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We introduce stochasticity into an SIS epidemic model with vaccination. The stochasticity in the model is a standard technique in
stochastic populationmodeling. In the deterministicmodels, the basic reproduction number𝑅

0
is a thresholdwhich determines the

persistence or extinction of the disease. When the perturbation and the disease-related death rate are small, we carry out a detailed
analysis on the dynamical behavior of the stochastic model, also regarding of the value of 𝑅

0
. If 𝑅
0
≤ 1, the solution of the model is

oscillating around a steady state, which is the disease-free equilibrium of the corresponding deterministicmodel, whereas, if𝑅
0
> 1,

there is a stationary distribution, which means that the disease will prevail. The results are illustrated by computer simulations.

1. Introduction

Epidemiology is the study of the spread of diseases with the
objective to trace factors that are responsible for or contribute
to their occurrence. Significant progress has beenmade in the
theory and application of epidemiology modeling by mathe-
matical research. Controlling infectious diseases has been an
increasingly complex issue in recent years. Vaccination is an
important strategy for the elimination of infectious diseases
[1–3]. The vaccination enables the vaccinated to acquire a
permanent or temporary immunity. When the immunity is
temporary, the immunity can be lost after a period of time.
This temporary immunity is used in many references [4–
7] that assume the process of losing immunity is in the
exponential form.

In [7], Li and Ma discussed an SIS model with vaccina-
tion. The system has following form:

̇𝑆 (𝑡) = (1 − 𝑞)𝐴 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝑝) 𝑆 (𝑡)

+ 𝛾𝐼 (𝑡) + 𝜀𝑉 (𝑡) ,

̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾 + 𝑎) 𝐼 (𝑡) ,

𝑉̇ (𝑡) = 𝑞𝐴 + 𝑝𝑆 (𝑡) − (𝜇 + 𝜀)𝑉 (𝑡) .

(1)

Here 𝑆(𝑡) denotes the number of members of a population
who are susceptible to an infection at time 𝑡. 𝐼(𝑡) denotes the
number of members who are infective at time 𝑡.𝑉(𝑡) denotes
the number of members who are immune to an infection at
time 𝑡 as the result of vaccination. The derivatives 𝑑𝑆(𝑡)/𝑑𝑡,
𝑑𝐼(𝑡)/𝑑𝑡, and 𝑑𝑉(𝑡)/𝑑𝑡 are denoted by ̇𝑆(𝑡), ̇𝐼(𝑡), and 𝑉̇(𝑡),
respectively.

The parameters in the model are summarized in the
following list:

𝐴: a constant input of new members into the popula-
tion per unit time;
𝑞: a fraction of vaccinated for newborns;
𝛽: transmission coefficient between compartments 𝑆
and 𝐼;
𝜇: natural death rate of 𝑆, 𝐼, and 𝑉 compartments;
𝑝: the proportional coefficient of vaccinated for the
susceptible;
𝛾: recovery rate of infectious individuals;
𝜀: the rate of losing their immunity for vaccinated
individuals;
𝛼: disease-caused death rate of infectious individuals.
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All parameter values are assumed to be nonnegative and
𝜇, 𝐴 > 0.

In Li and Ma [7], system (1) always has the disease-free
equilibrium 𝑃

0
= (𝑆
0
, 𝐼
0
, 𝑉
0
) = ((𝐴/𝜇)((𝜇(1 − 𝑞) + 𝜀)/(𝜇 +

𝜀 + 𝑝)), 0, (𝐴/𝜇)((𝜇𝑞 + 𝑝)/(𝜇 + 𝜀 + 𝑝))). If 𝑅
0
⩽ 1, then

𝑃
0
is the unique equilibrium of (1), and it is globally stable

in the invariant set Γ, where Γ = {(𝑆, 𝐼, 𝑉) : 𝑆 > 0, 𝐼 ≥

0, 𝑉 ≥ 0, 𝑆 + 𝐼 + 𝑉 ≤ 𝐴/𝜇}. If 𝑅
0
> 1, then 𝑃

0
is unstable

and there is an endemic equilibrium 𝑃
∗
= (𝑆
∗
, 𝐼
∗
, 𝑉
∗
) =

((𝜇 + 𝛾 + 𝛼)/𝛽, (𝜇(𝜇 + 𝛾 + 𝛼)(𝜇 + 𝜀 + 𝑝)/𝛽(𝜇 + 𝛼)(𝜇 + 𝜀))(𝑅
0
−

1), (𝑞𝐴 + (𝑝/𝛽)(𝜇 + 𝛾 + 𝛼))/(𝜇 + 𝜀)) of (1), which is globally
asymptotically stable under the sufficient condition in the
invariant set Γ. The basic reproduction number of system (1)
is as follows:

𝑅
0
=

𝐴𝛽 (𝜇 (1 − 𝑞) + 𝜀)

𝜇 (𝜇 + 𝛾 + 𝛼) (𝜇 + 𝜀 + 𝑝)
=

𝛽𝑆
0

𝜇 + 𝛾 + 𝛼
. (2)

Considering real life is full of randomness and stochas-
ticity, using stochastic models can gain more real benefits.
Consequently, there are many authors who studied stochastic
biological systems and stochastic epidemic models; see [8–
24]. There may be different approaches which result in
different effects on the population system to include random
perturbations in the models. In [20–23], the situation of
the parameter perturbation was considered. Gray et al. [23]
discuss the following stochastic SIS model:

𝑑𝑆 (𝑡) = [𝜇𝑁 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝛾𝐼 (𝑡) − 𝜇𝑆 (𝑡)] 𝑑𝑡

− 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) ,

𝑑𝐼 (𝑡) = [𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡)] 𝑑𝑡

+ 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝐵 (𝑡) .

(3)

Here 𝑆 and 𝐼 denote the susceptible and infected numbers of
individuals, respectively. With 𝑆(𝑡) + 𝐼(𝑡) ≡ 𝑁, they simplify
system (3) into a single equation and show that if 𝑅𝑆

0
< 1 and

𝜎
2
≤ 𝛽/𝑁, then the disease will die out with probability one.

If 𝑅𝑆
0
> 1, then the disease will be persistent, where𝑅𝑆

0
= 𝑅
𝐷

0
−

(𝜎
2
𝑁
2
/2(𝜇 + 𝛾)) and 𝑅𝐷

0
= 𝛽𝑁/(𝜇 + 𝛾) is the threshold of the

corresponding deterministic system. 𝑅𝑆
0
can be considered as

the threshold of system (3), which is less than the value of𝑅𝐷
0
.

On the other hand, white noise stochastic perturbations
around the positive endemic equilibrium of epidemicmodels
were considered in [19, 25]. Beretta et al. [25] considered the
following system differential equation:

𝑑𝑆 (𝑡) = − 𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝑠) 𝐼 (𝑡 − 𝑠) 𝑑𝑠 − 𝜇
1
𝑆 (𝑡) + 𝑏

+ 𝜎
1
(𝑆 (𝑡) − 𝑆

∗
) 𝑑𝐵
1 (𝑡) ,

𝑑𝐼 (𝑡) = 𝛽𝑆 (𝑡) ∫

ℎ

0

𝑓 (𝑠) 𝐼 (𝑡 − 𝑠) 𝑑𝑠 − (𝜇
2
+ 𝜆) 𝐼 (𝑡)

+ 𝜎
2
(𝐼 (𝑡) − 𝐼

∗
) 𝑑𝐵
2 (𝑡) ,

𝑑𝑅 (𝑡) = 𝜆𝐼 (𝑡) − 𝜇
3
𝑅 (𝑡) + 𝜎

3
(𝑅 (𝑡) − 𝑅

∗
) 𝑑𝐵
3
(𝑡) ,

(4)

where 𝑆∗, 𝐼∗, and 𝑅∗are the positive points of equilibrium for
the corresponding deterministic system and 𝜎

𝑖
are constants,

𝐵
𝑖
(𝑡) are independent from other standard Wiener processes

(𝑖 = 1, 2, 3). In their paper, they proved the above stochastic
system was stable in probability by using the general method
of Lyapunov functionals construction and obtained the sta-
bility condition immediately in terms of the parameters of the
system under consideration.

