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We consider a three-component reaction-diffusion system with a chemoattraction. The purpose of this work is to analyze the
chemotactic effects due to the gradient of the chemotactic sensitivity and the shape of the interface. Conditions for existence of
stationary solutions and the Hopf bifurcation in the interfacial problem as the bifurcation parameters vary are obtained analytically.

1. Introduction

We are interested in the effects of diffusivity and chemotaxis
on the competition of several species for limited resources.
Chemotaxis is an oriented movement of cells in response to a
concentration gradient of chemical substances in their envi-
ronment. It was observed that diffusivity and chemotaxis of
cells play a dominant role in cell growth; when several species
of cells compete for limited resources, the species with a
smaller diffusion rate and larger chemotaxis rate grow better,
even when other species have superior growth kinetics.

Mathematical modeling on chemotaxis was initiated in
1970 by Keller and Segel (see [1]) with the use of the following
system of PDEs:

𝑢
𝑡
= ∇ ⋅ (∇𝑢 − 𝜒𝑢∇V) ,

V
𝑡
= 𝐷∇

2V + 𝑎𝑢 − 𝑏V, 𝑡 > 0, x ∈ R𝑛,
(1)

where 𝐷 is a diffusion coefficient, 𝑎 and 𝑏 are positive con-
stants, and 𝜒 is the chemotaxis coefficient. In many biological
processes, cells often interact with combinations of repul-
sive and attractive signalling chemicals to produce various

interesting biological patterns. In this paper, we consider the
attraction chemotaxis system [2–4]:

𝜀𝜎𝑢
𝑡
= 𝜀
2
∇
2
𝑢 − 𝜀𝜅∇ (𝑢 ⋅ ∇𝜒 (V)) − 𝑢 + 𝐻 (𝑢 − 𝑎 (𝑤)) − V,

V
𝑡
= ∇
2V + 𝜇𝑢 − V, 𝑡 > 0, x ∈ R𝑛,

𝑤
𝑡
= ∇
2
𝑤 + 𝑢 + V − 𝑤 − 𝑠

0
, 𝑡 > 0, x ∈ R𝑛,

(2)

where 𝜀, 𝜎, 𝜇, and 𝑠
0
are positive constants,𝐻 is a Heaviside

step function, and 𝑎(𝑤) > 0 for all 𝑤. Here, ∇ is the gradient
operator,𝜒 is the chemical sensitivity function of the chemical
repulsion satisfying 𝜒(V) ≥ 0 for V > 0, and 𝜅 is a positive
constant.

Chemotaxis describes the direct migration of cells along
the concentration gradient of a specific chemical produced by
the cells. The prototype of the population-based chemotaxis
model was described in the above mentioned work of Keller
and Segal [1].

Schaaf [5] discussed the existence of nonconstant equi-
librium solutions which exhibit aggregating patterns in a
bounded domain. In [4, 6], equations describing the dynam-
ics of the interfaces near equilibrium and the stability of the
planar standing pulse solutions in the channel domain are
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obtained for sufficiently small 𝜀. Results for several versions
of theKeller-Segel system and its relatedmodels are discussed
inHorstmann [7, 8] andWard [9].The effect of chemotaxis or
that of lateral inhibition on an activator in reaction-diffusion
systems has been studied by several authors (see [10–13]).

In the present work, chemotaxis growth under the influ-
ence of lateral inhibition in a three-component reaction-
diffusion system is considered. We derive a free boundary
problem of this system when 𝜀 = 0 and then find conditions
which are necessary for occurrence of the Hopf bifurcation
of chemotaxis and the lateral inhibition on an activator. We
derive an evolutional equation of interfaces that is controlled
by the two inhibitors V and 𝑤.

Suppose that there is only one interfacial curve𝑥 = 𝜂(𝑡) in
[0,∞) in such a way that [0,∞) = Ω

1
∪𝜂(𝑡)∪Ω

0
, whereΩ

1
=

{𝑥 ∈ [0,∞) : 𝑢(𝑥, 𝑡) > 𝑎(𝑤(𝑥, 𝑡))} and Ω
0
= {𝑥 ∈ [0,∞) :

𝑢(𝑥, 𝑡) < 𝑎(𝑤(𝑥, 𝑡))}. Let (𝑥
0
, 𝑡
0
) lie on this curve; that is, 𝑥

0
=

𝜂(𝑡
0
). Using a stretching transformation at (𝑥

0
, 𝑡
0
) we make

the following substitutions:

𝜉 =

𝑥 − 𝑥
0

𝜀

, 𝜌 =

𝑡 − 𝑡
0

𝜀

. (3)

Then, the system (2) at (𝑥
0
, 𝑡
0
) becomes

𝜎𝑢
𝜌
= 𝑢
𝜉𝜉
− 𝜅𝜒

(V
0
) V
𝑥
𝑢
𝜉
+ 𝐹 (𝑢, V

0
, 𝑤
0
) ,

𝐹 (𝑢, V, 𝑤) = −𝑢 + 𝐻 (𝑢 − 𝑎 (𝑤)) − V
(4)

and the boundary conditions are

𝑢 (±∞) = ℎ
±
(V
0
) (5)

when 𝜀 tends to zero, where V
0
= V(𝑥
0
, 𝑡
0
) and𝑤

0
= 𝑤(𝑥

0
, 𝑡
0
).

We put the equation into a traveling coordinate system by
setting 𝑧 = 𝜉−𝜃𝜌with velocity 𝜃.Thus,𝑈(𝑧) = 𝑢(𝜉, 𝜌) satisfies
the following conditions:

𝑈
𝑧𝑧
+ (𝜎𝜃 − 𝜅𝜒


(V
0
) V
𝑥
)𝑈
𝑧
+ 𝐹 (𝑈, V

0
, 𝑤
0
) = 0,

𝑈 (±∞) = ℎ
±
(V
0
) .

(6)

The existence of a solution 𝑈(𝑧) is given in [12, 14] and 𝜃
satisfies 𝜎𝜃 = 𝐶(V

0
) + 𝜅𝜒


(V
0
) V
𝑥
(𝑥
0
, 𝑡
0
). Hence, the velocity

of the one-dimensional interface 𝜂(𝑡) is given by

𝑑𝜂 (𝑡)

𝑑𝑡

=

1

𝜎

(𝐶 (V
𝑖
) + 𝜅𝜒


(V
𝑖
) V
𝑥
(𝜂 (𝑡) , 𝑡)) , 𝑥 ∈ 𝜂 (𝑡) ,

(7)

where V
𝑖
is the value of V on the interface 𝜂(𝑡) and 𝐶 is a

continuously differentiable function defined on an interval
𝐼 := (−𝑎(𝑤), 1 − 𝑎(𝑤)), which is given by [14–16]

𝐶 (V (𝜂) ; 𝑎 (𝑤 (𝜂)))

= −

1 − 2𝑎 (𝑤 (𝜂)) − 2V (𝜂)

√(V (𝜂) + 𝑎 (𝑤)) (1 − 𝑎 (𝑤 (𝜂)) − V (𝜂))
.

(8)

Hence, a free boundary problem of (2) when 𝜀 is equal to
zero is given by

V
𝑡
= ∇
2V − (𝜇 + 1) V + 𝜇, 𝑡 > 0, 𝑥 ∈ Ω

1
,

V
𝑡
= ∇
2V − (𝜇 + 1) V, 𝑡 > 0, 𝑥 ∈ Ω

0
,

V (𝜂 (𝑡) − 0, 𝑡) = V (𝜂 (𝑡) + 0, 𝑡) ,

V
𝑥
(𝜂 (𝑡) − 0, 𝑡) = V

𝑥
(𝜂 (𝑡) + 0, 𝑡) ,

lim
𝑥→∞

V (𝑥, 𝑡) = 0,

𝑤
𝑡
= ∇
2
𝑤 − 𝑤 + 1 − 𝑠

0
, 𝑡 > 0, 𝑥 ∈ Ω

1
,

𝑤
𝑡
= ∇
2
𝑤 − 𝑤 − 𝑠

0
, 𝑡 > 0, 𝑥 ∈ Ω

0
,

𝑤 (𝜂 (𝑡) − 0, 𝑡) = 𝑤 (𝜂 (𝑡) + 0, 𝑡) ,

𝑤
𝑥
(𝜂 (𝑡) − 0, 𝑡) = 𝑤

𝑥
(𝜂 (𝑡) + 0, 𝑡) ,

lim
𝑥→∞

𝑤 (𝑥, 𝑡) = −𝑠
0
.

(9)

In this paper, we establish the existence of the Hopf
bifurcation described above by an application of the implicit
function theorem along the lines of the results in [17]. In
order to apply the implicit function theorem,we requiremore
regularity of the solution than that obtained in the papers
[4, 6, 13]. Our approach to the problem of well-posedness
and to the Hopf bifurcation is to write (9) in the form of an
abstract evolution equation on a Banach space, which is the
product of a function space and an interval of real numbers.
Once we have done this, we are able to apply standard results
from the theory of nonlinear evolution equations (see for
instance, [18]) to show thewell-posedness of the problemand,
more importantly, to give an analysis of the Hopf bifurcation.

The organization of the paper is as follows. In Section 2,
a change of variables is given which regularizes problem
(9) in such a way that results from the theory of nonlinear
evolution equations can be applied. In this way, we obtain a
regularity of the solution which is sufficient for an analysis
of the bifurcation. In Section 3, we show the existence of
equilibrium solutions for (9) and obtain the linearization of
problem (9). In the last section, we investigate the conditions
to obtain the periodic solutions and the bifurcation of the
interface problem as the parameter 𝜎 varies.

