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The eigenvalues of discontinuous Sturm-Liouville problems which contain an eigenparameter appearing linearly in two boundary
conditions and an internal point of discontinuity are computed using the derivative sampling theorem and Hermite interpolations
methods.We use recently derived estimates for the truncation and amplitude errors to investigate the error analysis of the proposed
methods for computing the eigenvalues of discontinuous Sturm-Liouville problems. Numerical results indicating the high accuracy
and effectiveness of these algorithms are presented.Moreover, it is shown that the proposedmethods are significantlymore accurate
than those based on the classical sinc method.

1. Introduction

The mathematical modeling of many practical problems in
mechanics and other areas of mathematical physics requires
solutions of boundary value problems (see, for instance,
[1–7]). It is well known that many topics in mathematical
physics require the investigation of the eigenvalues and eigen-
functions of Sturm-Liouville-type boundary value problems.
The literature on computing eigenvalues of various types of
Sturm-Liouville problems is little and we refer to [8–15].

Sampling theory is one of the most powerful results in
signal analysis. It is of great need in signal processing to
reconstruct (recover) a signal (function) from its values at a
discrete sequence of points (samples). If this aim is achieved,
then an analog (continuous) signal can be transformed into
a digital (discrete) one and then it can be recovered by the
receiver. If the signal is band-limited, the sampling process
can be done via the celebrated Whittaker, Shannon, and
Kotel’nikov (WSK) sampling theorem [16–18]. By a band-
limited signal with band width 𝜎, 𝜎 > 0, that is, the signal
contains no frequencies higher than 𝜎/2𝜋 cycles per second
(cps), wemean a function in the Paley-Wiener space𝐵2

𝜎
of the

entire functions of the exponential type at most 𝜎 which are

𝐿
2
(R)-functions when restricted to R. Assume that 𝑓(𝑡) ∈

𝐵
2

𝜎
⊂ 𝐵
2

2𝜎
. Then 𝑓(𝑡) can be reconstructed via the Hermite-

type sampling series

𝑓 (𝑡)

=

∞

∑

𝑛=−∞

[𝑓(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝑡) + 𝑓

󸀠
(

𝑛𝜋

𝜎

)

sin (𝜎𝑡 − 𝑛𝜋)

𝜎

𝑆
𝑛
(𝑡)] ,

(1)

where 𝑆
𝑛
(𝑡) is the sequences of sinc functions

𝑆
𝑛
(𝑡) :=

{
{
{
{

{
{
{
{

{

sin (𝜎𝑡 − 𝑛𝜋)

(𝜎𝑡 − 𝑛𝜋)

, 𝑡 ̸=

𝑛𝜋

𝜎

,

1, 𝑡 =

𝑛𝜋

𝜎

.

(2)

Series (1) converges absolutely and uniformly on R (cf. [19–
22]). Sometimes, series (1) is called the derivative sampling



2 Abstract and Applied Analysis

theorem. Our task is to use formula (1) to compute the eigen-
values numerically of differential equation

− y
󸀠󸀠
(𝑥, 𝜇) + 𝑞 (𝑥) y (𝑥, 𝜇) = 𝜇

2
y (𝑥, 𝜇) ,

𝑥 ∈ [−1, 0) ∪ (0, 1] ,

(3)

with boundary conditions

L
1
(y) := (𝛼

󸀠

1
𝜇
2
− 𝛼
1
) y (−1, 𝜇)

− (𝛼
󸀠

2
𝜇
2
− 𝛼
2
) y
󸀠
(−1, 𝜇) = 0,

(4)

L
2
(y) := (𝛽

󸀠

1
𝜇
2
+ 𝛽
1
) y (1, 𝜇) − (𝛽

󸀠

2
𝜇
2
+ 𝛽
2
) y
󸀠
(1, 𝜇) = 0

(5)

and transmission conditions

L
3
(y) := 𝛾

1
y (0
−
, 𝜇) − 𝛿

1
y (0
+
, 𝜇) = 0,

L
4
(y) := 𝛾

2
y
󸀠
(0
−
, 𝜇) − 𝛿

2
y
󸀠
(0
+
, 𝜇) = 0,

(6)

where 𝜇 is a complex spectral parameter; 𝑞(𝑥) is a given real-
valued function, which is continuous in [−1, 0) and (0, 1] and
has a finite limit 𝑞(0±) = lim

𝑥→0
±𝑞(𝑥); 𝛾

𝑖
, 𝛿
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
, 𝛼󸀠
𝑖
, and 𝛽󸀠

𝑖

(𝑖 = 1, 2) are real numbers; 𝛾
𝑖
̸= 0, 𝛿
𝑖
̸= 0 (𝑖 = 1, 2); 𝛾

1
𝛾
2
= 𝛿
1
𝛿
2
;

and

det(𝛼
󸀠

1
𝛼
1

𝛼
󸀠

2
𝛼
2

) > 0, det(𝛽
󸀠

1
𝛽
1

𝛽
󸀠

2
𝛽
2

) > 0. (7)

The eigenvalue problem (3)–(6) will be denoted by Π(𝑞, 𝛼,

𝛽, 𝛼
󸀠
, 𝛽
󸀠
, 𝛾, 𝛿) when (𝛼

󸀠

1
, 𝛼
󸀠

2
) ̸= (0, 0) ̸= (𝛽

󸀠

1
, 𝛽
󸀠

2
). It is a Sturm-

Liouville problem which contains an eigenparameter 𝜇 in
two boundary conditions, in addition to an internal point of
discontinuity.

This approach is a fully new technique that uses the
recently obtained estimates for the truncation and amplitude
errors associated with (1) (cf. [23]). Both types of errors nor-
mally appear in numerical techniques that use interpolation
procedures. In the following we summarize these estimates.
The truncation error associated with (1) is defined to be

R
𝑁
(𝑓) (𝑡) := 𝑓 (𝑡) − 𝑓

𝑁
(𝑡) , 𝑁 ∈ Z

+
, 𝑡 ∈ R, (8)

where 𝑓
𝑁
(𝑡) is the truncated series

𝑓
𝑁
(𝑡)

= ∑

|𝑛|≤𝑁

[𝑓(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝑡) + 𝑓

󸀠
(

𝑛𝜋

𝜎

)

sin (𝜎𝑡 − 𝑛𝜋)

𝜎

𝑆
𝑛
(𝑡)] .

(9)

It is proved in [23] that if 𝑓(𝑡) ∈ 𝐵
2

𝜎
and 𝑓(𝑡) is sufficiently

smooth in the sense that there exists 𝑘 ∈ Z+ such that 𝑡𝑘𝑓(𝑡) ∈
𝐿
2
(R), then, for 𝑡 ∈ R, |𝑡| < 𝑁𝜋/𝜎, we have

󵄨
󵄨
󵄨
󵄨
R
𝑁
(𝑓) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ T
𝑁,𝑘,𝜎

(𝑡)

:=

𝜂
𝑘,𝜎
E
𝑘 |sin𝜎𝑡|

2

√3(𝑁 + 1)
𝑘

× (

1

(𝑁𝜋 − 𝜎𝑡)
3/2

+

1

(𝑁𝜋 + 𝜎𝑡)
3/2

)

+

𝜂
𝑘,𝜎

(𝜎E
𝑘
+ 𝑘E
𝑘−1

) |sin𝜎𝑡|2

𝜎(𝑁 + 1)
𝑘

× (

1

√𝑁𝜋 − 𝜎𝑡

+

1

√𝑁𝜋 + 𝜎𝑡

) ,

(10)

where the constants E
𝑘
and 𝜂
𝑘,𝜎

are given by

E
𝑘
:= √∫

∞

−∞

󵄨
󵄨
󵄨
󵄨
𝑡
𝑘
𝑓(𝑡)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡,

𝜂
𝑘,𝜎

:=

𝜎
𝑘+1/2

𝜋
𝑘+1√1 − 4

−𝑘

.