Another different approach to include stochastic per-
turbations in a biological model was considered by Imhof
and Walcher in [11]. They introduced and analyzed a variant
of the deterministic single-substrate chemostat model. Also
they found all species were persistent in the multiple species
by using a comparison principle. Subsequently, they turned
to modeling the influence of random fluctuations on the
deterministic chemostat model. They set up the following
stochastic chemostat model:

𝑑𝑋
0
= (𝑟 − 𝛿𝑋

0
− 𝑎
1
(𝑋
0
, 𝑋
1
) − 𝑎
2
(𝑋
0
, 𝑋
2
)) 𝑑𝑡

+ 𝜎
0
𝑋
0
𝑑𝐵
0
(𝑡) ,

𝑑𝑋
1
= (𝑎
1
(𝑋
0
, 𝑋
1
) − 𝑠
1
(𝑋
1
, 𝑋
2
)) 𝑑𝑡

+ 𝜎
1
𝑋
1
𝑑𝐵
1 (𝑡) ,

𝑑𝑋
2
= (𝑎
2
(𝑋
0
, 𝑋
2
) − 𝑠
2
(𝑋
1
, 𝑋
2
)) 𝑑𝑡

+ 𝜎
2
𝑋
2
𝑑𝐵
1 (𝑡) ,

(5)

where 𝜎
0
, 𝜎
1
, 𝜎
2
≥ 0 and 𝐵

𝑖
(𝑡)(𝑖 = 1, 2, 3) are independent

Brownian motions. By analyzing this stochastic differential
equation model, they proved that the stochastic model led
to extinction even though the deterministic counterpart
predicts persistence.

In this paper, our approach to include stochastic pertur-
bation is analogous to that of Imhof andWalcher [11]. We are
devoted to studying the following stochastic system:

𝑑𝑆 (𝑡) = [(1 − 𝑞)𝐴 − 𝛽𝑆𝐼 − (𝜇 + 𝑝) 𝑆 + 𝛾𝐼 + 𝜀𝑉] 𝑑𝑡

+ 𝜎
1
𝑆𝑑𝐵
1 (𝑡) ,

𝑑𝐼 (𝑡) = [𝛽𝑆 − (𝜇 + 𝛾 + 𝛼)] 𝐼𝑑𝑡 + 𝜎
2
𝐼𝑑𝐵
2
(𝑡) ,

𝑑𝑉 (𝑡) = [𝑞𝐴 + 𝑝𝑆 − (𝜇 + 𝜀)𝑉] 𝑑𝑡 + 𝜎3𝑉𝑑𝐵3 (𝑡) ,

(6)

where 𝐵
𝑖
(𝑡)(𝑖 = 1, 2, 3) are independent Brownian motions

and 𝜎
𝑖
(𝑖 = 1, 2, 3) are their intensities.

This paper is organized as follows. In Section 2, we show
there is a unique positive solution of system (6) by the way
mentioned in [20, 23]. In Section 3, when 𝑅

0
≤ 1, we

derive that the solution of the system (6) oscillates around the
disease-free equilibrium 𝑃

0
of system (1). In Section 4, when

𝑅
0
> 1, although the solution of system (6) does not converge

to the endemic proportion equilibrium 𝑃
∗ of system (1), we

conclude there is a unique stationary distribution for system
(6), and it has ergodic property under some conditions. In
Section 5, we make simulations to confirm our analytical
results. Finally, in order to be self-contained, we have the
appendix.
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2. Existence and Uniqueness of
Positive Solution

To investigate the dynamical behavior, the first concern
is whether the solution has a global existence. Moreover,
for a population dynamics model, whether the value is
nonnegative is also considered. Hence in this section, we first
show that the solution of system (6) is global andnonnegative.

Theorem 1. There is a unique solution 𝑌(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡))
of system (6) on 𝑡 ⩾ 0 for any initial value 𝑌(0) =

(𝑆(0), 𝐼(0), 𝑉(0)) ∈ R3
+
, and the solution will remain in R3

+

with probability 1, namely, 𝑌(𝑡) ∈ R3
+
for all 𝑡 ⩾ 0 almost

surely.

Proof. Our proof is motivated by the works of Mao et al. [17].
Since the coefficients of (6) are locally Lipschitz continuous
for any given initial value (𝑆(0), 𝐼(0), 𝑉(0)) ∈ R3

+
, there is a

unique local solution (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) on 𝑡 ∈ [0, 𝜏
𝑒
), where

𝜏
𝑒
is the explosion time (see [20]). To show that this solution

is global, we need to show that 𝜏
𝑒
= ∞ a.s. Let 𝑘

0
≥ 0 be

sufficiently large so that 𝑆(0), 𝐼(0), and 𝑉(0) all lie within
the interval [1/𝑘

0
, 𝑘
0
]. For each integer 𝑘 ⩾ 𝑘

0
, define the

stopping time:

𝜏
𝑘
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : min {𝑆 (𝑡) , 𝐼 (𝑡) , 𝑉 (𝑡)}

≤
1

𝑘
or max {𝑆 (𝑡) , 𝐼 (𝑡) , 𝑉 (𝑡)} ≥ 𝑘} ,

(7)

where throughout this paper, we set inf 0 = ∞ (as usual
0 denotes the empty set). According to the definition, 𝜏

𝑘
is

increasing as 𝑘 → ∞. Set 𝜏
∞
= lim
𝑘→∞

𝜏
𝑘
, whence 𝜏

∞
⩽ 𝜏
𝑒

a.s. If we can show that 𝜏
∞

= ∞ a.s., then 𝜏
𝑒
= ∞ and

(𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) ∈ R3
+
a.s. for all 𝑡 ⩾ 0. In other words, to

complete the proof, all we need to show is that 𝜏
∞
= ∞ a.s.

If this statement is false, then there exist a pair of constants
𝑇 > 0 and 𝜀 ∈ (0, 1) such that

𝑃 {𝜏
∞
⩽ 𝑇} > 𝜀. (8)

Hence there is an integer 𝑘
1
⩾ 𝑘
0
such that

𝑃 {𝜏
𝑘
⩽ 𝑇} ⩾ 𝜀 ∀𝑘 ⩾ 𝑘

1
. (9)

Define a 𝐶2-function𝑊: R3
+
→ R (see the appendix) by

𝑊 = (𝑆 − 𝑎 − 𝑎 log 𝑆
𝑎
) + (𝐼 − 1 − log 𝐼)

+ (𝑉 − 1 − log𝑉) .
(10)

The nonnegativity of this function can be seen from 𝑢 − 1 −

log 𝑢 ⩾ 0, for all 𝑢 > 0. Let 𝑘 ⩾ 𝑘
0
and 𝑇 > 0 be arbitrary.

