Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2013, Article ID 830595, 8 pages
http://dx.doi.org/10.1155/2013/830595

Research Article

On Inequalities of Lyapunov for Two-Dimensional Nonlinear

Dynamic Systems on Time Scales

Qiao-Luan Li,' Wing-Sum Cheung,’ and Xu-Yang Fu'

! College of Mathematics & Information Science, Hebei Normal University, Shijiazhuang 050024, China
2 Department of Mathematics, The University of Hong Kong, Hong Kong

Correspondence should be addressed to Wing-Sum Cheung; wscheung@hku.hk

Received 8 July 2013; Accepted 9 October 2013

Academic Editor: Allan Peterson

Copyright © 2013 Qiao-Luan Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We establish some new Lyapunov-type inequalities for two-dimensional nonlinear dynamic systems on time scales. As for
application, boundedness of the Emden-Fowler-type equation is proved.

1. Introduction

In this paper, we establish some Lyapunov-type inequalities
for the following two-dimensional nonlinear dynamic sys-
tem:

X182 (5,8) = &, (s,1) x (0 (s), 0 (1))

+ B () Ju(s, ) Puls,t),
1)
U8 (s,8) = =, (s,1) [x (0 (s), 0 ()P *x (0 (5), 0 (1))

—oy (s,)u(s,t),

where s,t € T = a time scale, A, denotes the delta derivative
with respect to s, and A, denotes the delta derivative with
respect to t.

Lyapunov-type inequalities have proven to be very useful
in the study of qualitative behavior of solutions such as oscil-
lation, disconjugacy, and eigenvalue problems for differential
equations and difference equations. Since the appearance of
Lyapunov’s fundamental paper [1], considerable attention has
been given to various extensions and improvements of the
Lyapunov-type inequality from different viewpoints [2-8].
Although Lyapunov-type inequalities are well developed for

the continuous cases, their time scale versions are still in early
stages and are worth due attention.

Recently, He et al. in [2] considered the linear Hamilto-
nian system

() =a®)x(@@®)+BE) y @),
)
YA =~y ) x (o () —alt) y (@)

and obtained several useful Lyapunov-type inequalities.
Chen et al. in [3] considered the nonlinear system

2

: gs(;;t) = oy (s, x (s,8) + By (s, 1) [u (s, )" Pu (s, 1),
2

? gs(;;t) =B, (s, 1) |x (s, t)lﬁfzx (1) —ay (s, 1) 1 (s, 1)

3)

and obtained some interesting Lyapunov-type inequalities for
partial differential equations.

In this paper, under the assumption of existence of a non-
trivial solution (x(s, t), u(s, t)) to the 2-dimensional nonlinear
dynamic system (1), some new and interesting Lyapunov-type
inequalities are established.



2. Main Results

Throughout this paper, the following mild and natural condi-
tions are assumed:

(i) y > 1, B > 1 are real constants,

(ii) & (s, 1), By(s, 1), By(s,t) = [s9,00)7 X [tg,00)y — R
are rd-continuous functions such that g,(s,t) > 0
for (s,t) € [s4,00)7 X [tg, 00)y, where [sy, 00)y :=
[s9>00) N T, and o is the forward jump operator; that
is,o(t) :=inf{s € T : s > t}.

Theorem1. Ifthe nonlinear dynamic system (1) has a real solu-
tion (x(s,t),u(s,t)) which is not identically zero on [a,b]y X
[c, d]y satisfying x(a,t) = x(b,t) = x(s,¢) = x(s,d) = 0 and
X1 (s, o (t))u2 (s, 1) + x°2(0(s), uli (s,t) = 0 for all (s,t) €
[a,bly x [c,d]y, where a,b,c,d € T with a < b, ¢ < d, then

b (d
2§J J |oc1 (s,t)]AtAs
a c

b od 1y
+Mﬁ/"‘_l(J J B (s,t)AtAs) (4)

a Jc

. (Jb f B (s.0) At As>w,

where1/a+1/y = 1, M := max{|x(s,t)| : 6(a) < s < b,0(c) <
t < d}, and B, (s, 1) := max{p,(s, 1), 0}.