(11)

The amplitude error occurs when approximate samples are
used instead of the exact ones, which we cannot compute. It
is defined to be

A (𝜀, 𝑓) (𝑡)

=

∞

∑

𝑛=−∞

[{𝑓(

𝑛𝜋

𝜎

) −
̃
𝑓(

𝑛𝜋

𝜎

)} 𝑆
2

𝑛
(𝑡)

+ {𝑓
󸀠
(

𝑛𝜋

𝜎

) −
̃
𝑓
󸀠
(

𝑛𝜋

𝜎

)}

×

sin (𝜎𝑡 − 𝑛𝜋)

𝜎

𝑆
𝑛
(𝑡)] , 𝑡 ∈ R,

(12)

where ̃
𝑓(𝑛𝜋/𝜎) and ̃

𝑓
󸀠
(𝑛𝜋/𝜎) are approximate samples of

𝑓(𝑛𝜋/𝜎) and 𝑓
󸀠
(𝑛𝜋/𝜎), respectively. Let us assume that the

differences 𝜀
𝑛

:= 𝑓(𝑛𝜋/𝜎) −
̃
𝑓(𝑛𝜋/𝜎), 𝜀󸀠

𝑛
:= 𝑓
󸀠
(𝑛𝜋/𝜎) −

̃
𝑓
󸀠
(𝑛𝜋/𝜎), 𝑛 ∈ Z, are bounded by a positive number 𝜀; that is,

|𝜀
𝑛
|, |𝜀
󸀠

𝑛
| ≤ 𝜀. If𝑓(𝑡) ∈ 𝐵

2

𝜎
satisfies the natural decay conditions
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󵄨
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𝜎

)

󵄨
󵄨
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,
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󵄨
󵄨
󵄨
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󵄨
󵄨
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󵄨
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󵄨
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󵄨
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𝑓
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󵄨
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, (13)

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤

M
𝑓

|𝑡|
𝛼+1

, 𝑡 ∈ R − {0} , (14)
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0 < 𝛼 ≤ 1, then, for 0 < 𝜀 ≤ min{𝜋/𝜎, 𝜎/𝜋, 1/√𝑒}, we have
[23]

󵄩
󵄩
󵄩
󵄩
A (𝜀, 𝑓)

󵄩
󵄩
󵄩
󵄩∞

≤

4𝑒
1/4

𝜎 (𝛼 + 1)

× {√3𝑒 (1 + 𝜎) + ((𝜋/𝜎)𝐴 +M
𝑓
) 𝜌 (𝜀)

+ (𝜎 + 2 + log (2))M
𝑓
} 𝜀 log(1

𝜀

) ,

(15)

where

𝐴 :=

3𝜎

𝜋

(
󵄨
󵄨
󵄨
󵄨
𝑓 (0)

󵄨
󵄨
󵄨
󵄨
+M
𝑓
(

𝜎

𝜋

)

𝛼

) ,

𝜌 (𝜀) := 𝛾 + 10 log(1
𝜀

) ,

(16)

and 𝛾 := lim
𝑛→∞

[∑
𝑛

𝑘=1
(1/𝑘)− log 𝑛] ≅ 0.577216 is the Euler-

Mascheroni constant.
The classical [24] sampling theorem of WKS for 𝑓 ∈ 𝐵

2

𝜎

is the series representation

𝑓 (𝑡) =

∞

∑

𝑛=−∞

𝑓(

𝑛𝜋

𝜎

) 𝑆
𝑛
(𝑡) , 𝑡 ∈ R, (17)

where the convergence is absolute and uniform on R and it
is uniform on compact sets of C (cf. [24–26]). Series (17),
which is of Lagrange interpolation type, has been used to
compute eigenvalues of second-order eigenvalue problems;
see, for example, [8–13, 15, 27, 28].

The use of (17) in numerical analysis is known as the
sinc method established by Stenger et al. (cf. [29–31]). In
[9, 15, 28], the authors applied (17) and the regularized sinc
method to compute eigenvalues of different boundary value
problems with a derivation of the error estimates as given
by [32, 33]. In [34], the authors used Hermite-type sampling
series (1) to compute the eigenvalues of Dirac system with an
internal point of discontinuity. In [14], Tharwat proved that
Π(𝑞, 𝛼, 𝛽, 𝛼

󸀠
, 𝛽
󸀠
, 𝛾, 𝛿) has a denumerable set of real and simple

eigenvalues.
In [35], we compute the eigenvalues of the problem

Π(𝑞, 𝛼, 𝛽, 𝛼
󸀠
, 𝛽
󸀠
, 𝛾, 𝛿) numerically by using sinc-Gaussian

technique. The main aim of the present work is to compute
the eigenvalues of Π(𝑞, 𝛼, 𝛽, 𝛼󸀠, 𝛽󸀠, 𝛾, 𝛿) numerically by using
Hermite interpolations with an error analysis. This method
is based on sampling theorem and Hermite interpolations
but applied to regularized functions, hence avoiding any
(multiple) integration and keeping the number of terms in the
Cardinal series manageable. It has been demonstrated that
the method is capable of delivering higher order estimates of
the eigenvalues at a very low cost; see [34]. Also, in this work,
by using computable error bounds we obtain eigenvalue
enclosures in a simple way which not have been proven in
[35].

Notice that due to Paley-Wiener’s theorem 𝑓 ∈ 𝐵
2

𝜎
if and

only if there is 𝑔(⋅) ∈ 𝐿
2
(−𝜎, 𝜎) such that

𝑓 (𝑡) =

1

√2𝜋

∫

𝜎

−𝜎

𝑔 (𝑥) 𝑒
𝑖𝑥𝑡
𝑑𝑥. (18)

Therefore 𝑓󸀠(𝑡) ∈ 𝐵
2

𝜎
; that is, 𝑓󸀠(𝑡) also has an expansion of

the form (17). However, 𝑓󸀠(𝑡) can be also obtained by term-
by-term differentiation formula of (17)

𝑓
󸀠
(𝑡) =

∞

∑

𝑛=−∞

𝑓(

𝑛𝜋

𝜎

) 𝑆
󸀠

𝑛
(𝑡) (19)

(see [24, page 52] for convergence). Thus the use of Hermite
interpolations will not cost any additional computational
efforts since the samples 𝑓(𝑛𝜋/𝜎) will be used to compute
both 𝑓(𝑡) and 𝑓

󸀠
(𝑡) according to (17) and (19), respectively.

In the next section, we derive the Hermite interpolation
technique to compute the eigenvalues ofΠ(𝑞, 𝛼, 𝛽, 𝛼󸀠, 𝛽󸀠, 𝛾, 𝛿)
with error estimates. The last section contains three worked
examples with comparisons accompanied by figures and
numerics with Lagrange interpolation method.

2. Treatment of Π(𝑞, 𝛼, 𝛽, 𝛼󸀠, 𝛽󸀠, 𝛾, 𝛿)

In this section we derive approximate values of the eigenval-
ues of Π(𝑞, 𝛼, 𝛽, 𝛼󸀠, 𝛽󸀠, 𝛾, 𝛿). Recall that Π(𝑞, 𝛼, 𝛽, 𝛼󸀠, 𝛽󸀠, 𝛾, 𝛿)
has denumerable set of real and simple eigenvalues (cf. [14]).
Let

y (𝑥, 𝜇) =
{

{

{

y
1
(𝑥, 𝜇) , 𝑥 ∈ [−1, 0)

y
2
(𝑥, 𝜇) , 𝑥 ∈ (0, 1]

(20)

denote the solution of (3) satisfying the following initial
conditions:

(

y
1
(−1, 𝜇) y

2
(0
+
, 𝜇)

y󸀠
1
(−1, 𝜇) y󸀠

2
(0
+
, 𝜇)

) = (

𝜇
2
𝛼
󸀠

2
− 𝛼
2

𝛾
1

𝛿
1

y
1
(0
−
, 𝜇)

𝜇
2
𝛼
󸀠

1
− 𝛼
1

𝛾
2

𝛿
2

y󸀠
1
(0
−
, 𝜇)

) .

(21)

Since 𝑦(⋅, 𝜇) satisfies (4), (6), then the eigenvalues of problem
(3)–(6) are the zeros of the characteristic determinant (cf.
[14])

Γ (𝜇) := (𝛽
󸀠

1
𝜇
2
+ 𝛽
1
) y
2
(1, 𝜇) − (𝛽

󸀠

2
𝜇
2
+ 𝛽
2
) y
󸀠

2
(1, 𝜇) .

(22)

According to [14], see also [36–38], function Γ(𝜇) is an entire
function of 𝜇 where zeros are real and simple. We aim to
approximate Γ(𝜇) and hence its zeros, that is, the eigenvalues
by the use of the sampling theorem. The idea is to split Γ(𝜇)
into two parts: one is known and the other is unknown,
but lies in a Paley-Wiener space. Then we approximate the
unknown part using (1) to get the approximate Γ(𝜇) and
then compute the approximate zeros. Using the method of
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variation of parameters, solution 𝑦(⋅, 𝜇) satisfies the Volterra
integral equations (cf. [14])

y
1
(𝑥, 𝜇)

= (−𝛼
2
+ 𝜇
2
𝛼
󸀠

2
) cos [𝜇 (𝑥 + 1)]

− (−𝛼
1
+ 𝜇
2
𝛼
󸀠

1
)

1

𝜇

sin [𝜇 (𝑥 + 1)]

+ (T
1
y
1
) (𝑥, 𝜇) ,

y
2
(𝑥, 𝜇) =

𝛾
1

𝛿
1

y
1
(0
−
, 𝜇) cos [𝜇𝑥]

+

𝛾
2

𝛿
2

y
󸀠

1
(0
−
, 𝜇)

sin [𝜇𝑥]
𝜇

+ (T
2
y
2
) (𝑥, 𝜇) ,

(23)

whereT
1
andT

2
are the Volterra operators

(T
1
y
1
) (𝑥, 𝜇) := ∫

𝑥

−1

sin [𝜇 (𝑥 − 𝑡)]

𝜇

𝑞 (𝑡) y
1
(𝑡, 𝜇) 𝑑𝑡,

(T
2
y
2
) (𝑥, 𝜇) := ∫

𝑥

0

sin [𝜇 (𝑥 − 𝑡)]

𝜇

𝑞 (𝑡) y
2
(𝑡, 𝜇) 𝑑𝑡.

