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We prove the H?-stability and L*-error analysis of the spectral Galerkin method in space and time with the implicit/explicit Euler
scheme for the 2D g-Navier-Stokes equations in bounded domains when the initial data belong to H'.

1. Introduction

Let Q be a bounded domain in R* with sufficiently smooth
boundary I'. In this paper, we study the spectral Galerkin
method in space and time for the following 2D g-Navier-
Stokes equations:

ou _

o vAu+ (u-V)u+Vp = f(x,t)

in (0,+00) x Q,

V-(gu)=0 in (0,+00) x Q,
u=0 on (0,+00) xT,

u(0,x) =uy(x), x€Q,

)

where u = u(x,t) = (uy,u,) is the unknown velocity vector,
p = p(x,t) is the unknown pressure, v > 0 is the kinematic
viscosity coefficient, and u is the initial velocity.

The g-Navier-Stokes equations are a variation of the
standard Navier-Stokes equations. More precisely, when g =
const we get the usual Navier-Stokes equations. The 2D g-
Navier-Stokes equations arise in a natural way when we study
the standard 3D problem in thin domains. We refer the reader
to [1] for a derivation of the 2D g-Navier-Stokes equations
from the 3D Navier-Stokes equations and a relationship
between them. As mentioned in [1], good properties of the
2D g-Navier-Stokes equations can lead to an initiate of the
study of the Navier-Stokes equations on the thin three-
dimensional domain Q; = Q x (0, g). In the last few years,

the existence and long-time behavior of both weak and strong
solutions to the 2D g-Navier-Stokes equations have been
studied extensively (cf. [2-9]). In this paper, we aim to study
numerical approximation of the strong solutions to problem
(1). To do this, we assume that

(G) g € WH™(Q) such that

0<my<g(x) <M,
Vx = (x1,x,) € Q, (2)

|Vg|oo < mo)ti/z,

where A, > 0 is the first eigenvalue of the g-
Stokes operator in Q (i.e., the operator A defined in
Section 2.1 below);

(F) f € WM°(R*; H,); that is, f, f, € LY(R"; H,).

In this paper, in order to study the numerical approxima-
tion of strong solutions to the 2D g-Navier-Stokes equations
we will use the spectral Galerkin method in space and time,
which is based on the eigen-subspaces of the g-Stokes opera-
tor. As mentioned in [10] for the Navier-Stokes equations,
this method enables us to avoid solving the fully nonlinear
g-Navier-Stokes equations on the low-frequency subspace,
whereas to obtain the low-frequency component of the
numerical solution, the usual multilevel spectral methods



and the postprocessing Galerkin methods need to solve the
fully nonlinear g-Navier-Stokes equations on the low-fre-
quency subspace. In what follows, we will explain the spectral
Galerkin method used in the paper. For the related function
spaces, we refer the reader to Section 2.1.

Let wy,w,,... and A,A,,... be the eigenvectors and
eigenvalues of the g-Stokes operator. For a fixed integer
m, let P, be the orthogonal projection of H, onto H,, =
spanf{w, ..., w,,}. Then, the spectral Galerkin method in
space is defined as follows: find u,,(t) € H,, such that

Uy + VAU, +vCu,, + P,.B(u,,, ,,) = P, f,
3)
t>0, u,(0) =P,u,.

In order to simplify the implementation of the scheme, we
restrict ourselves to the semi-implicit Euler scheme applied to
the spectral Galerkin method in space. We consider a spectral
Galerkin method in space and time with the implicit/explicit
Euler scheme: find u:’n“ (n > 0) such that

1 +1 +1 +1 +1
~ (™ = ) +v AU +vCul + P, B (ul, 1) = P, ™,
0

t>0, u, =P, u,
(4)

where At > 0 is the time step size and

1 1 Lpi
£ EJ F®d, t,=nAt 5)
t,

Here, the linear term is treated implicitly to avoid serve
time step limitations, whereas the nonlinear term is kept
explicitly so that the corresponding discrete system is easily
invertible. It is well known that this type of scheme is only
stable under some restriction on the time step size. We will
obtain H 2-stability uniform in time stated in Theorem 13,
provided that the following condition holds

CAtln 2 <1 (6)
Ay

for some positive constant C depending on the data (1, v, f,
Q). As mentioned in [11] for the case of 2D Navier-Stokes
equations, the stability condition (6) is a significant improve-
ment compared with the results provided by the nonlinear
Galerkin method [12] and the multilevel method [13, 14].

We also derive an L*-error estimate of the numerical
solution u,, under the stability condition (6):

e (8,) — P < T (1) 1 IRGCI (12 4 )

Vn>1,
(7)
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where Cy = sup,sol f (O, T(t) = min{l,t} and K denotes a
general positive constant depending only on the data (v, Q,
IVgleos A1 Cy, lluoll). Noting that Tﬁl(tn) is a singular factor
neart = 0.

Compared to He’s works [11] on the spectral method of
the 2D Navier-Stokes equations, here we have to address
some additional difficulties. Firstly, to treat the more general
condition V - (gu) = 0, instead of the usual function spaces
used for the Navier-Stokes equations, we use the function
spaces H,,V, which are defined suitably for the g-Navier-
Stokes equations (see Section 2.1 for details). Secondly, we
have to deal with the term Cu in the equation, which
only appears for the g-Navier-Stokes equations. It is worthy
noticing that when g = 1, we of course recover the results for
the Navier-Stokes equations in [11].

The paper is organized as follows. In the next section, we
recall some results on function spaces and inequalities for
the nonlinear terms related to the g-Navier-Stokes equations,
and some discrete Gronwall inequalities are frequently used
later. In Section 3, we prove several estimates for the strong
solution and the Galerkin approximate solutions of problem
(1). In Section 4, we study the error analysis of the spectral
Galerkin method in space. Stability and error analysis of the
spectral Galerkin method in space and time are discussed in
the last section.

2. Preliminaries

2.1. Function Spaces and Operators. Let LZ(Q,g) = (L}(Q))?
and HS(Q, g) = (HS(Q))2 be endowed, respectively, with the
inner products

(w,v)g = J-Qu ~vgdx, u,vEe L’ (Qg),

2
(W v), = J;; ZIVMJ- Vvigdx,  u=(u,uy), (8)
=

V= (Vl’ Vz) € HS (Q:g))

and norms |u|* = (u,u)g, lul? = ((u, u))g. Thanks to assump-

tion (G), the norms | - | and || - || are equivalent to the usual
ones in (L*(Q))” and in (H, (Q))*.
Let
7 ={ue(CQ ()" : V- (gu) = 0}. 9)

Denote by H, the closure of 7" in L*(Q, g), and denote by
V, the closure of 7' in HS(Q, g). It follows that V, ¢ H, =
H; C V;, where the injections are dense and continuous. We
will use || - ||, for the norm in Vg', and (-, -) for duality pairing

!
between Vy and Vg.
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We now define the trilinear form b by

b(u,v,w) = i J ul-%w-gdx, (10)
iFila0x; !

whenever the integrals make sense. It is easy to check that if
u,v,w € V,, then

bu,v,w)=-buw,v). 11)
Hence

b(u,v,v) =0, Vu,ve Vg. (12)

SetA:V, — V; by (Au,v) = ((u, v))g, B:V, xV, —
Vg' by (B(u,v),w) = b(u,v,w). Denote D(A) = {u € Vy
Au € Hg}, then D(A) = HZ(Q,g) NV, and Au = P, Au, for
allu € D(A), where P, is the ortho-projector from L*(Q, g9)

onto H,. Consequently, there exists an orthogonal basis of H,,
consisting of the eigenvectors w; of A:

Aw;=Aw;, 0<A <A<,
(13)

Aj— 0o as j — oo.