Proof. From the conditions x(a,t) = x(b,t) = x(s,¢c) =
x(s,d) = 0and x(s, t) is not identically zero on [a, bl x[c, d],
there exists (7;, 7,) such that |x(7;, 7,)| = M > 0.

Multiplying the first equation of (1) by u(s,t) and the
second one by x(c(s), o(t)) and adding up, we get

xi1h (s,t)u(s,t) + yiri (s;t) x (o (s),0(t))

=B (s ) lu (s, = B, () [x (0 (s), 0 ), v
and, hence,
(x (st u (5,115 = x21% (s, 1) u (s, 1)
+x% (0 (s), 1) ut (s,1)
+x% (5,0 (1) u? (s, 1)
+x(0(s),0 (1) u™ (s,1)
(6)

= x™P2 (s, ) u (s, t)

+ U2 (5,8 x (0 (5), 0 (1))
=By (s, 1) |u(s, )]

- B, () |x (0 (s),0 ).
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Integrating the left hand side of (6) over t from c to d and
then over s from a to b, we get

b rd
J J (x (s, ) u (s, 1) 22 At As

a c

b b
=J (x(s,d)u(s,d))AlAs—J (x(s,c)u(s,c))AlAs (7)

=x(b,d)u(b,d) - x(a,d)u(a,d)

—x(b,c)u(b,c)+x(a,c)ulac).

Noting that x(a,t) = x(b,t) = 0, we have

b rd
J J By (s,8) [u(s, )Y At As

(8)
b rd
= J J Br(s,t)|x(0(s),0 (t))|‘BAt As.

a Jc

On the other hand, integrating the first equation of (1) over ¢
from c to 7, and then over s from a to 1;, we get

T (T2
J J xhid (s,t) At As
c

a

[ @ enre.0m ©)

a c

+ By (5,0) [u (s, ) Pu(s, 1)) At As,

By the boundary conditions on x, it is elementary to verify
that

a c

and so

x(1,1,) = j j (o (5,1) % (0 (5), 0 (1)

a c

+ By (5,8 [u (s, )" (s, 1)) At As.

(11)
Hence,
|x (11, 1,)| < J J oy (s,0)| |x (0 (s), 0 (1)) At As
a TC ) (12)
+ j J By (s,1) | (s, £)]" " At As.
By similar arguments, we easily get
b od
|x (11, 75)| < J J oy (s, 1) 1x (0 (5), 0 (£))] At As
19T (13)

b cd
+ J J By (s,t) |u (s, N At As.

T YT
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Summing (12) and (13) and by Hélder’s inequality with
indices y and «, we obtain

b d
2|x(1,1y)| < L L oy (s, 1))

X |x (o (s),0 (t))| At As

b cd
+ J J By (s,t) |u(s, 0" At As

a Jc

< Jj Ld |oc1 (s, t)| (14)

X |x (o (s),0 (1)) At As

+ (Lh f Bi (s, t) At As)l/y

b rd 1/
><<J J B (s,1) |u(s,t)|VAtAs> .

a c

In view of (8), we have

b d
2|x (1, 1,)| < L L oy (s, 1)] 1% (0 (5), 0 (1)) At As

+ (Lb J;d Bi (s, t) At As)l/y

b od 1/
X(J J By (s,t) |x(0(5),0(t))|ﬁAtAs) ,
(15)
and so
b od
ZSJ J |(x1 (s,t)|AtAs
b cd 1y
+Mﬁ/“—1<J J B, (s,t)AtAs> (16)
b od 1/
(j J /3;(5,t)AtAs) .
The proof is complete. 0

Remark 2. Itisinteresting to note that when T = R Theorem 1
reduces to Theorem 2.1 of [3].

Theorem 3. If the nonlinear dynamic system (1) has a
real solution (x(s,t),u(s,t)) which is not identically zero
on la,bly x [c,dly satisfying x(s,c) = x(s,d) =
0, x(a,t)x(o(a),t) < 0, x(b,t)x(o(b),t) < 0, and

X1 (s, o (t))u2 (s, 1) + x°2(0(s), ul i (s,t) = 0 for all (s,t) €
[a,b]; x [c,d]y, where a,b,c,d € T witha < b, c < d, then

o) cd
2< J J |oc1 (s,t)|AtAs

a c

o(b) d 1y
+Mﬁ/“1<j j B (s, 1) AtAs) (17)

a c

. (LU(b) f B: (s.1) At As)l/a,

where 1/ + 1/y = 1 and M, f,(s,t) are as defined in

Theorem 1.