Applying the Itô formula, we obtain

𝑑𝑊 = (1 −
𝑎

𝑆
) [(1 − 𝑞)𝐴 − 𝛽𝑆𝐼 − (𝜇 + 𝑝) 𝑆 +𝛾𝐼 + 𝜀𝑉] 𝑑𝑡

+ (1 −
𝑎

𝑆
) 𝜎
1
𝑆𝑑𝐵
1
(𝑡) +

1

2
𝑎𝜎
2

1
𝑑𝑡

+ (1 −
1

𝐼
) [𝛽𝑆 − (𝜇 + 𝛾 + 𝛾)] 𝐼𝑑𝑡

+ (1 −
1

𝐼
) 𝜎
2
𝐼𝑑𝐵
2
(𝑡) +

1

2
𝜎
2

2
𝑑𝑡

+ (1 −
1

𝑉
) [𝑞𝐴 + 𝑝𝑆 − (𝜇 + 𝜀)𝑉] 𝑑𝑡

+ (1 −
1

𝑉
)𝜎
3
𝑉𝑑𝐵
3
(𝑡) +

1

2
𝜎
2

3
𝑑𝑡

:= 𝐿𝑊𝑑𝑡 + 𝜎
1 (𝑆 − 𝑎) 𝑑𝐵1 (𝑡)

+ 𝜎
2
(𝐼 − 1) 𝑑𝐵

2
(𝑡) + 𝜎

3
(𝑉 − 1) 𝑑𝐵

3
(𝑡) ,

(11)

where 𝐿𝑊 : R3
+
→ R
+
is defined by

𝐿𝑊 (𝑆, 𝐼, 𝑉) = 𝐴 − 𝜇𝑆 − (1 − 𝑞)𝐴
𝑎

𝑆
+ 𝑎𝛽𝐼 + 𝑎 (𝜇 + 𝑝)

− 𝑎𝛾
𝐼

𝑆
− 𝑎𝜀

𝑉

𝑆
+
1

2
𝑎𝜎
2

1
− (𝜇 + 𝛼) 𝐼

− 𝛽𝑆 + (𝜇 + 𝛼 + 𝛾) +
1

2
𝜎
2

2
− 𝜇𝑉

− 𝑞
𝐴

𝑉
− 𝑝

𝑆

𝑉
+ (𝜇 + 𝜀) +

1

2
𝜎
2

3

⩽ 𝐴 + [𝑎𝛽 − (𝜇 + 𝛼)] 𝐼 + 𝑎 (𝜇 + 𝑝)

+
1

2
𝑎𝜎
2

1
+
1

2
𝜎
2

2
+
1

2
𝜎
2

3

+ (𝜇 + 𝛼 + 𝛾) + (𝜇 + 𝜀) .

(12)

Let 𝑎 = (𝜇 + 𝛼)/𝛽, s.t. 𝑎𝛽 − (𝜇 + 𝛼) = 0. Substituting this into
(12), we get

𝐿𝑊 (𝑆, 𝐼, 𝑉) ⩽ 𝐴 +
(𝜇 + 𝛼) (𝜇 + 𝑝)

𝛽
+
𝜇 + 𝛼

2𝛽
𝜎
2

1

+ (𝜇 + 𝛾 + 𝛼) +
1

2
𝜎
2

2

+ (𝜇 + 𝜀) +
1

2
𝜎
2

3

:= 𝐾.

(13)

The remainder of the proof follows that inMao et al. [17].

3. Asymptotic Behavior around 𝑃
0

It is clear that 𝑃
0
= (𝑆
0
, 0, 𝑉
0
) is the disease-free equilibrium

of system (1). If 𝑅
0
≤ 1, then 𝑃

0
is globally stable, which
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means the disease will die out after some period of time.
Hence, it is interesting to study the disease-free equilibrium
for controlling infectious disease. But there is no disease-free
equilibrium in system (6). In this section,we show the average
oscillation around 𝑃

0
in time to exhibit whether the disease

will die out.

Theorem 2. If 𝑅
0
⩽ 1, 𝛼2 < 4𝜇(𝜇 + 𝛼)(1 + 2𝜇/𝜀), and the

following condition is satisfied

𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1) > (𝑐

2
+ 1) 𝜎

2

1
,

(𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌
> (𝑐
2
+ 1) 𝜎

2

2
,

(𝜇 − 𝜌𝛼) > 𝜎
2

3
,

(14)

then the solution𝑌(𝑡) of system (6)with initial value𝑌(0) ∈ R3
+

has the property

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

{[𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1) − (𝑐

2
+ 1) 𝜎

2

1
]

× (𝑆 (𝑟) − 𝑆
0
)
2

+[ (𝜇 + 𝛼) (1 +
2𝜇

𝜀
)

−
𝛼

4𝜌
− (𝑐
2
+ 1) 𝜎

2

2
] 𝐼(𝑟)

2

+ [(𝜇 − 𝜌𝛼) − 𝜎
2

3
] (𝑉 (𝑟) − 𝑉0)

2
}𝑑𝑠

⩽ (𝑐
2
+ 1) 𝜎

2

1
𝑆
2

0
+ 𝜎
2

3
𝑉
2

0
,

(15)

where 𝑃
0
= (𝑆
0
, 0, 𝑉
0
) is the disease-free equilibrium of system

(1), 𝑐
2
= 2𝜇/𝜀, and 𝜌 is positive constant that satisfied 𝛼/4(𝜇 +

𝛼)(1 + 2𝜇/𝜀) < 𝜌 < 𝜇/𝛼.

Proof. Let 𝑥 = 𝑆 − 𝑆
0
, 𝑦 = 𝐼, and 𝑧 = 𝑉 − 𝑉

0
. Then

𝑑𝑥 = [−𝛽 (𝑥 + 𝑆
0
) 𝑦 − (𝜇 + 𝑝) 𝑥 + 𝛾𝑦 + 𝜀𝑧] 𝑑𝑡

+ 𝜎
1
(𝑥 + 𝑆

0
) 𝑑𝐵
1
(𝑡) ,

𝑑𝑦 = {𝛽𝑥𝑦 + [𝛽𝑆
0
− (𝜇 + 𝛾 + 𝛼)] 𝑦} 𝑑𝑡

+ 𝜎
2
𝑦𝑑𝐵
2 (𝑡) ,

𝑑𝑧 = [𝑝𝑥 − (𝜇 + 𝜀) 𝑧] 𝑑𝑡

+ 𝜎
3
(𝑧 + 𝑉

0
) 𝑑𝐵
3
(𝑡) .

(16)

Define a 𝐶2-function𝑊: R3
+
→ R
+
by

𝑊(𝑥, 𝑦, 𝑧) = 𝑐
1
𝑦 +

𝑐
2

2
(𝑥 + 𝑦)

2
+
1

2
(𝑥 + 𝑦 + 𝑧)

2

:= 𝑐
1
𝑊
1
(𝑥, 𝑦, 𝑧) + 𝑐

2
𝑊
2
(𝑥, 𝑦, 𝑧) + 𝑊

3
(𝑥, 𝑦, 𝑧) ,

(17)

where 𝑐
1
= 1/𝛽[2𝜇(2𝜇+𝑝+𝛼)/𝜀+ (2𝜇+𝛼)]. By Itô’s formula,

we compute

𝑑𝑊
1
= {𝛽𝑥𝑦 + [𝛽𝑆

0
− (𝜇 + 𝛾 + 𝛼)] 𝑦} 𝑑𝑡 + 𝜎

2
𝑦𝑑𝐵
2
(𝑡)

= [𝛽𝑥𝑦 + (𝜇 + 𝛾 + 𝛼) (𝑅
0
− 1) 𝑦] 𝑑𝑡 + 𝜎

2
𝑦𝑑𝐵
2 (𝑡)