Furthermore, we can also define the sth power A® of A for all
s € R. The space D(A®) is the Hilbert space when equipped
with the scalar product (A%, A®) and norm |A*|, where (-, -)
and | - | denote the scalar product and norm in Hy. In
particular, D(A°) = H, and D(A'?) = Vy.

Let H,, = span{w,...,w,,}. Then, the following esti-
mates hold:

MV <P eV [l < Anlval’

(14)
v, € H,,

Airlnl” < Jwul* Vw0, € VO\H,. (15

Using the Holder inequality, the Ladyzhenskaya inequal-
ity (when n = 2):

lulps < clul?1Vul'?,  Vu e Hy (Q), (16)

and the interpolation inequalities, as in [15, 16], one can prove
the following.

Lemma 1. Ifn = 2, then
b (u, v, w)|

/2y, 11/2 1/2 1/2

[Vl wl ™ lwl ™7,
Vu,v,weVg,

[ colual2u

1/2 1/2 1/2 1/2
colul " lull? vl |Aw] " |w] 2,
Vu eV, veD(A), we H,

IN

colul' 1 Aul" ||v]| Jwl ,
YueD(A), ve Vy, we Hg,

¢ lul IVl [w]?| Aw| 2,
| Yu € Hgv € Vg, we DA,

(17)
16 (u, v, )| + b (w, v, w)| < colul " ul v AV |w]

Vu eV, veD(A), weH,

(18)
16 (u, v, w)| + |b (w, v, u)|
1/2
| Auf® )
< 1+In luall 1] |l (19)
< Al

Yue D(A), veV, weH,

where ¢, are appropriate constants depending only on Q.

Lemma 2 (see [3]). Let u € L*(0,T; D(A)) n L%(0, T; Vg),
then the function Bu defined by

(Bu(t),v)g =bw(t),u(t),v), Vve Hy, ae.t¢ [0,T7,

(20)

belongs to L*(0, T; H ) and therefore also belongs to L*(0,T;
H).
g

Lemma 3 (see [4]). Letu € L*(0,T; Vg), then the function Cu
defined by

(Cut).v), - ((% V)
9
= b<y,u,v), Vv eV,
g9

belongs to L*(0, T; Hy), and hence also belongs to L*(0, T; V;).
Moreover,

(1)

Vg]
[Cu(@)| < ——=-lu®)|, forae te(0,T),
my
vl (22)
v
ICu(®)l, < =2 u(ll,  for ac.t € (0,T).
myA;
Since

g (E)e e



we have

(—Au,v)y = (1, v)), + <<% . V) u, v)

g

= (Au,v)g+ <(E -V>u,v> , Vu,veV,.
9 g
(24)

2.2. Discrete Gronwall Inequalities. Hereafter, we will fre-
quently use the following modified discrete Gronwall lem-
mas.

Lemma 4 (see [12]). Let 0 < At < 1,ay, g hy for integers
k > 0 be nonnegative numbers such that

1
A_t (ak+1 - ak) < GG + hk Y0 < k < ] (25)

I
] J
MY ge<ay,  AtY hyp <a, (26)
k=0 k=0
for ] <ny—1and
ko+1y—1 ko+mny—1
At Z gk S &y, At Z h < ey,
k=k0 k:ko
(27)
ko+ny—1
At Z ag < [2) + A3,
k=kq

for] >ny, 0<ky<]J+1-ny, then
ap <€ (ag+ oy +az). (28)

Lemma 5 (see [13]). Let a and ay, by, hy, k > 0 be nonnegative
numbers such that

(1+yAt)ak+1 —ak+bk+1AtShkAt VOSkS] (29)
Then,

J+1
ap, + AtZ(l +pAt) TPy,
k=1
(30)

J
< (1+yar) T ag+ A (14 yar) T h.
k=0

Lemma 6 (see [11]). Let 8 and ay, by, gy, by for integers k > 0
be nonnegative numbers such that

a,+AtY B S ALY gag+ Aty g+ ¥n2 0. (3])
k=0 k=0 k=0

Suppose that gy At < 1, for allk > 0, and set o, = (1 - g At) ™,
Then,

a, + Athk < exp {AtZngk} (Achk + ﬂ) Vn > 0.
k=0

k=0 k=0
(32)
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Moreover, if

n n n
a, + Athk < Atngak + Achk +pB YO<r<n,
k=r k=r k=r
(33)

and g /At < 1 for all 0 < k < n, then

a, + Athk < exp {AtZakgk} (Atk;)hk + ﬂ>, G4)

k=r k=0

VO<r<n

3. Existence and Some Estimates of
Strong Solutions

In this section, we will prove some estimates for the strong
solution u and the Galerkin approximate solutions u,, of
problem (1). First, with the operators defined in Section 2.1,
one can write this problem as follows:

%+vAu+vCu+B(u,u):f(t), t>0, u(0)=u,.
(35)

Definition 7. For u, € V, given, a strong solution of problem

(1) isa functionu € L*(0, T; D(A))N C([0, T]; V) forall T > 0
such that (0) = u,, and u satisfies (35) in H, forae.t>0.

Theorem 8. Suppose that f, f, € L°(R*;H,) and u, € V.
Then, problem (1) has a unique strong solution u satisfying the

following estimates for all t > 0,

2 -yt 2 1 2
lu(t)|” <e °1|u0| +—Cf,

VM
t , ) (36)
VYoAys 2 2 VYAt 2
e ul|"ds < —|uy|” + e Cs,
J, e s < e
t 1 tC2
j lu (Pds < — Jug|* + 55— (37)
0 o Y
lu@®)I* < C,, > (38)

() (Ju, O +1Au OF) + 7 @) |u, O < F,  (39)

t
J e—V}’oM(t—s) (IAu|2 n |”t|2 +7(s) ””t"z
0 (40)

+ 77 (s) lutt|2 +72(s) |Aut|2) ds < H,

where y, = 1= (IVglo,/myA,?) > 0, 7(t) = min{1,t}, C; =
sup,ol f1, Cyupp = Cllugl, Cy), and K is a generic positive
constant depending only on the data (v,Q,|Vgls,A1>Cys
llugl). Moreover, all above estimates are also valid for the
Galerkin approximate solutions u,, of problem (35).

Proof. We refer to [3] for the proof of existence and unique-
ness of the strong solution u and estimates (36)-(38). We now
prove (39)-(40).



Abstract and Applied Analysis

First, we take the scalar product of (35) with MMt Ay
and v~'e""M'y,, respectively, and add the resulting relations
to obtain

d _
E (ev}’o/ht”u"z) + eVVO/\lt (V|Au|2 +v 1|ut|2)

+eMhip (u, u, Au + vilut) @
41

-1
+ ve’%Alt(Cu, Au+v ut)g
= por €Ml + 7N (f, Au + v_lut) .

