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We investigate the discreteness and convergence of complex isometry groups and some discreteness criteria and algebraic
convergence theorems for subgroups of PU(𝑛, 1) are obtained. All of the results are generalizations of the corresponding known
ones.

1. Introduction

In 1976, Jørgensen obtained a very useful necessary condition
for two-generator Kleinian groups of𝑀(R

2

), which is known
as Jørgensen’s inequality. As an application, he obtained the
following [1, 2].

Theorem J. A nonelementary subgroup𝐺 of𝑀(R
2

) is discrete
if and only if each two-generator subgroup in 𝐺 is discrete.

Furthermore, Gilman [3] and Isachenko [4] showed
that the discreteness of all two-generator subgroups of 𝐺,
where each generator is loxodromic, is enough to secure the
discreteness of 𝐺. See [5–8] and so forth for some other
discussions along this line.

It is interesting to generalize Theorem J into the higher
dimensional case. By adding some conditions, several gen-
eralizations of Theorem J into 𝑀(R

𝑛

) (𝑛 ≥ 3) have been
obtained; see [9–13] and so forth. In 2005, Wang et al. [14]
proved the following.

TheoremWLC. Let𝐺 ⊂ 𝑀(R
𝑛

) be nonelementary and𝑓 ∈ 𝐺
loxodromic. Then 𝐺 is discrete if and only if𝑊𝑌(𝐺) is discrete
and each nonelementary subgroup ⟨𝑓, 𝑔𝑓𝑔−1⟩ is discrete, where
𝑔 ∈ 𝐺.

Here

𝑊𝑌(𝐺) = {ℎ : ℎ|
𝑀(𝐺)

= 𝐼, ℎ ∈ 𝐺} , (1)

and 𝑀(𝐺) is the smallest 𝐺-invariant hyperbolic subspace
whose boundary contains the limit set 𝐿(𝐺) of 𝐺 (cf. [15]).

Since the real hyperbolic plane can be viewed as a
complex hyperbolic 1-space H1C, it is natural to generalize
these results mentioned above to the setting of complex
hyperbolic space. Recently, Qin and Jiang [16] proved the
following.

Theorem QJ 1. Let 𝐺 be an 𝑛-dimensional subgroup of
PU(𝑛, 1) and 𝑓 a nonelliptic element in PU(𝑛, 1). If for each
loxodromic (resp., regular elliptic) element 𝑔 ∈ 𝐺 the two-
generator group ⟨𝑓, 𝑔⟩ is discrete, then 𝐺 is discrete.

Theorem QJ 2. Let 𝐺 be an 𝑛-dimensional subgroup of
PU(𝑛, 1) and 𝑓 a regular elliptic element in PU(𝑛, 1). If for
each loxodromic (resp., regular elliptic) element 𝑔 ∈ 𝐺 the two-
generator group ⟨𝑓, 𝑔⟩ is discrete, then 𝐺 is discrete.

Here 𝐺 is called 𝑛-dimensional if it does not leave a
point in 𝜕H𝑛C or a proper totally geodesic submanifold of
H𝑛C invariant. Obviously, if 𝐺 is 𝑛-dimensional, then 𝐺 is
nonelementary and𝑀(𝐺) = H𝑛C.

Motivated by Theorem WLC, a natural question will be
asked: can we use the discreteness of subgroups ⟨𝑓, 𝑔𝑓𝑔−1⟩ to
determine the discreteness of𝐺 inTheorems QJ1 and QJ2? In
this paper, we will give this question a positive answer (see
Section 3).

Let G be the Möbius group 𝑀(R
𝑛

) or the complex
hyperbolic isometry group PU(𝑛, 1).
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Definition 1. Let {𝐺
𝑟,𝑖
} be a sequence of subgroups in G and

each 𝐺
𝑟,𝑖

be generated by 𝑔
1,𝑖
, 𝑔
2,𝑖
, . . . , 𝑔

𝑟,𝑖
. If, for each 𝑡 ∈

{1, 2, . . . , 𝑟} (𝑟 < ∞),

𝑔
𝑡,𝑖
→ 𝑔
𝑡
∈ G as 𝑖 → ∞, (2)

then we say that {𝐺
𝑟,𝑖
} converges algebraically to 𝐺

𝑟
= ⟨𝑔
1
,

𝑔
2
, . . . , 𝑔

𝑟
⟩ and 𝐺

𝑟
is called the algebraic limit group of {𝐺

𝑟,𝑖
}.