2. Regularization of the Interface Equation

Now, we consider the existence problem of (9):

V
𝑡
=

𝜕
2V

𝜕𝑥
2
− (𝜇 + 1) V + 𝜇𝐻 (𝑥 − 𝜂 (𝑡)) ,

𝑤
𝑡
=

𝜕
2
𝑤

𝜕𝑥
2
− 𝑤 + 𝐻 (𝑥 − 𝜂 (𝑡)) − 𝑠

0
,

V
𝑥
(0, 𝑡) = 0, lim

𝑥→∞
V
𝑥
(𝑥, 𝑡) = 0, 𝑡 > 0,

𝑤
𝑥
(0, 𝑡) = 0, lim

𝑥→∞
𝑤
𝑥
(𝑥, 𝑡) = −𝑠

0
, 𝑡 > 0,
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𝜎𝜂

(𝑡) = 𝐶 (V (𝜂) ; 𝑎 (𝑤 (𝜂)))

+ 𝜅𝜒

(V (𝜂 (𝑡) , 𝑡)) V

𝑥
(𝜂 (𝑡) , 𝑡) ,

𝑡 > 0; 𝜂 (0) = 𝜂
0
.

(10)

Let𝑤(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) + 𝑠
0
. Let𝐴 be an operator defined by

𝐴 := −(𝑑
2
/𝑑𝑥
2
) + 𝜇 + 1 with domain 𝐷(𝐴) = {V ∈ 𝐻2,2(R) :

V
𝑥
(0, 𝑡) = 0, lim

𝑥→∞
V
𝑥
(𝑥, 𝑡) = 0}. Let 𝐴

0
:= −(𝜕

2
/𝜕𝑥
2
) + 1

with domain 𝐷(𝐴
0
) = {𝑤 ∈ 𝐻

2,2
((0,∞)) : 𝑤

𝑥
(0, 𝑡) =

0, lim
𝑥→∞

𝑤
𝑥
(𝑥, 𝑡) = 0}. In order to apply semigroup theory

to (10), we choose the space𝑋 := 𝐿
2
(0,∞) with norm ‖ ⋅ ‖

2
.

To get differential dependence on initial conditions, we
decompose V in (10) into two parts: 𝑢 which is a solution
to a more regular problem and 𝑔 which is less regular but
explicitly known in terms of the Green function 𝐺 of the
operator 𝐴. Namely, we define 𝑔 : [0,∞) × [0,∞) → R

by

𝑔 (𝑥, 𝜂) := 𝐴
−1
(𝜇𝐻 (⋅ − 𝜂) (𝑥))

= 𝜇∫

∞

0

𝐺 (𝑥, 𝑦)𝐻 (𝑦 − 𝜂) 𝑑𝑦,

(11)

where 𝐺 : [0,∞) × [0,∞) → R is a Green’s function of
𝐴 satisfying the Neumann boundary conditions, and 𝛾 :

[0,∞) → R is given by

𝛾 (𝜂) := 𝑔 (𝜂, 𝜂) . (12)

If we take a transformation 𝑢(𝑡)(𝑥) = V(𝑥, 𝑡) − 𝑔(𝑥, 𝜂(𝑡)),
we have (𝑢

𝑥
)(𝑡)(𝑥) = V

𝑥
(𝑥, 𝑡) − 𝑔

𝑥
(𝑥, 𝜂(𝑡)). Since 𝐺

𝑥
(𝑥, 𝜂) is

discontinuous at 𝑥 = 𝜂, we cannot obtain one step more
regular than that of (10).

To overcome this difficulty, let 𝑝(𝑥, 𝑡) = V
𝑥
(𝑥, 𝑡). Then

𝑝 satisfies 𝑝
𝑡
+ 𝐴𝑝 = 𝜇𝛿(𝑥 − 𝜂), where 𝐴 = −(𝑑

2
/𝑑𝑥
2
) +

𝜇 + 1 with domain 𝐷(𝐴) = {𝑝 ∈ 𝐻
1,2
(R) : 𝑝(0, 𝑡) = 0,

lim
𝑥→∞

𝑝(𝑥, 𝑡) = 0}. Define 𝑔 : [0,∞) × [0,∞) → R

𝑔 (𝑥, 𝜂) := 𝐴
−1
(𝜇𝛿 (⋅ − 𝜂) (𝑥))

= 𝜇∫

∞

0

𝐺 (𝑥, 𝑦) 𝛿 (𝑦 − 𝜂) 𝑑𝑦,

(13)

where 𝐺 : [0,∞) × [0,∞) → R is a Green’s function
of 𝐴 satisfying the Dirichlet boundary conditions, and 𝛾 :
[0,∞) → R is given by

𝛾 (𝜂) := 𝑔 (𝜂, 𝜂) . (14)

We define 𝑗 : [0,∞) × [0,∞) → R,

𝑗 (𝑟, 𝜂) := 𝐴
−1

0
(𝐻 (⋅ − 𝜂) (𝑥)) = ∫

∞

0

𝐽 (𝑥, 𝑦)𝐻 (𝑦 − 𝜂) 𝑑𝑦

(15)

and 𝛼 : [0,∞) × C → C

𝛼 (𝜂) := 𝑗 (𝜂, 𝜂) , (16)

where 𝐽 : [0,∞)2 → R is a Green’s function of 𝐴
0
satisfying

the boundary conditions.
Applying the transformations 𝑢(𝑡)(𝑥) = V(𝑥, 𝑡) − 𝑔(𝑥,

𝜂(𝑡)), 𝑧(𝑡)(𝑥) = 𝑝(𝑥, 𝑡) − 𝑔(𝑥, 𝜂(𝑡)), and 𝑞(𝑡)(𝑥) = 𝑤(𝑥, 𝑡) −
𝑗(𝑥, 𝜂(𝑡)) to (10), we get

𝑢
𝑡
+ 𝐴𝑢 =

𝜇

𝜎

𝐺 (𝑥, 𝜂)

× (𝐶 (𝑢 (𝜂) + 𝛾 (𝜂) ; 𝑎 (𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠
0
))

+𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂)) (𝑧 (𝜂) + 𝛾 (𝜂))) ,

𝑧
𝑡
+ 𝐴𝑧 = −

1

𝜎

𝜇

𝜂

𝐺 (𝑥, 𝜂)

× (𝐶 (𝑢 (𝜂) + 𝛾 (𝜂) ; 𝑎 (𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠
0
))

+𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂)) (𝑧 (𝜂) + 𝛾 (𝜂))) ,

𝑞
𝑡
+ 𝐴
0
𝑞 =

1

𝜎

𝐽 (𝑥, 𝜂)

× (𝐶 (𝑢 (𝜂) + 𝛾 (𝜂) ; 𝑎 (𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠
0
))

+𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂)) (𝑧 (𝜂) + 𝛾 (𝜂))) ,

𝜂

(𝑡) =

1

𝜎

(𝐶 (𝑢 (𝜂) + 𝛾 (𝜂) ; 𝑎 (𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠
0
))

+𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂)) ⋅ (𝑧 (𝜂) + 𝛾 (𝜂))) ,

𝑡 > 0.

(17)

Thus, we obtain an abstract evolution equation equivalent to
(10):

𝑑

𝑑𝑡

(𝑢, 𝑧, 𝑞, 𝜂) + 𝐴 (𝑢, 𝑧, 𝑞, 𝜂) =

1

𝜎

𝑓 (𝑢, 𝑧, 𝑞, 𝜂) ,

(𝑢, 𝑧, 𝑞, 𝜂) (0) = (𝑢
0
(𝑥) , 𝑧

0
(𝑥) , 𝑞

0
(𝑥) , 𝜂

0
) ,

(18)

where𝐴 is a 4×4matrix with themain diagonal entries being
the operators𝐴, 𝐴, 𝐴

0
, and𝑂 (the zero operator), and all the

other terms are zero. The nonlinear forcing term 𝑓 is

𝑓 (𝑢, 𝑧, 𝑞, 𝜂)

=

(

(

(

(

(

𝑓
1
(𝜂) ⋅ (𝑓

21
(𝑢, 𝑧, 𝑞, 𝜂) + 𝑓

22
(𝑢, 𝑧, 𝑞, 𝜂))

𝑓
2
(𝜂) ⋅ (𝑓

21
(𝑢, 𝑧, 𝑞, 𝜂) + 𝑓

22
(𝑢, 𝑧, 𝑞, 𝜂))

𝑓
3
(𝜂) ⋅ (𝑓

21
(𝑢, 𝑧, 𝑞, 𝜂) + 𝑓

22
(𝑢, 𝑧, 𝑞, 𝜂))

𝑓
21
(𝑢, 𝑧, 𝑞, 𝜂) + 𝑓

22
(𝑢, 𝑧, 𝑞, 𝜂)

)

)

)

)

)

,

(19)

where 𝑓
1
: (0,∞) → 𝑋, 𝑓

1
(𝜂)(𝑥) := 𝜇𝐺(𝑥, 𝜂), 𝑓

2
:

(0,∞) → 𝑋, 𝑓
2
(𝜂)(𝑥) := −(𝜇/𝜂)𝐺(𝑥, 𝜂), 𝑓

3
: (0,∞) →

𝑋, 𝑓
3
(𝜂)(𝑥) := 𝐽(𝑥, 𝜂), 𝑓

21
: 𝑊 → C, 𝑓

21
(𝑢, 𝑧, 𝑞, 𝜂) :=

𝐶(𝑢(𝜂) + 𝛾(𝜂); 𝑎(𝑞(𝜂) + 𝛼(𝜂) − 𝑠
0
)), and 𝑓

22
: 𝑊 → C,
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𝑓
22
(𝑢, 𝑧, 𝑞, 𝜂) := 𝜅𝜒


(𝑢(𝜂) + 𝛾(𝜂)) ⋅ (𝑧(𝜂) + 𝛾(𝜂)) and 𝑊 :=

{(𝑢, 𝑧, 𝑞, 𝜂) ∈ 𝐶
1
(0,∞) × 𝐶

1
(0,∞) × 𝐶

1
(0,∞) × (0,∞) :

𝑢(𝜂) + 𝛾(𝜂) ∈ 𝐼, 𝑧(𝜂) + 𝛾(𝜂) ∈ 𝐼, 𝑞(𝜂) + 𝛼(𝜂) − 𝑠
0
∈

𝐼}⊂open𝐶
1
(R) × 𝐶1(R) × 𝐶1(R) ×R.