Using Lemmas 1 and 3 and Cauchy’s inequality, we have

'b (u, u, Au + vilut)' < :11 (leu|2 + vil|ut|2) + clul*ul®

_ Sy
'v(Cu,Au +v lut) | < (‘u|Au|2 +97 uy| )+c||u||2,

o | —

g

'(f, Au+ v_lu,)| < é (leul2 + v_1|ut|2) + c|f|2.
(42)

By combining these inequalities with (41), we get

d VYA, t 2 1 VYol t 2 -1 2
— (e lull®) + = (vIAul™ + v |uy|
L)« G )

<e VA clul"flull” + ¢ lul|” + ce .
N (A cluful + ) full + ™| £

Integrating (43) from 0 to t and using (36)-(38), we obtain,
after multiplying by e """, that

et Jtew"’llsr (s) (7/|Au|2 + v_1|u,|2) ds<H Vt=0.
° (49
In view of (44), there exists a sequence ¢, — 0 such that
7° (&) (v|Au (ek)|2 +v7 |, (ek)|2) — 0. (45)
Now, differentiating (35) with respect to ¢ yields
Uy + vAu, + vCu, + B (uy,u) + B(u,u,) = f,. (46)

We take the scalar product (46) with 2u, to obtain

d
E]utf + 21)||ut||2 + 27/(Cut,ut)g

(47)
+2b (u, u,uy) + 26 (u, uy, u,) = 2(f;s ut)g.
By Lemma 3, we have
d
L+ 2l
Vg
< 2V|—|F/O2””t”2 +2|b (1) (48)
MyA;

+2 lb (”> Ups “t)l +2(fp ”t)g-

5
Using Lemma 1 and Cauchy’s inequality, we get
d, 2 2, 2 2
E|ut| + vyl < clu|llul” + | f] (49)
Multiplying the last inequality by 7(¢)e”"!*, we have
% (eWMltT (t) |ut|2)
+ vyoev]/o)ntT (t) “ut"2 (50)

< eMM! (1 + VYA + c||u||2) |ut|2 + cevy°llt|ft|2.
Therefore, integrating (50) from ¢, to t, letting ¢, — 0, and

using (44) and (45), one finds, after multiplying by e™"M?,
that

t
T(t) |u, (1‘)|2 +ye Mt J MM () ||ut||2ds <H Vt=0.
0
(51)
Moreover, in view of (35), (36)-(38), and (51), we see that
2 2
() [Au@®F < c|f, O] +cr ) Ju, (0]
(52)
+cu®Plu@®)* <H vt=o0.
Also, in view of (51), there exists a sequence e, — 0 such that

. (&) ||ut(ek)||2 — 0. (53)

We again take the scalar product (46) with 2Au, to obtain

%"utnz + 27/|Aut|2 +2v(Cu,, Aut)g
(54)
+2b (4, 1, Aug) + 2b (uuy, Auy) = 2(f,, Auy),.

By Lemma 3 and Cauchy’s inequality, we have

d
E”ut”z + 21/|Aut|2

v Vgl A
SPSLLI SYPW LN 92|°° Lo
MyA; "y

+2b | (w1 Auty)| + 2 [b (1 1, Au)| + 2(f, Awy)
(55)

Using Lemma 1, Cauchy’s inequality, and Young’s inequality,
we obtain

d

K -

Vgl A" )
[oe)

< c||u||4||ut||2 + c|ft|2 +v o ! ||ut||2.
0



VYot

Multiplying the last inequality by 7°(t)e , we have

d,, v
o (M2 (t) (A )+ oyt (8) €M A, &

< cey"")“t|ft|2

+ MM (2 + v, + cllul* +

\Vi AI/Z
| gloo 1 >T(t) “ut"2.
0

2m,
(57)

Integrating (57) from ¢, to t, letting ¢, — 0, and using (36)-

(38), (51), and (53), we obtain, after a final multiplication by
e—vyo/\lt,

t
TZ (t) "ut (t)"2 " vyOe—WoMt J Pk 15, 2 (s) |Aut| ds< F
0

vVt > 0.
(58)
Using Lemmas 1 and 3 and (46), we deduce that
A ! A 2
e ot J 7 (t) &M |uy,[*ds
0

< Ce"’)’o"lt

(59)

t

< [ 7@ (1A | awf + | £)ds
0

Vvt > 0.

Combining (44), (51), (52), (58), and (59) yields (39) and (40).
Finally, we observe that the problem for the approximate

solution u,, is similar to problem (35), and
[ty )] < Juig] s ety O] < s (60)

so u,, satisfies the same estimates as those for the strong solu-
tion u of problem (35). ]

4. Spectral Galerkin Method in Space

For a fixed integer m, let P, be the orthogonal projection of
H, onto H,, = spanf{w,,...,w,}and Q, = I - P,,. Then,
every solution u of problem (1) can be decomposed uniquely
into

u=p+q, where p="P,u, q=Q,u. (61)

Now, we apply P, and Q,, to (35) to obtain
p +vAp+vCp+ P, B(u,u) =P, f Vt>0, (62)
q, +vAq+vCq+Q,,Bw,u)=Q,,f Vt>0, (63)

and the initial conditions p(0) = P,,u,, q(0) = Q,,u,.
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Using Theorem 8 and the property of P,,, we arrive at the
following estimates of q(t) = Q,,,u(t):

la " < HA0

(64)
@) (lg@0f + AL lq0)) < 21,4, ve=o,

m+1

t
| N (gl + 40 ol ) ds < 20052, vezo,
(65)

We now define the spectral Galerkin method as follows: find
u,,(t) € H,, such that

U, + vAu,, + vCu,, + P, B(u,,,u,,) = P, f Vt>0,

(66)

with the initial condition u,,(0) = P,,u,.

In order to give an analysis of the error u — u,, in
the L*-norm, we begin with a technical result concerning a
dual linearized g-Navier-Stokes problem which is a similar
problem to that used in [17]. We consider, for any given t > 0
and & € L*(0,; H,), the dual problem: find ®(s) € H,, such
that

(1, @), —a (@) = »(Cv, D), = b (v, 14, D) = b (14, v, D)

VYo, S
= ('V,e Yot E)g,

0<s<it,

(67)
forallv € H,, with ®(t) = 0. It is easy to see that (67) is a well-
posed problem and has a unique solution ® € L*(0,£V,) N

L*(0,; D(A)).
Next, we prove a regularity result of problem (67).