If for each 𝑖, 𝐺
𝑟,𝑖
is a Kleinian group, then the question when

𝐺
𝑟
is still a Kleinian group has attracted much attention.

Jørgensen and Klein proved that 𝐺
𝑟
is still a Kleinian group,

when 𝑛 = 2. For the higher dimensional case, there are a
number of discussions; see [11, 12, 17].

When G = PU(𝑛, 1), Cao proved [18] the following.

Theorem C 1. Let {𝐺
𝑟,𝑖
} be a sequence of groups of G. If each

𝐺
𝑟,𝑖

is discrete, then the algebraic limit group 𝐺
𝑟
of {𝐺
𝑟,𝑖
} is

either a complex Kleinian group, or it is elementary, or𝑊(𝐺𝑟)

is not finite.

Theorem C 2. Let 𝐺
𝑟
be the algebraic limit group of complex

Kleinian groups {𝐺
𝑟,𝑖
} of G. If {𝐺

𝑟,𝑖
} satisfies IP-condition, then

𝐺
𝑟
is a complex Kleinian group.

Here {𝐺
𝑟,𝑖
} satisfies IP-conditionmeans that {𝐺

𝑟,𝑖
} satisfies

the following conditions: for any sequence {𝑓
𝑖
}, 𝑓
𝑖
∈ 𝐺
𝑟,𝑖
, if

card[fix(𝑓
𝑖
)] = ∞ for each 𝑖, and 𝑓

𝑖
→ 𝑓 as 𝑖 → ∞

with𝑓 being the identity or parabolic, then {𝑓
𝑖
} has uniformly

bounded torsion (see [18]).
In this paper, we will discuss the discreteness criteria and

algebraic convergence theorems for subgroups of PU(𝑛, 1)
further. The rest of this paper is organized as follows: in
Section 2, we introduce some preliminary results that we
need in the sequel; in Section 3, we show three discreteness
criteria for subgroups of PU(𝑛, 1); finally Section 4 is dedi-
cated to three algebraic convergence theorems for complex
Kleinian groups.

2. Preliminaries

Let C𝑛,1 be the complex vector space of dimension 𝑛 + 1 with
the Hermitian form

⟨𝑧, 𝑤⟩ = 𝑧
1
𝑤
1
+ 𝑧
2
𝑤
2
+ ⋅ ⋅ ⋅ + 𝑧

𝑛
𝑤
𝑛
− 𝑧
𝑛+1
𝑤
𝑛+1
, (3)

where 𝑧, 𝑤 are the column vectors in C𝑛+1. Consider the
following subspaces of C𝑛,1:

𝑉
0
= {𝑧 ∈ C

𝑛,1
− {0} : ⟨𝑧, 𝑧⟩ = 0} ,

𝑉
−
= {𝑧 ∈ C

𝑛,1
: ⟨𝑧, 𝑧⟩ < 0} .

(4)

Let 𝑃 : C𝑛+1 − {0} → CP𝑛 be the canonical projection
fromC𝑛+1 − {0} onto the complex hyperbolic spaceCP𝑛. The
complex hyperbolic space is defined to be H𝑛C = 𝑃𝑉

−
and

𝜕H𝑛C = 𝑃𝑉
0
is its boundary. The biholomorphic isometry

group ofH𝑛C is given by the projective unitary groupPU(𝑛, 1).
For a nontrivial element 𝑔 of PU(𝑛, 1), we say that 𝑔 is 𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐
if it has a fixed point in H𝑛C, 𝑔 is 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑖𝑐 if it has only one

fixed point in 𝜕H𝑛C, and 𝑔 is 𝑙𝑜𝑥𝑜𝑑𝑟𝑜𝑚𝑖𝑐 if it has exactly two
different fixed points in 𝜕H𝑛C.