The well-posedness of solutions of (18) is shown in [4, 10,
11], using the fractional powers of degree 𝜃 ∈ (3/4, 1] of 𝐴,
𝐴
0
, and 𝐴 and the methods of the theory of semigroups of

operators. Moreover, the nonlinear term 𝑓 is a continuously
differentiable function from𝑊∩𝑋𝜃 to𝑋, where𝑋 := 𝐷(𝐴) =
𝐷(𝐴) × 𝐷(𝐴) × 𝐷(𝐴

0
) ×R,𝑋𝜃

𝐴
:= 𝐷(𝐴

𝜃
),𝑋𝜃
0
:= 𝐷(𝐴

𝜃

0
), and

𝑋
𝜃
:= 𝐷(𝐴

𝜃
) = 𝑋

𝜃

𝐴
× 𝑋
𝜃

𝐴
× 𝑋
𝜃

0
×R.

The velocity of 𝜂 is denoted by

𝐶 (𝑢 (𝜂) + 𝛾 (𝜂) ; 𝑎 (𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠
0
))

= 𝐶 (𝑆 (𝑢, 𝑞, 𝜂))

= −

1 − 2𝑆 (𝑢, 𝑞, 𝜂)

√𝑆 (𝑢, 𝑞, 𝜂) (1 − 𝑆 (𝑢, 𝑞, 𝜂))

,

(20)

where 𝑆(𝑢, 𝑞, 𝜂) = 𝑢(𝜂) + 𝛾(𝜂) + 𝑎(𝑞(𝜂) + 𝛼(𝜂) − 𝑠
0
).

The derivative of 𝑓 can be obtained following [19].

Lemma 1. The functions 𝐺(⋅, 𝜂) : (0,∞) → 𝑋, 𝐺(⋅, 𝜂) : (0,
∞) → 𝑋, 𝐽(⋅, 𝜂) : (0,∞) → 𝑋, 𝐶(⋅) : 𝑊 → C, and
𝑓 : 𝑊 → 𝑋×R are continuously differentiable with derivati-
ves given by

𝐷𝑓
21
(𝑢, 𝑧, 𝑞, 𝜂) (�̃�, �̃�, 𝑞, 𝜂)

= 𝐶
𝑆
(𝑆 (𝑢, 𝑞, 𝜂)) ⋅ (𝑢


(𝜂) 𝜂 + �̃� (𝜂) + 𝛾


(𝜂) 𝜂)

+ 𝑎

(𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠

0
)

⋅ (𝑞

(𝜂) 𝜂 + 𝑞 (𝜂) + 𝛼


(𝜂) 𝜂) ,

𝐷𝑓
22
(𝑢, 𝑧, 𝑞, 𝜂) (�̂�, �̂�, 𝑞, 𝜂)

= 𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂)) (𝑧


(𝜂) 𝜂 + �̂� (𝜂) + 𝛾


(𝜂) 𝜂) ,

+ 𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂))

⋅ (�̂� (𝜂) + 𝑢

(𝜂) 𝜂 + 𝛾 (𝜂) 𝜂)) (𝑧 (𝜂) + 𝛾 (𝜂)) ,

𝐷𝑓 (𝑢, 𝑧, 𝑞, 𝜂) (�̂�, �̂�, 𝑞, 𝜂)

= (𝑓
21
(𝑢, 𝑧, 𝑞, 𝜂) + 𝑓

22
(𝑢, 𝑧, 𝑞, 𝜂))

⋅ (𝑓


1
(𝜂) , 𝑓



2
(𝜂) , 𝑓



3
(𝜂) , 0) 𝜂

+ (𝐷𝑓
21
(𝑢, 𝑧, 𝑞, 𝜂) + 𝐷𝑓

22
(𝑢, 𝑧, 𝑞, 𝜂)) (�̂�, �̂�, 𝑞, 𝜂)

⋅ (𝑓
1
(𝜂) , 𝑓

2
(𝜂) , 𝑓

3
(𝜂) , 1) .

(21)

3. Equilibrium Solutions and Linearization of
the Interface Equation

In this section, we will examine the existence of equilibrium
solutions of (18). We look for (𝑢∗, 𝑧∗, 𝑞∗, 𝜂∗) ∈ 𝐷(𝐴) ∩ 𝑊
satisfying the following equations:

𝐴𝑢 =

1

𝜎

𝜇𝐺 (𝑥, 𝜂)

× (𝐶 (𝑢 (𝜂) + 𝛾 (𝜂) ; 𝑎 (𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠
0
))

+ 𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂)) ⋅ (𝑧 (𝜂) + 𝛾 (𝜂))) ,

𝐴𝑧 = −

1

𝜎

𝜇

𝜂

𝐺 (𝑥, 𝜂)

× (𝐶 (𝑢 (𝜂) + 𝛾 (𝜂) ; 𝑎 (𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠
0
))

+𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂)) ⋅ (𝑧 (𝜂) + 𝛾 (𝜂))) ,

𝐴
0
𝑞 =

1

𝜎

𝐽 (⋅, 𝜂
∗
) (𝐶 (𝑢 (𝜂) + 𝛾 (𝜂) ; 𝑎 (𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠

0
))

+ 𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂)) ⋅ (𝑧 (𝜂) + 𝛾 (𝜂))) ,

0 = 𝐶 (𝑢 (𝜂) + 𝛾 (𝜂) ; 𝑎 (𝑞 (𝜂) + 𝛼 (𝜂) − 𝑠
0
))

+ 𝜅𝜒

(𝑢 (𝜂) + 𝛾 (𝜂)) ⋅ (𝑧 (𝜂) + 𝛾 (𝜂)) ,

𝑢

(0) = 0 = 𝑢


(∞) , 𝑧 (0) = 0 = 𝑧 (∞) ,

𝑞

(0) = 0 = 𝑞


(∞) .

(22)

Theorem 2. Suppose that (1/2) − 𝑎(1 − 𝑠
0
) < 𝜇/(1 + 𝜇) and

𝐶

(𝛾(𝜂); 𝑎(𝛼(𝜂)− 𝑠

0
)) + 𝜅 𝜒(𝛾(𝜂))𝛾(𝜂) −𝜅√1 + 𝜇 𝜒(𝛾(𝜂)) >

0 for all 𝜂 > 0. Then (18) has at least one equilibrium solution
(0, 0, 0, 𝜂

∗
) for 𝜅 < 𝜅

𝑐
, where 𝜅

𝑐
is a solution of

𝐶 (𝛾 (∞) ; 𝑎 (𝛼 (∞) − 𝑠
0
))

+ 𝜅
𝑐
𝜒

(𝛾 (∞)) (𝛾


(∞) + 𝜇𝐺 (∞,∞)) = 0.

(23)

The linearization of𝑓 at the stationary solution (0, 0, 0, 𝜂∗)
is

𝐷𝑓 (0, 0, 0, 𝜂
∗
) (�̂�, �̂�, 𝑞, 𝜂)

= (

𝜇𝐺 (⋅, 𝜂
∗
) 𝑄 (�̂�, �̂�, 𝑞, 𝜂)

−

𝜇

𝜂
∗
𝐺 (⋅, 𝜂

∗
) 𝑄 (�̂�, �̂�, 𝑞, 𝜂)

𝑗 (⋅, 𝜂
∗
) 𝑄 (�̂�, �̂�, 𝑞, 𝜂)

𝑄 (�̂�, �̂�, 𝑞, 𝜂)

) ,

(24)

where𝑄(�̂�, �̂�, 𝑞, 𝜂) = (4 + 𝜅𝜒(𝛾(𝜂∗)𝛾(𝜂∗))(�̂�(𝜂∗) + 𝛾(𝜂∗)𝜂) +
𝜅𝜒

(𝛾(𝜂
∗
))(�̂�(𝜂

∗
)+𝛾

(𝜂
∗
)𝜂)+4𝑎


(𝛼(𝜂
∗
)−𝑠
0
)(𝑞(𝜂
∗
)+𝛼

(𝜂
∗
)𝜂).

