜏 (𝑦) (𝑡) = 𝑊 (𝑡) 𝑅 (𝑔) (𝑡) in I} .

(32)

It can be easily verified that 𝐻(𝜏) and 𝐻00(𝜏) are both linear
subspaces in (𝐿

2

𝑊
(I))
2. Here,𝐻(𝜏) and𝐻00(𝜏) are called the

maximal and preminimal subspaces corresponding to 𝜏 or
(1𝜆) in (𝐿

2

𝑊
(I))
2, and𝐻0(𝜏) := 𝐻00(𝜏) is called the minimal

subspace corresponding to 𝜏 or (1𝜆) in (𝐿
2

𝑊
(I))
2.

Since the end points 𝑎 and 𝑏 may be finite or infinite, we
need to divide I into two subintervals in order to charac-
terize the maximal and minimal subspaces in a unified form.
Choose 𝑎 < 𝑐0 < 𝑏 and fix it. Denote

I𝑎 := {𝑡}
𝑐
0
−1

𝑡=𝑎
, I𝑏 := {𝑡}

𝑏

𝑡=𝑐
0

, (33)

and denote by ⟨⋅, ⋅⟩𝑎, ⟨⋅, ⋅⟩𝑏 and ‖ ⋅ ‖𝑎, ‖ ⋅ ‖𝑏 the inner products
and norms ofL2

𝑊
(I𝑎),L

2

𝑊
(I𝑏), respectively. LetL

2

𝑊,0
(I𝑎)

and L2
𝑊,0

(I𝑏) be defined by (31) with I replaced by I𝑎
and I𝑏, respectively. Furthermore, let 𝐻𝑎(𝜏) and 𝐻𝑎,00(𝜏)

be the left maximal and preminimal subspaces defined by
(32) with I replaced by I𝑎, respectively, and 𝐻𝑏(𝜏) and
𝐻𝑏,00(𝜏) the rightmaximal andpreminimal subspaces defined
by (32) with I replaced by I𝑏, respectively. The subspaces
𝐻𝑎,0(𝜏) := 𝐻𝑎,00(𝜏) and 𝐻𝑏,0(𝜏) := 𝐻𝑏,00(𝜏) are called the
left and right minimal subspaces corresponding to system
(1𝜆) in I𝑎 and I𝑏, respectively. Similarly, we can define
𝐻(𝛿),𝐻00(𝛿), and𝐻0(𝛿);𝐻𝑏(𝛿),𝐻𝑏,00(𝛿), and𝐻𝑏,0(𝛿);𝐻𝑎(𝛿),
𝐻𝑎,00(𝛿) and𝐻𝑎,0(𝛿).

The following result is directly derived from (1) of
Lemma 14.

Lemma 15. Assume that (𝐴1) holds. Then (𝑦
𝜋
, 𝑔
𝜋
) ∈ 𝐻(𝜏) if

and only if (𝐽𝑦𝜋, 𝐽𝑔𝜋) ∈ 𝐻(𝛿).

In order to study properties of the above subspaces, we
first make some preparation.

Let 𝑌(𝑡) be the fundamental solution matrix of (10) with
𝑌(𝑐0) = 𝐼2𝑛. For any finite subintervalI

󸀠 with 𝑐0 ∈ I󸀠 ⊂ I,
denote

ΦI󸀠 := ∑

𝑡∈I󸀠

𝑅(𝑌)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑌) (𝑡) . (34)
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It is evident thatΦI󸀠 is a 2𝑛× 2𝑛 positive semidefinite matrix
and dependent on I󸀠. By the same method used in [23,
Lemma 3.2], it follows that there exists a finite subintervalI0
with 𝑐0 ∈ I0 ⊂ I such that

rank ΦI
0

= rank ΦI󸀠 , Ran ΦI
0

= Ran ΦI󸀠 , (35)

for any finite subinterval I󸀠 with I0 ⊂ I󸀠 ⊂ I. In the
present paper, we will always denoteI0 := [𝑠0, 𝑡0] and define

rank ΦI := rank ΦI
0

, Ran ΦI := Ran ΦI
0

, (36)

whenever I is finite or infinite. In the case that I is finite,
I0 can be taken asI.

In the case thatI is finite, we define

𝜙I : 𝐿
2

𝑊
(I) 󳨀→ C

2𝑛
,

𝑔
𝜋
󳨃󳨀→ ∑

𝑠∈I

𝑅(𝐽0𝑌)
∗
(𝑠)𝑊 (𝑠) 𝑅 (𝑔) (𝑠) .

(37)

It is evident that 𝜙I is a bounded linear map and its range is
a closed subset in C2𝑛.

In the case thatI is infinite, that is,I = [𝑎, +∞) orI =

(−∞, 𝑏] orI = (−∞, +∞), where 𝑎, 𝑏 are finite integers, we
introduce the following subspaces of 𝐿2

𝑊
(I), respectively:

𝐿
2

𝑊,1
(I)

:= {𝑦
𝜋
∈ 𝐿
2

𝑊
(I) : ∃𝑘 ∈ I

s.t. 𝑊(𝑡) 𝑅 (𝑦) (𝑡) = 0 for 𝑡 ≥ 𝑘} ,

(38)

𝐿
2

𝑊,1
(I)

:= {𝑦
𝜋
∈ 𝐿
2

𝑊
(I) : ∃𝑠 ∈ I

s.t. 𝑊(𝑡) 𝑅 (𝑦) (𝑡) = 0 for 𝑡 ≤ 𝑠} ,

(39)

𝐿
2

𝑊,1
(I)

:= {𝑦
𝜋
∈ 𝐿
2

𝑊
(I) : ∃𝑠 ≤ 𝑘 ∈ I

s.t. 𝑊(𝑡) 𝑅 (𝑦) (𝑡) = 0 for 𝑡 ≤ 𝑠 and 𝑡 ≥ 𝑘} .

(40)

It can be easily shown that 𝐿2
𝑊,1

(I) is dense in 𝐿
2

𝑊
(I). In this

case, we define

𝜙I : 𝐿
2

𝑊,1
(I) 󳨀→ C

2𝑛
,

𝑔
𝜋
󳨃󳨀→ ∑

𝑠∈I

𝑅(𝐽0𝑌)
∗
(𝑠)𝑊 (𝑠) 𝑅 (𝑔) (𝑠) .

(41)

By themethod used in [23, Lemma 3.3], one has the following
properties of 𝜙I.

Lemma 16. Assume that (𝐴1) holds.

(1) Ran 𝜙I = Ran ΦI.

(2) In the case thatI is finite,

𝐿
2

𝑊
(I) = Ker 𝜙I ⊕ {(𝐽0 (𝑌𝜉))

𝜋
: 𝜉 ∈ Ran ΦI} ; (42)

in the case that I is infinite, let 𝑙 = rankΦI.
Then there exist linearly independent elements ℎ

𝜋

𝑗
∈

𝐿
2

𝑊,1
(I), 1 ≤ 𝑗 ≤ 𝑙, such that

𝐿
2

𝑊,1
(I) = Ker 𝜙I ∔ span {ℎ

𝜋

1
, ℎ
𝜋

2
, . . . , ℎ

𝜋

𝑙
} . (43)

(3) Ker 𝜙I ⊂ Ran (𝐻00(𝜏)).

The following is the main result of this section.

Theorem 17. Assume that (𝐴1) holds. Then 𝐻(𝜏) =

(𝐻00(𝜏))
∗

𝐽
= (𝐻0(𝜏))

∗

𝐽
, 𝐻𝑏(𝜏) = (𝐻𝑏,00(𝜏))

∗

𝐽
= (𝐻𝑏,0(𝜏))

∗

𝐽
, and

𝐻𝑎(𝜏) = (𝐻𝑎,00(𝜏))
∗

𝐽
= (𝐻𝑎,0(𝜏))

∗

𝐽
.

Proof. Since themethod of the proofs is similar, we only show
the first assertion. By (𝐻0(𝜏))

∗

𝐽
= (𝐻00(𝜏))

∗

𝐽
, it suffices to show

𝐻(𝜏) = (𝐻00(𝜏))
∗

𝐽
.

We first show that𝐻(𝜏) ⊂ (𝐻00(𝜏))
∗

𝐽
. Let (𝑦𝜋, 𝑔𝜋) ∈ 𝐻(𝜏).

Then for any (𝑥
𝜋
, 𝑓
𝜋
) ∈ 𝐻00(𝜏), there exists 𝑥 ∈ 𝑥

𝜋 with 𝑥 ∈

L2
𝑊
(I) such that 𝜏(𝑥)(𝑡) = 𝑊(𝑡)𝑅(𝑓)(𝑡) inI. So, it follows

from (2) of Lemma 14 that

⟨𝑓
𝜋
, 𝐽𝑦
𝜋
⟩ − ⟨𝑥

𝜋
, 𝐽𝑔
𝜋
⟩

= ∑

𝑡∈I

[𝑅(𝐽0𝑦)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑓) (𝑡)

−𝑅(𝐽0𝑔)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑥) (𝑡)]

= ∑

𝑡∈I

[𝑅(𝐽0𝑦)
∗
(𝑡) 𝜏 (𝑥) (𝑡)

−(𝐽0𝜏 (𝑦))
∗
(𝑡) 𝑅 (𝑥) (𝑡)]

= (𝑥, 𝑦) (𝑡)
󵄨󵄨󵄨󵄨

𝑏+1

𝑎
= 0.

(44)

This implies that𝐻(𝜏) ⊂ (𝐻00(𝜏))
∗

𝐽
.

Next, we show (𝐻00(𝜏))
∗

𝐽
⊂ 𝐻(𝜏). Fix any (𝑦

𝜋
, 𝑔
𝜋
) ∈

(𝐻00(𝜏))
∗

𝐽
. It suffices to show that there exists 𝑦0 ∈ 𝑦

𝜋 such
that 𝜏(𝑦0)(𝑡) = 𝑊(𝑡)𝑅(𝑔)(𝑡) in I. Let 𝑧 be a solution of
𝜏(𝑧)(𝑡) = 𝑊(𝑡)𝑅(𝑔)(𝑡) on I. For any (𝑥

𝜋
, 𝑓
𝜋
) ∈ 𝐻00(𝜏),

there exits 𝑥 ∈ 𝑥
𝜋 with 𝑥 ∈ L2

𝑊,0
(I) such that 𝜏(𝑥)(𝑡) =

𝑊(𝑡)𝑅(𝑓)(𝑡) inI. Thus, it follows from (2) of Lemma 14 that

∑

𝑡∈I

[𝑅(𝐽0𝑧)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑓) (𝑡)

−𝑅(𝐽0𝑔)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑥) (𝑡)]

= ∑

𝑡∈I

[𝑅(𝐽0𝑧)
∗
(𝑡) 𝜏 (𝑥) (𝑡) − (𝐽0𝜏 (𝑧))

∗
(𝑡)) 𝑅 (𝑥) (𝑡)]

= (𝑥, 𝑧) (𝑡)|
𝑏+1

𝑎
= 0.

(45)



Abstract and Applied Analysis 7

In addition, it is clear that

⟨𝑓
𝜋
, 𝐽𝑦
𝜋
⟩ − ⟨𝑥

𝜋
, 𝐽𝑔
𝜋
⟩ = ∑

𝑡∈I

[𝑅(𝐽0𝑦)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑓) (𝑡)

−𝑅(𝐽0𝑔)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑥) (𝑡)]

= 0.

(46)

Combining (45) and (46), one has that for all (𝑥
𝜋
, 𝑓
𝜋
) ∈

𝐻00(𝜏),

∑

𝑡∈I

𝑅(𝐽0 (𝑦 − 𝑧))
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑓) (𝑡) = 0. (47)

By (2) and (3) of Lemma 16, we get that for any ℎ
𝜋
∈ Ker 𝜙I

and any 𝜉 ∈ C2𝑛

∑

𝑡∈I

𝑅(𝐽0 (𝑦 − 𝑧 − 𝑌𝜉))
∗
(𝑡)𝑊 (𝑡) 𝑅 (ℎ) (𝑡) = 0. (48)

The following discussion is divided into two parts.

Case 1. I is finite. It is evident that 𝑦𝜋, 𝑧𝜋 ∈ 𝐿
2

𝑊
(I). Then,

from (2) of Lemma 16, there exists 𝜉0 ∈ Ran ΦI such that
(𝐽0(𝑦−𝑧−𝑌𝜉0))

𝜋
∈ Ker 𝜙I. This, together with (48), implies

that (𝐽0(𝑦−𝑧−𝑌𝜉0))
𝜋
= 0.This is equivalent to (𝑦−𝑧−𝑌𝜉0)

𝜋
=

0. Let 𝑦0(𝑡) := 𝑧(𝑡) + 𝑌(𝑡)𝜉0. Then 𝑦0 ∈ 𝑦
𝜋 and satisfies

𝜏 (𝑦0) (𝑡) = 𝜏 (𝑧) (𝑡) + 𝜏 (𝑌𝜉) (𝑡) = 𝑊 (𝑡) 𝑅 (𝑔) (𝑡) , 𝑡 ∈ I.

(49)

Hence, (𝑦𝜋, 𝑔𝜋) ∈ 𝐻(𝜏). Since (𝑦
𝜋
, 𝑔
𝜋
) ∈ 𝐻

∗

00
(𝜏) is arbitrary,

we have (𝐻00(𝜏))
∗

𝐽
⊂ 𝐻(𝜏).

Case 2. I is infinite. We only consider the case that I =

[𝑎, +∞). For the other two cases, it can be provedwith similar
arguments.

Let rank ΦI = 𝑙.With a similar argument as Case 2 of the
proof of [23, Theorem 3.1], it can be shown that there exist
linearly independent elements ℎ

𝜋

𝑗
∈ 𝐿
2

𝑊,1
, 1 ≤ 𝑗 ≤ 𝑙, and

𝜉0 ∈ Ran ΦI such that (𝑦 − 𝑧 − 𝑌𝜉0)
𝜋
∈ Ker 𝜙I,

𝐿
2

𝑊,1
(I) = Ker 𝜙I ∔ span {ℎ

𝜋

1
, ℎ
𝜋

2
, . . . , ℎ

𝜋

𝑙
} ,

∑

𝑡∈I

𝑅(𝐽0 (𝑦 − 𝑧 − 𝑌𝜉0))
∗
(𝑡)𝑊 (𝑡) 𝑅 (ℎ𝑗) (𝑡) = 0, 1 ≤ 𝑗 ≤ 𝑙.