Lemma 9. Ifu, €

Vg then the solution O(s) of problem (67)
satisfies

t
e M D) + J MM (JA0] + | *) dr
N

(68)
2 ! VoA | |2
< Hexp G J ||um|| dr J e €| dr.
Yo 0
Proof. Taking v = —2® in (67), we obtain
- i|<1>|2 + 27| D) + 2%(CD, D), + 2b (D, u,,,, D)
ds 9 (69)

= —2(@, "M VO <s <t
( e f,)g s
Using Lemma 3, we have

d V N
- 10 + 2oplof” < 2|(0,. ™M) |+ 216 (@1, 0)

V0 <s <t
(70)
Using Lemma 1 and Cauchy’s inequality, we get
v 2 2
2o (@1, @)] < SO + i 0,
0
(71)
VY0 12 2phys| 2|2
2|(@ehE) | < o) + e hefef.
( )g 4 YoM l
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Then, we have

d 2 5 2
— ZoP + 2oyl
dsl | 47%” I

2 4
< i unl10F + = woss <t
Yo VYot
(72)
Multiplying this inequality by e™"*"* and using (14), we
obtain
d —VYoA1 S 2 VYo —vporis 2
- — (7M7) + —=e || D
L (e or) + = o o
2 - 4
< —cle 1""’)“S"um||2|<D|2 + —ew"’hs|f|2.
o v
Multiplying this inequality by '/ )G Jy el yields
_ j (c @) [ W Pl oo gy ?)
s
+ Doems L nlare o (7g)
< 2R [l s g2
"o

Integrating (74) from s to ¢ and noting that ®(¢t) = 0, we
obtain, after multiplying by e"*/ G [yl Pdr ot

—VYPy A S 2 VYO t—v A1 2
N (9)] *TJ MO dr

N

4 g [ualdr [* e
< ——— M o Mtim Jey°1|§|dr YO <s<t.
Yo 0
(75)

Moreover, inserting v = —2A® into (67), we get
- %ncpu2 + 21| AD[* + 29(CAD, D),
- 2{b(AD, D, u,,) + b (u,, D, AD)}  (76)
= —2(A®,eMEk) |
Using Lemma 3, (14), and Cauchy’s inequality, we have

v v
| 9|1/2| AP + [Vgl A u
oA myA,

2%(CAD, D), <2 “ol”. (77)

Therefore,
d 2 2
- a"@ll + 20y, |AD|
< 2|(4d,emh )g' +2[b (AD, D, u,,) + b (1, D, AD)|

v|Vg| A,
. %ncbuz.
moA,

(78)

Multiplying this inequality, by e""*** and using (14), we
obtain

d

—vYorys ~VYohi s
- (ON) 4 vpe A
2 ’(A(D,Ek)g|
(79)
+ Ze—v]’g/hs Ib (A(D, D, um) +b (um, D, A(D)|
% ~7Yod #lo|1%.

1/2
2mpA)/

Using Lemma 1, Cauchy’s inequality and Young’s inequality,
we have

2|6 (AD, D, u,,)| + 2 |b (4, D, AD)|

1/2 1/2

< Gl AOP | ||

|t4]
80
< %mcmz + Ot 140 (80)

1S k|2

- 4
2|(a0,8) | < W" A AP + — e
Yo
Combining the above estimates with (79) yields

d ( —YA 15”(1)" ) Yoe—vygAls|A(D|2

dt
< ce” "M DIt ||t (81)

v|vg|oo m —vyg 1s”q)" _evyg/\15|£|2.

2m, OAI/Z vYO

Integrating this inequality from s to t and using (75), we have

t
_ VY _
e M) + —Z" J e M AP dr
N

V|V9|oo/1m 2 2
<c <1 + W + st121(1)3|um (t)l ||um(t)|| (82)

07%1

@i [ unlPdr [ oydir (g2
x <MY Jo m JeY01|E|dT.
0

Taking v = @ in (67), then using (14), Lemmas 1 and 3, we
obtain

@] < vIAd]+ V% IDI + ¢ | 1AD] + ™% [¢].
" (83)
Hence,
QL < (14, |) N 40P
(84)

+ce M) + ceW"’“Slﬂz.

Integrating (84) from s to t and using (82), (75), and
Theorem 8, we complete the proof. O



Lemma10. Ifu, € V,, then the error P, u(t) — u,,(t) satisfies
2 Yo _—wperst ‘ VYoAis 2
|P,u () —u, ()] + e . e |1t = ua,,,|| s

< H /M |y lur)Pdr AL veso.
(85)

Proof. We set e(t) = P, u(t) — u,,(t) and subtract (66) from
(62) to obtain

e, + vAe + vCe + P,,B(Q,,u + e;u)+ P, B (u,,,Qu,, + €)= 0,
(86)

with e(0) = 0. Taking the scalar product of (86) with 2e, we
obtain

d 2 2
— +2v + 2(Ce,
dtlel llell (Ce,e),

+2 (b (e,u,e) +b (um, Q,,u, e) +b (Qm% u, e)) =0.
(87)

Using Lemma 3, we get

d o 2
—lel” + 2vyle]
dt 0 (88)

<2|b(e,u,e) +b(u,,Quu.e) +b(Q,uue)|.

Multiplying the last inequality by ”"o*:!

obtain

and using (14), we

d
a (evyg/\lt|e|2) + vyoevyo/llt”enz

< 26N b (e, €) + b (thyyy Quths €) + b (Qths 1, €)].
(89)

Due to Lemma 1 and Cauchy’s inequality, we have

v 2
216 (e, s €)] < 26 lel lell lull < 22 el + ——ZullPlel,
2 Yo

216 (u,,, Quuse)| + 2 |b(Qu, s €)|
< 26077 Q| (1AUl + |Au,,|) el
< %neu2 + e (JAul + [Au ") [ Q-

(90)

Combining (89) with the above estimate yields

d v
“ (evyo/\lt|e|2) + ﬂewo/\lt”enz
dt 4

2
< chew"}“t||u||2|e|2 + ce”toM! (|Au|2 + |Aum|2) |Qmu|2.
0

(o1
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Multiplying (91) by e/ "0)G Jylaldr yields

i ~@I0)g [y WulPdr _yyohit 2
I e 0 e le]

+ V0 =@ [y WP dr prydat 2

2 (% 2
< ce @IS [y Nealdr jryodst (|Au|2 n |Aum|2) |Qmu|2

< ceMM! (|Au|2 + |Aum|2) Q,ul”.
(92)

Integrating this inequality from 0 to t and using (64),
Theorem 8, we obtain, after a final multiplication by
o110 [y lulPdr et that

v B t
|€|2 + %6 vyolltj evyoltls"e”st
0 (93)
@/vyo)ed [, lulPdr -1
< HePM0a [y I A VE=0,
which is (85). O

Lemma 1. Ifu, € V,, then the error P, u(t) — u,,(t) satisfies
the following bound:

2
T (t) |Pmu t) -u, (t)|
2 [t 2 2 (94)
< F G [ Ul +lw | )drA;nZH vt > 0.

Proof. Take v = e(s) and & = e(s) in (67) to obtain
(e, d)s)g —a(e,®) — (Ce, @), b (e, 1, D) — b (. €, )

— evyo)tlsle|2.
(95)
Multiplying (86) by @, we have
(e, dD)g +a(e, @) +v(Ce @), +b (thyo € + Q1 @)
+b(e+ Qs thyy, @) + b (u— 1y, u — u,, ®) = 0.
(96)
Adding (96) and (95), we get
VYoA1S) 12 d
"M g* = %(e, @), + b (u,,, Q,,u, ®)
+b(Quth, thyy, @) + b (u — w1 — 1y, D).
(97)
Using Lemma 1, we have
|6 (1, Qs @)| + |b(Q, 11, 1, D) < € ||| |Qte| |1AD],

b (u = w1 = 14,,, )| < ¢t = uay, | |1t — 14, | A
(98)
Hence, we deduce from (97) that

evyg/lls|e|2

d
< a(e, D)y + € ([Jtb]| [ Qo] + |t = 14| 11 = 11,]) 1A .
(99)
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Integrating (99) from 0 to t and noting that e(0) = ®(t) = 0,
we obtain

J~t eyyo,\ls|e|2ds
0
; 1/2
<of | &4 (i 1+ b =, P =) s
0

t 1/2
X (J eivy°A15|A(D|2ds) .
0
(100)

Using (64), (65), Theorem 8, and Lemmas 9 and 10, we deduce
from (100) that

t 2 (t 2 2
e VYo)tltj MM e ds < HeldM% Jo QlualP+ 14| )drAmzH_

0
(101)
Now, multiplying (91) by 7(¢), we have
d y v v
= (T el) + o 1) el
(102)

2
< <1 + —c§||u||2> MMt e)?
VYo

+ et (p) (|Au|2 + |Aum|2) |Qmu|2.