For elliptic element 𝑔 ∈ PU(𝑛, 1), let Λ
0
and Λ

𝑖

(𝑖 = 1, 2, . . . , 𝑛) be its negative and positive eigenvalues,
respectively.Then the fixed point set of 𝑔 inH𝑛C contains only
one point if Λ

0
̸= Λ
𝑖
and is a totally geodesic submanifold,

which is equivalent toH𝑚C ifΛ
0
coincideswith exact𝑚 of class

Λ
𝑖
(𝑚 < 𝑛). We call 𝑔 regular elliptic if Λ

𝑠
̸= Λ
𝑡
, where 𝑠, 𝑡 ∈

{0, 1, . . . , 𝑛} and 𝑠 ̸= 𝑡. Obviously, if 𝑔 is regular elliptic, then
𝑔 has only one fixed point in H𝑛C. The following proposition
follows directly from [19].

Proposition 2. The regular elliptic (resp., loxodromic) ele-
ments of PU(𝑛, 1) form an open set.

Let 𝐺 be a subgroup of PU(𝑛, 1). The limit set 𝐿(𝐺) of 𝐺
is defined as

𝐿 (𝐺) = 𝐺(𝑝) ∩ 𝜕H
𝑛

C, 𝑝 ∈ H
𝑛

C. (5)

𝐺 is called nonelementary if 𝐿(𝐺) contains more than two
points; otherwise, it is called elementary. We call a subgroup
𝐺 of PU(𝑛, 1) complex Kleinian group if it is discrete and
nonelementary. For a nonelementary subgroup𝐺 ofPU(𝑛, 1),
we denote by𝑀(𝐺) the smallest totally geodesic submanifold
of 𝐺 whose boundary contains the limit set 𝐿(𝐺). It is easy to
see that𝑀(𝐺) is 𝐺-invariant since 𝐿(𝐺) is 𝐺-invariant. As in
[18], the subgroup𝑊(𝐺) of 𝐺 is defined as

𝑊(𝐺) = {𝑔 : 𝑔|
𝑀(𝐺)

= 𝐼, 𝑔 ∈ 𝐺} . (6)

For an element 𝑓 ∈ PU(𝑛, 1), we denote𝑁(𝑓) = ‖𝑓 − 𝐼‖,
where ‖ ⋅ ‖ is the Hilbert-Schmidt norm. Then we have the
following.

Lemma 3 (see [18, 20]). Suppose that two elements 𝑓, 𝑔 ∈

PU(𝑛, 1) generate a complex Kleinian group.

(1) If 𝑓 is parabolic or loxodromic, then

max {𝑁 (𝑓) ,𝑁 ([𝑓, 𝑔])} ≥ 2 − √3, (7)

where [𝑓, 𝑔] = 𝑓𝑔𝑓−1𝑔−1 is the commutator of 𝑓 and
𝑔.

(2) If 𝑓 is elliptic, then

max {𝑁 (𝑓) ,𝑁 ([𝑓, 𝑔
𝑞
]) : 𝑞 = 1, 2, 3, . . . , 𝑛 + 1} ≥ 2 − √3.

(8)

3. Discreteness Criteria

In this section, we prove the following theorems.

Theorem 4. Let 𝐺 be an 𝑛-dimensional subgroup of PU(𝑛, 1)
and 𝑓 a nonelliptic element in PU(𝑛, 1). If for each loxodromic
(resp., regular elliptic) element 𝑔 ∈ 𝐺 the two-generator group
⟨𝑓, 𝑔𝑓𝑔−1⟩ is discrete, then 𝐺 is discrete.

Theorem 5. Let 𝐺 be an 𝑛-dimensional subgroup of PU(𝑛, 1)
and 𝑓 a regular elliptic element with finite order 𝑘 (𝑘 ≥ 3)
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in PU(𝑛, 1). If for each loxodromic (resp., regular elliptic)
element 𝑔 ∈ 𝐺 the two-generator group ⟨𝑓, 𝑔𝑓𝑔−1⟩ is discrete,
then 𝐺 is discrete.