(24)

Differentiating (23) we obtain

y
󸀠

1
(𝑥, 𝜇) = − (−𝛼

2
+ 𝜇
2
𝛼
󸀠

2
) 𝜇 sin [𝜇 (𝑥 + 1)]

− (−𝛼
1
+ 𝜇
2
𝛼
󸀠

1
) cos [𝜇 (𝑥 + 1)]

+ (
̃T
1
y
1
) (𝑥, 𝜇) ,

y
󸀠

2
(𝑥, 𝜇) = −

𝛾
1

𝛿
1

𝜇y
1
(0
−
, 𝜇) sin [𝜇𝑥]

+

𝛾
2

𝛿
2

y
󸀠

1
(0
−
, 𝜇) cos [𝜇𝑥]

+ (
̃T
2
y
2
) (𝑥, 𝜇) ,

(25)

where ̃T
1
and ̃T

2
are the Volterra-type integral operators

(
̃T
1
y
1
) (𝑥, 𝜇) := ∫

𝑥

−1

cos [𝜇 (𝑥 − 𝑡)] 𝑞 (𝑡) y
1
(𝑡, 𝜇) 𝑑𝑡,

(
̃T
2
y
2
) (𝑥, 𝜇) := ∫

𝑥

0

cos [𝜇 (𝑥 − 𝑡)] 𝑞 (𝑡) y
2
(𝑡, 𝜇) 𝑑𝑡.

(26)

Define 𝜗
𝑖
(⋅, 𝜇) and ̃

𝜗
𝑖
(⋅, 𝜇), 𝑖 = 1, 2, to be

𝜗
𝑖
(𝑥, 𝜇) := T

𝑖
y
𝑖
(𝑥, 𝜇) ,

̃
𝜗
𝑖
(𝑥, 𝜇) :=

̃T
𝑖
y
𝑖
(𝑥, 𝜇) . (27)

In the following, we will make use of the known estimates:

|cos 𝑧| ≤ 𝑒
|I𝑧|

,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝑧
𝑧

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑐
0

1 + |𝑧|

𝑒
|I𝑧|

, (28)

where 𝑐
0
is some constant (we may take 𝑐

0
≃ 1.72). For con-

venience, we define the constants

𝑞
1
:= ∫

0

−1

𝑞 (𝑡) 𝑑𝑡, 𝑞
2
:= ∫

1

0

𝑞 (𝑡) 𝑑𝑡,

𝑐
1
:= max (󵄨󵄨󵄨

󵄨
𝛼
1

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝛼
2

󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝛼
󸀠

1

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝛼
󸀠

2

󵄨
󵄨
󵄨
󵄨
󵄨
) , 𝑐

2
:= exp (𝑐

0
𝑞
1
) ,

𝑐
3
:= 1 + 𝑐

0
𝑐
2
𝑞
1
,

𝑐
4
:= (1 + 𝑐

0
) [

󵄨
󵄨
󵄨
󵄨
𝛾
1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝛿
1

󵄨
󵄨
󵄨
󵄨

𝑐
3
+

󵄨
󵄨
󵄨
󵄨
𝛾
2

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝛿
2

󵄨
󵄨
󵄨
󵄨

𝑐
0
(1 + 𝑐
3
𝑞
1
)] ,

𝑐
5
:= exp (𝑐

0
𝑞
2
) , 𝑐

6
:= 1 + 𝑐

0
𝑞
2
𝑐
5
.

(29)

As in [15] we split Γ(𝜇) into two parts via

Γ (𝜇) := G (𝜇) + S (𝜇) , (30)

whereG(𝜇) is the known part

G (𝜇) := (𝛽
󸀠

1
𝜇
2
+ 𝛽
1
)

× [(𝜇
2
𝛼
󸀠

2
− 𝛼
2
) (

𝛾
1

𝛿
1

cos2𝜇 −

𝛾
2

𝛿
2

sin2𝜇)

− (𝜇
2
𝛼
󸀠

1
− 𝛼
1
) (

𝛾
1

𝛿
1

+

𝛾
2

𝛿
2

) cos 𝜇
sin 𝜇
𝜇

]

+ (𝛽
󸀠

2
𝜇
2
+ 𝛽
2
)

× [ (𝜇
2
𝛼
󸀠

2
− 𝛼
2
) (

𝛾
1

𝛿
1

+

𝛾
2

𝛿
2

)𝜇 cos 𝜇 sin 𝜇

+ (𝜇
2
𝛼
󸀠

1
− 𝛼
1
) (

𝛾
2

𝛿
2

cos2𝜇 −

𝛾
1

𝛿
1

sin2𝜇)]

(31)

and S(𝜇) is the unknown one

S (𝜇) :=

𝛾
1

𝛿
1

× [(𝛽
󸀠

1
𝜇
2
+ 𝛽
1
) cos 𝜇 + (𝛽

󸀠

2
𝜇
2
+ 𝛽
2
) 𝜇 sin 𝜇]

× 𝜗
1
(0
−
, 𝜇)

+ (𝛽
󸀠

1
𝜇
2
+ 𝛽
1
) 𝜗
2
(1, 𝜇)

+

𝛾
2

𝛿
2

[(𝛽
󸀠

1
𝜇
2
+ 𝛽
1
)

sin 𝜇
𝜇

− (𝛽
󸀠

2
𝜇
2
+ 𝛽
2
) cos 𝜇]

×
̃
𝜗
1
(0
−
, 𝜇)

− (𝛽
󸀠

2
𝜇
2
+ 𝛽
2
)
̃
𝜗
2
(1, 𝜇) .

(32)

Then functionS(𝜇) is entire in 𝜇 for each 𝑥 ∈ [0, 1] for which
(cf. [15])

󵄨
󵄨
󵄨
󵄨
S (𝜇)

󵄨
󵄨
󵄨
󵄨
≤ M(1 +

󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨

2

)

2

𝑒
2|I𝜇|

, 𝜇 ∈ C, (33)
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where

M := 𝑐
1
𝑐(1 + 𝑐

0
)
2

𝑞
1
[𝑐
0
𝑐
2

󵄨
󵄨
󵄨
󵄨
𝛾
1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝛿
1

󵄨
󵄨
󵄨
󵄨

+ 𝑐
3

󵄨
󵄨
󵄨
󵄨
𝛾
2

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝛿
2

󵄨
󵄨
󵄨
󵄨

] + 𝑐
1
𝑐
4
𝑐𝑞
2
(𝑐
6
+ 𝑐
0
𝑐
5
) ,

𝑐 := max {󵄨󵄨󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝛽
2

󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝛽
󸀠

1

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝛽
󸀠

2

󵄨
󵄨
󵄨
󵄨
󵄨
} .

(34)

The analyticity ofS(𝜇) as well as estimate (33) is not adequate
to prove that S(𝜇) lies in a Paley-Wiener space. To solve this
problem, we will multiplyS(𝜇) by a regularization factor. Let
𝜃 ∈ (0, 1) and 𝑚 ∈ Z+, 𝑚 > 5, be fixed. Let F

𝜃,𝑚
(𝜇) be the

function

F
𝜃,𝑚

(𝜇) := (

sin 𝜃𝜇
𝜃𝜇

)

𝑚

S (𝜇) , 𝜇 ∈ C. (35)

The regularizing factor has been introduced in [9], in the
context of the regularized sampling method, which was used
in [9–13] to compute the eigenvalues of several classes of
Sturm-Liouville problems.More specifications on𝑚, 𝜃will be
given latter on. Then F

𝜃,𝑚
(𝜇), see [15], is an entire function

of 𝜇 which satisfies the estimate

󵄨
󵄨
󵄨
󵄨
F
𝜃,𝑚

(𝜇)
󵄨
󵄨
󵄨
󵄨
≤

M𝑐
𝑚

0
(1 +

󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨

2

)

2

(1 + 𝜃
󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨
)
𝑚

𝑒
|I𝜇|(2+𝑚𝜃)

, 𝜇 ∈ C. (36)

Moreover, 𝜇𝑚−5F
𝜃,𝑚

(𝜇) ∈ 𝐿
2
(R) and

E
𝑚−5

(F
𝜃,𝑚

) := √∫

∞

−∞

󵄨
󵄨
󵄨
󵄨
𝜇
𝑚−5F

𝜃,𝑚
(𝜇)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝜇 ≤ √2]
0
M𝑐
𝑚

0
,

(37)

where

]
0
:=

1

𝜃
2𝑚−1

× (

1

2𝑚 − 1

+

4𝜃
2

4𝑚
3
− 12𝑚

2
+ 11𝑚 − 3

+ (144𝜃
4
(280𝜃

4
Γ [2𝑚 − 9] + 20𝜃

2
Γ [2𝑚 − 7])

+Γ [2𝑚 − 5] )

× (Γ[2𝑚])
−1
) .