(50)

Combining (48)–(50), one has that for any ℎ
𝜋
∈ 𝐿
2

𝑊,1
(I)

∑

𝑡∈I

𝑅(𝐽0 (𝑦 − 𝑧 − 𝑌𝜉0))
∗
(𝑡)𝑊 (𝑡) 𝑅 (ℎ) (𝑡) = 0. (51)

This implies that (𝑦 − 𝑧 − 𝑌𝜉0)
𝜋

= 0 and consequently 𝑦0 :=

𝑧 + 𝑌𝜉0 is a representative of 𝑦
𝜋 such that 𝜏(𝑦0)(𝑡) =

𝑊(𝑡)𝑅(𝑔)(𝑡). So (𝑦
𝜋
, 𝑔
𝜋
) ∈ 𝐻(𝜏). By the arbitrariness of (𝑦𝜋,

𝑔
𝜋
) one has (𝐻00(𝜏))

∗

𝐽
⊂ 𝐻(𝜏).

The entire proof is complete.

The following result is directly derived from Lemmas 5
and 15, andTheorem 17.

Theorem 18. Assume that (𝐴1) holds. Then 𝐻(𝛿) =

(𝐻00(𝜏))
∗, 𝐻𝑏(𝛿) = (𝐻𝑏,00(𝜏))

∗, and 𝐻𝑎(𝛿) = (𝐻𝑎,00(𝜏))
∗.

3.3. Definiteness Condition. In this subsection, we introduce
the definiteness condition for (1𝜆), and give some important
results on it. Since the proofs are similar to those given in [23],
we omit the proofs.

The definiteness condition for (1𝜆) or𝐻(𝜏) is given by the
following.

(𝐴2) There exists a finite subintervalI1 ⊂ I such that for
any 𝜆 ∈ C and for any nontrivial solution 𝑦(𝑡) of (1𝜆),
the following always holds:

∑

𝑡∈I
1

𝑅(𝑦)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑦) (𝑡) > 0. (52)

In particular, the definiteness condition for (3𝜆) can be
described as there exists a finite subinterval I1 ⊂ I such
that for any 𝜆 ∈ C and for any nontrivial solution 𝑧(𝑡) of (3𝜆),
the following always holds:

∑

𝑡∈I
1

𝑧
∗
(𝑡) 𝑤 (𝑡) 𝑧 (𝑡) > 0. (53)

Lemma 19. Assume that (𝐴1) holds. Then (𝐴2) holds if and
only if there exists a finite subintervalI1 ⊂ I such that one of
the following holds:

(1) rank ΦI
1

= 2𝑛;
(2) for some 𝜆 ∈ C, every nontrivial solution 𝑦(𝑡) of (1𝜆)

satisfies

∑

𝑡∈I
1

𝑅(𝑦)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑦) (𝑡) > 0. (54)

By Lemma 19, if (52) (or (53)) holds for some 𝜆 ∈ C, then
it holds for every 𝜆 ∈ C. In addition, if (𝐴2) holds on some
finite intervalI1, then it holds onI0 = [𝑠0, 𝑡0].

The following is another sufficient and necessary condi-
tion for the definiteness condition.

Lemma 20. Assume that (𝐴1) holds. Then (𝐴2) holds if and
only if for any (𝑦

𝜋
, 𝑔
𝜋
) ∈ 𝐻(𝜏), there exists a unique 𝑦 ∈ 𝑦

𝜋

such that 𝜏(𝑦)(𝑡) = 𝑊(𝑡)𝑅(𝑔)(𝑡) for 𝑡 ∈ I.

Remark 21. (1) It can be easily verified that the definiteness
condition for𝐻(𝜏) holds if and only if that for𝐻(𝛿) holds.

(2) In the following of the present paper, we always
assume that (𝐴2) holds. In this case, we can write (𝑦, 𝑔

𝜋
) ∈

𝐻(𝜏) instead of (𝑦𝜋, 𝑔𝜋) ∈ 𝐻(𝜏) in the rest of the present
paper.

(3) Denote by (𝐴𝑎,2) and (𝐴𝑏,2), the definiteness condi-
tions for (1𝜆) inI𝑎 andI𝑏, and

I𝑎,0 := [𝑠
0

𝑎
, 𝑡
0

𝑎
] , I𝑏,0 := [𝑠

0

𝑏
, 𝑡
0

𝑏
] . (55)
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By the corresponding intervals, respectively. It is evident that
one of (𝐴𝑎,2) and (𝐴𝑏,2) implies (𝐴2).

But (𝐴2) cannot imply that there exists 𝑐0 ∈ I such that
both (𝐴𝑎,2) and (𝐴𝑏,2) hold.

(4) Several sufficient conditions for the definiteness con-
dition can be given. The reader is referred to [23, Section 4].

For convenience, denote

M𝜆

:= {𝑦 ∈ L
2

𝑊
(I) : 𝜏 (𝑦) (𝑡) = 𝜆𝑊 (𝑡) 𝑅 (𝑦) (𝑡) for 𝑡 ∈ I} ,

𝑀𝜆 := {𝑦
𝜋
∈ 𝐿
2

𝑊
(I) : (𝑦

𝜋
, 𝜆𝑦
𝜋
) ∈ 𝐻 (𝜏)} .

(56)

Lemma 22. Assume that (𝐴1) holds. For any 𝜆 ∈ C,
dim M𝜆 = dim 𝑀𝜆 if and only if (𝐴2) holds.

4. Characterizations of Minimal and
Maximal Subspaces and Defect Indices of
Minimal Subspaces

This section is divided into three subsections. In the first
subsection, we give all the characterizations of the minimal
subspaces generated by (1𝜆) in I, I𝑎, and I𝑏. In the
second subsection, we study the defect indices of theminimal
subspaces. In the third subsection, characterizations of the
maximal subspaces are established.

4.1. Characterizations of the Minimal Subspaces. In this sub-
section, we study characterizations of the minimal subspaces
generated by (1𝜆) inI,I𝑎, andI𝑏.

The following result is a direct consequence of
Theorem 17.

Theorem 23. Assume that (𝐴1) holds. Then 𝐻0(𝜏), 𝐻𝑏,0(𝜏),
and 𝐻𝑎,0(𝜏) are closed 𝐽-Hermitian subspace in (𝐿

2

𝑊
(I))
2,

(𝐿
2

𝑊
(I𝑏))

2, and (𝐿
2

𝑊
(I𝑎))

2, respectively.

Now, we introduce boundary forms on (𝐿
2

𝑊
(I))
2,

(𝐿
2

𝑊
(I𝑎))

2, and (𝐿
2

𝑊
(I𝑏))

2 by

[:] : (𝐿
2

𝑊
(I))
2

× (𝐿
2

𝑊
(I))
2

󳨀→ C,

[(𝑥
𝜋
, 𝑓
𝜋
) : (𝑦
𝜋
, 𝑔
𝜋
)] = ⟨𝑓

𝜋
, 𝐽𝑦
𝜋
⟩ − ⟨𝑥

𝜋
, 𝐽𝑔
𝜋
⟩ ,

[:]𝑎 : (𝐿
2

𝑊
(I𝑎))

2

× (𝐿
2

𝑊
(I𝑎))

2

󳨀→ C,

[(𝑥
𝜋
, 𝑓
𝜋
) : (𝑦
𝜋
, 𝑔
𝜋
)]
𝑎
= ⟨𝑓
𝜋
, 𝐽𝑦
𝜋
⟩
𝑎
− ⟨𝑥
𝜋
, 𝐽𝑔
𝜋
⟩
𝑎
,

[:]𝑎 : (𝐿
2

𝑊
(I𝑏))

2

× (𝐿
2

𝑊
(I𝑏))

2

󳨀→ C,

[(𝑥
𝜋
, 𝑓
𝜋
) : (𝑦
𝜋
, 𝑔
𝜋
)]
𝑏
= ⟨𝑓
𝜋
, 𝐽𝑦
𝜋
⟩
𝑏
− ⟨𝑥
𝜋
, 𝐽𝑔
𝜋
⟩
𝑏
.

(57)

Lemma 24. Assume that (𝐴1) holds.

(1) If (A2) holds, then for any (𝑥, 𝑓
𝜋
), (𝑦, 𝑔

𝜋
) ∈ 𝐻(𝜏),

[(𝑥, 𝑓
𝜋
) : (𝑦, 𝑔

𝜋
)] = (𝑥, 𝑦) (𝑏 + 1) − (𝑥, 𝑦) (𝑎) . (58)

(2) If (𝐴𝑎,2) holds, then for any (𝑥, 𝑓
𝜋
), (𝑦, 𝑔

𝜋
) ∈ 𝐻𝑎(𝜏),

[(𝑥, 𝑓
𝜋
) : (𝑦, 𝑔

𝜋
)]
𝑎
= (𝑥, 𝑦) (𝑐0) − (𝑥, 𝑦) (𝑎) . (59)

(3) If (𝐴𝑏,2) holds, then for any (𝑥, 𝑓
𝜋
), (𝑦, 𝑔

𝜋
) ∈ 𝐻𝑏(𝜏),

[(𝑥, 𝑓
𝜋
) : (𝑦, 𝑔

𝜋
)]
𝑏
= (𝑥, 𝑦) (𝑏 + 1) − (𝑥, 𝑦) (𝑐0) . (60)

Proof. Since the proofs of (1)–(3) are similar, we only show
that assertion (1) holds.

For any (𝑥, 𝑓
𝜋
), (𝑦, 𝑔

𝜋
) ∈ 𝐻(𝜏), we have from (2) of

Lemma 14 that

⟨𝑓
𝜋
, 𝐽𝑦
𝜋
⟩ − ⟨𝑥

𝜋
, 𝐽𝑔
𝜋
⟩

=

𝑘

∑

𝑡=𝑠

[𝑅(𝐽0𝑦)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑓) (𝑡)

−𝑅(𝐽0𝑔)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑥) (𝑡)]

=

𝑘

∑

𝑡=𝑠

[𝑅(𝐽0𝑦)
∗
(𝑡) 𝜏 (𝑥) (𝑡)

−(𝐽0𝜏 (𝑦))
∗
(𝑡) 𝑅 (𝑥) (𝑡)]

= (𝑥, 𝑦) (𝑡)
󵄨󵄨󵄨󵄨

𝑘+1

𝑠

(61)

for any 𝑠 < 𝑘 ∈ I. This yields that lim𝑡→𝑏(𝑥, 𝑦)(𝑡) exists
and is finite for any (𝑥, 𝑓

𝜋
), (𝑦, 𝑔

𝜋
) ∈ 𝐻(𝜏). Similarly, it can

be shown that lim𝑡→𝑎(𝑥, 𝑦)(𝑎) exists and is finite for any
(𝑥, 𝑓
𝜋
), (𝑦, 𝑔

𝜋
) ∈ 𝐻(𝜏). Hence, assertion (1) holds. The proof

is complete.

Lemma 25. Assume that (𝐴1) and (𝐴2) hold. Then for any
given finite subsetI1 = [𝑠, 𝑘] withI0 ⊂ I1 ⊂ I and for any
given 𝛼, 𝛽 ∈ C2𝑛, there exists𝑓 = {𝑓(𝑡)}

𝑘+1

𝑡=𝑠
⊂ C2𝑛 such that the

following boundary value problem:

𝜏 (𝑥) (𝑡) = 𝑊 (𝑡) 𝑅 (𝑓) (𝑡) , 𝑡 ∈ I1,

𝑥 (𝑠) = 𝛼, 𝑥 (𝑘 + 1) = 𝛽

(62)

has a solution 𝑥 = {𝑥(𝑡)}
𝑘+1

𝑡=𝑠
⊂ C2𝑛.

Proof. Set

⟨𝑥, 𝑦⟩
󸀠
:=

𝑘

∑

𝑡=𝑠

𝑅(𝑦)
∗
(𝑡)𝑊 (𝑡) 𝑅 (𝑥) (𝑡) , ∀𝑥, 𝑦 ∈ 𝑙 ([𝑠, 𝑘]) .

(63)

Let 𝜙𝑗, 1 ≤ 𝑗 ≤ 2𝑛, be the linearly independent solutions of
system (10). Then we have

rank (⟨𝜙𝑖, 𝜙𝑗⟩
󸀠

)
1≤𝑖,𝑗≤2𝑛

= 2𝑛. (64)

In fact, the linear algebraic system

(⟨𝜙𝑖, 𝜙𝑗⟩
󸀠

)
1≤𝑖,𝑗≤2𝑛

𝐶 = 0, (65)
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where 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐2𝑛)
𝑇
∈ C2𝑛, can be written as

⟨𝜙𝑖,

2𝑛

∑

𝑗=1

𝑐𝑗𝜙𝑗⟩

󸀠

= 0, 1 ≤ 𝑖 ≤ 2𝑛, (66)

which yields

⟨

2𝑛

∑

𝑗=1

𝑐𝑗𝜙𝑗,

2𝑛

∑

𝑗=1

𝑐𝑗𝜙𝑗⟩

󸀠

= 0. (67)

Since ∑
2𝑛

𝑗=1
𝑐𝑗𝜙𝑗 is a solution of system (10), it follows from

(𝐴2) that ∑
2𝑛

𝑗=1
𝑐𝑗𝜙𝑗 = 0. Then 𝐶 = 0; that is, (65) has only a

zero solution. Consequently, (64) holds.
Let 𝛼, 𝛽 be any given vectors in C2𝑛. By (64), the linear

algebraic system

(⟨𝜙𝑖, 𝜙𝑗⟩
󸀠

)

𝑇

1≤𝑖,𝑗≤2𝑛
𝐶

= (𝜙1 (𝑘 + 1) , 𝜙2 (𝑘 + 1) , . . . , 𝜙2𝑛 (𝑘 + 1))
∗
J𝛽

(68)

has a unique solution 𝐶1 ∈ C2𝑛. Set 𝜓1 = (𝜙1, 𝜙2, . . . , 𝜙2𝑛)𝐶1.
It follows from (68) that

⟨𝜓1, 𝜙𝑖⟩
󸀠
= 𝜙
∗

𝑖
(𝑘 + 1)J𝛽, 1 ≤ 𝑖 ≤ 2𝑛. (69)

Let 𝑢(𝑡) be a solution of the following initial value problem:

𝜏 (𝑥) (𝑡) = 𝑊 (𝑡) 𝑅 (𝜓1) (𝑡) , 𝑡 ∈ [𝑠, 𝑘] ,

𝑥 (𝑠) = 0.