Integrating (102) from 0 to t and using Theorem 8, we obtain,
after a final multiplication by e oMt

v B t
T(0)le (O + Loeme j 7 (s) ¥ el ds
0

t (103)
< He MMt J et (|e|2 + |Qmu|2) ds.
0
Using (65) and (101) in (103) yields
t
T (1) le () + Lot j 7 (5) €M el *ds
4 0 (104)
< He W0 [Py 2
which is (94). O]

Finally, by combining Lemma 11 with (64) and using
Theorem 8, we get the following error estimate.

Theorem 12. Ifu € Vy then the error u(t) —u,,(t) satisfies the
following bound:

T(@) [u(t) -, (O < HeSIIIGY2 v 0,
(105)

5. Spectral Galerkin Method in
Space and Time

5.1. Stability Analysis. In this subsection, we consider the
semi-implicit Euler scheme applied to the spatially discrete

spectral Galerkin approximation, show the stability of this
scheme, and establish some preliminaries related to the error
analysis uniform in time.

We consider the semi-implicit Euler scheme and define
recursively a solution {1, } ¢ H,, such that

daut™ v AU 4 9CUlt + BB (Wl ull) = B f,
(106)

for n > 0 with the initial condition 1, = P,,u,, where At > 0
is a time step such that nyAt = 1 for some integer #, and

1
dautt = " (upt =), (107)
n+l I
St o j F®dt, t,=nAt.  (108)
tYl

In order to derive the L*-bound on the error u,,(t,) — u,
we will begin with a time discrete duality argument which
is similar to the one used in [11, 17]. We consider the dual
scheme correponding to scheme (106): for any fixed n > 1
andufnfl, "eH,1<k<nfindd"' eH,1<ks<n
such that

(v, dt(Dk)g -a (v, CDk_l) - V(CV, CDk_l)g -b (v, uk! CDk_l)

m

m

-b (uk_l, v, d)k_l) =(1+ vyOAIAt)k(v, fk)g

YveH,
(109)

with an initial condition ®" = 0.
The following theorem provides the H’-stability of
scheme (106).

Theorem 13. Under the assumptions of Theorem 8, if At and
m satisfy the following condition:

8 A
— InmALC, (<1, (110)
"o Ay

then the semi-implicit Euler scheme is the H>-stability; that is,
MY AL < Ll Gl wazo, )
U, | < —uo| + 55— n=0,
k=1 " Yo 7}2)/(%A1 fo

n x 2
at 3 ol

k=ky+1

2, 2 (112)

C:+ Ci(t, -t
V3Y3/‘% f vzyg)Ll f(n ko)

1 2
< V—YO|MO| +
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1
i [P < (1 + vpody88) "l + 555 G —55C: Wn20, (113)
lurl* <C, Wm0, (114)
ALY (1+ vy a)
k=1

(b st rolastl)

+7(t,) [Ad) + 7 () |daul P < H Vnzo.

Proof. Clearly, scheme (106) defines a unique sequence
{u,} ¢ H,,. Now, we will prove (111)-(115).

Taking the scalar product of (106) with 2u/"'At, we
obtain

n+1

U, |2At

n+1|2

n |2 n+l n |2
" —|um| +|um —um| +2v

+ 2vAt(Cu:;+1, u;”)g +2b (u;, u - ”::1’ u;ﬂ) At
— 2(fﬂ+1 n+1) AL

(116)

Using Lemma 3 and Cauchy’s inequality, we have

112 1 2 112
| = u ml +'u”+ m| +27/||u”m+ " At

<ol

2(f, u”m“)gAt (117)
-2b (u”m, u, - ufn“, ”an) At.
Hence,

' n+112 n+1

— +|u —um' +2vy0.|u"+1|| At

SZ(f”+1 ”H) At—Zb(u u, —u:‘nﬂ,u:’nﬂ)At.

(118)
By (19), we have
Z(fnﬂ,l/l:lnﬂ VYO “ n+1|| n vYOA |fn+1'2At,
1
2 'b whoul — u::’l)| (119)
Wo 'l n+1'| L |u B un+1 2
where
8 |Au,
L(u")=—c1+1 (120)
()= st (10 2
Substituting those into (118), we get
o = D o+ (1= L) ) iy = |
(121)
+ vyl 'zAt < 2| Par.

ok
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Next, by taking the scalar product of (106) with 2Au"" At, we
obtain

“ "H" - ||um|| + "u”Jr1 - um“ + 21/'AM”Jr1 zAt

+ ZvAt(Cu"m“, Au"mﬂ)g +2b (u"m, u,, Au"m“) At

=2(fn+1,A n+1) At.

(122)
Using Lemma 3 and Cauchy’s inequality, we have
2v(Cu”m+1,Aufn”)g
ok g, ATt T
e R T Ve
Substituting into (122), we get
" "+1|| - ||u"m||2 + "u::rl - u”m”z + 2vy0|Au"m+1|2At
< 2(f"+1, Au::'l) At —2b (u u, Au"“) At (124)
v|Vg| A “ n+1|| At
o .

Due to (17)-(19), Cauchy’s inequality, and Young’s inequality,
we have

2|b (o — ol A
< %iAuzﬁ S L)t -
2o ) 29
<yl Ay [+ 20m0) o o e

2
Z(an,Auan)g YO |A n+1)2 + v_yocif

By combining (124) with the above estimates, we obtain

P+ (=L Gat) ) =it

[ -

2(vyo) el g P o™ e + %%C;At (126)

V|V£7| /\1 ” n+1|| Af.
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On the other hand, from (17)-(19), Cauchy’s inequality, and
Young’s inequality, we have

n n+l1 n n+l
Z'b(um,um - U, Au,, )|

Vv 2 2
< P lau [ e Gy iy -

LD e A Ry T e

2(f"+1,Au”+l)g < %|Au:'n+l'2 + CC;.

m

(127)
Combining (124) with those estimates, we obtain
(1 w80 [ =
F (1= L) ) Jur = + %]Au;ﬂzm
Pat+ cClat + ol at.