(38)

What we have just proved is that F
𝜃,𝑚

(𝜇) belongs to the
Paley-Wiener space 𝐵2

𝜎
with 𝜎 = 2 + 𝑚𝜃. Since F

𝜃,𝑚
(𝜇) ∈

𝐵
2

𝜎
⊂ 𝐵
2

2𝜎
, then we can reconstruct the functionsF

𝜃,𝑚
(𝜇) via

the following sampling formula:

F
𝜃,𝑚

(𝜇)

=

∞

∑

𝑛=−∞

[F
𝜃,𝑚

(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝜇)

+F
󸀠

𝜃,𝑚
(

𝑛𝜋

𝜎

)

sin (𝜎𝜇 − 𝑛𝜋)

𝜎

𝑆
𝑛
(𝜇)] .

(39)

Let 𝑁 ∈ Z+, 𝑁 > 𝑚, and approximate F
𝜃,𝑚

(𝜇) by its
truncated seriesF

𝜃,𝑚,𝑁
(𝜇), where

F
𝜃,𝑚,𝑁

(𝜇)

:=

𝑁

∑

𝑛=−𝑁

[F
𝜃,𝑚

(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝜇)

+F
󸀠

𝜃,𝑚
(

𝑛𝜋

𝜎

)

sin (𝜎𝜇 − 𝑛𝜋)

𝜎

𝑆
𝑛
(𝜇)] .

(40)

Since all eigenvalues are real, then from now on we restrict
ourselves to 𝜇 ∈ R. Since 𝜇𝑚−5F

𝜃,𝑚
(𝜇) ∈ 𝐿

2
(R), the trunca-

tion error (cf. (10)) is given for |𝜇| < 𝑁𝜋/𝜎 by
󵄨
󵄨
󵄨
󵄨
F
𝜃,𝑚

(𝜇) −F
𝜃,𝑚,𝑁

(𝜇)
󵄨
󵄨
󵄨
󵄨
≤ 𝑇
𝑁,𝑚−5,𝜎

(𝜇) , (41)

where
T
𝑁,𝑚−5,𝜎

(𝜇)

:=

𝜂
𝑚−5,𝜎

E
𝑚−5

󵄨
󵄨
󵄨
󵄨
sin𝜎𝜇󵄨󵄨󵄨

󵄨

2

√3(𝑁 + 1)
𝑚−5

× (

1

(𝑁𝜋 − 𝜎𝜇)
3/2

+

1

(𝑁𝜋 + 𝜎𝜇)
3/2

)

+

𝜂
𝑚−5,𝜎

(𝜎E
𝑚−5

+ (𝑚 − 5)E
𝑚−6

)
󵄨
󵄨
󵄨
󵄨
sin𝜎𝜇󵄨󵄨󵄨

󵄨

2

𝜎(𝑁 + 1)
𝑚−5

× (

1

√𝑁𝜋 − 𝜎𝜇

+

1

√𝑁𝜋 + 𝜎𝜇

) .

(42)

The samples {F
𝜃,𝑚

(𝑛𝜋/𝜎)}
𝑁

𝑛=−𝑁
and {F󸀠

𝜃,𝑚
(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
, in

general, are not known explicitly. So we approximate them
by solving numerically 8𝑁 + 4 initial value problems at the
nodes {𝑛𝜋/𝜎}𝑁

𝑛=−𝑁
.

Let {
̃F
𝜃,𝑚

(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
and {

̃F󸀠
𝜃,𝑚

(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
be the

approximations of the samples of {F
𝜃,𝑚

(𝑛𝜋/𝜎)}
𝑁

𝑛=−𝑁
and

{F󸀠
𝜃,𝑚

(𝑛𝜋/𝜎)}

𝑁

𝑛=−𝑁
, respectively. Now we define ̃F

𝜃,𝑚,𝑁
(𝜇),

which approximatesF
𝜃,𝑚,𝑁

(𝜇):

̃F
𝜃,𝑚,𝑁

(𝜇)

:=

𝑁

∑

𝑛=−𝑁

[
̃F
𝜃,𝑚

(

𝑛𝜋

𝜎

) 𝑆
2

𝑛
(𝜇)

+
̃F
󸀠

𝜃,𝑚
(

𝑛𝜋

𝜎

)

×

sin (𝜎𝜇 − 𝑛𝜋)

𝜎

𝑆
𝑛
(𝜇)] , 𝑁 > 𝑚.

(43)

Using standard methods for solving initial problems, we may
assume that for |𝑛| < 𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

F
𝜃,𝑚

(

𝑛𝜋

𝜎

) −
̃F
𝜃,𝑚

(

𝑛𝜋

𝜎

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜀,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

F
󸀠

𝜃,𝑚
(

𝑛𝜋

𝜎

) −
̃F
󸀠

𝜃,𝑚
(

𝑛𝜋

𝜎

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

< 𝜀,

(44)
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for a sufficiently small 𝜀. From (36) we can see that F
𝜃,𝑚

(𝜇)

satisfies the condition (14) when 𝑚 > 5, and therefore
whenever 0 < 𝜀 ≤ min{𝜋/𝜎, 𝜎/𝜋, 1/√𝑒} we have

󵄨
󵄨
󵄨
󵄨
󵄨
F
𝜃,𝑚,𝑁

(𝜇) −
̃F
𝜃,𝑚,𝑁

(𝜇)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ A (𝜀) , 𝜇 ∈ R, (45)

where there is a positive constant𝑀F
𝜃,𝑚

for which (cf. (15))

A (𝜀) :=

2𝑒
1/4

𝜎

× {√3𝑒 (1 + 𝜎) + (

𝜋

𝜎

𝐴 +MF
𝜃,𝑚

) 𝜌 (𝜀)

+ (𝜎 + 2 + log (2))MF
𝜃,𝑚

} 𝜀 log(1
𝜀

) .

(46)

Here

𝐴 :=

3𝜎

𝜋

(
󵄨
󵄨
󵄨
󵄨
F
𝜃,𝑚

(0)
󵄨
󵄨
󵄨
󵄨
+

𝜎

𝜋

MF
𝜃,𝑚

) ,

𝜌 (𝜀) := 𝛾 + 10 log(1
𝜀

) .

(47)

In the following we use the technique of [27], see also [15], to
determine enclosure intervals for the eigenvalues. Let 𝜇∗ be
an eigenvalue; that is,

Γ (𝜇
∗
) = G (𝜇

∗
) + (

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

F
𝜃,𝑚

(𝜇
∗
) = 0. (48)

Then it follows that

G (𝜇
∗
) + (

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
)

= (

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
)

− (

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

F
𝜃,𝑚

(𝜇
∗
)

= [(

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
)

−(

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

F
𝜃,𝑚,𝑁

(𝜇
∗
)]

+ [(

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

F
𝜃,𝑚,𝑁

(𝜇
∗
)

−(

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

F
𝜃,𝑚

(𝜇
∗
)]

(49)

and so
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

G (𝜇
∗
) + (

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇∗

𝜃𝜇
∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(𝑇
𝑁,𝑚−5,𝜎

(𝜇
∗
) +A (𝜀)) .

(50)

Since

G (𝜇
∗
) + (

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
) (51)

is given and
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇∗

𝜃𝜇
∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(𝑇
𝑁,𝑚−5,𝜎

(𝜇
∗
) +A (𝜀)) (52)

has computable upper bound, we can define an enclosure for
𝜇
∗, by solving the following system of inequalities:

−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇∗

𝜃𝜇
∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇
∗
) +A (𝜀))

≤ G (𝜇
∗
) + (

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇
∗
)

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇∗

𝜃𝜇
∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇
∗
) +A (𝜀)) .

(53)

Its solution is an interval containing 𝜇∗ over which the graph
G(𝜇
∗
) + (sin 𝜃𝜇∗/𝜃𝜇∗)−𝑚̃F

𝜃,𝑚,𝑁
(𝜇
∗
) is squeezed between the

graphs

−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇∗

𝜃𝜇
∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇
∗
) +A (𝜀)) ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇∗

𝜃𝜇
∗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇
∗
) +A (𝜀)) .