The pair (0, 0, 0, 𝜂∗) corresponds to a unique steady state
(V∗, 𝑝∗, 𝑤∗, 𝜂∗) of (10) for 𝜎 ̸= 0 with V∗(𝑥) = 𝑔(𝑥, 𝜂

∗
),

𝑝
∗
(𝑥) = 𝑔(𝑥, 𝜂

∗
), and 𝑤∗(𝑥) = 𝑗(𝑥, 𝜂∗) − 𝑠

0
.
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Proof. From the system of (22), we have 𝑢∗ = 0, 𝑧∗ = 0, and
𝑞
∗
= 0. In order to show existence of 𝜂∗, we define

Γ (𝜂, 𝜅) := 𝐶 (𝛾 (𝜂) ; 𝑎 (𝛼 (𝜂) − 𝑠
0
)) + 𝜅𝜒


(𝛾 (𝜂)) ⋅ 𝛾 (𝜂) .

(25)

Then

𝜕

𝜕𝜂

Γ (𝜂, 𝜅) = (𝐶

(𝛾 (𝜂) ; 𝑎 (𝛼 (𝜂) − 𝑠

0
)) + 𝜅𝜒


(𝛾 (𝜂)) 𝛾 (𝜂))

⋅ 𝛾

(𝜂) + 𝜅𝜒


(𝛾 (𝜂)) 𝛾


(𝜂)

+ 𝐶

(𝛾 (𝜂) ; 𝑎 (𝛼 (𝜂) − 𝑠

0
))

⋅ 𝑎

(𝛼 (𝜂) − 𝑠

0
) ⋅ 𝛼

(𝜂) .

(26)

Since 𝛾(𝜂) < 0 and 𝛼(𝜂) < 0 for all 𝜂 > 0, Γ(𝜂, 𝜅) = 0 is
solvable with 𝜂∗ if Γ(0, 𝜅) > 0, Γ(∞, 𝜅) < 0, and (𝜕/𝜕𝜂)
Γ(𝜂, 𝜅) < 0, which means that 𝐶(𝛾(0); 𝑎(𝛼(0) − 𝑠

0
)) > 0,

𝐶(𝛾(∞); 𝑎(𝛼(∞) − 𝑠
0
)) + 𝜅𝜒(𝛾(∞))𝛾(∞) < 0, and 𝐶(𝛾(𝜂);

𝑎(𝛼(𝜂) − 𝑠
0
)) + 𝜅𝜒


(𝛾(𝜂))𝛾(𝜂) − 𝜅√1 + 𝜇𝜒


(𝛾(𝜂)) > 0.

Let 𝜅
𝑐
be a solution of

𝐶 (𝛾 (∞) ; 𝑎 (𝛼 (∞) − 𝑠
0
))

+𝜅
𝑐
𝜒

(𝛾 (∞)) (𝛾


(∞) + 𝜇𝐺 (∞,∞)) = 0.

(27)

Then Γ(∞, 𝜅) < Γ(∞, 𝜅
𝑐
) < Γ(0, 𝜅

𝑐
) with Γ(∞, 𝜅

𝑐
) = 0.

Hence, 𝜂∗ exists for 𝜅 < 𝜅
𝑐
.

The formula for 𝐷𝑓(0, 0, 0, 𝜂∗) follows from the relat-
ion 𝐶(1/2) = 4, and the corresponding steady state (V∗, 𝑝∗,
𝑤
∗
, 𝜂
∗
) for (10) is obtained by usingTheorem 2.1 in [19].

4. A Hopf Bifurcation

In this section, we show that there exists a Hopf bifurcation
from the curve 𝜎 → (0, 0, 0, 𝜂

∗
) of the equilibrium solution.

First, let us introduce the following relevant definition.

Definition 3. Under the assumptions of Theorem 2, define
(for 1 ≥ 𝜃 > 3/4) the linear operator 𝐵 from𝑋

𝜃 to𝑋 by

𝐵 := 𝐷𝑓 (0, 0, 0, 𝜂
∗
) . (28)

We then define (0, 0, 0, 𝜂∗) to be a Hopf point for (18) if and
only if there exist an 𝜖

0
> 0 and a 𝐶1-curve

(−𝜖
0
+ 𝜏
∗
, 𝜏
∗
+ 𝜖
0
) → (𝜆 (𝜏) , 𝜙 (𝜏)) ∈ C × 𝑋C (29)

(𝑌C denotes the complexification of the real space 𝑌) of
eigendata for −𝐴 + 𝜏𝐵 with

(i) (−𝐴 + 𝜏𝐵)(𝜙(𝜏)) = 𝜆(𝜏)𝜙(𝜏), (−𝐴 + 𝜏𝐵)(𝜙(𝜏)) =

𝜆(𝜏) 𝜙(𝜏),

(ii) 𝜆(𝜏∗) = 𝑖𝛽 with 𝛽 > 0,

(iii) Re (𝜆) ̸= 0 for all 𝜆 in the spectrum of (−𝐴 + 𝜏∗𝐵) \
{±𝑖𝛽},

(iv) Re 𝜆(𝜏∗) ̸= 0 (transversality),

where 𝜏 = 1/𝜎.

Next, we check (18) for the Hopf points. For this, we solve
the eigenvalue problem:

−𝐴 (𝑢, 𝑧, 𝑞, 𝜂) + 𝜏𝐵 (𝑢, 𝑧, 𝑞, 𝜂) = 𝜆𝐼
4
(𝑢, 𝑧, 𝑞, 𝜂) , (30)

where 𝐼
4
is a 4 × 4 identity matrix. This is equivalent to

(𝐴 + 𝜆) 𝑢 = 𝜏𝜇𝐺 (⋅, 𝜂
∗
)

× (𝑑
2
(𝑢 (𝜂
∗
) + 𝛾

(𝜂
∗
) 𝜂)

+ 𝜅𝑑
1
(𝑧 (𝜂
∗
) + 𝛾

(𝜂
∗
) 𝜂)

+𝑎
1
(𝑞 (𝜂
∗
) + 𝛼

(𝜂
∗
))) ,

(𝐴 + 𝜆) 𝑧 = −

𝜏𝜇

𝜂
∗
𝐺 (⋅, 𝜂

∗
)

× (𝑑
2
(𝑢 (𝜂
∗
) + 𝛾

(𝜂
∗
) 𝜂)

+ 𝜅𝑑
1
(𝑧 (𝜂
∗
) + 𝛾

(𝜂
∗
) 𝜂)

+𝑎
1
(𝑞 (𝜂
∗
) + 𝛼

(𝜂
∗
))) ,

(𝐴
0
+ 𝜆) 𝑞 = 𝜏𝐽 (⋅, 𝜂

∗
)

× (𝑑
2
(𝑢 (𝜂
∗
) + 𝛾

(𝜂
∗
) 𝜂)

+ 𝜅𝑑
1
(𝑧 (𝜂
∗
) + 𝛾

(𝜂
∗
) 𝜂)

+𝑎
1
(𝑞 (𝜂
∗
) + 𝛼

(𝜂
∗
))) ,

𝜆𝜂 = 𝜏 (𝑑
2
(𝑢 (𝜂
∗
) + 𝛾

(𝜂
∗
) 𝜂)

+ 𝜅𝑑
1
(𝑧 (𝜂
∗
) + 𝛾

(𝜂
∗
) 𝜂)

+𝑎
1
(𝑞 (𝜂
∗
) + 𝛼

(𝜂
∗
))) ,

(31)

where 𝑑
1
= 𝜒

(𝛾(𝜂
∗
)), 𝑑
2
= 4 + 𝜅𝜒


(𝛾(𝜂
∗
))𝛾(𝜂
∗
), and 𝑎

1
=

4𝑎

(𝛼(𝜂
∗
) − 𝑠
0
).

In the following theorem, we show that an equilibrium
solution is a Hopf point.

Theorem 4. Suppose that (1/2) − 𝑎(1 − 𝑠
0
) < (𝜇/(1 + 𝜇)) and

𝐶

(𝛾(𝜂); 𝑎(𝛼(𝜂) − 𝑠

0
)) + 𝜅𝜒(𝛾(𝜂))𝛾(𝜂) > 𝜅√1 + 𝜇𝜒


(𝛾(𝜂))

for all 𝜂 > 0. Assume that 𝐶(𝛾(𝜂∗); 𝑎(𝛼(𝜂∗) − 𝑠
0
)) +

𝜅𝜒

(𝛾(𝜂
∗
))𝛾(𝜂
∗
) > (𝜅/𝜂

∗
)𝜒

(𝛾(𝜂
∗
)). Additionally, suppose

that the operator −𝐴 + 𝜏
∗
𝐵 has a unique pair {±𝑖𝛽}, 𝛽 >

0 of purely imaginary eigenvalues for some 𝜏∗ > 0. Then,
(0, 0, 0, 𝜂

∗
, 𝜏
∗
) is a Hopf point for (18).

Proof. We assume, without loss of generality, that 𝛽 > 0,
and Φ∗ is the (normalized) eigenfunction of −𝐴 + 𝜏∗𝐵 with
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eigenvalue 𝑖𝛽. We have to show that (Φ∗, 𝑖𝛽) can be extended
to a 𝐶1-curve 𝜏 → (Φ(𝜏), 𝜆(𝜏)) of eigendata for −𝐴+𝜏𝐵with
Re(𝜆(𝜏∗)) ̸= 0.