= 𝐿𝑊
1
𝑑𝑡 + 𝜎

2
𝑦𝑑𝐵
2
(𝑡) ,

𝑑𝑊
2
= (𝑥 + 𝑦) {[ − (𝜇 + 𝑝) 𝑥 − (𝜇 + 𝛼) 𝑦

+ 𝜀𝑧 +
1

2
𝜎
2

1
(𝑥 + 𝑆

0
)
2
+
1

2
𝜎
2

2
𝑦
2
] 𝑑𝑡

+ 𝜎
1
(𝑥 + 𝑆

0
) 𝑑𝐵
1
(𝑡) +𝜎

2
𝑦𝑑𝐵
2
(𝑡) }

= 𝐿𝑊
2
𝑑𝑡 + (𝑥 + 𝑦) [𝜎

1
(𝑥 + 𝑆

0
) 𝑑𝐵
1
(𝑡)

+𝜎
2
𝑦𝑑𝐵
2 (𝑡)] ,

𝑑𝑊
3
= (𝑥 + 𝑦 + 𝑧) {[ − 𝜇𝑥 − (𝜇 + 𝛼) 𝑦 − 𝜇𝑧

+
1

2
𝜎
2

1
(𝑥 + 𝑆

0
)
2
+
1

2
𝜎
2

2
𝑦
2

+
1

2
𝜎
2

3
(𝑧 + 𝑉

0
)
2
] 𝑑𝑡

+ 𝜎
1
(𝑥 + 𝑆

0
) 𝑑𝐵
1
(𝑡) + 𝜎

2
𝑦𝐵
2
(𝑡)

+𝜎
3
(𝑧 + 𝑉

0
) 𝑑𝐵
3
(𝑡) }

= 𝐿𝑊
3
𝑑𝑡 + (𝑥 + 𝑦 + 𝑧)

× [𝜎
1
(𝑥 + 𝑆

0
) 𝑑𝐵
1 (𝑡) + 𝜎2𝑦𝐵2 (𝑡)

+𝜎
3
(𝑧 + 𝑉

0
) 𝑑𝐵
3
(𝑡)] .

(18)

If 𝑅
0
⩽ 1, then

𝐿𝑊 = 𝑐
1
𝐿𝑊
1
+ 𝑐
2
𝐿𝑊
2
+ 𝐿𝑊
3

⩽ [𝑐
1
𝛽 − 𝑐
2
(2𝜇 + 𝑝 + 𝛼) − (2𝜇 + 𝛼)] 𝑥𝑦

− [𝑐
2
(𝜇 + 𝑝) + 𝜇] 𝑥

2

− (𝑐
2
+ 1) (𝜇 + 𝛼) 𝑦

2
− 𝜇𝑧
2

+ (𝑐
2
𝜀 − 2𝜇) 𝑥𝑧 + [𝑐

2
𝜀 − (2𝜇 + 𝛼)] 𝑦𝑧

+
1

2
(𝑐
2
+ 1) 𝜎

2

1
(𝑥 + 𝑆

0
)
2

+
1

2
(𝑐
2
+ 1) 𝜎

2

2
𝑦
2
+
1

2
𝜎
2

3
(𝑧 + 𝑉

0
)
2
.

(19)

Note that

𝑐
1
𝛽 − 𝑐
2
(2𝜇 + 𝑝 + 𝛼) − (2𝜇 + 𝛼) = 0, 𝑐

2
𝜀 − 2𝜇 = 0.

(20)
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Therefore, we can obtain

𝐿𝑊 ⩽ −𝜇[
2 (𝜇 + 𝑝)

𝜀
+ 1] 𝑥

2

− (1 +
2𝜇

𝜀
) (𝜇 + 𝛼) 𝑦

2
− 𝜇𝑧
2
− 𝛼𝑦𝑧

+
1

2
(𝑐
2
+ 1) 𝜎

2

1
(𝑥 + 𝑆

0
)
2

+
1

2
(𝑐
2
+ 1) 𝜎

2

2
𝑦
2
+
1

2
𝜎
2

3
(𝑧 + 𝑉

0
)
2

⩽ −{𝜇[
2 (𝜇 + 𝑝)

𝜀
+ 1] − (𝑐

2
+ 1) 𝜎

2

1
}𝑥
2

− [(𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌

− (𝑐
2
+ 1) 𝜎

2

2
−
𝛼

4𝜌
] 𝑦
2
− [(𝜇 − 𝜌𝛼) − 𝜎

2

3
] 𝑧
2

+ (𝑐
2
+ 1) 𝜎

2

1
𝑆
2

0
+ 𝜎
2

3
𝑉
2

0
,

(21)

where 𝜌 is positive constant to be specified later and Young’s
inequality is used. If

𝛼
2
< 4𝜇 (𝜇 + 𝛼) (1 +

2𝜇

𝜀
) , (22)

we choose 𝜌 such that 𝛼/4(𝜇 + 𝛼)(1 + 2𝜇/𝜀) < 𝜌 < 𝜇/𝛼. This
implies

(𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌
> 0, 𝜇 − 𝜌𝛼 > 0. (23)

Then we have

𝑑𝑊 ⩽ −{[𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1) − (𝑐

2
+ 1) 𝜎

2

1
]𝑥
2

+ [(𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌
− (𝑐
2
+ 1) 𝜎

2

2
]𝑦
2

+ [(𝜇 − 𝜌𝛼) − 𝜎
2

3
] 𝑧
2

− (𝑐
2
+ 1) 𝜎

2

1
𝑆
2

0
− 𝜎
2

3
𝑉
2

0
}𝑑𝑡

+ 𝜎
1
(𝑥 + 𝑆

0
) [(𝑐
2
+ 1) (𝑥 + 𝑦) + 𝑧] 𝑑𝐵

1
(𝑡)

+ 𝜎
2
𝑦 [𝑐
1
+ (𝑐
2
+ 1) (𝑥 + 𝑦) + 𝑧] 𝑑𝐵

2 (𝑡)

+ 𝜎
3
(𝑥 + 𝑦 + 𝑧) (𝑧 + 𝑉

0
) 𝑑𝐵
3
(𝑡) .

(24)

Integrating this from 0 to 𝑡 and taking the expectation, we
have
𝐸𝑊(𝑡) − 𝑊 (0)

⩽ −𝐸∫

𝑡

0

{[𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1) − (𝑐

2
+ 1) 𝜎

2

1
] 𝑥
2
(𝑟)

+ [(𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌

− (𝑐
2
+ 1) 𝜎

2

2
] 𝑦
2
(𝑟)

+ [(𝜇 − 𝜌𝛼) − 𝜎
2

3
] 𝑧
2
(𝑟)

− (𝑐
2
+ 1) 𝜎

2

1
𝑆
2

0
−𝜎
2

3
𝑉
2

0
}𝑑𝑟.

(25)

Hence,

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

{[𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1)

− (𝑐
2
+ 1) 𝜎

2

1
]𝑥
2
(𝑟)

+ [(𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌

− (𝑐
2
+ 1) 𝜎

2

2
−
𝛼

4𝜌
]𝑦
2
(𝑟)

+ [(𝜇 − 𝜌𝛼) − 𝜎
2

3
] 𝑧
2
(𝑟) } 𝑑𝑟

⩽ (𝑐
2
+ 1) 𝜎

2

1
𝑆
2

0
+ 𝜎
2

3
𝑉
2

0
.