(54)

Using the fact that

̃F
𝜃,𝑚,𝑁

(𝜇) 󳨀→ F
𝜃,𝑚

(𝜇) , (55)

uniformly over any compact set, and since 𝜇∗ is a simple root,
we obtain for large𝑁 and sufficiently small 𝜀

𝜕

𝜕𝜇

(G (𝜇) + (

sin 𝜃𝜇
𝜃𝜇

)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇)) ̸= 0, (56)

in a neighborhood of 𝜇∗. Hence the graph of

G (𝜇) + (

sin 𝜃𝜇
𝜃𝜇

)

−𝑚

̃F
𝜃,𝑚,𝑁

(𝜇) (57)

intersects the graphs

−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇
𝜃𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇) +A (𝜀)) ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇
𝜃𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇) +A (𝜀)) ,

(58)

at two points with abscissae 𝑎
−
(𝜇
∗
, 𝑁, 𝜀) ≤ 𝑎

+
(𝜇
∗
, 𝑁, 𝜀), and

the solution of the system of inequalities (53) is the interval

𝐼
𝜀,𝑁

:= [𝑎
−
(𝜇
∗
, 𝑁, 𝜀) , 𝑎

+
(𝜇
∗
, 𝑁, 𝜀)] (59)

and in particular 𝜇∗ ∈ 𝐼
𝜀,𝑁

. Summarizing the above discus-
sion, we arrive at the following lemmawhich is similar to that
of [27] for Sturm-Liouville problems.
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Lemma 1. For any eigenvalue 𝜇∗, one can find 𝑁
0
∈ Z+ and

sufficiently small 𝜀 such that 𝜇∗ ∈ 𝐼
𝜀,𝑁

for𝑁 > 𝑁
0
. Moreover

[𝑎
−
(𝜇
∗
, 𝑁, 𝜀) , 𝑎

+
(𝜇
∗
, 𝑁, 𝜀)] 󳨀→ {𝜇

∗
}

𝑎𝑠 𝑁 󳨀→ ∞, 𝜀 󳨀→ 0.

(60)

Proof. Since all eigenvalues of Π(𝑞, 𝛼, 𝛽, 𝛼󸀠, 𝛽󸀠, 𝛾, 𝛿) are sim-
ple, then for large 𝑁 and sufficiently small 𝜀 we have (𝜕/

𝜕𝜇)(G(𝜇) + (sin 𝜃𝜇/𝜃𝜇)−𝑚̃F
𝜃,𝑚,𝑁

(𝜇)) > 0, in a neighborhood
of 𝜇∗. Choose𝑁

0
such that

G (𝜇) + (

sin 𝜃𝜇
𝜃𝜇

)

−𝑚

̃F
𝜃,𝑚,𝑁

0

(𝜇)

= ±

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇
𝜃𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁
0
,𝑚−5,𝜎

(𝜇) +A (𝜀))

(61)

has two distinct solutions which we denote by 𝑎
−
(𝜇
∗
, 𝑁
0
, 𝜀) ≤

𝑎
+
(𝜇
∗
, 𝑁
0
, 𝜀). The decay of T

𝑁,𝑚−5,𝜎
(𝜇) → 0 as 𝑁 → ∞

and A(𝜀) → 0 as 𝜀 → 0 will ensure the existence of the
solutions 𝑎

−
(𝜇
∗
, 𝑁, 𝜀) and 𝑎

+
(𝜇
∗
, 𝑁, 𝜀) as𝑁 → ∞ and 𝜀 →

0. For the second point we recall that ̃F
𝜃,𝑚,𝑁

(𝜇) → F
𝜃,𝑚

(𝜇)

as𝑁 → ∞ and 𝜀 → 0. Hence by taking the limit we obtain

G (𝑎
+
(𝜇
∗
,∞, 0)) + (

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

F
𝜃,𝑚

(𝑎
+
(𝜇
∗
,∞, 0)) = 0,

G (𝑎
−
(𝜇
∗
,∞, 0)) + (

sin 𝜃𝜇∗

𝜃𝜇
∗

)

−𝑚

F
𝜃,𝑚

(𝑎
−
(𝜇
∗
,∞, 0)) = 0.

(62)

That is Γ(𝑎
+
) = Γ(𝑎

−
) = 0. This leads us to conclude that

𝑎
+
= 𝑎
−
= 𝜇
∗ since 𝜇∗ is a simple root.

Let Γ̃
𝑁
(𝜇) := G(𝜇) + (sin 𝜃𝜇/𝜃𝜇)−𝑚̃F

𝜃,𝑚,𝑁
(𝜇). Then (41)

and (45) imply

󵄨
󵄨
󵄨
󵄨
󵄨
Γ (𝜇) − Γ̃

𝑁
(𝜇)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇
𝜃𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇) +A (𝜀)) ,

󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨
<

𝑁𝜋

𝜎

,

(63)

and 𝜃 is chosen sufficiently small for which |𝜃𝜇| < 𝜋.
Therefore 𝜃,𝑚must be chosen so that for |𝜇| < 𝑁𝜋/𝜎

𝑚 > 5, 𝜃 ∈ (0, 1) ,
󵄨
󵄨
󵄨
󵄨
𝜃𝜇

󵄨
󵄨
󵄨
󵄨
< 𝜋. (64)

Let 𝜇∗ be an eigenvalue and let 𝜇
𝑁
be its approximation.Thus

Γ(𝜇
∗
) = 0 and Γ̃

𝑁
(𝜇
𝑁
) = 0. From (63) we have |Γ̃

𝑁
(𝜇
∗
)| ≤

| sin 𝜃𝜇∗/𝜃𝜇∗|−𝑚(T
𝑁,𝑚−5,𝜎

(𝜇
∗
) +A(𝜀)). Now we estimate the

error |𝜇∗ − 𝜇
𝑁
| for an eigenvalue 𝜇∗.

Theorem 2. Let 𝜇∗ be an eigenvalue of Π(𝑞, 𝛼, 𝛽, 𝛼󸀠, 𝛽󸀠, 𝛾, 𝛿).
For sufficiently large𝑁 one has the following estimate:

󵄨
󵄨
󵄨
󵄨
𝜇
∗
− 𝜇
𝑁

󵄨
󵄨
󵄨
󵄨
<

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇
𝑁

𝜃𝜇
𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚T
𝑁,𝑚−5,𝜎

(𝜇
𝑁
) +A (𝜀)

inf
𝜁∈𝐼
𝜀,𝑁

󵄨
󵄨
󵄨
󵄨
Γ
󸀠
(𝜁)

󵄨
󵄨
󵄨
󵄨

. (65)

Proof. Since Γ(𝜇
𝑁
) − Γ̃
𝑁
(𝜇
𝑁
) = Γ(𝜇

𝑁
) −Γ(𝜇

∗
), then from (63)

and after replacing 𝜇 by 𝜇
𝑁
we obtain

󵄨
󵄨
󵄨
󵄨
Γ (𝜇
𝑁
) − Γ (𝜇

∗
)
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇
𝑁

𝜃𝜇
𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇
𝑁
) +A (𝜀)) .

(66)

Using themean value theorem yields that for some 𝜁 ∈ 𝐽
𝜀,𝑁

:=

[min(𝜇∗, 𝜇
𝑁
),max(𝜇∗, 𝜇

𝑁
)]

󵄨
󵄨
󵄨
󵄨
󵄨
(𝜇
∗
− 𝜇
𝑁
) Γ
󸀠
(𝜁)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇
𝑁

𝜃𝜇
𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇
𝑁
) +A (𝜀)) ,

𝜁 ∈ 𝐽
𝜀,𝑁

⊂ 𝐼
𝜀,𝑁

.

(67)

Since thlarge𝑁inf
𝜁∈𝐼
𝜀,𝑁

|Γ
󸀠
(𝜁)| > 0 and we get (65).

3. Numerical Examples

This section includes three detailed worked examples illus-
trating the above technique. By 𝐸

𝑆
and 𝐸

𝐻
we mean the

absolute errors associated with the results of the classical sinc
method [9, 15] and our newmethod (Hermite interpolations),
respectively. The first two examples are computed in [15]
with the classical sinc method. We indicate in these two
examples the effect of the amplitude error in the method by
determining enclosure intervals for different values of 𝜀. We
also indicate the effect of the parameters 𝑚 and 𝜃 by several
choices. Also, ine eigenvalues are simple, then for sufficiently
the following two examples, we observe that the exact
solutions 𝜇

𝑘
and the zeros of Γ(𝜇) are all inside the interval

[𝑎
−
, 𝑎
+
]. In the third example, we compare our new method

with the classical sinc method [9]. We would like to mention
that mathematica has been used to obtain the exact values
for the two examples where eigenvalues cannot be computed
concretely. mathematica is also used in rounding the exact
eigenvalues, which are square roots. Both numerical results
and the associated figures prove the credibility of themethod.

Recall that 𝑎
±
(𝜇) are defined by

𝑎
±
(𝜇) = Γ̃

𝑁
(𝜇) ±

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin 𝜃𝜇
𝜃𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−𝑚

(T
𝑁,𝑚−5,𝜎

(𝜇) +A (𝜀)) ,

󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨
<

𝑁𝜋

𝜎

.

(68)

Recall also that the enclosure interval 𝐼
𝜀,𝑁

:= [𝑎
−
, 𝑎
+
] is

determined by solving

𝑎
±
(𝜇) = 0,

󵄨
󵄨
󵄨
󵄨
𝜇
󵄨
󵄨
󵄨
󵄨
<

𝑁𝜋

𝜎

. (69)

Example 1. Consider the boundary value problem [15]

− y
󸀠󸀠
(𝑥, 𝜇) + 𝑞 (𝑥) y (𝑥, 𝜇) = 𝜇

2
y (𝑥, 𝜇) ,

𝑥 ∈ [−1, 0) ∪ (0, 1] ,

𝜇
2
y (−1, 𝜇) + y

󸀠
(−1, 𝜇) = 0, 𝜇

2
y (1, 𝜇) − y

󸀠
(1, 𝜇) = 0,

y (0
−
, 𝜇) − y (0

+
, 𝜇) = 0, y

󸀠
(0
−
, 𝜇) − y

󸀠
(0
+
, 𝜇) = 0.