For this, let Φ∗ = (𝜓
0
, 𝑧
0
, 𝑞
0
, 𝜂
0
) ∈ 𝐷(𝐴) × 𝐷(𝐴) ×

𝐷(𝐴
0
) × R. First, we note that 𝜂

0
̸= 0. Otherwise, by (31),

(𝐴 + 𝑖𝛽)𝜓
0
= 𝜇 𝑖𝛽 𝜂

0
𝐺(⋅, 𝜂
∗
) = 0 and (𝐴 + 𝑖𝛽)𝑧

0
=

−(𝜇/𝜂
∗
) 𝑖𝛽 𝜂

0
𝐺(⋅, 𝜂
∗
) = 0, which is not possible because 𝐴

is symmetric. So, without loss of generality, let 𝜂
0
= 1. Then

𝐸(𝜓
0
, 𝑧
0
, 𝑞
0
, 𝑖𝛽, 𝜏

∗
) = 0 by (31), where

𝐸 : 𝐷(𝐴)C × 𝐷(𝐴)C × 𝐷(𝐴0)C × C ×R → 𝑋C × 𝑋C × 𝑋C × C,

𝐸 (𝑢, 𝑧, 𝑞, 𝜆, 𝜏) :=(

(𝐴 + 𝜆) 𝑢 − 𝜏𝜇𝐺 (⋅, 𝜂
∗
) (𝑑
2
(𝑢 (𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝜅𝑑

1
(𝑧 (𝜂
∗
) + 𝛾

(𝜂
∗
) + 𝑎
1
⋅ (𝑞 (𝜂

∗
) + 𝛼 (𝜂

∗
)))

(𝐴 + 𝜆) 𝑧 + 𝜏

𝜇

𝜂
∗
𝐺 (⋅, 𝜂

∗
) (𝑑
2
(𝑢 (𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝜅𝑑

1
(𝑧 (𝜂
∗
) + 𝛾

(𝜂
∗
) + 𝑎
1
⋅ (𝑞 (𝜂

∗
) + 𝛼 (𝜂

∗
)))

(𝐴
0
+ 𝜆) 𝑞 − 𝜏𝐽 (⋅, 𝜂

∗
) (𝑑
2
(𝑢 (𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝜅𝑑

1
(𝑧 (𝜂
∗
) + 𝛾

(𝜂
∗
) + 𝑎
1
⋅ (𝑞 (𝜂

∗
) + 𝛼 (𝜂

∗
)))

𝜆 − 𝜏 (𝑑
2
(𝑢 (𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝜅𝑑

1
(𝑧 (𝜂
∗
) + 𝛾

(𝜂
∗
) + 𝑎
1
⋅ (𝑞 (𝜂

∗
) + 𝛼 (𝜂

∗
)))

).

(32)

The equation 𝐸(𝑢, 𝑧, 𝑞, 𝜆, 𝜏) = 0 is equivalent to 𝜆 being an
eigenvalue of −𝐴 + 𝜏𝐵 with eigenfunction (𝑢, 𝑧, 𝑞, 1). We will

apply the implicit function theorem to 𝐸. For this, we check
that 𝐸 is of 𝐶1-class and that

𝐷
(𝑢,𝑧,𝑞,𝜆)

𝐸 (𝜓
0
, 𝑧
0
, 𝑞
0
, 𝑖𝛽, 𝜏

∗
)

∈ 𝐿 (𝐷(𝐴)C × 𝐷(𝐴)C × 𝐷(𝐴0)C × C ×R,

𝑋C × 𝑋C × 𝑋C × C)

(33)

is an isomorphism. In addition, the mapping

𝐷
(𝑢,𝑧,𝑞,𝜆)

𝐸 (𝜓
0
, 𝑧
0
, 𝑞
0
, 𝑖𝛽, 𝜏

∗
) (�̂�, �̂�, 𝑞,

̂
𝜆) =(

(𝐴 + 𝑖𝛽) �̂� +
̂
𝜆𝜓
0
− 𝜏
∗
𝜇𝐺 (⋅, 𝜂

∗
) (𝑑
2
�̂� (𝜂
∗
) + 𝜅𝑑

1
�̂� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
))

(𝐴 + 𝑖𝛽) �̂� +
̂
𝜆𝑧
0
+ 𝜏
∗
𝜇

𝜂
∗
𝐺 (⋅, 𝜂

∗
) (𝑑
2
�̂� (𝜂
∗
) + 𝜅𝑑

1
�̂� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
))

(𝐴
0
+ 𝑖𝛽) 𝑞 +

̂
𝜆𝑞
0
− 𝜏
∗
𝐽 (⋅, 𝜂
∗
) (𝑑
2
�̂� (𝜂
∗
) + 𝜅𝑑

1
�̂� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
))

̂
𝜆 − 𝜏
∗
(𝑑
2
�̂� (𝜂
∗
) + 𝜅𝑑

1
�̂� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
))

) (34)

is a compact perturbation of the mapping

(�̂�, �̂�, 𝑞,
̂
𝜆) → ((𝐴 + 𝑖𝛽) �̂�, (𝐴 + 𝑖𝛽) �̂�, (𝐴

0
+ 𝑖𝛽) 𝑞,

̂
𝜆)

(35)

which is invertible. Thus, 𝐷
(𝑢,𝑧,𝑞,𝜆)

𝐸(𝜓
0
, 𝑧
0
, 𝑞
0
, 𝑖𝛽, 𝜏
∗
) is a

Fredholm operator of index 0. Therefore, in order to verify
(33), it suffices to show that the system of equations

𝐷
(𝑢,𝑧,𝑞,𝜆)

𝐸 (𝜓
0
, 𝑧
0
, 𝑞
0
, 𝑖𝛽, 𝜏
∗
) (�̂�, �̂�, 𝑞,

̂
𝜆) = 0 (36)

which is equivalent to

(𝐴 + 𝑖𝛽) �̂� +
̂
𝜆𝜓
0
= 𝜏
∗
𝜇𝐺 (⋅, 𝜂

∗
)

× (𝑑
2
�̂� (𝜂
∗
) + 𝜅𝑑

1
�̂� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
)) ,

(𝐴 + 𝑖𝛽) �̂� +
̂
𝜆𝜉
0
= −𝜏
∗ 𝜇

𝜂
∗
𝐺 (⋅, 𝜂

∗
)

× (𝑑
2
�̂� (𝜂
∗
) + 𝜅𝑑

1
�̂� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
)) ,

(𝐴
0
+ 𝑖𝛽) 𝑞 +

̂
𝜆𝑞
0
= 𝜏
∗
𝐽 (⋅, 𝜂
∗
)

× (𝑑
2
�̂� (𝜂
∗
) + 𝜅𝑑

1
�̂� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
)) ,

̂
𝜆 = 𝜏
∗
(𝑑
2
�̂� (𝜂
∗
) + 𝜅𝑑

1
�̂� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
))

(37)

necessarily implies that �̂� = 0, �̂� = 0, 𝑞 = 0, and ̂𝜆 = 0. If
we define 𝜙 := 𝜓

0
− 𝜇𝐺(⋅, 𝜂

∗
), 𝜉 := 𝑧

0
+ (𝜇/𝜂

∗
)𝐺(⋅, 𝜂

∗
), and

𝜌 = 𝑞
0
− 𝐽(⋅, 𝜂

∗
), then (37) becomes

(𝐴 + 𝑖𝛽) �̂� +
̂
𝜆𝜙 = 0, (38)

(𝐴 + 𝑖𝛽) �̂� +
̂
𝜆𝜉 = 0, (39)

(𝐴
0
+ 𝑖𝛽) 𝑞 +

̂
𝜆𝜌 = 0, (40)

̂
𝜆

𝜏
∗
= 𝑑
2
�̂� (𝜂
∗
) + 𝜅𝑑

1
�̂� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
) . (41)
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On the other hand, since 𝐸(𝜓
0
, 𝑧
0
, 𝑞
0
, 𝑖𝛽, 𝜏

∗
) = 0, 𝜙, 𝜉 and

𝜌 are solutions to the equations, we have

(𝐴 + 𝑖𝛽) 𝜙 = −𝜇 𝛿
𝜂
∗ , (42)

(𝐴 + 𝑖𝛽) 𝜉 =

𝜇

𝜂
∗
𝛿
𝜂
∗ , (43)

(𝐴
0
+ 𝑖𝛽) 𝜌 = −𝛿

𝜂
∗ , (44)

𝑖𝛽

𝜏
∗
= 𝑑
2
(𝜙 (𝜂
∗
) + 𝜇𝐺 (𝜂

∗
, 𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝜅𝑑
1
(𝜉 (𝜂
∗
) −

𝜇

𝜂
∗
𝐺 (𝜂
∗
, 𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝑎
1
(𝜌 (𝜂
∗
) + 𝐽 (𝜂

∗
, 𝜂
∗
) + 𝛼

(𝜂
∗
)) .

(45)

Multiplying (39) and (43) by 𝜙 and (38) and (42) by 𝜉 and
subtracting one from the other, we obtain

�̂� (𝜂
∗
) = −𝜂

∗
�̂� (𝜂
∗
) , 𝜙 (𝜂

∗
) = −𝜂

∗
𝜉 (𝜂
∗
) . (46)

Multiplying (38) by 𝑑
2
𝜙, (39) by −𝜂∗𝜅𝑑

1
𝜌, and (40) by 𝑎

1
𝜌

and adding the resultants to each, we have

− 𝑑
2
𝜇�̂� (𝜂
∗
) − 𝜅𝑑

1
𝜇�̂� (𝜂
∗
) − 𝑎
1
𝑞 (𝜂
∗
)

+
̂
𝜆 (𝑑
2





𝜙





2

− 𝜂
∗
𝜅𝑑
1





𝜉





2

+ 𝑎
1





𝜌





2

)

+ 2𝑖𝛽∫ (𝑑
2
�̂�𝜙 − 𝜂

∗
𝜅𝑑
1
�̂�𝜉 + 𝑎

1
𝑞𝜌) = 0.