Proof. Choose (t,,7,) such that |x(t;,7,)| = M. Note that
M > 0. From (6) and

o(b) (d
J J(x(s,t)u(s,t))AlAZAtAs

a c

=x(o(b),d)u(o®),d) - x(a,d)u(ad) (18)
_x(O'(b),C)u(o'(b),c) +X(a,c)u(a,c) =0,
we have
o(b) rd
J J By (s,t) |u(s,t)|" At As
’ ) (19)

olb) d
=J J B, (5,8) |x (0 (s) 0 ()P At As.

a c

By the boundary conditions on x;, it is elementary to check
that

JTI J-Tz (x (s, )12 At As = x (1, 1,) — x (@, 75) . (20)

a c

So

x(1,1,) = x(a1,) + rl JTZ o (s,t) x (0 (s),0 () At As

a c

+ j J B, (5,1) lu (s, )Y 2 (s, £) At As.

a c

(21)

For the fixed 7,, by x(a, 7,)x(c(a), 7,) < 0, there exists & €
(0, 1) such that

1-8x(ar1)+éx(o(a),1,)=0. (22)

Integrating the first equation of (1) over ¢ from c to 7,, we
obtain

XM (s,7,) = %™ (s, 0)

= J 2a1 (s,t) x (0 (s),0 (1) At (23)

c

+ JTZ By (s,t) [ (s, )" *u (s, t) At.



Multiplying (23) by u(s) and noting that x(s, ¢) = 0, we get

x(0(s),1,) —x(s,15)

T

:y(s)J "o, (5,8) x (0 (5),0 (1)) At

c (24)
+u(s) JTZ Bi(s,t) u(s, t)|V‘2u (s, t) At.
Letting s = a, we get
x(o(a), 1) -x(a1,)
- M(a)J “&, (@) x (0 (a),0 (1)) At 25)
+ u(a) JTZ Bi (a,t) lu(a, t)|7"2u (a,t) At.
By (22) and (25), we obtain
x(a,7,) = ~&u(a) J "o, (a,1) x (0 (a), 0 (1)) At
‘ (26)

—&u(a) J B, (at) |u(a, )" u(a,t) At.
Substituting (26) into (21), we get

x (11, 7,)

—-&u@ | @ @nx@@.0 0

T

~ &u(a) J By (a,t) [u(a,t)" *u(a,t) At

+ J J o, (5,8) x (0 (s), 0 (1)) At As

a c

+ j J By (5,0) lu (s, )Y 2 (5, £) At As

c

T

- & <a>j o (@ 1) x (0 (a),0 (1)) At

[

+y(a)J “&, (@) x (0 (a),0 (1) At

5]

~ 5@ [ B (@0 @l a0 ot

T

+ua) J "By (@) Ju (a0 2u (a,t) At

T

+r Jzal (s,6) x (0 (s), 0 (£)) At As

a(a) Je
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T

+ j J "By (s,8) | (s, )Y P (s, ) At As

a(a) Jc

- (1—f)u(a>j "o (@) x (0 (a), 0 (1)) At

+(1-8ua) J ’ Bi (a,t) lu(a, t)|y_2u (a,t) At

T

+r Lzal (s,6) x (0 (s), 0 (£)) At As

a(a)

+ j J By (s,1) [u (s,£)" 2 (s, ) At As.

o(a) Jc

(27)

Immitating the arguments from (21) to (27) step by step, we
have

x(rom) =x(bm) + |

T

b d
J o (s,t)x (0 (s),0 () At As

b d
[ B o msrtusnas

(28)
By x(b, 7,)x(0(b), T,) < 0, there exists 77 € (0, 1) such that
(1=n)x(b,7y) +1x (0 (b),7,) = 0. (29)

Integrating the first equation of (1) over ¢ from 7, to d and
using x(s,d) = 0, we get

d
x(b,1y) = nu (b)J o, (b,t) x (o (b),o (t)) At

T

) (30)
+ e (b) j By (b,) lu (b, D21 (b, 1) A,

and, hence,
x(11,7)

d
_— (b)j o (0.1) x (0 (b) 0 (1)) At

T

d
Fru®) I B UG

b d
+J J o (s,t)x (0 (s),0 (t)) At As

b cd
+J J By (s, 1) [ (s, £)]"2u (s, ) At As.