(70)

Since 𝜏(𝜙𝑖)(𝑡) = 0 for 𝑡 ∈ I and 1 ≤ 𝑖 ≤ 2𝑛, we get by (70)
and (2) of Lemma 14 that

⟨𝜓1, 𝜙𝑖⟩
󸀠

=

𝑘

∑

𝑡=𝑠

[𝑅(𝜙𝑖)
∗
(𝑡) 𝜏 (𝑢) (𝑡) − 𝜏(𝜙𝑖)

∗
(𝑡) 𝑅 (𝑢) (𝑡)]

= (𝑢, 𝐽0𝜙𝑖) (𝑡)
󵄨󵄨󵄨󵄨

𝑘+1

𝑠
= 𝜙
∗

𝑖
(𝑘 + 1)J𝑢 (𝑘 + 1) , 1 ≤ 𝑖 ≤ 2𝑛.

(71)

Since 𝜙1, 𝜙2, . . . , 𝜙2𝑛 are linearly independent in 𝑙(I), we get
from (69) and (71) that 𝑢(𝑘 + 1) = 𝛽. So, 𝑢(𝑡) is a solution of
the following boundary value problem:

𝜏 (𝑥) (𝑡) = 𝑊 (𝑡) 𝑅 (𝜓1) (𝑡) , 𝑡 ∈ [𝑠, 𝑘] ,

𝑥 (𝑠) = 0, 𝑥 (𝑘 + 1) = 𝛽.

(72)

On the other hand, the linear algebraic system

(⟨𝜙𝑖, 𝜙𝑗⟩
󸀠

)

𝑇

1≤𝑖,𝑗≤2𝑛
𝐶 = (𝜙1 (𝑠) , 𝜙2 (𝑠) , . . . , 𝜙2𝑛 (𝑠))

∗
𝐽𝛼 (73)

has a unique solution 𝐶2 ∈ C2𝑛 by (64). Set 𝜓2 = (𝜙1, 𝜙2, . . . ,

𝜙2𝑛)𝐶2. Then, by (73)

⟨𝜓2, 𝜙𝑖⟩
󸀠
= 𝜙
∗

𝑖
(𝑠) 𝐽𝛼, 1 ≤ 𝑖 ≤ 2𝑛. (74)

Let V(𝑡) be a solution of the following initial value problem:

𝜏 (𝑥) (𝑡) = −𝑊 (𝑡) 𝑅 (𝜓2) (𝑡) , 𝑥 (𝑘 + 1) = 0, 𝑡 ∈ [𝑠, 𝑘] .

(75)

Since 𝜏(𝜙𝑖)(𝑡) = 0 for 𝑡 ∈ I and 1 ≤ 𝑖 ≤ 2𝑛, we get by (2) of
Lemma 14 and (75) that

⟨𝜓2, 𝜙𝑖⟩
󸀠
= 𝜙
∗

𝑖
(𝑠) 𝐽V (𝑠) , 1 ≤ 𝑖 ≤ 2𝑛, (76)

which, together with (74), implies that V(𝑠) = 𝛼. So, V(𝑡) is a
solution of the following boundary value problem:

𝜏 (𝑥) (𝑡) = −𝑊 (𝑡) 𝑅 (𝜓2) (𝑡) , 𝑡 ∈ [𝑠, 𝑘] ,

𝑥 (𝑠) = 𝛼, 𝑥 (𝑘 + 1) = 0.

(77)

Set 𝜓 = 𝜓1 − 𝜓2 and 𝜙 = 𝑢 + V. Then 𝜙 is a solution of the
boundary value problem (62). The proof is complete.

Remark 26. Lemma 25 is called a patch lemma. Based on
Lemma 25, any two elements of 𝐻(𝜏) (𝐻𝑏(𝜏), 𝐻𝑎(𝜏), resp.)
can be patched up to construct another new element of𝐻(𝜏)

(𝐻𝑏(𝜏),𝐻𝑎(𝜏), resp.). In particular,

(1) if (𝐴𝑏,2) holds, we can take I1 = [𝑐0, 𝑡
0

𝑏
], 𝛼 = 𝑒𝑖 :=

(0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1

, 1, 0, . . . , 0)
𝑇, and 𝛽 = 0, 1 ≤ 𝑖 ≤ 2𝑛. Then

there exist (𝑧𝑖
𝑏
, (ℎ
𝜋
)
𝑖

𝑏
) ∈ 𝐻𝑏(𝜏) satisfying

𝑧
𝑖

𝑏
(𝑐0) = 𝑒𝑖; 𝑧

𝑖

𝑏
(𝑡) = 0, 𝑡 ≥ 𝑡

0

𝑏
+ 1, 1 ≤ 𝑖 ≤ 2𝑛; (78)

(2) if (𝐴𝑎,2) holds, we take I1 = [𝑠
0

𝑎
, 𝑐0 − 1], 𝛼 = 0, and

𝛽 = 𝑒𝑖. Then there exist (𝑧𝑖
𝑎
, (ℎ
𝜋
)
𝑖

𝑎
) ∈ 𝐻𝑎(𝜏) satisfying

𝑧
𝑖

𝑎
(𝑐0) = 𝑒𝑖; 𝑧

𝑖

𝑎
(𝑡) = 0, 𝑡 ≤ 𝑠

0

𝑎
, 1 ≤ 𝑖 ≤ 2𝑛; (79)

(3) if both (𝐴𝑏,2) and (𝐴𝑎,2) hold, then there exist
(𝑧𝑖, ℎ
𝜋

𝑖
) ∈ 𝐻(𝜏) satisfying

𝑧𝑖 (𝑐0) = 𝑒𝑖; 𝑧𝑖 (𝑡) = 0 for 𝑡 ≤ 𝑠
0

𝑎
,

𝑡 ≥ 𝑡
0

𝑏
+ 1, 1 ≤ 𝑖 ≤ 2𝑛.

(80)

The above auxiliary elements (𝑧
𝑖

𝑏
, (ℎ
𝜋
)
𝑖

𝑏
), (𝑧𝑖
𝑎
, (ℎ
𝜋
)
𝑖

𝑎
), and (𝑧𝑖,

ℎ
𝜋

𝑖
) (1 ≤ 𝑖 ≤ 2𝑛)will be very useful in the sequent discussions.

Theorem 27. Assume that (𝐴1) holds.

(1) If (𝐴2) holds, then

𝐻0 (𝜏)

= {(𝑥, 𝑓
𝜋
) ∈ 𝐻 (𝜏) : (𝑥, 𝑦) (𝑏 + 1) = (𝑥, 𝑦) (𝑎) = 0

∀𝑦 ∈ Dom 𝐻(𝜏)} .

(81)

In particular, ifI = [𝑎, 𝑏], then

𝐻00 (𝜏)

= {(𝑥, 𝑓
𝜋
) ∈ 𝐻 (𝜏) : 𝑥 (𝑎) = 𝑥 (𝑏 + 1) = 0} .

(82)
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(2) If (𝐴𝑏,2) holds, then

𝐻𝑏,0 (𝜏)

= {(𝑥, 𝑓
𝜋
) ∈ 𝐻𝑏 (𝜏) : 𝑥 (𝑐0) = 0, (𝑥, 𝑦) (𝑏 + 1) = 0

∀𝑦 ∈ Dom 𝐻𝑏 (𝜏)} .

(83)

(3) If (𝐴𝑎,2) holds, then

𝐻𝑎,0 (𝜏)

= {(𝑥, 𝑓
𝜋
) ∈ 𝐻𝑎 (𝜏) : 𝑥 (𝑐0) = 0, (𝑥, 𝑦) (𝑎) = 0

∀𝑦 ∈ Dom 𝐻𝑎 (𝜏)} .

(84)

Proof. We first show that assertion (1) holds. By Lemmas 8
and 24, andTheorem 17, one has

𝐻0 (𝜏) = {(𝑥, 𝑓
𝜋
) ∈ 𝐻 (𝜏) : (𝑥, 𝑦) (𝑏 + 1)

= (𝑥, 𝑦) (𝑎)

∀𝑦 ∈ Dom 𝐻(𝜏)} .

(85)

For convenience, denote

𝐻
0
(𝜏)

= {(𝑥, 𝑓
𝜋
) ∈ 𝐻 (𝜏) : (𝑥, 𝑦) (𝑏 + 1)

= (𝑥, 𝑦) (𝑎) = 0

∀𝑦 ∈ Dom 𝐻(𝜏)} .

(86)

Clearly, 𝐻0(𝜏) ⊂ 𝐻0(𝜏). We now show that 𝐻0(𝜏) ⊂ 𝐻
0
(𝜏).

Fix any (𝑥, 𝑓
𝜋
) ∈ 𝐻0(𝜏). It follows from (85) that for all (𝑦,

𝑔
𝜋
) ∈ 𝐻(𝜏),

(𝑥, 𝑦) (𝑏 + 1) = (𝑥, 𝑦) (𝑎) . (87)

For any given (𝑦, 𝑔
𝜋
) ∈ 𝐻(𝜏), by Remark 26 there exists

(𝑧, ℎ
𝜋
) ∈ 𝐻(𝜏) such that

𝑧 (𝑡) = 0, 𝑡 ≤ 𝑠0;

𝑧 (𝑡) = 𝑦 (𝑡) , 𝑡 ≥ 𝑡0 + 1.

(88)

Thus, it follows from (87) that (𝑥, 𝑦)(𝑏 + 1) = (𝑥, 𝑧)(𝑏 + 1) =

(𝑥, 𝑧)(𝑎) = 0, and consequently (𝑥, 𝑦)(𝑎) = 0 for all (𝑦, 𝑔𝜋) ∈

𝐻(𝜏).
In the case thatI = [𝑎, 𝑏], it is clear that

𝐻00 (𝜏) = {(𝑥, 𝑓
𝜋
) ∈ 𝐻 (𝜏) : 𝑥 (𝑎) = 𝑥 (𝑏 + 1) = 0} . (89)

So it remains to show that𝐻0(𝜏) = 𝐻00(𝜏). It suffices to show
that 𝑥(𝑎) = 𝑥(𝑏 + 1) = 0 for any (𝑥, 𝑓

𝜋
) ∈ 𝐻0(𝜏). Fix any

(𝑥, 𝑓
𝜋
) ∈ 𝐻0(𝜏), and let I0 = I, 𝛼 = 𝑒𝑖, 1 ≤ 𝑖 ≤ 2𝑛, and

𝛽 = 0. Then by Lemma 25, there exist (𝑦𝑖, 𝑔
𝜋

𝑖
) ∈ 𝐻(𝜏) with

𝑦𝑖(𝑎) = 𝑒𝑖 and𝑦𝑖(𝑏+1) = 0. Inserting these𝑦𝑖 into (87) one has
that 𝑥(𝑎) = 0. Similarly, one can show that 𝑥(𝑏 + 1) = 0. Thus
𝐻0(𝜏) = 𝐻00(𝜏). Therefore, assertion (1) has been shown.

With similar arguments, one can show that assertion (2)
and (3) hold by using (78) and (79), separately.This completes
the proof.

4.2. Defect Indices of Minimal Subspaces. In this subsection,
we first give a valued range of the defect indices of𝐻𝑏,0(𝜏) and
𝐻𝑎,0(𝜏) and then discuss the relationship among the defect
indices of𝐻𝑏,0(𝜏),𝐻𝑎,0(𝜏), and𝐻0(𝜏).

For briefness, denote

𝑑 := 𝑑 (𝐻0 (𝜏)) , 𝑑𝑏 := 𝑑 (𝐻𝑏,0 (𝜏)) ,

𝑑𝑎 := 𝑑 (𝐻𝑎,0 (𝜏)) .

(90)

For any 𝜆 ∈ C, let M𝑏,𝜆, 𝑀𝑏,𝜆, M𝑎,𝜆, and 𝑀𝑎,𝜆 be defined as
(56) withI replaced byI𝑏 andI𝑎, respectively.

The following results are obtained.

Theorem 28. Assume that (𝐴1) holds.

(1) If (𝐴𝑏,2) holds and Γ(𝐻𝑏,0(𝜏)) ̸= 0, then 𝑑𝑏 = dim M𝑏,𝜆
for any 𝜆 ∈ Γ(𝐻𝑏,0(𝜏)), and 𝑛 ≤ 𝑑𝑏 ≤ 2𝑛.

(2) If (𝐴𝑎,2) holds and Γ(𝐻𝑎,0(𝜏)) ̸= 0, then 𝑑𝑎 = dim M𝑎,𝜆
for any 𝜆 ∈ Γ(𝐻𝑎,0(𝜏)), and 𝑛 ≤ 𝑑𝑎 ≤ 2𝑛.

Proof. Since the method of the proofs is the same, we only
give the proof of assertion (1).

For any 𝜆 ∈ Γ(𝐻𝑏,0(𝜏)), it follows from Lemma 11 and
Theorem 18 that

𝑑𝑏 = dim Ker (𝐻𝑏 (𝛿) − 𝜆) . (91)

On the other hand, by using Lemma 5 and Theorems 17 and
18, one has that

dim Ker (𝐻𝑏 (𝜏) − 𝜆) = dim Ker (𝐻𝑏 (𝛿) − 𝜆) . (92)

It is clear that

𝑀𝑏,𝜆 = Ker (𝐻𝑏 (𝜏) − 𝜆) . (93)

Combining (91)–(93), one has 𝑑𝑏 = dim 𝑀𝑏,𝜆. This, together
with Lemma 22, implies that 𝑑𝑏 = dim M𝑏,𝜆. In addition, it
has been shown in [21] that 𝑛 ≤ dim M𝑏,𝜆 ≤ 2𝑛 for any𝜆 ∈ C.
So assertion (1) is true. The proof is complete.