(47)

Multiplying (42) by 𝑑
2
𝜙, (43) by −𝜂∗𝜅𝑑

1
𝜌, and (44) by 𝑎

1
𝜌

and adding the resultants to each, we obtain

𝑑
2






𝐴
1/2
𝜙







2

− 𝜂
∗
𝜅𝑑
1






𝐴
1/2
𝜉







2

+ 𝑎
1






𝐴
1/2

0
𝜌







2

+ 𝑖𝛽 (𝑑
2





𝜙





2

− 𝜂
∗
𝜅𝑑
1





𝜉





2

+ 𝑎
1





𝜌





2

)

= −𝑑
2
𝜇𝜙 (𝜂
∗
) − 𝜇𝜅𝑑

1
𝜉 (𝜂
∗
) − 𝑎
1
𝜌 (𝜂
∗
).

(48)

From (45), we get

𝜇

𝜏
∗
= 𝑑
2





𝜙





2

− 𝜂
∗
𝜅𝑑
1





𝜉





2

+ 𝑎
1





𝜌





2

, (49)

and thus (47) implies that

∫ (𝑑
2
�̂�𝜙 − 𝜂

∗
𝜅𝑑
1
�̂�𝜉 + 𝑎

1
𝑞 𝜌) = 0. (50)

Now, multiplying (38) by 𝑑
2
�̂�, (42) by −𝜂∗𝜅𝑑

1
�̂�, and (40)

by 𝑎
1
𝑞 and adding the resultants to each, we have

(𝑑
2






𝐴
1/2
�̂�







2

− 𝜂
∗
𝜅𝑑
1






𝐴
1/2
�̂�







2

+ 𝑎
1






𝐴
1/2

0
𝑞







2

)

+ 𝑖𝛽 (𝑑
2
‖�̂�‖
2
− 𝜂
∗
𝜅𝑑
1
‖�̂�‖
2
+ 𝑎
1





𝑞





2

)

+
̂
𝜆∫ (𝑑

2
𝜙�̂� − 𝜂

∗
𝜅𝑑
1
𝜉�̂� + 𝑎

1
𝜌𝑞) = 0.

(51)

From (50), we get

𝑑
2






𝐴
1/2
�̂�







2

− 𝜂
∗
𝜅𝑑
1






𝐴
1/2
�̂�







2

+ 𝑎
1






𝐴
1/2

0
𝑞







2

= 0

𝑑
2
‖�̂�‖
2
− 𝜂
∗
𝜅𝑑
1
‖�̂�‖
2
+ 𝑎
1





𝑞





2

= 0.

(52)

Multiplying (42) by 𝜙 and (43) by 𝜉, we get






𝐴
1/2
𝜙







2

+ 𝑖𝛽




𝜙





2

= −𝜇𝜙 (𝜂
∗
) ,






𝐴
1/2
𝜉







2

+ 𝑖𝛽




𝜉





2

=

𝜇

𝜂
∗
𝜉 (𝜂
∗
) ,

(53)

and applying (46) to the above equation, we have






𝐴
1/2
𝜙







2

= (𝜂
∗
)
2



𝐴
1/2
𝜉







2

,




𝜙





2

= (𝜂
∗
)
2



𝜉





2

. (54)

Now,multiplying (38) by 2𝑖𝛽�̂� and (42) by ̂𝜆�̂� and subtracting
the resultants to each other, we obtain

2𝑖𝛽 (






𝐴
1/2
�̂�







2

− (𝜂
∗
)
2



𝐴
1/2
�̂�







2

)

− 2𝛽
2
(‖�̂�‖
2
− (𝜂
∗
)
2

‖�̂�‖
2
) +

̂
𝜆 (




𝜙





2

− (𝜂
∗
)
2



𝜉





2

) .

(55)

Applying (54) to the above equation, we have






𝐴
1/2
�̂�







2

− (𝜂
∗
)
2



𝐴
1/2
�̂�







2

= 0, ‖�̂�‖
2
− (𝜂
∗
)
2

‖�̂�‖
2
= 0,

(56)

and thus (52) implies that

(𝑑
2
−

𝜅𝑑
1

𝜂
∗
) ‖�̂�‖
2
+ 𝑎
1





𝑞





2

= 0. (57)

Since 𝑑
2
− (𝜅𝑑
1
/𝜂
∗
) > 0 and 𝑎

1
> 0, we have �̂� = 0 and 𝑞 = 0,

and so, �̂� = 0 and ̂𝜆 = 0.

Theorem 5. Under the same condition as in Theorem 4, (0, 0,
0, 𝜂
∗
, 𝜏
∗
) satisfies the transversality condition. Hence, this is a

Hopf point for (18).

Proof. By the implicit differentiation of 𝐸(𝜓
0
(𝜏), 𝑧
0
(𝜏),

𝑞
0
(𝜏), 𝜆(𝜏), 𝜏) = 0, we find
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𝐷
(𝑢,𝑧,𝑞,𝜆)

𝐸 (𝜓
0
, 𝑧
0
, 𝑞
0
, 𝑖𝛽, 𝜏
∗
) (𝜓


0
(𝜏
∗
) , 𝑧


0
(𝜏
∗
) , 𝑞


0
(𝜏
∗
) , 𝜆

(𝜏
∗
))

=
(

(

𝜇𝐺(⋅, 𝜂
∗
) (𝑑
2
(𝜓
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝜅𝑑

1
(𝑧
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝑎

1
(𝑞
0
(𝜂
∗
) + 𝛼 (𝜂

∗
))

−

𝜇

𝜂
∗
𝐺 (⋅, 𝜂

∗
) (𝑑
2
(𝜓
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝜅𝑑

1
(𝑧
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝑎

1
(𝑞
0
(𝜂
∗
) + 𝛼 (𝜂

∗
))

𝐽 (⋅, 𝜂
∗
) (𝑑
2
(𝜓
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝜅𝑑

1
(𝑧
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝑎

1
(𝑞
0
(𝜂
∗
) + 𝛼 (𝜂

∗
))

𝑑
2
(𝜓
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝜅𝑑

1
(𝑧
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝑎

1
(𝑞
0
(𝜂
∗
) + 𝛼 (𝜂

∗
))

)

)

.

(58)

This means that the functions �̃� := 𝜓
0
(𝜏
∗
), �̃� := 𝑧

0
(𝜏
∗
), 𝑞 :=

𝑞


0
(𝜏
∗
), and ̃𝜆 := 𝜆(𝜏∗) satisfy the equations

(𝐴 + 𝑖𝛽) �̃� +
̃
𝜆𝜓
0
− 𝜏
∗
𝜇𝐺 (⋅, 𝜂

∗
)

× (𝑑
2
�̃� (𝜂
∗
) + 𝜅𝑑

1
�̃� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
))

= 𝜇𝐺 (⋅, 𝜂
∗
) (𝑑
2
(𝜓
0
(𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝜅𝑑
1
(𝑧
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝑎

1
(𝑞
0
(𝜂
∗
) + 𝛼 (𝜂

∗
)) ,

(𝐴 + 𝑖𝛽) �̃� +
̃
𝜆𝜉
0
+ 𝜏
∗ 𝜇

𝜂
∗
𝐺 (⋅, 𝜂

∗
)

× (𝑑
2
�̃� (𝜂
∗
) + 𝜅𝑑

1
�̃� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
))

= −

𝜇

𝜂
∗
𝐺 (⋅, 𝜂

∗
) (𝑑
2
(𝜓
0
(𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝜅𝑑
1
(𝑧
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝑎

1
(𝑞
0
(𝜂
∗
) + 𝛼 (𝜂

∗
)) ,

(𝐴
0
+ 𝑖𝛽) 𝑞 +

̃
𝜆𝜌
0
− 𝜏
∗
𝐽 (⋅, 𝜂
∗
)

× (𝑑
2
�̃� (𝜂
∗
) + 𝜅𝑑

1
�̃� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
))

= 𝐽 (⋅, 𝜂
∗
) (𝑑
2
(𝜓
0
(𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝜅𝑑
1
(𝑧
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝑎

1
(𝑞
0
(𝜂
∗
) + 𝛼 (𝜂

∗
)) ,

̃
𝜆 − 𝜏
∗
(𝑑
2
�̃� (𝜂
∗
) + 𝜅𝑑

1
𝑧 (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
))

= 𝑑
2
(𝜓
0
(𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝜅𝑑
1
(𝑧
0
(𝜂
∗
) + 𝛾

(𝜂
∗
)) + 𝑎

1
(𝑞
0
(𝜂
∗
) + 𝛼 (𝜂

∗
)) .

(59)

By letting 𝜙 := 𝜓
0
− 𝜇𝐺(⋅, 𝜂

∗
), 𝜉 = 𝑧

0
+ (𝜇/𝜂

∗
)𝐺(⋅, 𝜂

∗
), and

𝜌 = 𝑞
0
− 𝐽(⋅, 𝜂

∗
) as before, we obtain

(𝐴 + 𝑖𝛽) �̃� +
̃
𝜆𝜙 = 0, (60)

(𝐴 + 𝑖𝛽) �̃� +
̃
𝜆𝜉 = 0, (61)

(𝐴
0
+ 𝑖𝛽) 𝑞 +

̃
𝜆𝜌 = 0, (62)

̃
𝜆 − 𝜏
∗
(𝑑
2
�̃� (𝜂
∗
) + 𝜅𝑑

1
�̃� (𝜂
∗
) + 𝑎
1
𝑞 (𝜂
∗
)) =

𝑖𝛽

𝜏
∗
. (63)

Multiplying (60) by𝑑
2
𝜙, (61) by −𝜂∗𝜅𝑑

1
𝜉, and (62) by 𝑎

1
𝜌 and

adding the resultants to each, we obtain

− 𝑑
2
𝜇�̃� (𝜂
∗
) − 𝜅𝑑

1
𝜇�̃� (𝜂
∗
) − 𝑎
1
𝑞 (𝜂
∗
)

+
̃
𝜆 (𝑑
2





𝜙





2

− 𝜂
∗
𝜅𝑑
1





𝜉





2

+ 𝑎
1





𝜌





2

)

+ 2𝑖𝛽∫ (𝑑
2
�̃�𝜙 − 𝜂

∗
𝜅𝑑
1
�̃�𝜉 + 𝑎

1
𝑞 𝜌) = 0.