(26)

Consequently,

lim sup
𝑡→∞

1

𝑡
𝐸∫

𝑡

0

{[𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1)

− (𝑐
2
+ 1) 𝜎

2

1
]

× (𝑆 (𝑟) − 𝑆
0
)
2

+ [ (𝜇 + 𝛼) (1 +
2𝜇

𝜀
)

−
𝛼

4𝜌
− (𝑐
2
+ 1) 𝜎

2

2
] 𝐼(𝑟)

2

+ [(𝜇 − 𝜌𝛼) − 𝜎
2

3
]

× (𝑉 (𝑟) − 𝑉0)
2
}𝑑𝑟

⩽ (𝑐
2
+ 1) 𝜎

2

1
𝑆
2

0
+ 𝜎
2

3
𝑉
2

0
.

(27)

This finishes the proof of Theorem 2.
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Remark 3. From Theorem 2, we show the solution of sys-
tem (6) will oscillate around the disease-free equilibrium
of system (1) under some conditions and the disturbance
intensity is proportional to the intensity of the white noise. In
a biological view, as the intensity of stochastic perturbations
is small, we consider the disease will die out.

Besides, if 𝜎
1
= 0 and 𝜎

3
= 0, then 𝑃

0
is also the disease-

free equilibrium of system (6). From the proof ofTheorem 2,
we get

𝐿𝑊 ⩽ −{𝜇[
2 (𝜇 + 𝑝)

𝜀
+ 1]

− (𝑐
2
+ 1) 𝜎

2

1
}𝑥
2

− [(𝜇 + 𝛼) (1 +
2𝜇

𝜀
)

−
𝛼

4𝜌
− (𝑐
2
+ 1) 𝜎

2

2
]𝑦
2

− [(𝜇 − 𝜌𝛼) − 𝜎
2

3
] 𝑧
2
.

(28)

Thus, the solution of system (6) is stochastically asymptoti-
cally stable in the large if (𝜇+2)(1+2𝜇/𝜀)−𝛼/4𝜌 > (𝑐

2
+1)𝜎
2

2
.

4. Ergodicity of System (6)
In studying epidemic dynamical system, we are also inter-
ested in when the disease will prevail and persist in a pop-
ulation. In the deterministic models, the problem is solved
by showing that the endemic equilibrium of corresponding
model is a global attractor or is globally asymptotically stable.
But there is no endemic equilibrium in system (6). In this
section, based on the theory of Has’minskĭı [26] (see the
appendix), we show that there is a stationary distribution
subjected to some conditions on𝑅

0
and the parameters of the

model which reveals that the disease will prevail also.
System (6) can be written as a form of system (A.8) (see

the appendix).
Consider

𝑑(

𝑆

𝐼

𝑉

)

= (

(1 − 𝑞)𝐴 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝑝) 𝑆 (𝑡) + 𝛾𝐼 (𝑡) + 𝜀𝑉 (𝑡)

𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾 + 𝑎) 𝐼 (𝑡)

𝑞𝐴 + 𝑝𝑆 (𝑡) − (𝜇 + 𝜀)𝑉 (𝑡)

) 𝑑𝑡

+ (

𝜎
1
𝑆

0

0

)𝑑𝐵
1
(𝑡) + (

0

𝜎
2
𝐼

0

)𝑑𝐵
2
(𝑡)

+ (

0

0

𝜎
3
𝑉

)𝑑𝐵
3
(𝑡) ,

(29)

and the diffusion matrix is 𝐴 = diag(𝜎2
1
𝑆
2
, 𝜎
2

2
𝐼
2
, 𝜎
2

3
𝑉
2
).

Remark 4. Theorem 1 shows that there exists a unique posi-
tive solution 𝑌(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) of system (6). Besides,
from the proof of Theorem 1, we obtain 𝐿𝑉 ⩽ 𝐾. Define
𝑉̃ = 𝑉 + 𝐾, then 𝐿𝑉̃ ≤ 𝑉̃, and it is clear that 𝑉̃

𝑘
=

inf
𝑋∈𝑅
3

+
\𝐶𝑘
𝑉̃(𝑌) → ∞ as 𝑘 → ∞, where 𝐶

𝑘
= (1/𝑘, 𝑘) ×

(1/𝑘, 𝑘) × (1/𝑘, 𝑘). Hence, by Remark 2 of Theorem 4.1 of
Has’minskĭı (1980, page 86) [26], we obtain that the solution
𝑌(𝑡) is a homogeneous Markov process in 𝑅3

+
.

Theorem 5. If 𝑅
0
> 1, 𝛼2 < 4𝜇(𝜇 + 𝛼)(1 + 2𝜇/𝜀), and

0 < 𝜎
2

1
<

𝜇

𝑐
2
+ 1

(
2 (𝜇 + 𝑝)

𝜀
+ 1) ,

0 < 𝜎
2

2
<

1

𝑐
2
+ 1

[(𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌
] ,

0 < 𝜎
2

3
< 𝜇 − 𝜌𝛼,

(30)

such that

𝛿 < min{[𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1)

− (𝑐
2
+ 1) 𝜎

2

1
] (𝑆
∗
)
2
,

[ (𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌

− (𝑐
2
+ 1) 𝜎

2

2
] (𝐼
∗
)
2
,

(𝜇 − 𝜌𝛼 − 𝜎
2

3
) (𝑉
∗
)
2
} ,

(31)

then, for any initial value 𝑌(0) ∈ 𝑅
3

+
, there is a stationary

distribution 𝜇(⋅) for system (6) and it has an ergodic property,
where 𝛿 = 𝜎2

2
𝐼
∗
/2+(𝑐

2
+1)𝜎
2

1
(𝑆
∗
)
2
+(𝑐
2
+1)𝜎
2

2
(𝐼
∗
)
2
+𝜎
2

3
(𝑉
∗
)
2,

𝑃
∗
= (𝑆
∗
, 𝐼
∗
, 𝑉
∗
) is the endemic proportion equilibrium of

system (1), and 𝑐
2
and 𝜌 are the same constants as inTheorem 2.

Proof. If 𝑅
0
> 1, there is an endemic proportion equilibrium

𝑃
∗
= (𝑆
∗
, 𝐼
∗
, 𝑉
∗
) of system (1); then

(1 − 𝑞)𝐴 = 𝛽𝑆
∗
𝐼
∗
+ (𝜇 + 𝑝) 𝑆

∗
− 𝛾𝐼
∗
− 𝜀𝑉
∗
,

𝛽𝑆
∗
𝐼
∗
= (𝜇 + 𝛾 + 𝛼) 𝐼

∗
,

𝑞𝐴 + 𝑝𝑆
∗
= (𝜇 + 𝜀)𝑉

∗
.

(32)

Define a 𝐶2-function𝑊: R3
+
→ R
+
by

𝑊(𝑆, 𝐼, 𝑉)

= 𝑐
1
(𝐼 − 𝐼

∗
− 𝐼
∗ log 𝐼

𝐼∗
)
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+
𝑐
2

2
[(𝑆 − 𝑆

∗
) + (𝐼 − 𝐼

∗
)]
2

+
1

2
[(𝑆 − 𝑆

∗
) + (𝐼 − 𝐼

∗
) + (𝑉 − 𝑉

∗
)]
2

:= 𝑐
1
𝑊
1
+ 𝑐
2
𝑊
2
+𝑊
3
,

(33)

where 𝑐
1
= 1/𝛽[2𝜇(2𝜇+𝑝+𝛼)/𝜀+(2𝜇+𝛼)].The nonnegativity

of the function can be observed from𝑢−1−log 𝑢 ≥ 0 on𝑢 > 0.
Let 𝐿 be the generating operator of system (6). Then we get

𝐿𝑊
1
= 𝛽 (𝑆 − 𝑆

∗
) (𝐼 − 𝐼

∗
) +

1

2
𝜎
2

2
𝐼
∗
,

𝐿𝑊
2
= − (𝜇 + 𝑝) (𝑆 − 𝑆

∗
)
2
− (𝜇 + 𝛼) (𝐼 − 𝐼

∗
)
2

− [(𝜇 + 𝑝) + (𝜇 + 𝛼)] (𝑆 − 𝑆
∗
) (𝐼 − 𝐼

∗
)