Next, we discuss relationship among defect indices of
𝐻0(𝜏),𝐻𝑎,0(𝜏), and𝐻𝑏,0(𝜏). For convenience, denote

𝑦𝑎 := {𝑦 (𝑡)}
𝑐
0

𝑡=𝑎
, 𝑦𝑏 := {𝑦 (𝑡)}

𝑏+1

𝑡=𝑐
0

(94)

for any 𝑦 ∈ L2
𝑊
(I). It is evident that 𝑦𝑎 ∈ L2

𝑊
(I𝑎), 𝑦𝑏 ∈

L2
𝑊
(I𝑏), and

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2
=

󵄩󵄩󵄩󵄩𝑦𝑎
󵄩󵄩󵄩󵄩

2

𝑎
+
󵄩󵄩󵄩󵄩𝑦𝑏

󵄩󵄩󵄩󵄩

2

𝑏
. (95)

On the other hand, for any 𝑦𝑎 = (𝑢
𝑇

𝑎
, V𝑇
𝑎
)
𝑇

∈ L2
𝑊
(I𝑎) and

𝑦𝑏 = (𝑢
𝑇

𝑏
, V𝑇
𝑏
)
𝑇
∈ L2
𝑊
(I𝑏), we define 𝑦 by

𝑦 (𝑡) =

{{{

{{{

{

𝑦𝑎 (𝑡) , 𝑡 ≤ 𝑐0 − 1,

(𝑢
𝑇

𝑎
(𝑐0) , V

𝑇

𝑏
(𝑐0))
𝑇

, 𝑡 = 𝑐0,

𝑦𝑏 (𝑡) , 𝑡 ≥ 𝑐0 + 1.

(96)
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Then (95) still holds, and consequently 𝑦 ∈ L2
𝑊
(I). Further-

more, it is clear that

𝑅 (𝑦) (𝑡) = 𝑅 (𝑦𝑎) (𝑡) , 𝑡 ≤ 𝑐0 − 1;

𝑅 (𝑦) (𝑡) = 𝑅 (𝑦𝑏) (𝑡) , 𝑡 ≥ 𝑐0.

(97)

The following result can be easily verified. So we omit its
proof.

Lemma 29. Assume that (𝐴1), (𝐴𝑎,2), and (𝐴𝑏,2) hold.

(1) If (𝑦, 𝑔𝜋) ∈ 𝐻(𝜏), then (𝑦𝑏, 𝑔
𝜋

𝑏
) ∈ 𝐻𝑏(𝜏) and (𝑦𝑎, 𝑔

𝜋

𝑎
) ∈

𝐻𝑎(𝜏).
(2) If (𝑦𝑎, 𝑔𝜋𝑎 ) ∈ 𝐻𝑎(𝜏) and (𝑦𝑏, 𝑔

𝜋

𝑏
) ∈ 𝐻𝑏(𝜏) with 𝑦𝑎(𝑐0) =

𝑦𝑏(𝑐0), then (𝑦, 𝑔
𝜋
) ∈ 𝐻(𝜏).

Let 𝐻̂0(𝜏) be the restriction of subspace𝐻0(𝜏), defined by

𝐻̂0 (𝜏) = {(𝑦, 𝑔
𝜋
) ∈ 𝐻0 (𝜏) : 𝑦 (𝑐0) = 0} . (98)

Lemma 30. Assume that (𝐴1), (𝐴𝑎,2), and (𝐴𝑏,2) hold. Then

(1) (𝑦, 𝑔
𝜋
) ∈ 𝐻̂0(𝜏) if and only if (𝑦𝑎, 𝑔𝜋𝑎 ) ∈ 𝐻𝑎,0(𝜏) and

(𝑦𝑏, 𝑔
𝜋

𝑏
) ∈ 𝐻𝑏,0(𝜏);

(2) (𝑦, 𝑔
𝜋
) ∈ (𝐻̂0(𝜏))

∗

𝐽
if and only if (𝑦𝑎, 𝑔𝜋𝑎 ) ∈ 𝐻𝑎(𝜏) and

(𝑦𝑏, 𝑔
𝜋

𝑏
) ∈ 𝐻𝑏(𝜏).

Proof. (1) We first consider the necessity. Fix any (𝑦, 𝑔
𝜋
) ∈

𝐻̂0(𝜏). Let 𝑦𝑎, 𝑦𝑏, 𝑔𝑎, and 𝑔𝑏 be defined as (94).Then 𝑦𝑎(𝑐0) =

𝑦𝑏(𝑐0) = 0. By (1) of Lemma 29 one has that (𝑦𝑎, 𝑔
𝜋

𝑎
) ∈ 𝐻𝑎(𝜏),

(𝑦𝑏, 𝑔
𝜋

𝑏
) ∈ 𝐻𝑏(𝜏). In addition, for any (𝑥𝑎, 𝑓

𝜋

𝑎
) ∈ 𝐻𝑎(𝜏), it

follows from Remark 26 that there exits (𝑧, ℎ𝜋) ∈ 𝐻(𝜏) with

𝑧 (𝑡) = 𝑥𝑎 (𝑡) , 𝑡 ≤ 𝑐0,

𝑧 (𝑡) = 0, 𝑡 ≥ 𝑡
0

𝑏
+ 1.

(99)

So one has

(𝑦𝑎, 𝑥𝑎) (𝑎) = (𝑦, 𝑧) (𝑎) = 0, (100)

which implies that (𝑦𝑎, 𝑔
𝜋

𝑎
) ∈ 𝐻𝑎,0(𝜏) by the arbitrariness

of (𝑥𝑎, 𝑓
𝜋

𝑎
) ∈ 𝐻𝑎(𝜏) and (3) of Theorem 27. With a similar

argument, one can show (𝑦𝑏, 𝑔
𝜋

𝑏
) ∈ 𝐻𝑏,0(𝜏).

Next, we consider the sufficiency. Fix any (𝑦𝑎, 𝑔
𝜋

𝑎
) ∈

𝐻𝑎,0(𝜏) and (𝑦𝑏, 𝑔
𝜋

𝑏
) ∈ 𝐻𝑏,0(𝜏). Let 𝑦 and 𝑔 be defined by (96).

By (2) and (3) ofTheorem 27 one has that 𝑦𝑎(𝑐0) = 𝑦𝑏(𝑐0) = 0.
So 𝑦(𝑐0) = 0. It follows from (2) of Lemma 29 that (𝑦, 𝑔𝜋) ∈

𝐻(𝜏). For any (𝑥, 𝑓𝜋) ∈ 𝐻(𝜏), it follows from (1) of Lemma 29
that (𝑥𝑎, 𝑓

𝜋

𝑎
) ∈ 𝐻𝑎(𝜏) and (𝑥𝑏, 𝑓

𝜋

𝑏
) ∈ 𝐻𝑏(𝜏). Thus one has by

(2) and (3) of Theorem 27 that

(𝑦, 𝑥) (𝑎) = (𝑦𝑎, 𝑥𝑎) (𝑎) = 0,

(𝑦, 𝑥) (𝑏 + 1) = (𝑦𝑏, 𝑥𝑏) (𝑏 + 1) = 0.

(101)

This implies that (𝑦, 𝑔𝜋) ∈ 𝐻0(𝜏) by (1) of Theorem 27, and
consequently, (𝑦, 𝑔𝜋) ∈ 𝐻̂0(𝜏).

(2) We first consider the necessity. Fix any (𝑦, 𝑔
𝜋
) ∈

(𝐻̂0(𝜏))
∗

𝐽
. Let 𝑦𝑎, 𝑦𝑏, 𝑔𝑎, and 𝑔𝑏 be defined as (94). Then (𝑦𝑎,

𝑔
𝜋

𝑎
) ∈ (𝐿

2

𝑊
(I𝑎))

2 and (𝑦𝑏, 𝑔
𝜋

𝑏
) ∈ (𝐿

2

𝑊
(I𝑏))

2.

Set 𝑥𝑏(𝑡) = 𝑓𝑏(𝑡) = 0 for 𝑡 ∈ I∗
𝑏
, whereI∗

𝑏
is defined by

(19) withI replaced byI𝑏. It is clear that (𝑥𝑏, 𝑓
𝜋

𝑏
) ∈ 𝐻𝑏,0(𝜏).

For any (𝑥𝑎, 𝑓
𝜋

𝑎
) ∈ 𝐻𝑎,0(𝜏), let 𝑥 and 𝑓 be defined by (96).

Then by the above result (1) one has that (𝑥, 𝑓𝜋) ∈ 𝐻̂0(𝜏). It
follows that

0 = ⟨𝑓, 𝐽𝑦⟩ − ⟨𝑥, 𝐽𝑔⟩ = ⟨𝑔𝑎, 𝐽𝑦𝑎⟩𝑎
− ⟨𝑥𝑎, 𝐽𝑔𝑎⟩𝑎

. (102)

By the arbitrariness of (𝑥𝑎, 𝑓
𝜋

𝑎
) ∈ 𝐻𝑎,0(𝜏), one has that (𝑦𝑎,

𝑔
𝜋

𝑎
) ∈ (𝐻𝑎,0(𝜏))

∗

𝐽
= 𝐻𝑎(𝜏) by Theorem 17. With a similar

argument one can show (𝑦𝑏, 𝑔
𝜋

𝑏
) ∈ 𝐻𝑏(𝜏).

Next, we consider the sufficiency. Fix any (𝑦𝑎, 𝑔
𝜋

𝑎
) ∈ 𝐻𝑎(𝜏)

and (𝑦𝑏, 𝑔
𝜋

𝑏
) ∈ 𝐻𝑏(𝜏). Let 𝑦 and 𝑔 be defined by (96). For

any (𝑥, 𝑓
𝜋
) ∈ 𝐻̂0(𝜏), it follows from the above result (1) that

(𝑥𝑎, 𝑓
𝜋

𝑎
) ∈ 𝐻𝑎,0(𝜏) and (𝑥𝑏, 𝑓

𝜋

𝑏
) ∈ 𝐻𝑏,0(𝜏). So one has by

Theorem 17 that

⟨𝑓, 𝐽0𝑦⟩ − ⟨𝑥, 𝐽0𝑔⟩

= ⟨𝑔𝑎, 𝐽0𝑦𝑎⟩𝑎
− ⟨𝑥𝑎, 𝐽0𝑔𝑎⟩𝑎

+ ⟨𝑔𝑏, 𝐽0𝑦𝑏⟩𝑏

− ⟨𝑥𝑏, 𝐽0𝑔𝑏⟩𝑏
= 0.

(103)

This yields that (𝑦, 𝑔
𝜋
) ∈ (𝐻̂0(𝜏))

∗

𝐽
. The whole proof is

complete.

Lemma 31. Assume that (𝐴1), (𝐴𝑎,2), and (𝐴𝑏,2) hold. Then
Γ(𝐻0(𝜏)) ⊂ Γ(𝐻̂0(𝜏)) and Γ(𝐻𝑏,0(𝜏)) ∩ Γ(𝐻𝑎,0(𝜏)) = Γ(𝐻̂0(𝜏)).

Proof. The first assertion holds because 𝐻̂0(𝜏) ⊂ 𝐻0(𝜏), and
the second assertion can be proved by (1) of Lemma 30 and
(95). The proof is complete.

In the following of the present paper, we assume that

(𝐴3) Γ(𝐻0(𝜏)) ̸= 0.

By Definition 10, one has that if Γ(𝐻0(𝜏)) = 0, then
𝜌(𝐻0(𝜏)) = 0, and consequently 𝜎(𝐻0(𝜏)) = C. We do not
consider this case in the present paper.

Theorem 32. Assume that (𝐴1), (𝐴𝑎,2), (𝐴𝑏,2), and (𝐴3) hold.
Then

𝑑 = 𝑑𝑎 + 𝑑𝑏 − 2𝑛. (104)

Proof. The proof is divided into two steps.

Step 1. We show that

𝑑 (𝐻̂0 (𝜏)) = 𝑑𝑎 + 𝑑𝑏. (105)

It follows from Γ(𝐻0(𝜏)) ̸= 0 and Lemma 31 that
Γ(𝐻𝑏,0(𝜏)) ∩ Γ(𝐻𝑎,0(𝜏)) ̸= 0. This, together with (𝐴𝑎,2),
(𝐴𝑏,2), andTheorem 28, implies that for any 𝜆 ∈ Γ(𝐻𝑏,0(𝜏)) ∩

Γ(𝐻𝑎,0(𝜏)), (1𝜆) has just 𝑑𝑏 linearly independent solutions
𝑦
𝑗

𝑏
∈ L2
𝑊
(I𝑏), 1 ≤ 𝑗 ≤ 𝑑𝑏, and (1𝜆) has just 𝑑𝑎 linearly

independent solutions 𝑥
𝑗

𝑎
∈ L2
𝑊
(I𝑎), 1 ≤ 𝑗 ≤ 𝑑𝑎; that is,

(𝑦
𝑗

𝑏
, 𝜆(𝑦
𝑗

𝑏
)
𝜋
) ∈ 𝐻𝑏(𝜏) for 1 ≤ 𝑗 ≤ 𝑑𝑏 and (𝑥

𝑗

𝑎
, 𝜆(𝑥
𝑗

𝑎
)
𝜋
) ∈ 𝐻𝑎(𝜏)

for 1 ≤ 𝑗 ≤ 𝑑𝑎.
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Set 𝑥𝑗
𝑏
(𝑡) = 0 for 𝑡 ∈ I∗

𝑏
. It is clear that (𝑥𝑗

𝑏
, 𝜆(𝑥
𝑗

𝑏
)
𝜋
) ∈

𝐻𝑏(𝜏) for 1 ≤ 𝑗 ≤ 𝑑𝑎. Let 𝑥𝑗, 1 ≤ 𝑗 ≤ 𝑑𝑎, be defined by
(96). Then it follows from (2) of Lemma 30 that (𝑥𝑗, 𝜆𝑥

𝜋

𝑗
) ∈

(𝐻̂0(𝜏))
∗

𝐽
. Similarly, set 𝑦𝑗

𝑎
(𝑡) = 0 for 𝑡 ∈ I∗

𝑎
. Then one has

(𝑦𝑗, 𝜆𝑦
𝜋

𝑗
) ∈ (𝐻̂0(𝜏))

∗

𝐽
for 1 ≤ 𝑗 ≤ 𝑑𝑏. It is evident that 𝑥1, . . . ,

𝑥𝑑
𝑎

, 𝑦1, . . . , 𝑦𝑑
𝑏

∈ Dom (𝐻̂0(𝜏))
∗

𝐽
are linearly independent.