(64)

From (49) and (63), the above equation implies that

𝑖𝛽

𝜇

(𝜏
∗
)
2
+ 2𝑖𝛽∫ (𝑑

2
�̃�𝜙 − 𝜂

∗
𝜅𝑑
1
�̃�𝜉 + 𝑎

1
𝑞 𝜌) = 0. (65)

Multiplying (60) by 𝑑
2
�̃�, (61) by −𝜂∗𝜅𝑑

1
�̃� and (62) by 𝑎

1
𝑞

and adding the resultants to each, we have

𝑑
2






𝐴
1/2
�̃�







2

− 𝜂
∗
𝜅𝑑
1






𝐴
1/2
�̃�







2

+ 𝑎
1






𝐴
1/2

0
𝑞







2

+ 𝑖𝛽 (𝑑
2
‖�̃�‖
2
− 𝜂
∗
𝜅𝑑
1
‖�̃�‖
2
+ 𝑎
1





𝑞





2

)

+
̃
𝜆∫ (𝑑

2
�̃�𝜙 − 𝜂

∗
𝜅𝑑
1
�̃�𝜉 + 𝑎

1
𝑞𝜌) = 0.

(66)

From (65), we have

𝑑
2






𝐴
1/2
�̃�







2

− 𝜂
∗
𝜅𝑑
1






𝐴
1/2
�̃�







2

+ 𝑎
1






𝐴
1/2

0
𝑞







2

+ 𝑖𝛽 (𝑑
2
‖�̃�‖
2
− 𝜂
∗
𝜅𝑑
1
‖�̃�‖
2
+ 𝑎
1





𝑞





2

) =
̃
𝜆

𝜇

2(𝜏
∗
)
2
,

(67)

and the real part is

𝑑
2






𝐴
1/2
�̃�







2

− 𝜂
∗
𝜅𝑑
1






𝐴
1/2
�̃�







2

+ 𝑎
1






𝐴
1/2

0
𝑞







2

=

𝜇

2(𝜏
∗
)
2
Re ̃𝜆.

(68)

Now, multiplying (60) by 2𝑖𝛽�̃� and (61) by ̃𝜆�̃� and applying
(54) to resultants, we obtain





𝐴
1/2
�̃�







2

− (𝜂
∗
)
2



𝐴
1/2
�̃�







2

= 0, ‖�̃�‖
2
− (𝜂
∗
)
2

‖�̃�‖
2
= 0,

(69)

and thus (68) implies that

𝜇

2(𝜏
∗
)
2
Re ̃𝜆 = (𝑑

2
−

𝜅𝑑
1

𝜂
∗
)






𝐴
1/2
�̃�







2

+ 𝑎
1






𝐴
1/2

0
𝑞







2

(70)
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which is positive since 𝑑
2
− (𝜅𝑑

1
/𝜂
∗
) > 0 and 𝑎

1
> 0.

We have Re 𝜆(𝜏∗) > 0 for 𝛽 > 0, and thus, by the Hopf-
bifurcation theorem in [19], there exists a family of periodic
solutions which bifurcates from the stationary solution as 𝜏
passes 𝜏∗.

Now, we show that there exists a unique 𝜏∗ > 0 such that
(0, 0, 𝜂

∗
, 𝜏
∗
) is a Hopf point; thus 𝜏∗ is the origin of a branch

of nontrivial periodic orbits.

Lemma 6. Suppose that 𝑑
2
− (𝜅𝑑

1
/𝜂
∗
) > 0. Let 𝐺

𝛽
, 𝐺
𝛽
, and

𝐽
𝛽
be Green functions of the differential operators 𝐴 + 𝑖𝛽,

𝐴 + 𝑖/𝛽 and 𝐴
0
+ 𝑖𝛽 satisfying (42), (43), and (44), respec-

tively. Then, 𝑑
2
Re(𝐺
𝛽
(𝜂
∗
, 𝜂
∗
)) − (𝜅𝑑

1
/𝜂
∗
)Re(𝐺

𝛽
(𝜂
∗
, 𝜂
∗
)) and

Re(𝐽
𝛽
(𝜂
∗
, 𝜂
∗
)) are strictly decreasing in 𝛽 ∈ R+ with

Re𝐺
0
(𝜂
∗
, 𝜂
∗
) = 𝐺 (𝜂

∗
, 𝜂
∗
) , lim

𝛽→∞

Re𝐺
𝛽
(𝜂
∗
, 𝜂
∗
) = 0.

(71)

Moreover, 𝑑
2
Im(𝐺
𝛽
(𝜂
∗
, 𝜂
∗
)) − (𝜅𝑑

1
/𝜂
∗
) Im(𝐺

𝛽
(𝜂
∗
, 𝜂
∗
)) > 0

and Im(𝐽
𝛽
(𝜂
∗
, 𝜂
∗
)) < 0 for 𝛽 > 0.

Proof. First, we have (𝐴 + 𝑖𝛽)−1 = (𝐴 − 𝑖𝛽)(𝐴2 + 𝛽2)−1. So,
if 𝐿(𝛽) := Re(𝐴 + 𝑖𝛽)−1, then 𝐿(𝛽) = 𝐴(𝐴2 + 𝛽2)−1. More-
over, 𝐿(𝛽) → 𝐴

−1 as 𝛽 → 0 and 𝐿(𝛽) → 0 as 𝛽 →

∞, which results in the corresponding limiting behavior for
Re(𝐺
𝛽
(𝜂
∗
, 𝜂
∗
)).

To show that 𝛽 → (𝑑
2
Re(𝐺
𝛽
(𝜂
∗
, 𝜂
∗
)) − (𝜅𝑑

1
/𝜂
∗
)

Re(𝐺
𝛽
(𝜂
∗
, 𝜂
∗
))) is strictly increasing, we define ℎ(𝛽)(𝑥) :=

𝑑
2
𝐺
𝛽
(𝑥, 𝜂
∗
) − (𝜅𝑑

1
/𝜂
∗
)𝐺
𝛽
(𝑥, 𝜂
∗
) − 𝑑
2
𝐺(𝑥, 𝜂

∗
) + (𝜅𝑑

1
/𝜂
∗
)𝐺

(𝑥, 𝜂
∗
). Then (in the weak sense initially)

(𝐴 + 𝑖𝛽) ℎ (𝛽) = −𝑖𝛽(𝑑
2
𝐺 (⋅, 𝜂

∗
) −

𝜅𝑑
1

𝜂
∗
𝐺 (⋅, 𝜂

∗
)) . (72)

As a result, ℎ(𝛽) ∈ 𝐷(𝐴)C and ℎ : R+ → 𝐷(𝐴)C is
differentiable with 𝑖ℎ(𝛽) + (𝐴 + 𝑖𝛽)ℎ(𝛽) = −𝑖(𝑑

2
𝐺(⋅, 𝜂
∗
) −

(𝜅𝑑
1
/𝜂
∗
)𝐺(⋅, 𝜂

∗
)), and therefore

(𝐴 + 𝑖𝛽) ℎ

(𝛽) = −𝑖 (𝑑

2
𝐺
𝛽
(⋅, 𝜂
∗
) −

𝜅𝑑
1

𝜂
∗
𝐺
𝛽
(⋅, 𝜂
∗
)) . (73)

Thus, we get

− 𝑖 (𝑑
2
−

𝜅𝑑
1

𝜂
∗
)ℎ

(𝛽) (𝜂

∗
)

= ∫ (𝐴 + 𝑖𝛽)
2

ℎ

(𝛽) ℎ

(𝛽) (𝑥)𝑑𝑥

= ∫ (𝐴 + 𝑖𝛽) ℎ

(𝛽) ⋅ (𝐴 + 𝑖𝛽) ℎ


(𝛽)𝑑𝑥

=






𝐴ℎ

(𝛽)







2

− 𝛽
2



ℎ

(𝛽)







2

𝑑𝑥 + 2𝑖𝛽






𝐴
1/2
ℎ

(𝛽)







2

.

(74)

It follows that

−(𝑑
2
−

𝜅𝑑
1

𝜂
∗
)Re (ℎ (𝛽) (𝜂∗)) = 2𝛽


𝐴
1/2
ℎ

(𝛽)







2

> 0.

(75)

Since (𝑑
2
− (𝜅𝑑

1
/𝜂
∗
)) > 0, we have (𝜕/𝜕𝛽)(𝑑

2
Re(𝐺
𝛽
(𝜂
∗
,

𝜂
∗
)) − (𝜅𝑑

1
/𝜂
∗
)Re(𝐺

𝛽
(𝜂
∗
, 𝜂
∗
))) < 0 for 𝛽 > 0.