+ 𝜀 (𝑆 − 𝑆
∗
) (𝑉 − 𝑉

∗
) + 𝜀 (𝐼 − 𝐼

∗
) (𝑉 − 𝑉

∗
)

+
1

2
(𝜎
2

1
𝑆
2
+ 𝜎
2

2
𝐼
2
) ,

𝐿𝑊
3
= −𝜇(𝑆 − 𝑆

∗
)
2
− (𝜇 + 𝛼) (𝐼 − 𝐼

∗
)
2

− 𝜇(𝑉 − 𝑉
∗
)
2
− (2𝜇 + 𝛼) (𝑆 − 𝑆

∗
) (𝐼 − 𝐼

∗
)

− 2𝜇 (𝑆 − 𝑆
∗
) (𝑉 − 𝑉

∗
)

− (2𝜇 + 𝛼) (𝐼 − 𝐼
∗
) (𝑉 − 𝑉

∗
)

+
1

2
(𝜎
2

1
𝑆
2
+ 𝜎
2

2
𝐼
2
+ 𝜎
2

3
𝑉
2
) .

(34)

Then

𝐿𝑊 = 𝑐
1
𝐿𝑊
1
+ 𝑐
2
𝐿𝑊
2
+ 𝐿𝑊
3

= [𝑐
1
𝛽 − 𝑐
2
(2𝜇 + 𝑝 + 𝛼) − (2𝜇 + 𝛼)]

× (𝑆 − 𝑆
∗
) (𝐼 − 𝐼

∗
)

− [𝑐
2
(𝜇 + 𝑝) + 𝜇] (𝑆 − 𝑆

∗
)
2

− (𝑐
2
+ 1) (𝜇 + 𝛼) (𝐼 − 𝐼

∗
)
2

− 𝜇(𝑉 − 𝑉
∗
)
2
+ (𝑐
2
𝜀 − 2𝜇) (𝑆 − 𝑆

∗
) (𝑉 − 𝑉

∗
)

+ [𝑐
2
𝜀 − (2𝜇 + 𝛼)] (𝐼 − 𝐼

∗
) (𝑉 − 𝑉

∗
)

+
1

2
𝜎
2

2
𝐼
∗
+
𝑐
2

2
(𝜎
2

1
𝑆
2
+ 𝜎
2

2
𝐼
2
)

+
1

2
(𝜎
2

1
𝑆
2
+ 𝜎
2

2
𝐼
2
+ 𝜎
2

3
𝑉
2
) .

(35)

Note that

𝑐
1
𝛽 − 𝑐
2
(2𝜇 + 𝑝 + 𝛼) − (2𝜇 + 𝛼) = 0, 𝑐

2
𝜀 − 2𝜇 = 0.

(36)

Then

𝐿𝑊 = −𝜇[
2 (𝜇 + 𝑝)

𝜀
+ 1] (𝑆 − 𝑆

∗
)
2

− (1 +
2𝜇

𝜀
) (𝜇 + 𝛼) (𝐼 − 𝐼

∗
)
2

− 𝜇(𝑉 − 𝑉
∗
)
2
− 𝛼 (𝐼 − 𝐼

∗
) (𝑉 − 𝑉

∗
)

+
1

2
𝜎
2

2
𝐼
∗
+
𝑐
2
+ 1

2
𝜎
2

1
𝑆
2

+
𝑐
2
+ 1

2
𝜎
2

2
𝐼
2
+ 𝜎
2

3
𝑉
2

⩽ −[𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1) − (𝑐

2
+ 1) 𝜎

2

1
] (𝑆 − 𝑆

∗
)
2

− [ (𝜇 + 𝛼) (1 +
2𝜇

𝜀
)

−
𝛼

4𝜌
− (𝑐
2
+ 1) 𝜎

2

2
] (𝐼 − 𝐼

∗
)

2

− (𝜇 − 𝜌𝛼 − 𝜎
2

3
) (𝑉 − 𝑉

∗
)
2

+
1

2
𝜎
2

2
𝐼
∗
+ (𝑐
2
+ 1) 𝜎

2

1
(𝑆
∗
)
2

+ (𝑐
2
+ 1) 𝜎

2

2
(𝐼
∗
)
2
+ 𝜎
2

3
(𝑉
∗
)
2

:= − [𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1) − (𝑐

2
+ 1) 𝜎

2

1
] (𝑆 − 𝑆

∗
)
2

− [ (𝜇 + 𝛼) (1 +
2𝜇

𝜀
)

−
𝛼

4𝜌
− (𝑐
2
+ 1) 𝜎

2

2
] (𝐼 − 𝐼

∗
)
2

− (𝜇 − 𝜌𝛼 − 𝜎
2

3
) (𝑉 − 𝑉

∗
)
2
+ 𝛿,

(37)

where Young’s inequality is used and

𝛿 =
1

2
𝜎
2

2
𝐼
∗
+ (𝑐
2
+ 1) 𝜎

2

1
(𝑆
∗
)
2
+ (𝑐
2
+ 1) 𝜎

2

2
(𝐼
∗
)
2
+ 𝜎
2

3
(𝑉
∗
)
2
.

(38)

If 𝛼2 < 4𝜇(𝜇 + 𝛼)(1 + 2𝜇/𝜀), choose 𝜌 such that

(𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌
> 0, 𝜇 − 𝜌𝛼 > 0. (39)
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Note that

𝛿 < min{[𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1)

− (𝑐
2
+ 1) 𝜎

2

1
] (𝑆
∗
)
2
,

[(𝜇 + 𝛼) (1 +
2𝜇

𝜀
) −

𝛼

4𝜌

− (𝑐
2
+ 1) 𝜎

2

2
] (𝐼
∗
)
2
,

[(𝜇 − 𝜌𝛼 − 𝜎
2

3
)] (𝑉
∗
)
2
} .

(40)

Thus the ellipsoid

− [𝜇(
2 (𝜇 + 𝑝)

𝜀
+ 1) − (𝑐

2
+ 1) 𝜎

2

1
] (𝑆 − 𝑆

∗
)
2

− [ (𝜇 + 𝛼) (1 +
2𝜇

𝜀
)

−
𝛼

4𝜌
− (𝑐
2
+ 1) 𝜎

2

2
] (𝐼 − 𝐼

∗
)
2

− (𝜇 − 𝜌𝛼 − 𝜎
2

3
) (𝑉 − 𝑉

∗
)
2
+ 𝛿 = 0

(41)

lies entirely in 𝑅3
+
. We can take 𝑈 to be a neighborhood of

the ellipsoid with 𝑈 ⊆ 𝐸
𝑙
= 𝑅
3

+
, so, for 𝑥 ∈ 𝑅

3

+
\ 𝑈,

𝐿𝑉 ≤ −𝑀 (𝑀 is a positive constant), which implies that
condition (B.2) in LemmaA.2 is satisfied. Hence, the solution
𝑌(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) is recurrent in the domain 𝑈, which,
together with Lemma A.4 and Remark 4, implies that 𝑌(𝑡) =
(𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡)) is recurrent in any boundeddomain𝐷 ⊂ 𝑅

3

+
.