< el [l [

(128)
Next, from (106) we have
2
|dtu”m+1| +v (At da )+ v(Culy d )
(129)

+ b(un’un,dturﬁl) — (fn+17dtu:,,+1)g-

m

Using (11), Lemmas 1 and 3, and Cauchy’s inequality, we get

n+1

um

(') < el P o o |

>

n+1 n+1 1 n+1|2 2 n+1|2
v|(Aum sdau, )g's Z|dtum | + |Aum >

(130)

n+1 n+l 1 n+1|2 n+1||2
vl(Cum dau )g' < Zldtum | +c'|um ",

2 2
+cC

'(fn+lrdtu:ln+l)g| < }L'dtufnﬂ .

Therefore, we have

Yo n+1)2 2

vVO +1
16yt _T|A”:1

(131)

< c|u"m|2||ufn"2 u::'l |2 + cCif +c u"m+1 |2

Combining this inequality with (128) yields
(1 + wpyr,At) ||u”m+l|'2

P+ (- L) A -
(132)

m

+ %|dtu””|2At + %|Au"m”|2At

< c|u”m|2||u"m||2"u;+l||2At + chfAt + c”u;’:luzAt.

1

Moreover, we deduce from (106) that

dut™ + vAd !+ vCdu + P B (daull ult)
(133)
+ PmB (unm’ dtunm) = Pmdtan’

where d,u, is defined by
daul +vAud +vCu® + P,,B (ufn ufn) =P,f(0). (134)

Taking the scalar product of (133) with 2d,u/>"' At, we obtain

2

2
n+l n |2 n+l n
|dtum - |dtum| + |dtum —-d,u,

2
+ 2v||dtz,t”":r1 || At + 2y (Cday ™) At
+2b (dtufn —duit dtufnﬂ) At
(135)
+2b (ddy uly, dydy ) At
+2b (dad) dyd), — gy daul ™) At

=2(d, f™, dadit) At
By Lemma 3, we get

|| = |dt [+ st = dads |+ 2oy, ||
<2(d, f™, dady) At
—2b(dad), - dauly ol dul™ ) At
= 2b (dady uly, dydy ) At
—2b (dad)y dyd), — dauy ™ ™) A,
(136)

Using Lemma 1 and (19), we have

2|b(dd), - iy, dydy™)|

m um
n+1 n n+1 n+1
+2|b(dady dydy, - dpiy diy |

2

>

v 1
< % "dtu::r

|2 + % (L (up)+L (ufn“)) |dtu:’n+1 —-du,

m ’um m

206 (das ul, duis )| < %”dtu’“l“z

+ icg||u;||2|dtufn“|2,
Yo
8 su
Yor tzop

If ).
(137)

2 (dtfnﬂ;dtunmﬂ) < %”dtu:::l '2 .
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By combining (136) with the above estimates, we arrive at

(1 + vpyr AY) |d u"Jrl - |dau, 2

# (1= (L) + L)) o) fda" - das [
+ %“d "H' At < —couu || |d ”H' At

t
YOAISthPIft( g

(138)

Multiplying (138) by (t,,,,) and noting that 7(t,,,,) < 7(t,) +
At, we obtain

(14 70 A 7 () [dad? [ =2 (2,) |,

(1= (L) + L (") o)
X Tty 'd urtt - dtufnr
o 0 4,) i P (139)

< |daut ) At+ c0||um|| |d "+1| At

+

8
su t)| At.
ok t>0p|ft( )|

Now, we will prove (111)-(115) by induction. Obviously, (111)-
(115) are true for n = 0. Assuming that (111)-(115) hold for
n=20,1,...,], we need to prove (111)-(115) forn = J + 1. In
view of (110) and the inductive assumption, we obtain

1-L(u))At>0 Y0O<n<]. (140)

Summing (121) from 0 to J and k; + 1 to ], respectively, and
using (140), we obtain (111) and (112) with n = J + 1 after
a final multiplication by (vyo)_l. Noting that /\1|v|2 < Ivli%
using (140) in (121), and then applying Lemma 5 with

aj = |M]:n|2, bk = 0,
(141)
= WOA Cf’ v ="0h
we obtain (113) forn =] + 1.
Furthermore, setting
k|2 k
A = H“m" > 9k = (’%) m' ““ +1"
(142)
oo 22 V|Vg| | k+1”
k = i f
(]
in (126), using (111)-(113) and (140), we obtain
1
— (ak+1 - ak) < i + hk Y0 < k < ], (143)

At

Abstract and Applied Analysis

with
J ] s
MY ge<a, Aty h<a,  oag <, (144)
k=0 k=0
forall J+1 <m,—1and
ko+1y—1 ko+1y—1
At Z gk < &y, At Z hy < «y,
k=kq k=k,
(145)
ko+my—1
At Z a <ayt+a;, 0<ky<]J+1-n,
k=kq

forall J + 1 > n,. Applying Lemma 4 to (143), we obtain (114)
forn=7]+1.
Applying again Lemma 4 to (132) with

a= o
b = 161%' ot + LAy =mds (46
= el [ | e |+ <5+ ot
and using (111)-(114) and (140), we obtain
Atii(l +opd ) (|| + |dtufn|2) <x. (147)

=t

Applying Lemma 5 to (139) with

a =7 () |dal [, b= —r (t) e[ v = s

2 8 2 2 8
hy = |dtufn' At + v—%cg"uf;" |dtufn+l| + 1, st1210p|ft (t)|2,
(148)
and using (114), (140), and (147) yields

7(ty41) 'd u]Jrl

J+1
T8y (1w 0) Ve (0 | < o
k=1
(149)
Finally, due to (17)-(19), we have
|b u U —uIH AuI+1 |S %'Auglr
+ cL ”d u]“" A%,

|b (u{n,uﬁl’Au{;lN < %'A ]+1|

T 121, 1121, T+
L AN A A
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Combining these inequalities with (106) and (140) yields

J+1 2
m

i AR

Tt]+1|Au{;1'2 <ct(tyy) |dtu

(151)
2
+cC ¥
+ct(ty,) "dtu{;leAt.
Using (113), (114) and (149) in this inequality yields
7 (ty,) || < . (152)

Combining this inequality with (149) and (147) implies (115)
forn=7+1. O

The following lemma provides the stability of scheme
(109).

Lemma 14. If u, € V,, At and m satisfy (110), then problem
(109) admits a unique solution {(Dk}g‘ C H,, satisfying

L+ oy A NI + At (1 + vy d Af) ® D | adk|
Yot YoM
k=r

cstem( LanSIAL ) oS emn o
Yo k=1 k=1
(153)

Proof. In view of (17), (110), and (114), we can prove that the
following bilinear form

1 k-1
o (v, @) +a(v,®)+v(Cv, D) + b(v,um ,CD)

(154)
+b (ufn_l, v, (D) Vv,® € H,,

is elliptic. Hence, problem (109) has a unique solution k!
for 1 < k < n. Next, by taking v = —2(1 + vpyA, At) *@F 1A
in (109) and using (11), we have

— 21+ vpod, A1) (DK, "),

+2(1+ vyOAlAt)_k'd)k_l'z

+20(1 + vy, A1) 08P

(155)
+23(1 + wpd, At) F(COF, o) At
+2(1+vpph A1) b (05 o) A

m

= —2(0",8") A

13
Using Lemma 3, we get
2(1 + vyOAIAt)”‘|<Dk‘1|2
+ 20p0(1 + vy A1) F0 e
<2 '(d)k_l,Ek)g| At +2(1+ vppd )| (@47, q)")g|
+2(1+ vphy ) b (@5 ul !, 0 A,
(156)

Using (17) and Cauchy’s inequality, we have

2 |(c1>k*1,c1>")g| < |q>"*1|2 + |q>"|2,

2|(@*89),| < %(1 +ophian) ok’
+ ﬁ(l + vyO)LIAt)k|£k|2, (157)

2 'b ((Dk—l’ uk—l’ (Dk—l)l < %"(Dk—l"z

2 120 k102
+ o
Yo

Combining above inequalities and using (14), we obtain

(1+ vyd, A1) 7Y |®k71 |2

-(1+ vyo)tlAt)_k'CDk'z
+ %(1 + vyOAlAt)_kHCDkAHZAt

8
e Zaemha s Pk P
"o

4
ok

+

(1+vph A) | at.