When 𝑓 is elliptic (may not be regular), we have the
following.

Theorem 6. Let 𝐺 be an 𝑛-dimensional subgroup of PU(𝑛, 1)
and 𝑓 an elliptic element with finite order 𝑘 (𝑘 ≥ 3) in
PU(𝑛, 1). If, for each loxodromic (resp., regular elliptic) element
𝑔 ∈ 𝐺 the two-generator group ⟨𝑓, 𝑔⟩ is discrete, then 𝐺 is
discrete.

In order to prove the above theorems, we need the
following lemma which is a classification of elementary
subgroups of PU(𝑛, 1).

Lemma 7. Let 𝐺 be a subgroup of PU(𝑛, 1).

(1) If 𝐺 contains a loxodromic element, then 𝐺 is elemen-
tary if and only if it fixes a point in 𝜕H𝑛C or a point-pair
{𝑥, 𝑦} in 𝜕H𝑛C.

(2) If 𝐺 contains a parabolic element but no loxodromic
element, then 𝐺 is elementary if and only if it fixes a
point in 𝜕H𝑛C.

(3) If 𝐺 is purely elliptic, then 𝐺 fixes a point in H
𝑛

C.

Proof of Theorem 4. Firstly, we prove the case when each 𝑔
is loxodromic. Suppose not. Then 𝐺 is dense in PU(𝑛, 1)
according to Corollary 4.5.1 of [15]. By Proposition 2, there
exists a sequence {𝑔

𝑖
} in 𝐺 such that each 𝑔

𝑖
is loxodromic

and 𝑔
𝑖
→ 𝐼 as 𝑖 → ∞. Then, for large enough 𝑖, we have

𝑁(𝑔
𝑖
𝑓𝑔
−1

𝑖
𝑓
−1
) +

𝑛+1

∑
𝑞=1

𝑁([𝑔
𝑖
𝑓𝑔
−1

𝑖
𝑓
−1
, 𝑓
𝑞
]) < 2 − √3. (9)

Since 𝑓 is nonelliptic and ⟨𝑓, 𝑔
𝑖
𝑓𝑔−1
𝑖
𝑓−1⟩ = ⟨𝑓, 𝑔

𝑖
𝑓𝑔−1
𝑖
⟩, by

Lemma 3, we know that, for all large enough 𝑖, ⟨𝑓, 𝑔
𝑖
𝑓𝑔−1
𝑖
⟩ are

elementary. This implies that

fix (𝑓) ∩ fix (𝑔
𝑖
) ̸= 0. (10)

Since 𝐺 is nonelementary, we can find three loxodromic
elements ℎ

𝑠
(𝑠 = 1, 2, 3) in 𝐺 such that

fix (𝑓) ∩ fix (ℎ
𝑠
) = 0, fix (ℎ

𝑗
) ∩ fix (ℎ

𝑘
) = 0, (11)

where 𝑖, 𝑘 ∈ {1, 2, 3} and 𝑗 ̸= 𝑘. It follows from a discussion
similar to the above that we can obtain that, for large enough
𝑖,

fix (𝑓) ∩ fix (ℎ
𝑠
𝑔
𝑖
ℎ
−1

𝑠
) ̸= 0, 𝑠 = 1, 2, 3. (12)

Since 𝑓 is nonelliptic, that is, fix(𝑓) contains less than three
points; it is a contradiction.

Now, we come to prove the case when each 𝑔 is reg-
ular elliptic. Suppose that 𝐺 is nondiscrete. Similarly, by
Proposition 2, we can find a sequence {𝑔

𝑖
} in 𝐺 such that

each 𝑔
𝑖
is regular elliptic and 𝑔

𝑖
→ 𝐼 as 𝑖 → ∞. This

implies that, for sufficiently large 𝑖, the subgroups ⟨𝑓, 𝑔
𝑖
𝑓𝑔−1
𝑖
⟩

are elementary. It follows that

fix (𝑓) = fix (𝑔
𝑖
) . (13)

It is a contradiction since 𝑓 is nonelliptic and 𝑔
𝑖
is regular

elliptic.
This completes the proof.