Besides, for all𝐷, there is

𝑀 = min {𝜎2
1
𝑆
2
, 𝜎
2

2
𝐼
2
, 𝜎
2

3
𝑉
2
} > 0, (42)

such that

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝜉
𝑖
𝜉
𝑗
= 𝜎
2

1
𝑆
2
𝜉
2

1
+ 𝜎
2

2
𝐼
2
𝜉
2

2
+ 𝜎
2

3
𝑉
2
𝜉
2

3
≥ 𝑀

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2
, (43)

for all 𝑌 ∈ 𝐷, 𝜉 ∈ 𝑅
3, which implies that condition (B.1)

is also satisfied. Therefore, the stochastic system (6) has a
stationary distribution 𝜇(⋅), and it is ergodic.

5. Numerical Simulations

In order to confirm the results above, we numerically simulate
the solution of system (6) with given initial value and the

parameters. UsingMilstein’s higher order methodmentioned
in [27], we get the discretization equation of system (6):

𝑆
𝑘+1

= 𝑆
𝑘
+ ((1 − 𝑞)𝐴 − 𝛽𝑆

𝑘
𝐼
𝑘

− (𝜇 + 𝑝) 𝑆
𝑘
+ 𝛾𝐼
𝑘
+ 𝜀𝑉
𝑘
) Δ𝑡

+ 𝜎
1
𝑆
𝑘
√Δ𝑡𝜉
1,𝑘
+
𝜎
2

1

2
𝑆
𝑘
Δ𝑡 (𝜉
2

1,𝑘
− 1) ,

𝐼
𝑘+1

= 𝐼
𝑘
+ (𝛽𝑆

𝑘
𝐼
𝑘
− (𝜇 + 𝛾 + 𝛼) 𝐼

𝑘
) Δ𝑡 + 𝜎

2
𝐼
𝑘
√Δ𝑡𝜉
2,𝑘

+
𝜎
2

2

2
𝐼
𝑘
Δ𝑡 (𝜉
2

2,𝑘
− 1) ,

𝑉
𝑘+1

= 𝑉
𝑘
+ (𝑞𝐴 + 𝑝𝑆

𝑘
− (𝜇 + 𝜀)𝑉

𝑘
) Δ𝑡 + 𝜎

3
𝑉
𝑘
√Δ𝑡𝜉
3,𝑘

+
𝜎
2

3

2
𝑉
𝑘
Δ𝑡 (𝜉
2

3,𝑘
− 1) ,

(44)

where 𝜉
1,𝑘
, 𝜉
2,𝑘
, and 𝜉

3,𝑘
, 𝑘 = 1, 2, . . . , 𝑛, are the indepen-

dent Gaussian random variables 𝑁(0, 1). Choosing suitable
parameters in the system, by Matlab we get the simulation
figures with initial value (𝑆(0), 𝐼(0), 𝑉(0)) = (0.8, 0.4, 0.5) and
time step Δ𝑡 = 0.001.

Example 6. Throughout the paper we will assume that the
unit of time is one day, and the population sizes are measured
in units of 1 million. Choose the parameters in system (6) as
follows: 𝐴 = 0.2, 𝑞 = 0.5, 𝛽 = 0.5, 𝜇 = 0.2, 𝑝 = 0.3, 𝛾 = 0.2,
𝜀 = 0.1, 𝛼 = 0.3, 𝜎

1
= 0.05, 𝜎

2
= 0.1, and 𝜎

3
= 0.05. Note that

𝑅
0
=

𝐴𝛽 (𝜇 (1 − 𝑞) + 𝜀)

𝜇 (𝜇 + 𝛾 + 𝛼) (𝜇 + 𝜀 + 𝑝)
= 0.4 < 1,

𝛼
2
= 0.09 < 4𝜇 (𝜇 + 𝛼) (1 +

2𝜇

𝜀
) = 2,

(45)

and 𝜎
1
, 𝜎
2
, and 𝜎

3
satisfy condition (14), then by Theorem 2,

we show the solution of system (6) will oscillate around the
disease-free equilibrium 𝑃

0
(𝑆
0
, 𝐼
0
, 𝑉
0
) of system (1) in time

which is globally asymptotically stable. Besides Theorem 2
tells us that the difference between the perturbed solution
and 𝑃
0
is only related with white noises 𝜎

1
and 𝜎
3
. Numerical

simulations are shown in Figure 1.

Example 7. In Figures 2 and 3, we choose the parameters
in system (6) as follows: 𝐴 = 0.9, 𝑞 = 0.1, 𝛽 = 0.8,
𝜇 = 0.4, 𝑝 = 0.1, 𝛾 = 0.1, 𝜀 = 0.2, 𝛼 = 0.1, 𝜎

1
= 0.1,

𝜎
2
= 0.1, and 𝜎

3
= 0.1. Note that 𝑅

0
= 2.486 > 1

and 𝛼2 < 4𝜇(𝜇 + 𝛼)(1 + 2𝜇/𝜀) = 4; then the equilibrium
𝑃
∗
(𝑆
∗
, 𝐼
∗
, 𝑉
∗
) of system (1) is globally asymptotically stable.

But the white noise may make system (1) appear as different
phenomena. In detail, the conditions (30) and (31) are also
satisfied. Therefore, as Theorem 5 stated, there is a stationary
distribution (see the histograms in themiddle in Figure 2). In
addition, the left pictures in Figure 2 show that the solution
of system (6) has fluctuating in a small neighborhood.
Moreover, from Figure 3, we find that 95% or more of the
population distribution lies within a neighborhood, which



Abstract and Applied Analysis 9

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
The stochastic system 

t

I(t)

S(t)

V(t)

(a)

The deterministic system 

0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

I(t)

S(t)

V(t)

(b)

Figure 1: Computer simulation of the paths 𝑆(𝑡), 𝐼(𝑡), and𝑉(𝑡) for the SDE SISmodel (6) with vaccination and its corresponding deterministic
model (1) for parameter values 𝐴 = 0.2, 𝑞 = 0.5, 𝛽 = 0.5, 𝜇 = 0.2, 𝑝 = 0.3, 𝛾 = 0.2, 𝜀 = 0.1, 𝛼 = 0.3, 𝜎

1
= 0.05, 𝜎

2
= 0.1, and 𝜎

3
= 0.05.

can be imagined a circular or elliptic region centered at
𝑃
∗
(𝑆
∗
, 𝐼
∗
, 𝑉
∗
) (see the red point in Figure 3). All of these

imply system (6) has stochastic stability.
Testing these data for normality, all tests used were

highly significant, conclusively rejecting normality in all
cases. This is not surprising in view of the very large sample
sizes (10,000), as even moderate deviations from the tested
distribution will be significant; however the normal quantile-
quantile plots (see the QQ plots in the right in Figure 2)
suggest that these data are not far from being normally
distributed for smaller values of 𝜎

𝑖
(𝑖 = 1, 2, 3).

6. Conclusions

As most real world problems are not deterministic, incor-
porating stochastic effects into the model give us a more
realistic way of modeling epidemic models. In this paper,
we have considered stochastic SIS epidemic models with
vaccination. We first proved the positivity of the solutions.
When the perturbation and the disease-related death rate
are small, we illustrated the dynamical behavior of the SDE
model according to 𝑅

0
≤ 1 or 𝑅

0
> 1. When 𝑅

0
≤ 1, we

proved that the asymptotic behavior around the disease-free
equilibrium of the deterministic model. When 𝑅

0
> 1, we

also proved that the SDE model has the ergodic property as
the fluctuation is small, where the positive solution converges
weakly to the unique stationary distribution. Simulations are
also carried out to verify our analytical results.

Appendix

Here, we give some basic theory in stochastic differential
equations (see [18]).