(70)
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Table 1: Comparing the exact, sinc, and Hermite solutions at𝑁 = 20,𝑚 = 8, and 𝜃 = 1/6.

𝜇
𝑘

Sinc 𝜇
𝑘,𝑁

[15] Exact 𝜇
𝑘

Hermite 𝜇
𝑘,𝑁

𝜇
1

0.5796031003909555 0.579603114810978 0.5796031148176034
𝜇
2

1.7849838911323737 1.7849838948888357 1.7849838948886403
𝜇
3

3.2386473557238586 3.238647349751419 3.238647349751933
𝜇
4

4.7705623346546995 4.770562335590527 4.770562335590518
𝜇
5

6.32570436013402 6.3257043646722515 6.325704364672412

Table 2: Comparing the exact, sinc, and Hermite solutions at𝑁 = 20,𝑚 = 12, and 𝜃 = 1/4.

𝜇
𝑘

Sinc 𝜇
𝑘,𝑁

[15] Exact 𝜇
𝑘

Hermite 𝜇
𝑘,𝑁

𝜇
1

0.5796031148103449 0.57960311481097786078 0.57960311481097786304
𝜇
2

1.7849838948900418 1.78498389488883561160 1.78498389488883560884
𝜇
3

3.2386473497526262 3.23864734975141899542 3.23864734975141899687
𝜇
4

4.77056233558413 4.77056233559052749760 4.77056233559052748750
𝜇
5

6.325704364662005 6.32570436467225155153 6.32570436467225155387

Here 𝛽󸀠
1
= 𝛽
2
= 𝛼
󸀠

1
= 𝛼
2
= 1, 𝛽

1
= 𝛽
󸀠

2
= 𝛼
1
= 𝛼
󸀠

2
= 0,

𝛾
1
= 𝛿
1
= 2, 𝛾
2
= 𝛿
2
= 1/2, and

𝑞 (𝑥) = {

−1, 𝑥 ∈ [−1, 0) ,

−2, 𝑥 ∈ (0, 1] .

(71)

The characteristic function is

Γ (𝜇) =

1

√1 + 𝜇
2
√2 + 𝜇

2

× [sin√1 + 𝜇
2
(−√2 + 𝜇

2
(𝜇
4
− 𝜇
2
− 1)

× cos√2 + 𝜇
2

−𝜇
2
(3 + 2𝜇

2
) sin√2 + 𝜇

2
)

− √1 + 𝜇
2 cos√1 + 𝜇

2

× (−2𝜇
2
√2 + 𝜇

2 cos√2 + 𝜇
2

+ (𝜇
4
− 𝜇
2
− 2) sin√2 + 𝜇

2
)] .

(72)

The functionK(𝜇) will be

K (𝜇) = −𝜇 (1 + 𝜇
2
) sin 2𝜇. (73)

The application of Hermite interpolations method and
sinc method [15] to this problem and the effect of 𝜃 and 𝑚

at 𝑁 = 20 are indicated in Tables 1 and 2. In Tables 3 and 4,
we display the maximum absolute error of 𝜇

𝑘
− 𝜇
𝑘,𝑁

, using
Hermite interpolations method and sinc method [15] with
various choices of 𝜃 and 𝑚 at 𝑁 = 20. From these tables, it
is shown that the proposed methods are significantly more
accurate than those based on the classical sinc method [15].

Tables 5 and 6 list the exact solutions 𝜇
𝑘
for two choices

of𝑚 and 𝜃 at𝑁 = 20 and different values of 𝜀. It is indicated

0.2 0.4 0.6 0.8 1

2

1.5

1

0.5

0

−0.5

−1

−1.5

Figure 1: 𝑎
+
, Γ(𝜇), and 𝑎

−
with𝑁 = 20,𝑚 = 8, 𝜃 = 1/6, and 𝜀 = 10

−5.

0.2 0.4 0.6 0.8 1

2

1.5

1

0.5

0

−0.5

−1

−1.5

Figure 2: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 20, 𝑚 = 8, 𝜃 = 1/6, and 𝜀 =

10
−10.

that the solutions 𝜇
𝑘
are all inside the interval [𝑎

−
, 𝑎
+
] for all

values of 𝜀.
For 𝑁 = 20, 𝑚 = 8, and 𝜃 = 1/6, Figures 1 and 2 illus-

trate the enclosure intervals dominating 𝜇
1
for 𝜀 = 10

−5 and
𝜀 = 10

−10, respectively. The middle curve represents Γ(𝜇),
while the upper and lower curves represent the curves of
𝑎
+
(𝜇), 𝑎
−
(𝜇), respectively. We notice that when 𝜀 = 10

−10 all
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Table 3: Absolute errors |𝜇
𝑘
− 𝜇
𝑘,𝑁

| for𝑁 = 20,𝑚 = 8, and 𝜃 = 1/6.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

𝜇
5

𝐸
𝑆
[15] 1.442 × 10

−8
3.757 × 10

−9
5.972 × 10

−9
19.358 × 10

−10
4.538 × 10

−9

𝐸
𝐻

6.625 × 10
−12

1.954 × 10
−13

5.138 × 10
−13

8.882 × 10
−15

1.608 × 10
−13

Table 4: Absolute errors |𝜇
𝑘
− 𝜇
𝑘,𝑁

| for𝑁 = 20,𝑚 = 12, and 𝜃 = 1/4.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

𝜇
5

𝐸
𝑆
[15] 6.332 × 10

−13
1.206 × 10

−12
1.207 × 10

−12
6.397 × 10

−12
1.025 × 10

−11

𝐸
𝐻

2.3 × 10
−18

2.8 × 10
−18

1.5 × 10
−18

1.01 × 10
−17

2.3 × 10
−18

1.5 1.6 1.7 1.8 1.9

3

2

1

0

−1

−2

Figure 3: 𝑎
+
, Γ(𝜇), and 𝑎

−
with𝑁 = 20,𝑚 = 8, 𝜃 = 1/6, and 𝜀 = 10

−5.
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Figure 4: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 20, 𝑚 = 8, 𝜃 = 1/6, and 𝜀 =

10
−10.

three curves are almost identical. Similarly, Figures 3 and 4
illustrate the enclosure intervals dominating 𝜇

2
for 𝜀 = 10

−5,
𝜀 = 10

−10, respectively.
As in Table 6, for 𝑁 = 20, 𝑚 = 12, and 𝜃 = 1/4, Figures

5 and 6 illustrate the enclosure intervals dominating 𝜇
3
for

𝜀 = 10
−5 and 𝜀 = 10

−10, respectively, and Figures 7 and 8
illustrate the enclosure intervals dominating 𝜇

4
for 𝜀 = 10

−5,
𝜀 = 10

−10, respectively.

Example 2. Consider the boundary value problem

− y
󸀠󸀠
(𝑥, 𝜇) + 𝑞 (𝑥) y (𝑥, 𝜇) = 𝜇

2
y (𝑥, 𝜇) ,

𝑥 ∈ [−1, 0) ∪ (0, 1] ,

3.1 3.15 3.2 3.25 3.3 3.35 3.4

20

15

10

5

0

−5

−10

−15

Figure 5: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 20, 𝑚 = 12, 𝜃 = 1/4, and

𝜀 = 10
−5.

3.1 3.15 3.2 3.25 3.3 3.35 3.4

20

15

10

5

0

−5

−10

−15

Figure 6: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 20, 𝑚 = 12, 𝜃 = 1/4, and

𝜀 = 10
−10.

y (−1, 𝜇) + 𝜇
2
y
󸀠
(−1, 𝜇) = 0,

y (1, 𝜇) + 𝜇
2
y
󸀠
(1, 𝜇) = 0,

y (0
−
, 𝜇) − y (0

+
, 𝜇) = 0, y

󸀠
(0
−
, 𝜇) − y

󸀠
(0
+
, 𝜇) = 0,

(74)

where 𝛼
1
= 𝛽
1
= 1, 𝛼󸀠

2
= 𝛽
󸀠

2
= −1, 𝛽󸀠

1
= 𝛽
2
= 𝛼
2
= 𝛼
󸀠

1
= 0,

𝛾
1
= 𝛿
1
= 3, 𝛾
2
= 𝛿
2
= 1/3, and

𝑞 (𝑥) = {

−2, 𝑥 ∈ [−1, 0) ,

𝑥, 𝑥 ∈ (0, 1] .

(75)
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Table 5: For𝑁 = 20,𝑚 = 8, and 𝜃 = 1/6, the exact solutions 𝜇
𝑘
are all inside the interval [𝑎

−
, 𝑎
+
] for different values of 𝜀.