On the other hand, for any (𝑦, 𝜆𝑦
𝜋
) ∈ (𝐻̂0(𝜏))

∗

𝐽
, it follows

from (2) of Lemma 31 that (𝑦𝑎, 𝜆𝑦
𝜋

𝑎
) ∈ 𝐻𝑎(𝜏) and (𝑦𝑏, 𝜆𝑦

𝜋

𝑏
) ∈

𝐻𝑏(𝜏); that is, 𝑦𝑎 ∈ L2
𝑊
(I𝑎) is a solution of (1𝜆) inI𝑎, and

𝑦𝑏 ∈ L2
𝑊
(I𝑏) is a solution of (1𝜆) in I𝑏. Therefore, there

exist unique 𝑐𝑗 ∈ C (1 ≤ 𝑗 ≤ 𝑑𝑎) and 𝑑𝑗 ∈ C (1 ≤ 𝑗 ≤ 𝑑𝑏)

such that

𝑦𝑎 =

𝑑
𝑎

∑

𝑗=1

𝑐𝑗𝑥
𝑗

𝑎
, 𝑦𝑏 =

𝑑
𝑏

∑

𝑗=1

𝑑𝑗𝑦
𝑗

𝑏
. (106)

Noting the constructions of 𝑥𝑗 and 𝑦𝑗 by (96), one has that

𝑦 =

𝑑
𝑎

∑

𝑗=1

𝑐𝑗𝑥𝑗 +

𝑑
𝑏

∑

𝑗=1

𝑑𝑗𝑦𝑗. (107)

This, together with Lemma 11, implies that (105) holds.

Step 2. We show that

𝑑 = 𝑑 (𝐻̂0 (𝜏)) − 2𝑛. (108)

It is evident that (𝑧𝑖, ℎ
𝜋

𝑖
) ∈ 𝐻0(𝜏), 1 ≤ 𝑖 ≤ 2𝑛, where

(𝑧𝑖, ℎ
𝜋

𝑖
) are defined by (80). We claim that

𝐻0 (𝜏) = 𝐻̂0 (𝜏) ∔ span {(𝑧1, ℎ
𝜋

1
) , (𝑧2, ℎ

𝜋

2
) , . . . , (𝑧2𝑛, ℎ

𝜋

2𝑛
)} .

(109)

In fact, for each (𝑦, 𝑔
𝜋
) ∈ 𝐻0(𝜏), set 𝐶0 = (𝑐1, 𝑐2, . . . , 𝑐2𝑛)

𝑇
=

𝑦(𝑐0). Let

𝑦0 = 𝑦 −

2𝑛

∑

𝑖=1

𝑐𝑖𝑧𝑖, 𝑔0 = 𝑔 −

2𝑛

∑

𝑖=1

𝑐𝑖ℎ𝑖. (110)

Then

(𝑦, 𝑔
𝜋
) = (𝑦0, 𝑔

𝜋

0
) +

2𝑛

∑

𝑖=1

𝑐𝑖 (𝑧𝑖, ℎ
𝜋

𝑖
) , (𝑦0, 𝑔

𝜋

0
) ∈ 𝐻̂0 (𝜏) .

(111)

It can be easily verified that this decomposition is unique.
Hence, (109) holds.

For any 𝜆 ∈ Γ(𝐻0(𝜏)), we claim that

Ran (𝐻0 (𝜏) − 𝜆𝐼) = Ran (𝐻̂0 (𝜏) − 𝜆𝐼)

∔ span {ℎ
𝜋

1
− 𝜆𝑧
𝜋

1
, ℎ
𝜋

2
− 𝜆𝑧
𝜋

2
, . . . ,

ℎ
𝜋

2𝑛
− 𝜆𝑧
𝜋

2𝑛
} .

(112)

Since (109) holds, it suffices to show that

Ran (𝐻̂0 (𝜏) − 𝜆𝐼) ∩ span {ℎ
𝜋

1
− 𝜆𝑧
𝜋

1
, ℎ
𝜋

2
− 𝜆𝑧
𝜋

2
, . . . ,

ℎ
𝜋

2𝑛
− 𝜆𝑧
𝜋

2𝑛
} = {0} .

(113)

Suppose that (𝑦, 𝑔𝜋) ∈ 𝐻̂0(𝜏) and 𝑐1, 𝑐2, . . . , 𝑐2𝑛 ∈ C satisfy

𝑔
𝜋
− 𝜆𝑦
𝜋
+

2𝑛

∑

𝑗=1

𝑐𝑗 (ℎ
𝜋

𝑗
− 𝜆𝑧
𝜋

𝑗
) = 0, (114)

that is,

𝑔
𝜋
+

2𝑛

∑

𝑗=1

𝑐𝑗ℎ
𝜋

𝑗
= 𝜆(𝑦

𝜋
+

2𝑛

∑

𝑗=1

𝑐𝑗𝑧
𝜋

𝑗
) . (115)

Since (𝑦, 𝑔
𝜋
) ∈ 𝐻̂0(𝜏) and (𝑧𝑖, ℎ

𝜋

𝑖
) ∈ 𝐻0(𝜏), it follows that

(𝑦+∑
2𝑛

𝑗=1
𝑐𝑗𝑧𝑗, 𝜆(𝑦

𝜋
+∑
2𝑛

𝑗=1
𝑐𝑗𝑧
𝜋

𝑗
)) ∈ 𝐻0(𝜏). Since 𝜆 ∈ Γ(𝐻0(𝜏)),

it yields

𝑦 +

2𝑛

∑

𝑗=1

𝑐𝑗𝑧𝑗 = 0, 𝑔
𝜋
+

2𝑛

∑

𝑗=1

𝑐𝑗ℎ
𝜋

𝑗
= 0, (116)

which, together with (109), implies that 𝑐𝑗 = 0 for 1 ≤ 𝑗 ≤ 2𝑛,
and consequently 𝑔

𝜋
= 𝑦
𝜋
= 0. This yields that (113) holds.

Since𝐻0(𝜏) and 𝐻̂0(𝜏) are closed 𝐽-Hermitian subspaces,
it follows that Ran (𝐻0(𝜏) −𝜆) and Ran (𝐻̂0(𝜏) −𝜆) are closed
subspaces in 𝐿

2

𝑊
(I), respectively. Hence, there exists a closed

subspace 𝑄 in 𝐿
2

𝑊
(I) such that

Ran (𝐻0 (𝜏) − 𝜆𝐼) = Ran (𝐻̂0 (𝜏) − 𝜆𝐼) ⊕ 𝑄. (117)

In addition, again by the fact that 𝜆 ∈ Γ(𝐻𝑏,0(𝜏))∩Γ(𝐻𝑎,0(𝜏)),
it follows that {ℎ

𝜋

𝑗
− 𝜆𝑧
𝜋

𝑗
}
2𝑛

𝑗=1
are linearly independent in

𝐿
2

𝑊
(I). It follows from (113) that dim 𝑄 = 2𝑛. Consequently,

dim (Ran (𝐻0 (𝜏) − 𝜆𝐼)
⊥
)

= dim (Ran (𝐻̂0 (𝜏) − 𝜆𝐼)
⊥

) − 2𝑛.

(118)

This yields that (108) holds. It follows from (105) and (108)
that (104) holds. The proof is complete.

Remark 33. Theorem 32 (formula (104)) generalizes the clas-
sical result for 2𝑛th order ordinary differential equations that
go back to the classical work by Akhiezer and Glazman
[1, Theorem 3 in Appendix 2]. To the case of symmetric
Hamiltonian systems, formula (104) was extended in [15].

So it follows from Theorems 28 and 32 that 𝑑 = 0 if and
only if 𝑑𝑎 = 𝑑𝑏 = 𝑛, and 𝑑 = 2𝑛 if and only if 𝑑𝑎 = 𝑑𝑏 = 2𝑛.
The following definition is obtained.

Definition 34. Assume that (𝐴1), (𝐴2), and (𝐴𝑏,2) hold.Then
(1𝜆) is said to be in the limit𝑑𝑏 case at 𝑡 = 𝑏. In the special case
that 𝑑𝑏 = 𝑛, (1𝜆) is said to be in the limit point case (𝑙.𝑝.𝑐.) at
𝑡 = 𝑏, and in the other special case that 𝑑𝑏 = 2𝑛, (1𝜆) is said
to be in the limit circle case (𝑙.𝑐.𝑐.) at 𝑡 = 𝑏.

The same definition can be given at 𝑡 = 𝑎 provided that
(𝐴𝑎,2) holds.
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4.3. Characterizations of𝐻𝑎(𝜏) and𝐻𝑏(𝜏). In this subsection,
we characterize the maximal subspaces𝐻𝑎(𝜏) and𝐻𝑏(𝜏). We
first consider characterization of 𝐻𝑏(𝜏). Assume that (𝐴𝑏,2)
holds and Γ(𝐻𝑏,0(𝜏)) ̸= 0. Let 𝜆 ∈ Γ(𝐻𝑏,0(𝜏)). It follows from
the proof of Lemma 11 that

𝐻𝑏 (𝜏) = 𝐻𝑏,0 (𝜏) ∔ 𝑈1 ∔ 𝑈2, (119)

where 𝑈1 = {(𝑥
𝑗

𝑏
, 𝜆(𝑥
𝑗

𝑏
)
𝜋
) ∈ 𝐻𝑏(𝜏) : 1 ≤ 𝑗 ≤ 𝑑𝑏} and 𝑈2 =

{(𝑦
𝑗

𝑏
, (𝑔
𝑗

𝑏
)
𝜋
) ∈ 𝐻𝑏(𝜏) : 1 ≤ 𝑗 ≤ 𝑑𝑏}, and {(𝑦

𝑗

𝑏
, (𝑔
𝑗

𝑏
)
𝜋
)}
𝑑
𝑏

𝑗=1
are

linearly independent (mod 𝑈1). For convenience, denote

𝜒
𝑖

𝑏
(𝑡) := 𝑥

𝑖

𝑏
(𝑡) , 𝜒

𝑑
𝑏
+𝑗

𝑏
(𝑡) := 𝑦

𝑗

𝑏
(𝑡) ,

1 ≤ 𝑖 ≤ 𝑑𝑏, 1 ≤ 𝑗 ≤ 𝑑𝑏.

(120)

Clearly, 𝜒𝑖
𝑏
∈ Dom 𝐻𝑏(𝜏), 1 ≤ 𝑖 ≤ 2𝑑𝑏. So (𝜒

𝑖

𝑏
, 𝜒
𝑗

𝑏
)(𝑏 + 1) is

finite for all 1 ≤ 𝑖, 𝑗 ≤ 2𝑑𝑏. Then the following result can be
directly derived from (119) and (120).

Lemma 35. Assume that (𝐴1) and (𝐴𝑏,2) hold, and
Γ(𝐻𝑏,0(𝜏)) ̸= 0. Then every 𝑦 ∈ Dom 𝐻𝑏(𝜏) can be expressed
as

𝑦 = 𝑦
0

𝑏
+

2𝑑
𝑏

∑

𝑖=1

𝑎𝑖𝜒
𝑖

𝑏
, (121)

where 𝑦0
𝑏
∈ Dom 𝐻𝑏,0(𝜏) and 𝑎𝑖 ∈ C.

By Lemma 35, 𝑧
𝑖

𝑏
, defined by (78), can be uniquely

expressed as

𝑧
𝑖

𝑏
= 𝑦
𝑖,0

𝑏
+

2𝑑
𝑏

∑

𝑗=1

𝑎𝑖𝑗𝜒
𝑗

𝑏
, 1 ≤ 𝑖 ≤ 2𝑛, (122)

where 𝑦
𝑖,0

𝑏
∈ Dom 𝐻𝑏,0(𝜏) and 𝑎𝑖𝑗 ∈ C. Denote

𝐸 := (𝑎𝑖𝑗)2𝑛×2𝑑
𝑏

, 𝐹1 := ((𝜒
𝑖

𝑏
, 𝜒
𝑗

𝑏
) (𝑏 + 1))

1≤𝑖,𝑗≤2𝑑
𝑏

. (123)

Lemma 36. Assume that (𝐴1) and (𝐴𝑏,2) hold, and
Γ(𝐻𝑏,0(𝜏)) ̸= 0. Then rank 𝐸 = 2𝑛 and rank 𝐹1 = 2𝑑𝑏 − 2𝑛.
Furthermore, we can rearrange the order of 𝜒

1

𝑏
, 𝜒
2

𝑏
, . . . , 𝜒

𝑑
𝑏

𝑏

such that

rank ((𝜒
𝑖

𝑏
, 𝜒
𝑗

𝑏
) (𝑏 + 1))

1≤𝑖≤2𝑑
𝑏
−2𝑛,1≤𝑗≤𝑑

𝑏

= 2𝑑𝑏 − 2𝑛. (124)

Proof. It follows from (122) that

(𝑧
1

𝑏
, 𝑧
2

𝑏
, . . . , 𝑧

2𝑛

𝑏
)

= (𝑦
1,0

𝑏
, 𝑦
2,0

𝑏
, . . . , 𝑦

2𝑛,0

𝑏
) + (𝜒

1

𝑏
, 𝜒
2

𝑏
, . . . , 𝜒

2𝑑
𝑏

𝑏
) 𝐸
𝑇
,

(125)

which, together with (78), implies that

𝐼2𝑛 = (𝜒
1

𝑏
(𝑐0) , 𝜒

2

𝑏
(𝑐0) , . . . , 𝜒

2𝑑
𝑏

𝑏
(𝑐0)) 𝐸

𝑇
. (126)

By Lemma 12, one has rank 𝐸 = 2𝑛.