Let

(1 _E)(Xl (a’t)>
a (s, t) = 104 (s, 1),

| 1o, (b, 1),

_ ’(1_5)[31(0’0)
/jl(s,t):<ﬁ1($,t),
(1B, (b,1),

s=a,
o(a)<s<b,
s=b,

(32)
s=a,
o(a)<s<b,
s=b.
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Then, (27) can be written as

x(1,1,) = JTI JTZ @, (s, t)x (0 (s),0 (1)) At As

a c

T T (33)
* I J By (s,8) | (s, 8)]" u (s, t) At As,
and (31) can be written as
ob) (d
x(Tl’TZ) = J J &, (s,t) x (0 (s),0(t)) At As
T, T, i)
o) (d _
+ J J By (s,t) lu(s, O 2u (s, 1) At As.
It follows from (33) and (34) that
|x (11, 1)] < J J &, (s,0)| |x (o (s),0 (1) At As
+ J 1 J 2 51 (s,8) Ju (s, £)]" " At As,
(35)

a(
|x (11, 1,)| < J

T

b) d
L &, (s, )| x (0 (s), 0 (1) At As

ob) rd _
+J I By (s, ) [u (s, 1)|" " At As.
T

T

Using (19), |&(s,8)] < loy(s,t)l, By(s,t) < Py(s,t), and
Holder’s inequality, we have

2|x(rl,12)|

ab) rd
sj J 1, (5.0)] [x (0 (s), 0 (1))] At As

a c

o) d _
+j J By (s,0) lu (s, )" At As

a

o(b) (d
< J J |oc1 (s, t)| |x (o (s),o ()| At As

a c

o) d
+J J By (s, ) |u (s, )" At As

a c

o(b) (d
< J J |oc1 (s, t)| |x (0 (s),0(t))| At As

c

ob) rd 1/y
+(L JC B (s,t)AtAs)

o) d /e
X (J J By (s,8) [u(s, t)|" At As)

c

o(b) (d
< J J loc1 (s, t)| |x (0 (s),0(t))| At As

(Ja(b) J:l B (s, t) At As)l/y

o(b) rd e
X (J J By(s,t)[x (0 (s),0 (t))IﬁAt As)

a c

+

o) d
SMJ J oy (s,1)| At As
c

a

ob) d 1/y
+Mﬁ/“(J jmmmm)

a c
o(b) rd 1o
x(J J ,Bg(s,t)AtAs> .
a [

Therefore,

(36)

o) d
2< J J |oc1 (s,t)| At As

a c

- o) rd 1y
+ MPle <J J ﬁl(s,t)AtAs>

. ( Lo(b) Ld B (s,t) At As>w.

The proof is complete. O

(37)

Theorem 4. Suppose that 3 and y are conjugate exponents;
that is, 1/B + 1/y = 1. If the nonlinear dynamic system (1)
has a real solution (x(s, t), u(s, t)) which is not identically zero
on [a,bly x [¢, d]y such that x(a,t) = x(s,c) = x(s,d) =0
and x™1(s,o(t))u’?(s,t) + x2(0(s), )™ (s,t) = O for all
(s,t) € [a,bly x [¢, d]y, wherea,b,c,d € Twitha <b, ¢ <d,
then

p) d pb) d 1y
lsj J- |o; (s,t)|AtAs+<J J. B, (s,t)AtAs)

a

p(b) (d N 1/B
(L L B, (s,t)AtAs) .

Proof. By (6) and the conditions x(s,c) = x(s,d) = 0 for all
s € [a, b]y, we have

(38)

(b) rd
r J (x (s, ) u (s, 1) 22 At As

a c

—x(p®).d)ulp®).d) -x@du@d

—x(p®),c)u(p®),c)+x(ac)u(ac)=0.