𝜇
𝑘

Exact 𝜇
𝑘

[𝑎
−
, 𝑎
+
], 𝜀 = 10

−5
[𝑎
−
, 𝑎
+
], 𝜀 = 10

−10

𝜇
1

0.579603114810978 [0.504287, 0.644005] [0.579603, 0.581089]
𝜇
2

1.7849838948888357 [1.76837, 1.80095] [1.78494, 1.78503]
𝜇
3

3.238647349751419 [3.18936, 3.28517] [3.2375, 3.23979]
𝜇
4

4.770562335590527 [4.74591, 4.79495] [4.77054, 4.77059]
𝜇
5

6.3257043646722515 [6.30433, 6.34704] [6.32536, 6.32605]
E3(F𝜃,𝑚) = 2.61231 × 10

11, E2(F𝜃,𝑚) = 4.67787 × 10
10, 𝛼 = 1, andMF𝜃,𝑚

= 5.31641 × 10
9.

Table 6: For𝑁 = 20,𝑚 = 12; and 𝜃 = 1/4, 𝜇
𝑘
are all inside the interval [𝑎

−
, 𝑎
+
] for different values of 𝜀.

𝜇
𝑘

Exact 𝜇
𝑘

[𝑎
−
, 𝑎
+
], 𝜀 = 10

−5
[𝑎
−
, 𝑎
+
], 𝜀 = 10

−10

𝜇
1

0.57960311481097786078 [0.130168, 0.796074] [0.579579, 0.579627]
𝜇
2

1.78498389488883561160 [1.699182, 1.859482] [1.784963, 1.785004]
𝜇
3

3.23864734975141899542 [3.194355, 3.282835] [3.238636, 3.238658]
𝜇
4

4.77056233559052749760 [4.698242, 4.851169] [4.770489, 4.770635]
𝜇
5

6.32570436467225155153 [6.287476, 6.368771] [6.325701, 6.325707]
E7(F𝜃,𝑚) = 2.25863 × 10

13, E6(F𝜃,𝑚) = 5.91004 × 10
12, 𝛼 = 1, andMF𝜃,𝑚

= 2.11965 × 10
9.
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Figure 7: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 20, 𝑚 = 12, 𝜃 = 1/4, and

𝜀 = 10
−5.
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Figure 8: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 20, 𝑚 = 12, 𝜃 = 1/4, and

𝜀 = 10
−10.

The functionK(𝜇) will be

K (𝜇) =

(1 + 𝜇
6
) sin 2𝜇
𝜇

. (76)
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Figure 9: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 40, 𝑚 = 12, 𝜃 = 1/14, and

𝜀 = 10
−6.

The application of Hermite interpolations method and
sinc method [15] to this problem and the effect of 𝜃 and 𝑚

at𝑁 = 40 are indicated in Tables 7 and 8. In Tables 9 and 10,
we display the maximum absolute error of 𝜇

𝑘
− 𝜇
𝑘,𝑁

, using
Hermite interpolations method and sinc method [15] with
various choices of 𝜃 and 𝑚 at 𝑁 = 40. Form these tables, it
is shown that the proposed methods are significantly more
accurate than those based on the classical sinc method [15].

Tables 11 and 12 list the exact solutions 𝜇
𝑘
for two choices

of𝑚 and 𝜃 at𝑁 = 40 and different values of 𝜀. It is indicated
that the solutions 𝜇

𝑘
are all inside the interval [𝑎

−
, 𝑎
+
] for all

values of 𝜀.
For 𝑁 = 40, 𝑚 = 12, and 𝜃 = 1/14, Figures 9 and

10 illustrate the enclosure intervals dominating 𝜇
1
for 𝜀 =

10
−6 and 𝜀 = 10

−12, respectively. Similarly, Figures 11 and 12
illustrate the enclosure intervals dominating 𝜇

2
for 𝜀 = 10

−6,
𝜀 = 10

−12, respectively.
For 𝑁 = 40, 𝑚 = 16, and 𝜃 = 1/12, Figures 13 and 14

illustrate the enclosure intervals dominating 𝜇
1
for 𝜀 = 10

−7

and 𝜀 = 10
−12, respectively, and Figures 15 and 16 illustrate
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Table 7: Comparing the exact, sinc, and Hermite solutions at𝑁 = 40,𝑚 = 12, and 𝜃 = 1/14.

𝜇
𝑘

Sinc 𝜇
𝑘,𝑁

[15] Exact 𝜇
𝑘

Hermite 𝜇
𝑘,𝑁

𝜇
1

0.58718720635351373438 0.58718716772603949302 0.58718716772603439313
𝜇
2

1.67733213643112965108 1.67733212404977904702 1.67733212404977962102
𝜇
3

3.05318928070135885375 3.05318927948461569256 3.05318927948461567248
𝜇
4

4.64836948022942956741 4.64836948049457049728 4.64836948049456789884
𝜇
5

6.22695152015827473816 6.22695152029019996978 6.22695152029019996831

Table 8: Comparing the exact, sinc, and Hermite solutions at𝑁 = 40,𝑚 = 16, and 𝜃 = 1/12.

𝜇
𝑘

Sinc 𝜇
𝑘,𝑁

[15] Exact 𝜇
𝑘

Hermite 𝜇
𝑘,𝑁

𝜇
1

0.58718716772553041066238963 0.58718716772603949302708573 0.58718716772603949300999675
𝜇
2

1.67733212404966397991332993 1.67733212404977904702706192 1.67733212404977904702798867
𝜇
3

3.05318927948463571892007113 3.05318927948461569256662121 3.05318927948461569256652760
𝜇
4

4.648369480494569410072581778 4.64836948049456789592198501 4.64836948049456789592198641
𝜇
5

6.22695152029019694414158617 6.2269515202901999697647050 6.226951520290199969764695999

Table 9: Absolute errors |𝜇
𝑘
− 𝜇
𝑘,𝑁

| for𝑁 = 40,𝑚 = 12, and 𝜃 = 1/14.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

𝜇
5

𝐸
𝑆
[15] 3.863 × 10

−8
1.238 × 10

−8
1.217 × 10

−9
2.651 × 10

−10
1.319 × 10

−10

𝐸
𝐻

5.099 × 10
−15

5.739 × 10
−16

2.009 × 10
−17

2.598 × 10
−15

1.467 × 10
−18

Table 10: Absolute errors |𝜇
𝑘
− 𝜇
𝑘,𝑁

| for𝑁 = 40,𝑚 = 16, and 𝜃 = 1/12.

𝜇
𝑘

𝜇
1

𝜇
2

𝜇
3

𝜇
4

𝜇
5

𝐸
𝑆
[15] 5.091 × 10

−13
1.1506 × 10

−13
2.003 × 10

−14
1.514 × 10

−15
3.025 × 10

−15

𝐸
𝐻

1.708 × 10
−20

9.267 × 10
−22

9.361 × 10
−23

1.403 × 10
−24

9.010 × 10
−24

Table 11: For𝑁 = 40,𝑚 = 12, and 𝜃 = 1/14, 𝜇
𝑘
are all inside the interval [𝑎

−
, 𝑎
+
] for different values of 𝜀.

𝜇
𝑘

Exact 𝜇
𝑘

[𝑎
−
, 𝑎
+
], 𝜀 = 10

−6
[𝑎
−
, 𝑎
+
], 𝜀 = 10

−12

𝜇
1

0.58718716772603949302 [0.477526, 0.667764] [0.586774, 0.587599]
𝜇
2

1.67733212404977904702 [1.666867, 1.687341] [1.677285, 1.677378]
𝜇
3

3.05318927948461569256 [3.046882, 3.059372] [3.053187, 3.053190]
𝜇
4

4.64836948049457049728 [4.647491, 4.649246] [4.64836924, 4.64836971]
𝜇
5

6.22695152029019996978 [6.226707, 6.227195] [6.22695140, 6.22695163]
E7(F𝜃,𝑚) = 6.29794 × 10

19, E6(F𝜃,𝑚) = 4.70791 × 10
18, 𝛼 = 1, andMF𝜃,𝑚

= 4.71851 × 10
12.

Table 12: For𝑁 = 40,𝑚 = 16, and 𝜃 = 1/12, 𝜇
𝑘
are all inside the interval [𝑎

−
, 𝑎
+
] for different values of 𝜀.

𝜇
𝑘

Exact 𝜇
𝑘

[𝑎
−
, 𝑎
+
], 𝜀 = 10

−7
[𝑎
−
, 𝑎
+
], 𝜀 = 10

−12

𝜇
1

0.58718716772603949302708573 [0.554227, 0.616993] [0.587165, 0.587209]
𝜇
2

1.67733212404977904702706192 [1.648191, 1.703225] [1.6773305, 1.6773337]
𝜇
3

3.05318927948461569256662121 [3.050775, 3.055585] [3.05318912, 3.05318943]
𝜇
4

4.64836948049456789592198501 [4.647994, 4.648743] [4.648369468, 4.648369492]
𝜇
5

6.2269515202901999697647050 [6.226831, 6.227072] [6.226951509, 6.226951531]
E11(F𝜃,𝑚) = 1.67235 × 10

24, E10(F𝜃,𝑚) = 1.44089 × 10
23, 𝛼 = 1, andMF𝜃,𝑚

= 1.28771 × 10
13.