In order to show (𝑑
2
Im(𝐺
𝛽
(𝜂
∗
, 𝜂
∗
))−(𝜅𝑑

1
/𝜂
∗
) Im(𝐺

𝛽
(𝜂
∗
,

𝜂
∗
))) > 0, from (72), we have

− 𝑖𝛽(𝑑
2
−

𝜅𝑑
1

𝜂
∗
)ℎ (𝛽) (𝜂

∗
)

= ∫𝐴 (𝐴 + 𝑖𝛽) ℎ (𝛽) (𝑥) ℎ (𝛽) (𝑥) 𝑑𝑥

=




𝐴ℎ (𝛽)






2

+ 𝑖𝛽






𝐴
1/2
ℎ (𝛽)







2

(76)

which implies that −𝛽(𝑑
2
− (𝜅𝑑

1
/𝜂
∗
)) Im ℎ(𝛽)(𝜂∗) =

‖𝐴ℎ(𝛽)‖
2
> 0. Since (𝑑

2
− (𝜅𝑑

1
/𝜂
∗
)) > 0, we have Im ℎ(𝛽)

(𝜂
∗
) < 0 for 𝛽 > 0.
Let 𝑘(𝛽)(𝑥) := 𝐽

𝛽
(𝑥, 𝜂
∗
) − 𝐽(𝑥, 𝜂

∗
). Then we have (𝜕/𝜕𝛽)

(Re(𝐽
𝛽
(𝜂
∗
, 𝜂
∗
))) < 0 and Im 𝐽

𝛽
(𝜂
∗
, 𝜂
∗
) < 0 for 𝛽 > 0.

Theorem 7. Under the same condition as in Theorem 4, for
a unique critical point 𝜏∗ > 0, there exists a unique, purely
imaginary eigenvalue 𝜆 = 𝑖𝛽 of (31) with 𝛽 > 0.

Proof. We only need to show that the function (𝑢, 𝑧,

𝑞, 𝛽, 𝜏) → 𝐸(𝑢, 𝑧, 𝑞, 𝑖𝛽, 𝜏) has a unique zero with 𝛽 > 0 and
𝜏 > 0. This means solving the system of (31) with 𝜆 = 𝑖𝛽,
𝑢 = V−𝜇𝐺(⋅, 𝜂∗), 𝑧 = 𝑝+(𝜇/𝜂∗)𝐺(⋅, 𝜂∗), and 𝑞 = 𝑤−𝐽(⋅, 𝜂∗),

(𝐴 + 𝑖𝛽) V = −𝜇𝛿
𝜂
∗ ,

(𝐴 + 𝑖𝛽) 𝑧 =

𝜇

𝜂
∗
𝛿
𝜂
∗ ,

(𝐴
0
+ 𝑖𝛽) 𝑞 = −𝛿

𝜂
∗ ,

𝑖𝛽

𝜏
∗
= 𝑑
2
(V (𝜂∗) + 𝜇𝐺 (𝜂∗, 𝜂∗) + 𝛾 (𝜂∗))

+ 𝜅𝑑
1
(𝑧 (𝜂
∗
) −

𝜇

𝜂
∗
𝐺 (𝜂
∗
, 𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝑎
1
(𝑞 (𝜂
∗
) + 𝐽 (𝜂

∗
, 𝜂
∗
) + 𝛼

(𝜂
∗
)) .

(77)

The real and imaginary parts of the above equation are given
by

𝛽

𝜏
∗
= 𝑑
2
Im (−𝜇𝐺

𝛽
(𝜂
∗
, 𝜂
∗
))

+ 𝜅𝑑
1
Im(

𝜇

𝜂
∗
𝐺
𝛽
(𝜂
∗
, 𝜂
∗
)) − 𝑎

1
Im (𝐽
𝛽
(𝜂
∗
, 𝜂
∗
)) ,

0 = 𝑑
2
(Re (−𝜇𝐺

𝛽
(𝜂
∗
, 𝜂
∗
)) + 𝜇𝐺 (𝜂

∗
, 𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝜅𝑑
1
(Re(

𝜇

𝜂
∗
𝐺
𝛽
(𝜂
∗
, 𝜂
∗
)) −

𝜇

𝜂
∗
𝐺 (𝜂
∗
, 𝜂
∗
)

+𝛼

(𝜂
∗
) )

+ 𝑎
1
(Re (−𝐽

𝛽
(𝜂
∗
, 𝜂
∗
)) + 𝐽 (𝜂

∗
, 𝜂
∗
) + 𝛼

(𝜂
∗
)) .

(78)
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Since 𝑑
2
Im(−𝜇𝐺

𝛽
(𝜂
∗
, 𝜂
∗
)) + 𝜅𝑑

1
Im((𝜇/𝜂∗)𝐺

𝛽
(𝜂
∗
, 𝜂
∗
)) −

𝑎
1
Im(𝐽
𝛽
(𝜂
∗
, 𝜂
∗
)) > 0 by Lemma 6, there is a critical point

𝜏
∗, provided the existence of 𝛽. We now define

𝑇 (𝛽) = 𝑑
2
(Re (−𝜇𝐺

𝛽
(𝜂
∗
, 𝜂
∗
)) + 𝜇𝐺 (𝜂

∗
, 𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝜅𝑑
1
(Re(

𝜇

𝜂
∗
𝐺
𝛽
(𝜂
∗
, 𝜂
∗
))

−

𝜇

𝜂
∗
𝐺 (𝜂
∗
, 𝜂
∗
) + 𝛾

(𝜂
∗
) )

+ 𝑎
1
(Re (−𝐽

𝛽
(𝜂
∗
, 𝜂
∗
)) + 𝐽 (𝜂

∗
, 𝜂
∗
) + 𝛼

(𝜂
∗
)) .

(79)

Using Lemma 6, we have 𝑇(𝛽) > 0 for 𝛽 > 0 and 𝑇(0) =
𝑑
2
𝛾

(𝜂
∗
) + 𝜅𝑑

1
𝛾

(𝜂
∗
) + 𝑎
1
𝛼

(𝜂
∗
) = (𝑑

2
−𝜅𝑑
1
√1 + 𝜇)𝛾


(𝜂
∗
) +

𝑎
1
𝛼

(𝜂
∗
) < 0 if 𝑑

2
> 𝜅𝑑
1
√1 + 𝜇. Moreover,

lim
𝛽→∞

𝑇 (𝛽) = 𝑑
2
(𝜇𝐺 (𝜂

∗
, 𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝜅𝑑
1
(−

𝜇

𝜂
∗
𝐺 (𝜂
∗
, 𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝑎
1
(𝐽 (𝜂
∗
, 𝜂
∗
) + 𝛼

(𝜂
∗
))

= (𝑑
2
−

𝜅𝑑
1

𝜂
∗
) (𝜇𝐺 (𝜂

∗
, 𝜂
∗
) + 𝛾

(𝜂
∗
))

+ 𝜅𝑑
1
𝛾

(𝜂
∗
) + 𝑎
1
(𝐽 (𝜂
∗
, 𝜂
∗
) + 𝛼

(𝜂
∗
)) > 0

(80)

for 𝑑
2
> (𝜅𝑑

1
/𝜂
∗
) and 𝑎

1
> 0. Hence, there exists a unique

𝛽 > 0.

The following theorem summarizes the results above.

Theorem 8. Suppose that (1/2) − 𝑎(1 − 𝑠
0
) < (𝜇/(1 + 𝜇)) and

𝐶

(𝛾(𝜂); 𝑎(𝛼(𝜂) − 𝑠

0
)) + 𝜅𝜒(𝛾(𝜂))𝛾(𝜂) > 𝜅√1 + 𝜇𝜒


(𝛾(𝜂))

for all 𝜂 > 0. Then (18) and (10) have at least one stationary
solution (𝑢∗, 𝑧∗, 𝑞∗, 𝜂∗), where 𝑢∗ = 𝑧

∗
= 𝑞
∗
= 0, and

(V∗, 𝑝∗, 𝑤∗, 𝜂∗) where V∗(𝑥) = 𝑔(𝑥, 𝜂∗), 𝑝∗(𝑥) = 𝑔(𝑥, 𝜂∗) and
𝑤
∗
(𝑥) = 𝑗(𝑥, 𝜂

∗
) − 𝑠
0
, for all 𝜏 and for 𝜅 < 𝜅

𝑐
, respectively,

where 𝜅
𝑐
is a solution of

𝐶 (𝛾 (∞) ; 𝑎 (𝛼 (∞) − 𝑠
0
))

+ 𝜅
𝑐
𝜒

(𝛾 (∞)) (𝛾


(∞) + 𝜇𝐺 (∞,∞)) = 0.

(81)

Assume that 𝐶(𝛾(𝜂∗); 𝑎(𝛼(𝜂∗) − 𝑠
0
)) + 𝜅𝜒


(𝛾(𝜂
∗
)) 𝛾(𝜂

∗
) >

(𝜅/𝜂
∗
)𝜒

(𝛾(𝜂
∗
)). Then there exists a unique 𝜏∗ such that

the linearization −𝐴 + 𝜏∗𝐵 has a purely imaginary pair of
eigenvalues. The point (0, 0, 0, 𝜂∗, 𝜏∗) is then a Hopf point
for (18), and there exists a 𝐶0-curve of nontrivial periodic
orbits for (18) and (10), bifurcating from (0, 0, 0, 𝜂∗, 𝜏∗) and
(V∗, 𝑧∗, 𝑤∗, 𝜂∗, 𝜏∗), respectively.
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