Proof of Theorem 5. The proof of Theorem 5 follows from a
discussion similar to that in the proof of Theorem 4.

Proof of Theorem 6. We only prove the case when 𝑔 is loxo-
dromic; similar arguments can be applied to the case when
𝑔 is regular elliptic. Suppose that 𝐺 is nondiscrete. Then
there exists a sequence {𝑔

𝑖
} ⊂ 𝐺 such that, for each 𝑖, 𝑔

𝑖
is

loxodromic and

𝑔
𝑖
→ 𝐼 as 𝑖 → ∞. (14)

Since 𝐺 is 𝑛-dimensional, we can find finitely many loxo-
dromic elements ℎ

1
, ℎ
2
, . . . , ℎ

𝑡
in 𝐺 such that the set 𝑆 =

{𝐴fix(ℎ
1
)
, 𝐴fix(ℎ

2
)
, . . . , 𝐴fix(ℎ

𝑡
)
} can span the whole complex

hyperbolic spaceH𝑛C, where𝐴fix(ℎ) is the attractive fixed point
of ℎ. For each 𝑘 (𝑘 = 1, 2, . . . , 𝑡), let 𝑈

𝐴fix(ℎ
𝑘
)

be a small
neighbourhood of 𝐴fix(ℎ

𝑘
)
in H
𝑛

C; then there exists an integer
𝑁 such that

ℎ
𝑁

𝑘
(fix (𝑓)) ⊂ 𝑈

𝐴fix(ℎ
𝑘
)

. (15)

Since

⟨ℎ
𝑁

𝑘
𝑓ℎ
−𝑁

𝑘
, 𝑔
𝑖
⟩ = ℎ
𝑁

𝑘
⟨𝑓, ℎ
−𝑁

𝑘
𝑔
𝑖
ℎ
𝑁

𝑘
⟩ ℎ
−𝑁

𝑘
,

max {𝑁 (ℎ
−𝑁

𝑘
𝑔
𝑖
ℎ
𝑁

𝑘
) ,𝑁 ([ℎ

−𝑁

𝑘
𝑔
𝑖
ℎ
𝑁

𝑘
, 𝑓])} < 2 − √3,

(16)

for large enough 𝑖, we can see that the subgroups
⟨ℎ𝑁
𝑘
𝑓2ℎ−𝑁
𝑘
, 𝑔
𝑖
⟩ are elementary. By Lemma 7, we know

that, for each 𝑘, (𝑘 = 1, 2, . . . , 𝑡),

fix (𝑔
𝑖
) ∩ 𝑈
𝐴fix(ℎ
𝑘
)

̸= 0. (17)

Obviously, it is a contradiction.

4. Algebraic Convergence

In this section, we discuss the algebraic convergence of
complex hyperbolic Kleinian groups. Firstly, we generalize
Theorem C1 into the following form.

Theorem 8. Let {𝐺
𝑟,𝑖
} be a sequence of groups of PU(𝑛, 1) and

𝐺
𝑟
be its algebraic limit group. Then we have the following.

(1) If, for each 𝑖, 𝐺
𝑟,𝑖
is a complex Kleinian group, then 𝐺

𝑟

is nonelementary and 𝐺
𝑟
is discrete if and only if each

one-generator subgroup of𝑊(𝐺
𝑟
) is discrete.

(2) If, for each 𝑖,𝐺
𝑟,𝑖
is discrete, then𝐺

𝑟
is elementary if and

only if for large enough 𝑖, all 𝐺
𝑟,𝑖
are elementary.
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Proof. The proof of (1). The nonelementariness of 𝐺
𝑟
follows

from [21, Theorem 1.4]. Now, we come to prove that if 𝐺
𝑟
is

nondiscrete, then there is an element𝑓 ∈ 𝑊(𝐺
𝑟
) such that the

subgroup ⟨𝑓⟩ is nondiscrete. Suppose that 𝐺
𝑟
is nondiscrete.