Summing (158) from r + 1 to #, noting that ®" = 0, and using
Theorem 13, we arrive at

(1+ vyo)\lAt)_r|CI>r|2
u _ 2
+ %At;(l + VYA, At) (k+1)|'(l>k“

(159
< Vichth:(l + vyOAIAt)_k||ufn“2|®k|2 :
Yo k=r

4

+
ok

Ati(l + vyOAIAt)k|Ek|2
k=r
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forall0 <r < n. Let
a, = (1+vyr, A1) |0,

b

= %(1 + "’Yo"lAt)_(rH)“q)r”Z’

4 r k2 (160)
= 1 A R

h, ol (1 + vy, At) .f |

B =0,

e L

in (159) to obtain

n n n
a, + Atzbk < Atngak + Atzhk VO<r< n, (161)
k=r k=r k=r

with o, = (1 - g,At)™"
inequality yields

< 2. Applying Lemma 6 to this

n
(1+ Wo/\lAt)irl(Drlz + %AtZ(l + VVOMAt)i(kH)"@k“Z
k=r

. ygexp<icgm§||u;||2>mi(1 ol a
Yo k=1 k=r

(162)

Moreover, by taking v = =2(1 + vy,A, At) *A®* At in (109),
we have

—2(1 + mph, A1) “(ADF, 0F)

g
-k k-1 2
+2(1 + vypr, At) ”CD “
+20(1 + vy, A1) [ a0F At
+29(1 + vpod, At) F(CADFT, F D), At (163)
+2(1+ vy, At) b (AT, 05 k) A
+2(1 +mpd, A1) b (1, OF, 405 A

=2(A0", ) At.
2(40"8),
Using Lemma 3 and Cauchy’s inequality, we deduce that

20(1 + vy, A) ’(CACDkfl, CDkfl)gl

klgl

< 29(1 + vyp)  At)” T

(164)

[ae[

+c(1+vyr At) "q)k’l" :

Abstract and Applied Analysis

Therefore,
2(1+ vyo)tlAt)"‘||q>"’1||2
+2vy(1 + vyOAlAt)"‘|Aq>"*l|2At

< 2(Ad>k"1,§k)gAt +2(1 + mph, Ar) (405, @k)g

221+ VYo)hAt)_k 'b (A(Dk—l,q)k—l’uk—l)| At

+2(1+ wpph, An) b (1, @8, 40| A
(1 +ph ar) o .
(165)
Using (17)-(19) and Cauchy’s inequality, we have
2[p (A0, 0w )| + 2 |b (), @, A0

v —112 _112 —1112 —112
Sn e R o T N T

240,08, =2((0,0), = [ [+ o

g

2(A0gh) <o ks (14 vyoh, A1) “laok

4 k| gk |
—(1 A At .
+V)’o( T VYA )|E'

(166)

Combining above inequality, noting that A, IVI* < |Av|?, we
obtain

(14 o2, 80) V[0 - (14 o, A0) ot
n %(1 PN MVt Y
< (1 +vyd At) (|uk 1| (s 1|| + 1) o 1|| At
+c(l+ vyo/llAt)k|fk' At
(167)
for all 0 < k < »n. Summing (167) from r + 1 to n, we obtain

—(k+1)

L+, A0) 07 + 20ary (1 + YA, At) A’
Yor1 )
k=r

< cs (A PRAT + )} 50+ o) o]
= k=r

+ cAt i (1+ vyo)tlAt)k|§k|2 YO<r<n

k=r+1

(168)

Combining (168) with (162) and using Theorem 13, we com-
plete the proof. O



Abstract and Applied Analysis

5.2. Error Analysis. In this subsection, we will establish the
H'- and L*-error estimates uniform in time for the fully
discrete spectral Galerkin method with the explicit time dis-
cretization for the nonlinear term. To do this, by integrating
(35) from ¢, to t,,,;, we obtain

tn

VY tw+1 Y +1
dou,, () + ~ L Au, (t)dt + ~ L Cu,, (t) dt

[
e B4 01, ) e = 7
At t,

(169)

Subtracting (106) from (153) and setting " = u,,,(t,)) — u;, , we
have

de™ +vAe™! +vCe™ + BB (e ult)
(170)
n
+ PmB (um (tn) € ) = PmEnJrl’

with ¢ = 0 and

tn+l

Vv
En+1 = E L,,

Y th
o3 ), €l ()~ )

A (um (tn+1) Uy (t)) dt

[ B () 0 6)

n

= B(u,, (t),u,, (1)) dt

Y tn+1 V tn+1
=N L (t—t,) Au,,dt + A Jt (t -t,) Cu,,dt

n

1 tna1
| =0 (B (o0, + Bt ,0)) .

At
171)

n

To derive a bound on e”, we need to provide the following
estimates of E,,.

Lemmal5. Under the assumptions of Theorem 13, the error E,,
satisfies the following bounds:

Ati(l + vyo)xl)k71|A71PmEk|2
k=1

(172)
< FH(1+vpd))"AM Vi1,
C k=1| ,-1/2 2
ALY (1+vphy)  |AT2R, By
k=1 (173)
< H(L+vp))"At Yn>1,
n
AEY (14 pod,) e (1) |[A72R, By
Pt (174)

< K1 +wypd))"AM Vi 1.
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Proof. In view of (17)-(19), Lemma 3, and Theorem 8, we
deduce from (171) that

|A™'p,E,
(B,
T A
t, \v4
U CY (- o [
tn—l mO
12
2 2 2
b= Tl a1
tn 2 2 2 2 1/2
< ([ (=t = ) bt t)
n—-1
i By )
A 1/2P E|= |( n
|47 | e T
< cAV?
t‘Vl
([ (=t -7 l)
n-1
) 1/2
Nt dt) .
175)

By Theorem 8, (175), and the fact that (1 + vyo)tl)kfl <
"Mt e have

(1+ v, a0 [A7'P, B[t

< HAL(1+vpph A Yk 2+ 1,
(176)

(1+ph A0 a7 2P, By At

< HAL(1+ vy A Yk = np+ 1,

(1 + v, A0 A7 B, B [ At

t , 177)
< HAP I MMy 1Pdt V1 <k < np,

et

(14, 80) AP, E [ At
o i (178)
< FAt J " |, |"dt V1 <k <ny.

b1

For n > ny + 1, summing (176) from n, + 1 to n, we have

At Z (1 +vypph, AL (|A*1PmEk|2 + |A*“2PmEk|2)

k=ny+1

<HAPY (L+wphiar)

k=ny+1
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1= (1+wpd )"

< HAL (1 + vypph AL)™ E—wy
oA

< A1+ vpd Ar)"
179)

For n < ny, we sum (177) from 1 to n and use Theorem 8 to
obtain

AtZ(l + vpd ALY
k=1

)'|a™B, Ek|

< HAPeTM (150)

< HAP(1+vpd AL)" Vi < ng,
which, together with (179), gives (172).