On the other hand, it follows from (122) that

(𝑧
𝑖

𝑏
, 𝜒
𝑠

𝑏
) (𝑏 + 1) = (𝑦

𝑖,0

𝑏
, 𝜒
𝑠

𝑏
) (𝑏 + 1) +

2𝑑
𝑏

∑

𝑗=1

𝑎𝑖𝑗 (𝜒
𝑏

𝑗
, 𝜒
𝑠

𝑏
) (𝑏 + 1) ,

(127)

for 1 ≤ 𝑖 ≤ 2𝑛, 1 ≤ 𝑠 ≤ 2𝑑𝑏, which, together with (78) and (2)
of Theorem 27, implies that

𝐸𝐹1 = 0. (128)

Noting that rank 𝐸 = 2𝑛, one has

rank 𝐹1 ≤ 2𝑑𝑏 − 2𝑛. (129)

We nowwant to show rank 𝐹1 ≥ 2𝑑𝑏−2𝑛. By (3) of Lemma 14
one has

𝐹2 := ((𝜒
𝑖

𝑏
, 𝜒
𝑗

𝑏
) (𝑏 + 1))

1≤𝑖≤𝑑
𝑏
,1≤𝑗≤𝑑

𝑏

= (𝑋
𝑇

0
J𝑋0)

𝑇

, (130)

where𝑋0 := (𝑥
1

𝑏
(𝑐0), 𝑥

2

𝑏
(𝑐0), . . . , 𝑥

𝑑
𝑏

𝑏
(𝑐0)). Since rank 𝑋0 = 𝑑𝑏,

we have that

rank 𝐹1 ≥ rank 𝐹2 ≥ 2𝑑𝑏 − 2𝑛, (131)

which, together with (129), yields that

rank 𝐹1 = rank 𝐹2 = 2𝑑𝑏 − 2𝑛. (132)

Because rank 𝐹2 = 2𝑑𝑏 − 2𝑛 ≤ 𝑑𝑏, one can rearrange the
order of 𝜒1

𝑏
, 𝜒
2

𝑏
, . . . , 𝜒

𝑑
𝑏

𝑏
such that the first 2𝑑𝑏 − 2𝑛 rows of

𝐹2 are linearly independent; that is, (124) holds. The proof is
complete.

Without loss of generality, we assume that (124) holds in
the rest of this paper. Now, we can give a characterization of
𝐻𝑏(𝜏).

Theorem 37. Assume that (𝐴1) and (𝐴𝑏,2) hold, 𝜆 ∈

Γ(𝐻𝑏,0(𝜏)) ̸= 0, and𝜒
1

𝑏
, 𝜒
2

𝑏
, . . . , 𝜒

2𝑑
𝑏
−2𝑛

𝑏
are linearly independent

solutions of (1𝜆) inL2
𝑤
(I𝑏) such that (124) holds. Then

𝐺𝑏 := ((𝜒
𝑖

𝑏
, 𝜒
𝑗

𝑏
) (𝑏 + 1))

1≤𝑖,𝑗≤2𝑑
𝑏
−2𝑛

(133)

is invertible, and any 𝑦 ∈ Dom 𝐻𝑏(𝜏) can be uniquely ex-
pressed as

𝑦 = 𝑦
0

𝑏
+

2𝑛

∑

𝑖=1

𝑐𝑖𝑧
𝑖

𝑏
+

2𝑑
𝑏
−2𝑛

∑

𝑗=1

𝑑𝑗𝜒
𝑗

𝑏
, (134)

where 𝑦
0

𝑏
∈ Dom 𝐻𝑏,0(𝜏), 𝑧𝑖𝑏 are defined by (78), and 𝑐𝑖, 𝑑𝑗 ∈

C.

Proof. Let 𝐸 = (𝐸1, 𝐸2), where 𝐸1 and 𝐸2 are 2𝑛 × (2𝑑𝑏 − 2𝑛)

and 2𝑛 × 2𝑛 matrices, respectively. It follows from (124) that
there exists an invertible matrix 𝐿 such that

𝐹1𝐿 = (
𝐼2𝑑
𝑏
−2𝑛 0

𝐹3 𝐹4
) . (135)
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So, it follows from (128) that𝐸1+𝐸2𝐹3 = 0, which is equivalent
to 𝐸1 = −𝐸2𝐹3. Since rank 𝐸 = 2𝑛, it follows that 𝐸2 is
invertible. Multiplying (125) by (𝐸

−1

2
)
𝑇 from the right-hand

side, we get

(𝑧
1

𝑏
, 𝑧
2

𝑏
, . . . , 𝑧

2𝑛

𝑏
) (𝐸
−1

2
)
𝑇

= (𝑦
1,0

𝑏
, 𝑦
2,0

𝑏
, . . . , 𝑦

2𝑛,0

𝑏
) (𝐸
−1

2
)
𝑇

+ (𝜒
1

𝑏
, 𝜒
2

𝑏
, . . . , 𝜒

2𝑑
𝑏
−2𝑛

𝑏
) (𝐸
−1

2
𝐸1)
𝑇

+ (𝜒
2𝑑
𝑏
−2𝑛+1

𝑏
, . . . , 𝜒

2𝑑
𝑏

𝑏
) .

(136)

This implies that each of 𝜒2𝑑𝑏−2𝑛+1
𝑏

, . . . , 𝜒
2𝑑
𝑏

𝑏
can be uniquely

expressed as a linear combination of 𝜒1
𝑏
, 𝜒
2

𝑏
, . . . , 𝜒

2𝑑
𝑏
−2𝑛

𝑏
, 𝑦1,0
𝑏

,

𝑦
2,0

𝑏
, . . . , 𝑦

2𝑛,0

𝑏
, and 𝑧

1

𝑏
, 𝑧
2

𝑏
, . . . , 𝑧

2𝑛

𝑏
. Therefore, (134) follows

from Lemma 35.
Since 𝜒𝑗

𝑏
∈ Dom 𝐻𝑏(𝜏) for 1 ≤ 𝑗 ≤ 𝑑𝑏, 𝜒

𝑗

𝑏
can be uniquely

expressed as

𝜒
𝑗

𝑏
= 𝑦
𝑗,0

𝑏
+

2𝑛

∑

𝑙=1

𝑏𝑗𝑙𝑧
𝑙

𝑏
+

2𝑑
𝑏
−2𝑛

∑

𝑠=1

𝑐𝑗𝑠𝜒
𝑠

𝑏
, 1 ≤ 𝑗 ≤ 𝑑𝑏, (137)

where 𝑦
𝑗,0

𝑏
∈ Dom 𝐻𝑏,0(𝜏), and 𝑏𝑗𝑙, 𝑐𝑗𝑠 ∈ C. This, together

with (78) and (2) of Theorem 27, implies that for 1 ≤ 𝑖 ≤

2𝑑𝑏 − 2𝑛, 1 ≤ 𝑗 ≤ 𝑑𝑏

(𝜒
𝑖

𝑏
, 𝜒
𝑗

𝑏
) (𝑏 + 1) =

2𝑑
𝑏
−2𝑛

∑

𝑠=1

𝑐𝑗𝑠 (𝜒
𝑖

𝑏
, 𝜒
𝑏

𝑠
) (𝑏 + 1) , (138)

that is,

(𝜒
𝑖

𝑏
, 𝜒
𝑗

𝑏
) (𝑏 + 1)1≤𝑖≤2𝑑

𝑏
−2𝑛, 1≤𝑗≤𝑑

𝑏

= 𝐺𝑏(𝑐𝑖𝑗)
𝑇

1≤𝑖≤𝑑
𝑏
,1≤𝑗≤2𝑑

𝑏
−2𝑛

.

(139)

Therefore, 𝐺𝑏 is invertible from (124). This completes the
proof.

With a similar argument, one can obtain the following
characterization of𝐻𝑎(𝜏).

Theorem 38. Assume that (𝐴1) and (𝐴𝑎,2) hold, Γ(𝐻𝑎,0(𝜏)) ̸=

0. Then, for some 𝜆 ∈ Γ(𝐻𝑎,0(𝜏)), system (1𝜆) has 2𝑑𝑎 − 2𝑛

linearly independent solutions𝜒1
𝑎
, . . . , 𝜒

2𝑑
𝑎
−2𝑛

𝑎
inL2
𝑊
(I𝑎) such

that 𝐺𝑎 is invertible, where

𝐺𝑎 := ((𝜒
𝑖

𝑎
, 𝜒
𝑗

𝑎
) (𝑎))

1≤𝑖,𝑗≤2𝑑
𝑎
−2𝑛

, (140)

and each 𝑦 ∈ Dom 𝐻𝑎(𝜏) can be uniquely expressed as

𝑦 = 𝑦
0

𝑎
+

2𝑛

∑

𝑖=1

𝑐𝑖𝑧
𝑖

𝑎
+

2𝑑
𝑎
−2𝑛

∑

𝑗=1

𝑑𝑗𝜒
𝑗

𝑎
, (141)

where 𝑦
0

𝑎
∈ Dom 𝐻𝑎,0(𝜏), 𝑐𝑖, 𝑑𝑗 ∈ C, and 𝑧

𝑖

𝑎
are defined as

(79).

5. Characterizations of 𝐽-SSEs of 𝐻0(𝜏)

In this section, we give a complete characterization of all
the 𝐽-SSEs of minimal subspace 𝐻0(𝜏) in terms of the
square summable solutions of system (1𝜆). As a consequence,
characterizations of all the 𝐽-self-adjoint subspace extensions
are obtained in the two special cases: the limit point and limit
circle cases.The following discussion is divided into two parts
based on the form ofI.

5.1. Both the Endpoints Are Infinite. LetI = (−∞, +∞), and
assume that (𝐴1), (𝐴𝑎,2), and (𝐴𝑏,2) hold, and Γ(𝐻0(𝜏)) ̸= 0 in
this subsection. It follows fromTheorem 32 that

𝑑𝑎 + 𝑑𝑏 − 2𝑛 = 𝑑. (142)

In addition, for some 𝜆 ∈ Γ(𝐻0(𝜏), let 𝜒
1

𝑏
, . . . , 𝜒

2𝑑
𝑏
−2𝑛

𝑏
given in

Theorems 37 and 𝜒
1

𝑎
, . . . , 𝜒

2𝑑
𝑎
−2𝑛

𝑎
be given inTheorems 38.

Theorem39. Assume that (𝐴1), (𝐴𝑎,2), (𝐴𝑏,2), and (𝐴3) hold.
Then a subspace 𝑇 ⊂ (𝐿

2

𝑊
(I))
2 is a 𝐽-SSE of 𝐻0(𝜏) if and

only if there exist twomatrices𝑀𝑑×(2𝑑
𝑎
−2𝑛) and𝑁𝑑×(2𝑑

𝑏
−2𝑛) such

that

(1) rank (𝑀,𝑁) = 𝑑,

(2) 𝑁𝐺𝑏𝑁
𝑇
− 𝑀𝐺𝑎𝑀

𝑇
= 0, and

𝑇 =

{{{{

{{{{

{

(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : 𝑀(

(𝑦, 𝜒
1

𝑎
) (−∞)

...

(𝑦, 𝜒
2𝑑
𝑎
−2𝑛

𝑎
) (−∞)

)

−𝑁(

(𝑦, 𝜒
1

𝑏
) (+∞)

...

(𝑦, 𝜒
2𝑑
𝑏
−2𝑛

𝑏
) (+∞)

) = 0

}}}}

}}}}

}

,

(143)

where 𝐺𝑏 and 𝐺𝑎 are the same as those inTheorems 37 and 38.

Proof. We first show the sufficiency.
Suppose that there exist two matrices 𝑀𝑑×(2𝑑

𝑎
−2𝑛) and

𝑁𝑑×(2𝑑
𝑏
−2𝑛) such that conditions (1) and (2) hold and 𝑇 is

defined by (143). We now prove that 𝑇 is a 𝐽-self-adjoint
subspace extension of𝐻0(𝜏) by Lemma 9.

Denote

𝑀 = (𝑚𝑖𝑗)𝑑×(2𝑑
𝑎
−2𝑛)

, 𝑁 = (𝑛𝑖𝑗)𝑑×(2𝑑
𝑏
−2𝑛)

, (144)

and set

𝑤
𝑖

𝑎
:=

2𝑑
𝑎
−2𝑛

∑

𝑗=1

𝑚𝑖𝑗𝜒
𝑗

𝑎
, 𝑤
𝑖

𝑏
:=

2𝑑
𝑏
−2𝑛

∑

𝑗=1

𝑛𝑖𝑗𝜒
𝑗

𝑏
, 1 ≤ 𝑖 ≤ 𝑑. (145)
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Clearly,𝑤𝑖
𝑎
∈ Dom 𝐻𝑎(𝜏) and𝑤

𝑖

𝑏
∈ Dom 𝐻𝑏(𝜏) for 1 ≤ 𝑖 ≤ 𝑑.

By Remark 26, there exist 𝛽𝑖 := (𝜔𝑖, 𝜌
𝜋

𝑖
) ∈ 𝐻(𝜏) (1 ≤ 𝑖 ≤ 𝑑)

such that

𝜔𝑖 (𝑡) = 𝑤
𝑖

𝑎
(𝑡) , 𝑡 ≤ 𝑠

0

𝑎
,

𝜔𝑖 (𝑡) = 𝑤
𝑖

𝑏
(𝑡) , 𝑡 ≥ 𝑡

0

𝑏
+ 1,

(146)

where 𝑠0
𝑎
and 𝑡
0

𝑏
are specified by (𝐴𝑎,2) and (𝐴𝑏,2), respectively.

Since 𝐻(𝜏) and 𝐻0(𝜏) are liner subspaces, 𝛽1, 𝛽2, . . . , 𝛽𝑑
are linearly independent in 𝐻(𝜏) (modulo 𝐻0(𝜏)) if and
only if 𝜔1, 𝜔2, . . . , 𝜔𝑑 are linearly independent in Dom 𝐻(𝜏)

(modulo Dom 𝐻0(𝜏)). So it suffices to show that 𝜔1, 𝜔2, . . . ,
𝜔𝑑 are linearly independent in Dom 𝐻(𝜏) (modulo
Dom 𝐻0(𝜏)). Suppose that there exists 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑑) ∈

C𝑑 such that

𝜔 =

𝑑

∑

𝑗=1

𝑐𝑗𝜔𝑗 ∈ Dom 𝐻0 (𝜏) . (147)

It follows from (145), (146), and (2) and (3) ofTheorem 27 that

0 = ((𝜔, 𝜒
1

𝑎
) (−∞) , . . . , (𝜔, 𝜒

2𝑑
𝑎
−2𝑛

𝑎
) (−∞)) = 𝐶𝑀𝐺𝑎,

0 = ((𝜔, 𝜒
1

𝑏
) (+∞) , . . . , (𝜔, 𝜒

2𝑑−2𝑛

𝑏
) (+∞)) = 𝐶𝑁𝐺𝑏.