So

pb) rd
j J By (s,t) lu(s,t)|"At As

a c

(40)
pb) rd
= J J B, (5,8) |x (0 (s),0 (1))|P At As.

a c

Fix (1, 1,) such that |x(7;, 7,)| = max{|x(s,f)| : o(a) < s <
b,o(c) <t < d} > 0. Integrating the first equation of (1) over
t from c to 7, and then over s from a to ;, we get

x(1,1,) = J:l J-CTZ a, (s, ) x (o (s),0 (1)) At As

T (41)
+ J 1 J 2 By (s,t) (s, 01" 2u (s, t) At As,

a c
and so by Holder’s inequality with indices y and 3 we have

®) rd
J |y (s,1)| |x (0 (s), 0 (£))| At As

(mn) s |

a

(b) rd
+Ip J By (s,t) |u (s, )" At As

a c

pb) (d
< J J |<xl (s, t)| |x (o (s),0(t))]| At As

(b) d 1/y
+ (Lp L B (s,t) At As)

p) rd 1/B
' <L J By (s:t) lu (s, )" At As>

c

pb) (d
< |x (1) - L J oy (s,2)| At As

c

) rd 1/y
+ (Lp L B (s, t) At As)

p) d 5 1/
(J jﬂz(s,t)lx(o(s),o(t)n AtAs) _

a c

(42)
Hence,
pb) d
1< J J |oc1 (s, t)l At As
a c
pb) (d 1y
+ (J I Bi (s, t) At As) (43)
pb) (d 1/
(J J ﬁ;(s,t)AtAs> .
a c
The proof is complete. O

Theorem 5. Suppose that 3 and y are conjugate exponents.
If the nonlinear dynamic system (1) has a real solution
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(x(s,t),u(s,t)) which is not identically zero on [a,b]y X
[c,d]y such that x(b,t) = x(s,¢) = x(s,d) = 0 and
Bi(s, a())ul2(s, ) + xP2(0(s), ul (s, 1) = 0 for all (s,t) €
la,bl; x [c,d]y, where a,b,c,d € T witha < b, ¢ <d, then

b d b d 1/y
1< J J- |0¢1 (s,t)|AtAs+(J J B (s,t)AtAs)
a(a) Je o(a) Jc

. (E@ f B (s.1) At As)l/ﬁ.

Proof. By (6) and the assumption that x(s,c) = x(s,d) = 0
forall s € [a, b]y, we get

(44)

b d
J J(X(S,t)u(s,t))A‘AzAtAs

o(a) Je

=xb,d)ub,d)—x(o(a),d)u(o(a),d) (45)

—x(b,c)ub,c)+x(0o(a),c)u(o(a),c)=0.
So

b d

J‘ J By (s, 1) [u(s,t)|" At As
a(a) Jc

(46)

b d
= J J By(s,t)|x(o(s),0 (t))IﬁAt As.

o(a)

Fix (17, 7,) such that |x(1), 7,)| = max{|x(s,f)| : o(a) < s <
p(b),o(t) <t < p(b)} > 0. Integrating the first equation of (1)
over t from 7, to d and then over s from 7, to b, we get

b cd
x(1,1,) :J J o (s,t) x (0 (s),0 () At As

T YT

(47)
b d
+ j J By (s,0) lus, )Y 2u(s,t) At As,

I

and so by Holder’s inequality with indices y and 8 we have

b d
(el < | )j oo (5, 0)[ 1 (0 (5), 0 ()] At As
b d
+ J J By (s,t) u (s, )" " At As

o(a) Je

b d
< L(a) L |061 (s, t)| |x (o (s),0 (1)) At As

b od 1y
+ (L(a) L Bi(s,t) At As)
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b d 1/8
' (J j By (s,1) [u (s, )|" At As)

o(a) Je

d
J |oc1 (s, t)| At As

c

b
< |x (TpTz)l J @

ola

b d 1y
+ <L(a) L Bi(s,t) At As)

bood 1/B
(J jﬁz(s)t)|x(0(5),0(t)|ﬁAtAs) .

o(a) Je
(48)
Hence,
b d
1< J. J- oy (s,1)| At As
o(a) Jc
b d 1y
+ (J J- B (s, t) At As) (49)
o(a) Jc
b d /B
<j J ﬁ;(s,t)AtAs> .
o(a) Je
The proof is complete. O

Remark 6. Analogously, we can also consider the cases (i)
x(a,t) = x(b,t) = x(s,d) = 0 and (ii) x(a,t) = x(b,t) =
x(s,c¢) = 0. Similar results to those in Theorem 4 and
Theorem 5 can easily be arrived at. The detailed proofs are
omitted here.