Since 𝑟 < ∞ (that is, 𝐺
𝑟
is finitely generated), by Selberg’s

Lemma we know that 𝐺
𝑟
contains a torsion free subgroup

𝐺
𝑟
1

with finite index which is nonelementary and nondiscrete
either. Then there exists a sequence {𝑓

𝑗
} in 𝐺

𝑟
1

such that

𝑓
𝑗
→ 𝐼 as 𝑗 → ∞. (18)

As 𝐺
𝑟
1

is nonelementary, we can find finitely many loxo-
dromic elements𝑔

1
,𝑔
2
, . . . , 𝑔

𝑘
in𝐺
𝑟
1

such that the set {fix(𝑔
1
),

fix(𝑔
2
), . . . , fix(𝑔

𝑘
)} spans 𝜕𝑀(𝐺

𝑟
1

), the boundary of𝑀(𝐺
𝑟
1

).
Then, for large enough 𝑗, we have

𝑁(𝑓
𝑗
) +

𝑛+1

∑
𝑞=1

𝑁([𝑓
𝑗
, 𝑔
𝑞

𝑠
]) < 2 − √3, 𝑠 ∈ {1, 2, . . . , 𝑘} .

(19)

Let 𝑓
𝑖,𝑗
and 𝑔

𝑖,𝑠
be the corresponding elements of 𝑓

𝑗
and 𝑔

𝑠
in

𝐺
𝑟,𝑖
, respectively. Then, for large enough 𝑖 and 𝑗,

𝑁(𝑓
𝑖,𝑗
) +

𝑛+1

∑
𝑞=1

𝑁([𝑓
𝑖,𝑗
, 𝑔
𝑞

𝑖,𝑠
]) < 2 − √3. (20)

Lemma 3 implies that, for large enough 𝑖 and 𝑗, the subgroups
⟨𝑓
𝑖,𝑗
, 𝑔
𝑖,𝑠
⟩ are elementary. Since the loxodromic elements of

PU(𝑛, 1) form an open set, we know that, for sufficiently large
𝑖, 𝑔
𝑖,𝑠
are loxodromic as well. It follows that

fix (𝑔
𝑖,𝑠
) ⊂ fix (𝑓

𝑖,𝑗
) , (21)

which shows that, for 𝑠 ∈ {1, 2, . . . , 𝑘} and all sufficiently large
𝑗,

fix (𝑔
𝑠
) ⊂ fix (𝑓

𝑗
) . (22)

Thus, for all sufficiently large 𝑗,

𝑓
𝑗
∈ 𝑊(𝐺

𝑟
1

) . (23)

Since𝐺
𝑟
1

is torsion free, we know that there exists an element
𝑓 ∈ 𝑊(𝐺

𝑟
1

) such that ⟨𝑓⟩ is nondiscrete. Note that𝑀(𝐺
𝑟
) =

𝑀(𝐺
𝑟
1

), so 𝑓 ∈ 𝑊(𝐺
𝑟
). Hence, the conclusion of (1) follows.

The proof of (2). We only need to prove that if, for large
enough 𝑖, all𝐺

𝑟,𝑖
are elementary, then is𝐺

𝑟
since the converse

is trivial by (1). Suppose that 𝐺
𝑟
is nonelementary. Then we

can find two loxodromic elements 𝑓 and 𝑔 in 𝐺
𝑟
such that

fix (𝑓) ∩ fix (𝑔) = 0. (24)

Let𝑓
𝑖
and 𝑔
𝑖
be the corresponding elements of𝑓 and 𝑔 in𝐺

𝑟,𝑖
,

respectively. Then, for large enough 𝑖, we have

fix (𝑓
𝑖
) ∩ fix (𝑔

𝑖
) = 0. (25)

It follows a discussion similar to that in the proof of (1) that,
for large enough 𝑖, both 𝑓

𝑖
and 𝑔

𝑖
are loxodromic. This shows

that, for large enough 𝑖, all 𝐺
𝑟,𝑖

are nonelementary. It is a
contradiction.