(148)

Since 𝐺𝑏 and 𝐺𝑎 are invertible, we get from (148) that 𝐶𝑀 =

𝐶𝑁 = 0. Then 𝐶 = 0 by condition (1). So, 𝜔1, 𝜔2, . . . , 𝜔𝑑 are
linearly independent in Dom 𝐻(𝜏) (modulo Dom 𝐻0(𝜏)),
and consequently 𝛽1, 𝛽2, . . . , 𝛽𝑑 are linearly independent in
𝐻(𝜏) (modulo𝐻0(𝜏)).

Next, we show that [𝛽𝑖 : 𝛽𝑗] = 0 for 1 ≤ 𝑖, 𝑗 ≤ 𝑑. It follows
from (145) and (146) that

((𝜔𝑖, 𝜔𝑗) (−∞))
1≤𝑖,𝑗≤𝑑

= 𝑀𝐺𝑎𝑀
𝑇
,

((𝜔𝑖, 𝜔𝑗) (+∞))
1≤𝑖,𝑗≤𝑑

= 𝑁𝐺𝑏𝑁
𝑇
,

(149)

which, together with Lemma 24 and condition (2), implies
that

([𝛽𝑖 : 𝛽𝑗])1≤𝑖,𝑗≤𝑑
= 𝑁𝐺𝑏𝑁

𝑇
− 𝑀𝐺𝑎𝑀

𝑇
= 0. (150)

Consequently, [𝛽𝑖 : 𝛽𝑗] = 0 for 1 ≤ 𝑖, 𝑗 ≤ 𝑑. Therefore, {𝛽𝑗}
𝑑

𝑗=1

satisfy the conditions (1) and (2) of Lemma 9.

Note that for each 𝑦 ∈ Dom 𝐻(𝜏), it follows that

𝑀(

(𝑦, 𝜒
1

𝑎
) (−∞)

...

(𝑦, 𝜒
2𝑑
𝑎
−2𝑛

𝑎
) (−∞)

)

=
(
(

(

(𝑦,

2𝑑
𝑎
−2𝑛

∑

𝑗=1

𝑚1𝑗𝜒
𝑗

𝑎
) (−∞)

...

(𝑦,

2𝑑
𝑎
−2𝑛

∑

𝑗=1

𝑚𝑑𝑗𝜒
𝑗

𝑎
) (−∞)

)
)

)

= (

(𝑦, 𝜔1) (−∞)

...
(𝑦, 𝜔𝑑) (−∞)

) ,

𝑁(

(𝑦, 𝜒
1

𝑏
) (+∞)

...

(𝑦, 𝜒
2𝑑−2𝑛

𝑏
) (+∞)

)

=
(
(

(

(𝑦,

2𝑑−2𝑛

∑

𝑗=1

𝑛1𝑗𝜒
𝑗

𝑏
) (+∞)

...

(𝑦,

2𝑑−2𝑛

∑

𝑗=1

𝑛𝑑𝑗𝜒
𝑗

𝑏
) (+∞)

)
)

)

= (

(𝑦, 𝜔1) (+∞)

...
(𝑦, 𝜔𝑑) (+∞)

) ,

(151)

where (145) and (146) have been used. Therefore, it follows
from Lemma 24 that 𝑇 can be expressed as

𝑇 = {(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : [(𝑦, 𝑔

𝜋
) : 𝛽𝑗] = 0, 1 ≤ 𝑗 ≤ 𝑑} .

(152)

Hence, 𝑇 is a 𝐽-SSE of 𝐻0(𝜏) by Lemma 9. The sufficiency is
proved.

We now show the necessity. Suppose that 𝑇 is a 𝐽-SSE
of 𝐻0(𝜏). By Lemma 9 and Theorem 17, there exists a set of
{𝛽𝑗}
𝑑

𝑗=1
⊂ 𝐻(𝜏) such that (152) holds. Write 𝛽𝑗 = (𝜔𝑗, 𝜌

𝜋

𝑗
).

Then 𝜔
𝑗

𝑎
∈ Dom 𝐻𝑎(𝜏) and 𝜔

𝑗

𝑏
∈ Dom 𝐻𝑏(𝜏) for 1 ≤ 𝑗 ≤ 𝑑.
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By Theorems 37 and 38, each 𝜔
𝑗

𝑎
and 𝜔

𝑗

𝑏
can be uniquely

expressed as

𝜔
𝑗

𝑎
= 𝑦
𝑗,0

𝑎
+

2𝑛

∑

𝑖=1

𝑐𝑖𝑗𝑧
𝑖

𝑎
+

2𝑑
𝑎
−2𝑛

∑

𝑠=1

𝑚𝑗𝑠𝜒
𝑠

𝑎
,

𝜔
𝑗

𝑏
= 𝑦
𝑗,0

𝑏
+

2𝑛

∑

𝑖=1

𝑑𝑖𝑗𝑧
𝑖

𝑏
+

2𝑑
𝑏
−2𝑛

∑

𝑠=1

𝑛𝑗𝑠𝜒
𝑠

𝑏
, 1 ≤ 𝑗 ≤ 𝑑,

(153)

where 𝑦
𝑗,0

𝑏
∈ Dom 𝐻𝑏,0(𝜏), 𝑦

𝑗,0

𝑎
∈ Dom 𝐻𝑎,0(𝜏), and 𝑑𝑖𝑗, 𝑐𝑖𝑗,

𝑛𝑗𝑠, 𝑚𝑗𝑠 ∈ C. Set

𝑀 = (𝑚𝑗𝑠)𝑑×(2𝑑
𝑎
−2𝑛)

, 𝑁 = (𝑛𝑗𝑠)𝑑×(2𝑑
𝑏
−2𝑛)

. (154)

First, we want to show that𝑀 and𝑁 satisfy condition (1).
Otherwise, suppose that rank (𝑀,𝑁) < 𝑑. Then there exists
𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑑) ∈ C𝑑 with 𝐶 ̸= 0 such that

𝐶 (𝑀,𝑁) = 0. (155)

Then 𝐶𝑀 = 0 and 𝐶𝑁 = 0. Let 𝜔 = ∑
𝑑

𝑗=1
𝑐𝑗𝜔𝑗. We then have

((𝜔, 𝜒
1

𝑎
) (−∞) , . . . , (𝜔, 𝜒

2𝑑
𝑎
−2𝑛

𝑎
) (−∞)) = 𝐶𝑀𝐺𝑎 = 0

((𝜔, 𝜒
1

𝑏
) (+∞) , . . . , (𝜔, 𝜒

2𝑑−2𝑛

𝑏
) (+∞)) = 𝐶𝑁𝐺𝑏 = 0.

(156)

For each 𝑦 ∈ Dom 𝐻(𝜏), 𝑦𝑏 can be uniquely expressed as
(134) byTheorem 37 and𝑦𝑎 can be uniquely expressed as (141)
byTheorem 38. So it follows from (156), (78), (79), and (2) and
(3) ofTheorem 27 that for any 𝑦 ∈ Dom 𝐻(𝜏), (𝜔, 𝑦)(+∞) =

(𝜔, 𝑦)(−∞) = 0, which yields that 𝜔 ∈ Dom 𝐻0(𝜏) by
(1) of Theorem 27. Then 𝜔1, 𝜔2, . . . , 𝜔𝑑 are linearly depen-
dent in Dom 𝐻(𝜏) (modulo Dom 𝐻0(𝜏)), and consequently
𝛽1, 𝛽2, . . . , 𝛽𝑑 are linearly dependent in𝐻(𝜏) (modulo𝐻0(𝜏)).
This is a contradiction. Hence, rank (𝑀,𝑁) = 𝑑.

Next, we prove that𝑀 and𝑁 satisfy condition (2). It can
be easily verified that

((𝜔𝑖, 𝜔𝑗) (−∞))
1≤𝑖,𝑗≤𝑑

= 𝑀𝐺𝑎𝑀
𝑇
,

((𝜔𝑖, 𝜔𝑗) (+∞))
1≤𝑖,𝑗≤𝑑

= 𝑁𝐺𝑏𝑁
𝑇
.

(157)

Hence, by Lemma 14 and [𝛽𝑖 : 𝛽𝑗] = 0 for 1 ≤ 𝑖, 𝑗 ≤ 𝑑, 𝑀
and𝑁 satisfy condition (2).

In addition, it follows from (78), (79), (153), and (2) and
(3) of Theorem 27 that

(

(𝑦, 𝜔1) (−∞)

...
(𝑦, 𝜔𝑑) (−∞)

)

=
(
(

(

(𝑦,

2𝑑
𝑎
−2𝑛

∑

𝑗=1

𝑚1𝑗𝜒
𝑗

𝑎
) (−∞)

...

(𝑦,

2𝑑
𝑎
−2𝑛

∑

𝑗=1

𝑚𝑑𝑗𝜒
𝑗

𝑎
) (−∞)

)
)

)

= 𝑀(

(𝑦, 𝜒
1

𝑎
) (−∞)

...

(𝑦, 𝜒
2𝑑
𝑎
−2𝑛

𝑎
) (−∞)

) ,

(

(𝑦, 𝜔1) (+∞)

...
(𝑦, 𝜔𝑑) (+∞)

)

=
(
(

(

(𝑦,

2𝑑−2𝑛

∑

𝑗=1

𝑛1𝑗𝜒
𝑗

𝑏
) (+∞)

...

(𝑦,

2𝑑−2𝑛

∑

𝑗=1

𝑛𝑑𝑗𝜒
𝑗

𝑏
) (+∞)

)
)

)

= 𝑁(

(𝑦, 𝜒
1

𝑏
) (+∞)

...

(𝑦, 𝜒
2𝑑−2𝑛

𝑏
) (+∞)

) .

(158)

Hence, 𝑇 in (152) can be expressed as (143). The necessity is
proved.

The entire proof is complete.

To end this subsection, we give characterizations of 𝐽-
SSEs of𝐻0(𝜏) in four special cases of defect indices:𝑑𝑎 = 𝑑𝑏 =

𝑛; 𝑑𝑎 = 𝑛, 𝑑𝑏 = 2𝑛; 𝑑𝑎 = 2𝑛, 𝑑𝑏 = 𝑛; 𝑑𝑎 = 𝑑𝑏 = 2𝑛.
In the case that 𝑑𝑎 = 𝑑𝑏 = 𝑛, that is, 𝑑 = 0 by

Theorem 32, the following result is derived from Lemma 11
andTheorem 17.

Theorem40. Assume that (𝐴1), (𝐴𝑎,2), (𝐴𝑏,2), and (𝐴3) hold.
If 𝑑 = 0, then 𝐻0(𝜏) is a 𝐽-self-adjoint subspace.
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In the case that 𝑑𝑎 = 𝑛, 𝑑𝑏 = 2𝑛, it follows from
Theorem 32 that 𝑑 = 𝑛. Let 𝜒

𝑖

𝑏
, (1 ≤ 𝑖 ≤ 2𝑛), be 2𝑛

linearly independent solutions inL2
𝑊
(I𝑏) of (1𝜆) satisfying

(𝜒
1

𝑏
(𝑐0), 𝜒

2

𝑏
(𝑐0), . . . , 𝜒

2𝑛

𝑏
(𝑐0)) = 𝐼2𝑛. Then, by (3) of Lemma 14

one has that

𝐺𝑏 = ((𝜒
𝑖

𝑏
, 𝜒
𝑗

𝑏
) (𝑐0))1≤𝑖,𝑗≤2𝑛

= (𝐽0𝑌)
∗
(𝑐0)J𝑌 (𝑐0) = J.

(159)

The following result can be directly derived fromTheorem 39.

Theorem41. Assume that (𝐴1), (𝐴2), (𝐴𝑎,2), (𝐴𝑏,2), and (𝐴3)

hold. If (1𝜆) is in l.p.c. at 𝑡 = −∞ and in l.c.c. at 𝑡 = +∞.
Let 𝜒𝑖
𝑏
(1 ≤ 𝑖 ≤ 2𝑛) be 2𝑛 linearly independent solutions in

L2
𝑊
(I𝑏) of (1𝜆) satisfying (𝜒

𝑏

1
(𝑐0), 𝜒

𝑏

2
(𝑐0), . . . , 𝜒

𝑏

2𝑛
(𝑐0)) = 𝐼2𝑛.

Then a subspace 𝑇 ⊂ (𝐿
2

𝑊
(I))
2 is a 𝐽-SSE of𝐻0(𝜏) if and only

if there exists a matrix 𝑁𝑛×2𝑛 such that

rank 𝑁 = 𝑛, 𝑁J𝑁
𝑇
= 0,

𝑇 =

{{{

{{{

{

(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : 𝑁(

(𝑦, 𝜒
1

𝑏
) (+∞)

...
(𝑦, 𝜒
2𝑛

𝑏
) (+∞)

) = 0

}}}

}}}

}

.

(160)

In the case that 𝑑𝑎 = 2𝑛, 𝑑𝑏 = 𝑛, a similar result can be
easily given. So we omit the details in this case.

In the case that 𝑑𝑎 = 𝑑𝑏 = 2𝑛, it follows fromTheorem 32
that 𝑑 = 2𝑛. Let 𝜒𝑖 (1 ≤ 𝑖 ≤ 2𝑛) be 2𝑛 linearly independent
solutions inL2

𝑊
(I) of (1𝜆) satisfying

(𝜒1 (𝑐0) , 𝜒2 (𝑐0) , . . . , 𝜒2𝑛 (𝑐0)) = 𝐼2𝑛. (161)

Then, by Lemma 14, 𝐺𝑏 and 𝐺𝑎, defined by (133) and (140),
satisfy

𝐺𝑎 = 𝐺𝑏 = J. (162)

The following result is a direct consequence of Theorem 39.