Finally, multiplying (178) by 7/(t;.), j = 0,152 < k < n,
and noting that At < 7(t,_,), 7(t;) < 27(t;_,), we obtain

(1+ A, 80 (1) [A72D, B, A

[tk )
< KA J MM (1) [

e

dt v2<k<n,

mtl

(181)

Observing again (170) with n = 1 and using Theorem 8 yields

7 (t)) |A_1/2PmEk'2At < H sup ||y (1) — 1, (0)]* A
0<t<t,

(182)

Theorem 12, we obtain

For 2 < n < ny, summing (181) from 2 to »n and using

ALY (14 vph AL (1) [A72P, B[ < srar e,
k=2

(183)

Combining (182) and (183) with (179) yields (173) and (174).
O

Now, we prove the following error estimate.

Lemma 16. Under the assumptions of Theorem 13, one has

n
le"|” + ALY (1+ vy, AF)
k=1

x (o) a4 e - 1)
8
8 2, O k|2
< %exp(WCOAtZ"um“ )At Vn > 1.
0 k=1

(184)
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Proof. Taking the scalar product of (170) with 2¢™*! At, using
(11), Lemma 3 and noting that A, [v]* < |vlI%, we have

n+1|2

(1+vppA,At) e

n|2

~ e

n+1

2 2
+ |e - e"| + vy()"e"H" At

+2 (b (e"“, Uy, ”“) +b (e - u"m, e"“) (185)

b(u, (t,),€" =™ "+1)) At
<2(E,,,e"") At.

Using (17)-(19), we get

1 1 v 1 112
Z'b(e’” ,u;’q,e’” )| o “ n+ ” + n+ |

A A

"o
21b n n+tl n  nt+l
e —e s U, €
n+l n+l
—e ,€ )'

+2 |b (um (t,).€"

2

>

9”)’0
16

n+1 n
—ée

o (L) + Ly ()

Y, 2 16,y
en+1)|_ O“ n+1|| +v—0|A12PE '

2|(En+1’ m—n+1

(186)

Hence, by combining the above inequalities with (185) and
using Theorem 8, (110) and (114), we obtain
n+l| n+l 2 ny ni2
(1 + wp), At) 'e | = (1 +vpeA A1) |€"|

# (1o, 8" (et o+ e - o)

iz n |2 n| n+1)?
< Woc()”um" (1+wpry e | At

-1/2

At,

16
+T%(1+VY0 1 m n+1|
(187)

for all » > 1. Summing (187) from 1 to n — 1 and using
Lemma 15, we obtain

(1 + w4, 48)" "
Z - 1 -
DXE o a0) (22t + gl - )

< ViCOAtZ 1+, At)k 1" o 1" ' k'
Yo k=1

+ EAtZ(l + vyOAIAt)"‘1|A‘“2PmEk|2.
"W =

(188)
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We set
a=(1+ vyo)tlAt)k'ek'z,

b= (1 ok (2 4 e - ),

9= I
Yo
16 k=1{ ,—1/2 2
he = —At(1+ vy, A0 |ATPRE], B=0
Yo
(189)
in (188) to obtain
n n n
an + Atzbk < Atngak + Atzhk’ (190)

k=1 k=1 k=1

with oy, = (1 - gAt)"" < 2. Applying Lemma 6 to (190) and
using Lemma 15, we deduce that

(1+ 1/)/0/\1At)"|e”|2

AT (oot ar+ gl - &)

< (1 +vppr  At)" K exp <7c Atzuuk " )At

(191)

Multiplying (191) by (1 + vyyA,At) ™", we get (184). O
ying y Yo g

Lemma 17. Under the assumptions of Theorem 13, one has
2
T (tn) Ium (tn) - unm|
1 n-1
szexp<_6¢gmz||u;||2>m2 vz 1
Yo k=0

Proof. Replacing n + 1 by k in (170) and taking the scalar
product of (170) with ®*!, we obtain

(dtek, (Dk_l)g +a (ek, (Dk_l) + v(Cek, CDk_l)

(192)

g

+b (LUl o)+ (L ) (193)
+b (e, o) = (B, 0 )g.
Next, setting v = ek & = &5 1 <k <nin (109), we get
(ek, dt(I)k)g -a (ek, (Dk_l) - v(Cek, or! )g
- b(ek,uﬁq_l,cl)k_l) - b(ul;_l,ek,cl)k) (194)

=(1+ vyo)tlAt)k|Ek'2.

17
Adding (193) to (194), we arrive at
(1 + vy A0 [
_ Ait ((ek, (Dk)g B (ek—l, (Dk—l)g)
+b<k1 kuﬁql —)+b(k1 k-1 ek,ch—l)
+b(h L0 - (B0
(195)

From (17) and (18), noting that A IVI2 < |Iv|l%, one finds that

'b(ek—l _ek’uicnl’ — )+b( k— 1 k 1 ek,®k_1)|
el e k4.
(196)

|b (ek—l, ek—l) q)k—l)' <c ||ek—1|| |ek—1' 'A(Dk_l' )

(B @k‘l)g| <|a'P,E| a0

Combining (195) with the above estimates yields
(1 -+ vpod, A0) €] e
< (k) = (0kT) )+ [aT'p, B [a0* At
we(fef = ]+ e ) Jao™ e,
(197)

with ¢’ = ®" = 0. Summing (197) from 1 to n and using
Lemma 15, we obtain

n

At Z(1+vy0/\ At) '5 |
k

< HALY (1+ vpd,AL)

1 (198)
(- TR T TR

+ Ati(l + vyo/\lAt)k|A_1PmEk|2.
k=1

M:

k

Applying Lemmas 15 and 16 and Theorem 8 in (198), we get

(1+vyppd, A1) "AEY (1+ vyOAlAt)"|§"|2
k=1
(199)

<%exp(7coAtZ'| |'>At2 Vn>1.

Now, multiplying (187) by 7(t,,,;) and noting that

T(t,,) <At+7(t), At<t(t,) Vi<n<N, e =0,

(200)
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we arrive at
(1+ 7oAy )" (1) e[

— (1 +vph88) (1, €]
(201)
< H(1+ ), At)"|e"| At

+ k(1 + vy At) T (t,,1) |A71/2P E

2
m n+1|

At.
Summing (201) from 0 to n — 1 and using (199) and (174),

we obtain, after a final multiplication by (1 + vy A, Af) ™", the
estimate (192). O

Finally, combining Theorems 12, 8, and 13 with Lemma 17,
we obtain the error estimate of the numerical solution {u},,}.

Theorem 18. Under the assumptions of Theorem 13, the fol-
lowing error estimates holds:

o (t2) = < 2 (8,) LIRS (02 4 )
Vn > 1.
(202)
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