Throughout this paper, unless otherwise specified, let
(Ω, {𝐹

𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with a filtration

{𝐹
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is right continu-
ous, and 𝐹

0
contains all P-null sets). Denote

R
𝑑

+
= {𝑥 ∈ R

𝑑
: 𝑥
𝑖
> 0 ∀1 ⩽ 𝑖 ⩽ 𝑑} ,

R
𝑑

+
= {𝑥 ∈ R

𝑑
: 𝑥
𝑖
≥ 0 ∀1 ⩽ 𝑖 ⩽ 𝑑} .

(A.1)

In general, consider 𝑛-dimensional stochastic differential
equation:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) , for 𝑡 ≥ 𝑡
0
,

(A.2)

with initial value 𝑥(𝑡
0
) = 𝑥

0
∈ 𝑅
𝑑. 𝐵(𝑡) denotes 𝑛-

dimensional standard Brownianmotion defined on the above
probability space. Define the differential operator 𝐿 associ-
ated with (A.2) by

𝐿 =
𝜕

𝜕𝑡
+

𝑑

∑

𝑖=1

𝑓
𝑖
(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑖

+
1

2

𝑑

∑

𝑖,𝑗=1

[𝑔
𝑇
(𝑥, 𝑡) 𝑔 (𝑥, 𝑡)]

𝑖𝑗

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

.

(A.3)

If 𝐿 acts on a function 𝑉 ∈ 𝐶
2,1
(R𝑑 ×R

+
;R
+
), then

𝐿𝑉 (𝑥, 𝑡) = 𝑉
𝑡
(𝑥, 𝑡) + 𝑉

𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑡)

+
1

2
trace [𝑔𝑇 (𝑥, 𝑡) 𝑉

𝑥𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑡)] ,

(A.4)
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Figure 2: The solution of the stochastic system (6), its histogram, and normal quantile-quantile plots for parameter values 𝐴 = 0.9, 𝑞 = 0.1,
𝛽 = 0.8, 𝜇 = 0.4, 𝑝 = 0.1, 𝛾 = 0.1, 𝜀 = 0.2, 𝛼 = 0.1, 𝜎

1
= 0.1, 𝜎

2
= 0.1, and 𝜎

3
= 0.1.

where 𝑉
𝑡
= 𝜕𝑉/𝜕𝑡, 𝑉

𝑥
= (𝜕𝑉/𝜕𝑥

1
, . . . , 𝜕𝑉/𝜕𝑥

𝑑
), and 𝑉

𝑥𝑥
=

(𝜕
2
𝑉/𝜕𝑥
𝑖
𝜕𝑥
𝑗
)
𝑑×𝑑

. By Itô’s formula, if 𝑥(𝑡) ∈ 𝑅𝑑, then

𝑑𝑉 (𝑥 (𝑡) , 𝑡) = 𝐿𝑉 (𝑥 (𝑡) , 𝑡) 𝑑𝑡

+ 𝑉
𝑥
(𝑥 (𝑡) , 𝑡) 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) .

(A.5)

Consider (A.2) assume 𝑓(0, 𝑡) = 0 and 𝑔(0, 𝑡) = 0 for all 𝑡 ≥
𝑡
0
. So 𝑥(𝑡) ≡ 0 is a solution of (A.2) called the trivial solution

or equilibrium position.

Lemma A.1 (strong law of large numbers). Let𝑀 = {𝑀
𝑡
}
𝑡≥0

be a real-value continuous local martingale vanishing at 𝑡 = 0.
Then

lim
𝑡→∞

⟨𝑀,𝑀⟩𝑡 = ∞ a.s. 󳨐⇒ lim
𝑡→∞

𝑀
𝑡

⟨𝑀,𝑀⟩𝑡

= 0. a.s.

(A.6)

and also

lim sup
𝑡→∞

⟨𝑀,𝑀⟩𝑡

𝑡
< ∞ a.s. 󳨐⇒ lim

𝑡→∞

𝑀
𝑡

𝑡
= 0. a.s.

(A.7)
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Figure 3: Population distribution around point 𝑃∗(𝑆∗, 𝐼∗, 𝑉∗) =

(0.75, 0.98, 0.275) (red point) corresponding to Figure 2.

Next, there is some theory about stationary distributions
(see Has’minskĭı [26], 1980).

Let 𝑋(𝑡) be a homogeneous Markov process in 𝐸
𝑙
(𝐸
𝑙

denotes Euclidean 𝑙-space) described by

𝑑𝑋 (𝑡) = 𝑏 (𝑋) 𝑑𝑡 +

𝑘

∑

𝑟=1

𝑔
𝑟
(𝑋) 𝑑𝐵

𝑟
(𝑡) . (A.8)

The diffusion matrix is 𝐴(𝑥) = (𝑎
𝑖𝑗
(𝑥)), 𝑎

𝑖𝑗
(𝑥) =

∑
𝑘

𝑟=1
𝑔
𝑖

𝑟
(𝑥)𝑔
𝑗

𝑟
(𝑥).

Assumption B. There exists a bounded domain 𝑈 ⊂ 𝐸
𝑙
with

regular boundary Γ, having the following properties.

(B.1) In the domain 𝑈 and some neighborhood thereof,
the smallest eigenvalue of the diffusion matrix 𝐴(𝑥)
is bounded away from zero.

(B.2) If 𝑥 ∈ 𝐸
𝑙
\ 𝑈, the mean time 𝜏 at which a path issuing

from 𝑥 reaches the set𝑈 is finite and sup
𝑥∈𝐾

𝐸
𝑥
𝜏 < ∞

for every compact subset 𝐾 ⊂ 𝐸
𝑙
.

Lemma A.2 (see [26]). If (B) holds, then the Markov process
𝑋(𝑡) has a stationary distribution 𝜇(⋅). Let 𝑓(⋅) be a function
integrable with respect to the measure 𝜇. Then

𝑃
𝑥
{ lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝑓 (𝑋 (𝑡)) 𝑑𝑡 = ∫
𝐸𝑙

𝑓 (𝑥) 𝜇 (𝑑𝑥)} = 1,

∀𝑥 ∈ 𝐸
𝑙
.

(A.9)

Remark A.3. The proof is given in Has’minskĭı [26]. The
existence of a stationary distribution with a density is given
inTheorem 4.1, page 119, and Lemma 9.4, page 138. The weak
convergence and the ergodicity are obtained in Theorem 5.1,
page 121, andTheorem 7.1, page 130.

To validate (B.1), it suffices to prove that 𝐹 is uniformly
elliptical in any bounded domain 𝐷, where 𝐹𝑢 = 𝑏(𝑥) ⋅ 𝑢

𝑥
+

(1/2) tr(𝐴(𝑥)𝑢
𝑥𝑥
); that is, there is a positive number𝑀 such

that Σ𝑘
𝑖,𝑗=1

𝑎
𝑖𝑗
(𝑥)𝜉
𝑖
𝜉
𝑗
≥ 𝑀|𝜉|

2, 𝑥 ∈ 𝐷, 𝜉 ∈ 𝑅𝑘 (see chapter 3,
page 103 of Gard [28] and Rayleigh’s principle in Strang [29],
chapter 6, page 349). To verify (B.2), it is sufficient to show
that there exist some neighborhood𝑈 and a nonnegative 𝐶

2
-

function such that, for any 𝐸
𝑙
\ 𝑈, 𝐿𝑉 is negative (for details

refer to Zhu and Yin [30], page 1163).

Lemma A.4. Let 𝑋(𝑡) be a regular temporally homogeneous
Markov process in 𝐸

𝑙
. If 𝑋(𝑡) is recurrent relative to some

bounded domain 𝑈, then it is recurrent relative to any
nonempty domain in 𝐸

𝑙
.
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