Next, we exhibit an application of our results. Consider
the following special case of (1):

X182 (s,8) = By (s,1) |u (5, 8)]V 2w (s, 1),

ub1%2 (s,8) = =B, (1) |x (0 (5), 0 ()P Px (0 (5), 0 (1))
(50)

Definition 7. A nontrivial solution (x(s,t),u(s,t)) of the
dynamic equation (50) defined on [s,, 00)y X [t,, 00)y is said
to be proper if

sup {|x (s, £)| + [u(s,£)| : s € [@,00)1,t € [c,00)7} >0 (51)

foralla > s;, ¢ > t,. A proper solution (x(s, t), u(s, t)) of the
dynamic system (50) is called weakly oscillatory if at least one
argument has a sequence of zeros diverging to co.

Theorem 8. Assume that u(t,t) is bounded on [t,, c0)y for a
fixed T, u(s, 1) is bounded on [s,, 00) for a fixed n,

J J B (s,t) At As < o0,
to

So

J J |B, (s,1)| At As < oo,

So

then every weakly oscillatory proper solution of (50) is bounded
on [sy, 00)1 X [ty, 00)7.

Proof. Let (x(s,t),u(s,t)) be a nontrivial weakly oscillatory
proper solution of (50) on [sy, 00)y X [ty, 00)y, and x(s, )
have a sequence of zeros diverging to co. Suppose that
lim sup [x(s,t)| = oo0; then, for any positive constant M,
there exists {S,,, T,,} such that [x(S,,T,)| > My, n = 1,2,....
Since x(s,t) is an oscillatory solution, there exists I :=
(a,b)y x(c,d)y such that x(a,t) = x(b,t) = x(s,¢) = x(s,d) =
0, |x(s,t)] > 0 on I, and |x(7y, 7,)| = max{|x(s,?)| : o(a) <
s<d, o(c) <t <d}:=M > M,. From (52), we can choose
a, ¢ sufficiently large such that

o0 OO
J J By (s,t) At As < M@ P/

a c

(53)
JOO ro |B, (s, 1)| At As < 1.
By Theorem 1, we have
b d 1y
2< Mﬁ/“l(J- J B (s,t)AtAs)
o (54)

. (Lb f B: (s.1) At As)ua,

2 < Mﬁ-a(r Jd By (s,t) At As)a1

a Jc

. (Ib f B (s.1) At As) (55)

<MPE. M* P -,

and so

which contradicts « > 1. Hence, there exists a positive
constant K such that |x(s,t)| < K.

Integrating the second equation of the dynamic equation
(50) over t from 7, to t and then over s from 7, to s,
respectively, we get

s t
J J ythe (s, t) At As
T

T

=u(s,t)—u(r,t)—u(s,n) +u(r,1,)

=~ J-S r By (s, 1) |x (o (s),0 P 2x (0 (s),0 (t)) At As.
- (56)

Since u(t, t) is bounded on [¢,, co)¢ for a fixed 7 and u(s, )
is bounded on [s,, 00) for a fixed #, we get

lu(s,t)| < |u(r,t) +u(s, 1) —u(r, 1))

s t .
+J J 1B, (s,1)] Ix (0 (5), 0 (£))1F " At As

(57)
<|u(r,t) +uls, ) —u(r, 1))

[ee] [e¢]
+Kﬁ_lj J B, (s, 1)| At As.

T, Jr.



Since LOO Loo 1B,(s,t)|AtAs < oo, |u(s,t)| is bounded. So

lim sup{|x(s, £)| + u(s, t)|} is bounded on [s,, 00)y X [t;, 00)y.
The proof is complete. O
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