Theorem42. Assume that (𝐴1), (𝐴𝑎,2), (𝐴𝑏,2), and (𝐴3) hold.
If (1𝜆) is in l.c.c. at both 𝑡 = +∞ and 𝑡 = −∞, then
for any given 𝜆 ∈ Γ(𝐻0(𝜏)), let 𝜒𝑖 (1 ≤ 𝑖 ≤ 2𝑛) be 2𝑛

linearly independent solutions in L2
𝑊
(I) of (1𝜆) satisfying

(𝜒1(𝑐0), 𝜒2(𝑐0), . . . , 𝜙2𝑛(𝑐0)) = 𝐼2𝑛. Then a subspace 𝑇 ⊂

(𝐿
2

𝑊
(I))
2 is a 𝐽-SSE of 𝐻0(𝜏) if and only if there exist two

matrices 𝑀2𝑛×2𝑛 and 𝑁2𝑛×2𝑛 such that

rank (𝑀,𝑁) = 2𝑛, 𝑀J𝑀
𝑇
= 𝑁J𝑁

𝑇
, (163)

𝑇 =

{{

{{

{

(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : 𝑀(

(𝑦, 𝜒1) (−∞)

...
(𝑦, 𝜒2𝑛) (−∞)

)

−𝑁(

(𝑦, 𝜒1) (+∞)

...
(𝑦, 𝜒2𝑛) (+∞)

) = 0

}}

}}

}

.

(164)

Remark 43. As we have seen, there is no boundary condition
at the endpoints at which system (1𝜆) is in l.p.c., and the
matrix 𝐺𝑎 or 𝐺𝑏 can be replaced byJ in the case that system
(1𝜆) is in l.c.c. at 𝑡 = 𝑎 or 𝑡 = 𝑏.

5.2. At Least One of the Two Endpoints Is Finite. In this
subsection, we characterize the 𝐽-SSEs of𝐻0(𝜏) in the special
case that at least one of the two endpoints 𝑎 and 𝑏 is finite.We
first consider the case that 𝑎 is finite, and 𝑏 is finite or infinite.

We point out that in this case, characterizations of all the
𝐽-SSEs of𝐻0(𝜏) can also be given by the proof ofTheorem 39,
provided that assumptions (𝐴𝑏,2), (𝐴𝑎,2), and (𝐴3) hold. But,
if there does not exist a 𝑐0 ∈ I such that both (𝐴𝑎,2) and
(𝐴𝑏,2) are satisfied, then Theorem 39 fails. We will remark
again that the division of I is not necessary in the case that
one of the two endpoints is finite, and characterizations of all
the 𝐽-SSEs of 𝐻0(𝜏) can still be given provided that (𝐴3) and
(𝐴3) hold.

In the case that 𝑎 is finite, I can be regarded as I𝑏
with 𝑎 = 𝑐0, and (𝐴2) is equivalent to (𝐴𝑏,2). So all the
characterizations for 𝐻𝑏,0(𝜏) and 𝐻𝑏(𝜏) given in Sections 3
and 4 are available to 𝐻0(𝜏) and 𝐻(𝜏), respectively, with 𝑐0

replaced by 𝑎. Assume that (𝐴2) holds. Then for any given
𝜆 ∈ Γ(𝐻0(𝜏)), as discussed in Section 4, let 𝜒1, . . . , 𝜒2𝑑−2𝑛 be
2𝑑 − 2𝑛 linearly independent solutions in L2

𝑊
(I) of (1𝜆)

such that 𝐺 is invertible, where 𝐺 is defined by (133) with
𝜒
𝑗

𝑏
is replaced by 𝜒𝑗, 1 ≤ 𝑗 ≤ 2𝑑 − 2𝑛. Then all the results

of Theorem 37 hold with 𝐺𝑏 and 𝜒
𝑗

𝑏
replaced by 𝐺 and 𝜒𝑗,

respectively.

Theorem 44. Assume that the left endpoint 𝑎 is finite, and
(𝐴1)–(𝐴3) hold. Then a subspace 𝑇 ⊂ (𝐿

2

𝑊
(I))
2 is a 𝐽-SSE

of 𝐻0(𝜏) if and only if there exist two matrices 𝑀𝑑×2𝑛 and
𝑁𝑑×(2𝑑−2𝑛) such that

(1) rank (𝑀,𝑁) = 𝑑,
(2) 𝑀J𝑀

𝑇
− 𝑁𝐺𝑁

𝑇
= 0, and

𝑇 =

{{

{{

{

(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : 𝑀𝑦 (𝑎)

−𝑁(

(𝑦, 𝜒1) (𝑏 + 1)

...
(𝑦, 𝜒2𝑑−2𝑛) (𝑏 + 1)

) = 0

}}

}}

}

.

(165)

Proof. The main idea of the proof is similar to that of
Theorem 39.

We first show the sufficiency. Denote

J𝑀
𝑇
= (𝜉1, 𝜉2, . . . , 𝜉𝑑) , 𝑁 = (𝑛𝑖𝑗)𝑑×(2𝑑−2𝑛)

, (166)

and set

𝑤𝑖 :=

2𝑑−2𝑛

∑

𝑗=1

𝑛𝑖𝑗𝜒𝑗, 1 ≤ 𝑖 ≤ 𝑑. (167)
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Clearly, 𝑤𝑖 ∈ Dom 𝐻(𝜏) for 1 ≤ 𝑖 ≤ 𝑑. By Remark 26, there
exist 𝛽𝑖 := (𝜔𝑖, 𝜌

𝜋
) ∈ 𝐻(𝜏) (1 ≤ 𝑖 ≤ 𝑑) such that

𝜔𝑖 (𝑎) = 𝜉𝑖, 𝜔𝑖 (𝑡) = 𝑤𝑖 (𝑡) , 𝑡 ≥ 𝑡0 + 1, (168)

where 𝑡0 is specified by (𝐴2). It can be verified by the method
used in the proof of Theorem 39 that the set {𝛽𝑗}

𝑑

𝑗=1
satisfies

the conditions (1) and (2) in Lemma 9. Note that for each 𝑦 ∈

Dom 𝐻(𝜏), it follows that

𝑀𝑦(𝑎) = (J𝑀
𝑇
)
𝑇

J𝑦 (𝑎)

= (

𝜔
𝑇

1
(𝑎)

...
𝜔
𝑇

𝑑
(𝑎)

)J𝑦 (𝑎) = (

(𝑦, 𝜔1) (𝑎)

...
(𝑦, 𝜔𝑑) (𝑎)

) ,

𝑁(

(𝑦, 𝜒1) (𝑏 + 1)

...
(𝑦, 𝜒2𝑑−2𝑛) (𝑏 + 1)

)

= (

(

(𝑦,

2𝑑−2𝑛

∑

𝑗=1

𝑛1𝑗𝜒𝑗) (𝑏 + 1)

...

(𝑦,

2𝑑−2𝑛

∑

𝑗=1

𝑛𝑑𝑗𝜒𝑗) (𝑏 + 1)

)

)

= (

(𝑦, 𝜔1) (𝑏 + 1)

...
(𝑦, 𝜔𝑑) (𝑏 + 1)

) .

(169)

Therefore, it follows from Lemma 24 that 𝑇 can be expressed
as

𝑇 = {(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : [(𝑦, 𝑔

𝜋
) : 𝛽𝑗] = 0, 1 ≤ 𝑗 ≤ 𝑑} .

(170)

Hence, 𝑇 is a 𝐽-SSE of 𝐻0(𝜏) by Lemma 9. The sufficiency is
proved.

We now show the necessity. Suppose that 𝑇 is a 𝐽-SSE
of 𝐻0(𝜏). By Lemma 9 and Theorem 17, there exists a set of
{𝛽𝑗}
𝑑

𝑗=1
⊂ 𝐻(𝜏) for {𝐻0(𝜏),𝐻(𝜏)} such that conditions (1) and

(2) in Lemma 9 hold, and 𝑇 can be expressed as (152). Write
𝛽𝑖 := (𝜔𝑖, 𝜌

𝜋
). Then 𝜔𝑗 ∈ Dom 𝐻(𝜏) for 1 ≤ 𝑗 ≤ 𝑑. By

Theorem 37, each 𝜔𝑖 can be uniquely expressed as

𝜔𝑖 = 𝑦
𝑖,0

𝑏
+

2𝑛

∑

𝑗=1

𝑎𝑖𝑗𝑧
𝑗

𝑏
+

2𝑑−2𝑛

∑

𝑠=1

𝑛𝑖𝑠𝜒
𝑠

𝑏
, 1 ≤ 𝑖 ≤ 𝑑, (171)

where 𝑦
𝑖,0

𝑏
∈ Dom 𝐻0(𝜏) and 𝑎𝑖𝑗, 𝑛𝑖𝑠 ∈ C. Set

𝑀𝑑×2𝑛 = (𝜔1 (𝑎) , . . . , 𝜔𝑑 (𝑎))
𝑇
J,

𝑁𝑑×(2𝑑−2𝑛) = (𝑛𝑖𝑠)1≤𝑖≤𝑑,1≤𝑠≤2𝑑−2𝑛
.

(172)

With a similar argument to that used in the proof of
Theorem 39, we can prove that𝑀 and𝑁 satisfy conditions (1)
and (2). In addition, it is clear that𝑇 in (170) can be expressed
as (165). The necessity is proved, and then the entire proof is
complete.

At the end of this subsection, we give the characteriza-
tions of 𝐽-SSEs of𝐻0(𝜏) in two special cases of defect indices.

In the special case that 𝑑 = 𝑛, Theorem 44 can be
described in the following simpler form.

Theorem 45. Assume that the left endpoint 𝑎 is finite, and
(𝐴1)–(𝐴3) hold. If (1𝜆) is in l.p.c. at 𝑡 = 𝑏, then a subspace
𝑇 ⊂ (𝐿

2

𝑊
(I))
2 is a 𝐽-SSE of 𝐻0(𝜏) if and only if there exists a

matrix 𝑀𝑛×2𝑛 satisfying the self-adjoint condition

rank 𝑀 = 𝑛, 𝑀J𝑀
𝑇
= 0 (173)

such that 𝑇 can be defined by

𝑇 = {(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : 𝑀𝑦 (𝑎) = 0} . (174)

In the other special case that 𝑑 = 2𝑛, the following result
is a direct consequence of Theorem 44.

Theorem 46. Assume that the left endpoint 𝑎 is finite, and
(𝐴1)–(𝐴3) hold. If (1𝜆) is in l.c.c. at 𝑡 = 𝑏, let 𝜒𝑖 (1 ≤ 𝑖 ≤

2𝑛) be 2𝑛 linearly independent solutions in L2
𝑊
(I) of (1𝜆)

satisfying (𝜒1(𝑐0), 𝜒2(𝑐0), . . . , 𝜒2𝑛(𝑐0)) = 𝐼2𝑛. Then a subspace
𝑇 ⊂ (𝐿

2

𝑊
(I))
2 is a 𝐽-SSE of𝐻0(𝜏) if and only if there exist two

2𝑛 × 2𝑛 matrices 𝑀 and 𝑁 such that

(1) rank (𝑀,𝑁) = 2𝑛,
(2) 𝑀J𝑀

𝑇
= 𝑁J𝑁

𝑇, and

𝑇 =

{{

{{

{

(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : 𝑀𝑦 (𝑎)

−𝑁(

(𝑦, 𝜒1) (𝑏 + 1)

...
(𝑦, 𝜒2𝑛) (𝑏 + 1)

) = 0

}}

}}

}

.

(175)

For the case that 𝑏 is finite and 𝑎 = −∞, it can be
considered by a similar method. Here we only give the
following basic result.

Theorem 47. Assume that the right endpoint 𝑏 is finite, and
(𝐴1)–(𝐴3) hold. Let 𝜒𝑗, 1 ≤ 𝑗 ≤ 2𝑑 − 2𝑛, be linearly inde-
pendent solutions of (1𝜆) in L2

𝑊
(I) such that 𝐺 is invertible,

where𝐺 is defined as𝐺𝑎 inTheorem 38 with 𝜒
𝑗

𝑎
replaced by 𝜒𝑗.

Then a subspace 𝑇 ⊂ (𝐿
2

𝑊
(I))
2 is a 𝐽-SSE of𝐻0(𝜏) if and only

if there exist two matrices 𝑀𝑛×2𝑛 and 𝑁𝑑×(2𝑑−2𝑛) such that

(1) rank (𝑀,𝑁) = 𝑑,
(2) 𝑀𝐺𝑀

𝑇
− 𝑁J𝑁

𝑇
= 0, and

𝑇 =

{{

{{

{

(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : 𝑀(

(𝑦, 𝜒1) (𝑎)

...
(𝑦, 𝜒2𝑑−2𝑛 (𝑎))

)

−𝑁𝑦 (𝑏 + 1) = 0

}}

}}

}

.

(176)
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In the case that both the two endpoints 𝑎 and 𝑏 are
finite, that is, I = [𝑎, 𝑏], it is clear that 𝑑 = 2𝑛 by (𝐴2).
The characterization of 𝐽-SSEs given in Theorem 44 can be
simplified as follows.

Theorem 48. Let I = [𝑎, 𝑏]. Assume that (𝐴1)–(𝐴3) hold.
Then a subspace 𝑇 ⊂ (𝐿

2

𝑊
(I))
2 is a 𝐽-SSE of𝐻0(𝜏) if and only

if there exist two 2𝑛 × 2𝑛 matrices 𝑀 and 𝑁 such that

(1) rank (𝑀,𝑁) = 2𝑛,
(2) 𝑁J𝑁

𝑇
= 𝑀J𝑀

𝑇, and

𝑇 = {(𝑦, 𝑔
𝜋
) ∈ 𝐻 (𝜏) : 𝑀𝑦 (𝑎)

−𝑁𝑦 (𝑏 + 1) = 0} .

(177)

Proof. Let 𝜒𝑗 ∈ L2
𝑊
(I), 1 ≤ 𝑗 ≤ 2𝑛, be defined as those in

Theorem 46. Then it follows that

𝑁(

(𝑦, 𝜒1) (𝑏 + 1)

...
(𝑦, 𝜒2𝑛) (𝑏 + 1)

) = 𝑁(

𝜒
𝑇

1
(𝑏 + 1)

...
𝜒
𝑇

2𝑛
(𝑏 + 1)

)J𝑦 (𝑏 + 1)

= 𝑁1𝑦 (𝑏 + 1) ,

(178)

where 𝑁1 = 𝑁(𝜒1, . . . , 𝜒2𝑛)
𝑇
(𝑏 + 1)J. It is evident (𝜒1, . . . ,

𝜒2𝑛)(𝑏 + 1) = 𝐼2𝑛. So by Lemma 14, one has that

rank (𝑀,𝑁) = rank (𝑀,𝑁1) = 2𝑛,

𝑁1J𝑁
𝑇

1
= 𝑁J𝑁

𝑇
.

(179)

Hence, the assertion follows from Theorem 46. This com-
pletes the proof.
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