Definition 9. Let {𝐺
𝑖
} be a sequence of complex Kleinian

groups of PU(𝑛, 1). We say that {𝐺
𝑖
} satisfies E-condition if

there is no sequence {𝑓
𝑖
}, 𝑓
𝑖
∈ 𝑊(𝐺

𝑖
) such that 𝑓

𝑖
→ 𝑓 as

𝑖 → ∞, where 𝑓 is an elliptic element with infinite order.
In the following, we give an example which shows that,

if the sequence {𝐺
𝑖
} does not satisfy IP-condition but 𝐸-

condition, then the limit group 𝐺
𝑟
is still a complex Kleinian

groups.

Example 10. Suppose that 𝐻 is a purely loxodromic nonele-
mentary subgroup of PU(1, 1) and, for each 𝑗,

𝑓
𝑗
= [

[

𝑒𝑖(1/2
𝑗
) 0 0

0 1 0

0 0 1

]

]

. (26)

Let �̃� be the Poincaré extension of 𝐻 in PU(2, 1) and 𝐺
𝑗
=

⟨�̃�, 𝑓
𝑗
⟩. Then it is easy to see that the algebraic limit group

𝐺 of {𝐺
𝑗
} is a complex Kleinian group. Note that 𝑓

𝑗
→ 𝐼 as

𝑗 → ∞; we know that {𝐺
𝑗
} does not satisfy IP-condition but

𝐸-condition.

As applications of Theorem 8 and 𝐸-condition, we have
the following.

Theorem 11. Let 𝐺
𝑟
be the algebraic limit group of com-

plex Kleinian groups {𝐺
𝑟,𝑖
} of PU(𝑛, 1). If {𝐺

𝑟,𝑖
} satisfies E-

condition, then 𝐺
𝑟
is a complex Kleinian group.

Proof. By Theorem 8(1), we know that 𝐺
𝑟
is nonelementary.

Suppose that 𝐺
𝑟
is nondiscrete. Then there exist an elliptic

element 𝑓 ∈ 𝑊(𝐺
𝑟
) and an integer sequence {𝑛

𝑗
} such that

ord(𝑓) = ∞ and

𝑓
𝑛
𝑗 → 𝐼 as 𝑛

𝑗
→ ∞. (27)

For each 𝑛
𝑗
, let 𝑓𝑛𝑗

𝑖
be the corresponding element of 𝑓𝑛𝑗 in

𝐺
𝑟,𝑖
. By [21, Lemma 4.2], we know that 𝑓𝑛𝑗

𝑖
∈ 𝑊(𝐺

𝑟,𝑖
). It

follows from the hypothesis that {𝐺
𝑟,𝑖
} satisfies 𝐸-condition;

we have 𝑓𝑛𝑗
𝑖
= 𝐼 for large enough 𝑖. This implies that 𝑓𝑛𝑗 = 𝐼.

It is a contradiction.
The proof is completed.

When 𝑟 ≤ ∞, Wang [17] proved the following.

Theorem W. Let 𝑟 ≤ ∞. If the generator system {𝑔
𝑡,𝑖
}
𝑟

𝑡=1
of

𝐺
𝑟,𝑖

satisfies that none are elliptic and no two have any fixed
point in common, and, if all 𝐺

𝑟,𝑖
are Kleinian groups, then

(1) all the generators 𝑔
𝑡
= lim

𝑖→∞
𝑔
𝑡,𝑖
are neither elliptic

nor identity;
(2) if𝐺

𝑟
= ⟨𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑟
⟩ is nonelementary and𝑊(𝐺

𝑟
) is

discrete, then 𝐺
𝑟
is discrete.

It easily follows a similar argument as in the proof of
Theorem 8 and we can obtain the following.

Theorem 12. Let 𝑟 ≤ ∞. If the generator system {𝑔
𝑡,𝑖
}
𝑟

𝑡=1
of

𝐺
𝑟,𝑖

satisfies that none are elliptic and no two have any fixed
point in common, and, if all 𝐺

𝑟,𝑖
are discrete, then
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(1) 𝐺
𝑟
= ⟨𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑟
⟩ is nonelementary;

(2) 𝐺
𝑟
is discrete if and only if 𝑊(𝐺

𝑟
) is discrete.
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