Table 13: Comparing the exact, sinc, and Hermite solutions at𝑁 = 40,𝑚 = 2.

𝜇
𝑘

Sinc 𝜇
𝑘,𝑁

[9] Exact 𝜇
𝑘

Hermite 𝜇
𝑘,𝑁

𝐸
𝑆

𝐸
𝐻

𝜇
1

3.119437080035764 3.1194369008225 3.1194368826279857 1.79213 × 10
−7

1.81945 × 10
−8

𝜇
2

9.421424381799804 9.421428536270897 9.421428567680044 4.15447 × 10
−6

3.14091 × 10
−8

𝜇
3

12.565198874263179 12.565194405126995 12.56519440514131 4.46914 × 10
−6

1.43157 × 10
−11
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Figure 10: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 40, 𝑚 = 12, 𝜃 = 1/14, and

𝜀 = 10
−12.
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Figure 11: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 40, 𝑚 = 12, 𝜃 = 1/14, and

𝜀 = 10
−6.
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Figure 12: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 40, 𝑚 = 12, 𝜃 = 1/14, and

𝜀 = 10
−12.

the enclosure intervals dominating 𝜇
2
for 𝜀 = 10

−7, 𝜀 = 10
−12,

respectively.

Example 3. Consider the continuous boundary value prob-
lem [9]

−y
󸀠󸀠
(𝑥, 𝜇) = 𝜇

2
y (𝑥, 𝜇) , 𝑥 ∈ [0, 1] ,

−y (0, 𝜇) = (𝜇
2
+ 𝑑) y

󸀠
(0, 𝜇) , y (1, 𝜇) = 𝜇

2
y
󸀠
(1, 𝜇) ,

(77)
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Figure 13: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 40, 𝑚 = 16, 𝜃 = 1/12, and

𝜀 = 10
−7.
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Figure 14: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 40, 𝑚 = 16, 𝜃 = 1/12, and

𝜀 = 10
−12.
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Figure 15: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 40, 𝑚 = 16, 𝜃 = 1/12, and

𝜀 = 10
−7.

where 𝑑 = −4𝜋
2, 𝛽
1
= 𝛽
󸀠

2
= 1, 𝛼

2
= 𝑑, 𝛼

1
= 𝛽
2
= 𝛽
󸀠

1
= 0,

𝛼
2
= 𝑑, and 𝛼

󸀠

2
= −1. The exact characteristic function is

Γ (𝜇) = (1 + 4𝜋
2
𝜇
4
− 𝜇
6
)

sin 𝜇
𝜇

− (2𝜇
2
− 4𝜋
2
) cos𝜇, (78)

where zero is not an eigenvalue. The application of Hermite
interpolations method and sinc method [9] to this problem
is indicated in Table 13. From this table, it is shown that the
proposed method is significantly more accurate than that
based on the sinc method [9].
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Figure 16: 𝑎
+
, Γ(𝜇), and 𝑎

−
with 𝑁 = 40, 𝑚 = 16, 𝜃 = 1/12, and

𝜀 = 10
−12.

Acknowledgments

This work was funded by the Deanship of Scientific Research
(DSR), King Abdulaziz University, Jeddah, under Grant no.
130-065-D1433. The authors, therefore, acknowledge with
thanks DSR technical and financial support.

References

[1] E. H. Doha, A. H. Bhrawy, and R. M. Hafez, “A Jacobi-Jacobi
dual-Petrov-Galerkin method for third- and fifth-order differ-
ential equations,” Mathematical and Computer Modelling, vol.
53, no. 9-10, pp. 1820–1832, 2011.

[2] E. H. Doha, A. H. Bhrawy, and R. M. Hafez, “A Jacobi dual-
Petrov-Galerkin method for solving some odd-order ordinary
differential equations,” Abstract and Applied Analysis, vol. 2011,
Article ID 947230, 21 pages, 2011.

[3] E. Tohidi, A. H. Bhrawy, and K. Erfani, “A collocation method
based on Bernoulli operational matrix for numerical solution
of generalized pantograph equation,” Applied Mathematical
Modelling, vol. 37, no. 6, pp. 4283–4294, 2013.

[4] A. H. Bhrawy, A. S. Alofi, and S. I. El-Soubhy, “An extension of
the Legendre-Galerkin method for solving sixth-order differ-
ential equations with variable polynomial coefficients,” Mathe-
matical Problems in Engineering, vol. 2012, Article ID 896575, 13
pages, 2012.

[5] A. H. Bhrawy, “A Jacobi-Gauss-Lobatto collocation method
for solving generalized Fitzhugh-Nagumo equation with time-
dependent coefficients,”AppliedMathematics andComputation,
vol. 222, pp. 255–264, 2013.

[6] A. H. Bhrawy, M. M. Tharwat, and A. Al-Fhaid, “Numerical
algorithms for computing eigenvalues of discontinuous Dirac
systemusing sinc-Gaussianmethod,”Abstract andApplied Ana-
lysis, vol. 2012, Article ID 925134, 13 pages, 2012.

[7] A. Imani, A. Aminataei, and A. Imani, “Collocation method via
Jacobi polynomials for solving nonlinear ordinary differential
equations,” International Journal of Mathematics and Mathe-
matical Sciences, vol. 2011, Article ID 673085, 11 pages, 2011.

[8] A. Boumenir and B. Chanane, “Eigenvalues of Sturm-Liouville
systems using sampling theory,” Applied Analysis, vol. 62, pp.
323–334, 1996.

[9] B. Chanane, “Computation of the eigenvalues of Sturm-
Liouville problems with parameter dependent boundary con-
ditions using the regularized sampling method,” Mathematics
of Computation, vol. 74, no. 252, pp. 1793–1801, 2005.

[10] B. Chanane, “Computing the spectrum of non-self-adjoint
Sturm-Liouville problems with parameter-dependent bound-
ary conditions,” Journal of Computational and Applied Mathe-
matics, vol. 206, no. 1, pp. 229–237, 2007.

[11] B. Chanane, “Computing the eigenvalues of singular Sturm-
Liouville problems using the regularized sampling method,”
Applied Mathematics and Computation, vol. 184, no. 2, pp. 972–
978, 2007.

[12] B. Chanane, “Eigenvalues of Sturm-Liouville problemswith dis-
continuity conditions inside a finite interval,” Applied Mathe-
matics and Computation, vol. 188, no. 2, pp. 1725–1732, 2007.

[13] B. Chanane, “Sturm-Liouville problems with impulse effects,”
Applied Mathematics and Computation, vol. 190, no. 1, pp. 610–
626, 2007.

[14] M. M. Tharwat, “Discontinuous Sturm-Liouville problems and
associated sampling theories,” Abstract and Applied Analysis,
vol. 2011, Article ID 610232, 30 pages, 2011.

[15] M. M. Tharwat, A. H. Bhrawy, and A. Yildirim, “Numerical
computation of eigenvalues of discontinuous Sturm-Liouville
problems with parameter dependent boundary conditions
using sinc method,”Numerical Algorithms, vol. 63, no. 1, pp. 27–
48, 2013.

[16] V. Kotelnikov, “On the carrying capacity of the “ether” and wire
in telecommunications,,” in Proceedings of the 1st all union con-
ference on questions of communications, Izd. Red. Upr. Svyazi
RKKA, Moscow, Russia, 1933.

[17] C. E. Shannon, “Communication in the presence of noise,” Pro-
ceedings of the IEEE, vol. 37, pp. 10–21, 1949.

[18] E. Whittaker, “On the functions which are represented by the
expansion of the interpolation theory,” Proceedings of the Royal
Society of Edinburgh A, vol. 35, pp. 181–194, 1915.

[19] G. R. Grozev andQ. I. Rahman, “Reconstruction of entire func-
tions from irregularly spaced sample points,” Canadian Journal
of Mathematics, vol. 48, no. 4, pp. 777–793, 1996.

[20] J. R. Higgins, G. Schmeisser, and J. J. Voss, “The sampling theo-
rem and several equivalent results in analysis,” Journal of Com-
putational Analysis and Applications, vol. 2, no. 4, pp. 333–371,
2000.

[21] G. Hinsen, “Irregular sampling of bandlimited 𝐿
𝑝-functions,”

Journal of Approximation Theory, vol. 72, no. 3, pp. 346–364,
1993.

[22] D. Jagerman andL. Fogel, “Some general aspects of the sampling
theorem,” IRE Transactions on Information Theory, vol. 2, pp.
139–146, 1956.

[23] M. H. Annaby and R. M. Asharabi, “Error analysis associated
with uniformHermite interpolations of bandlimited functions,”
Journal of the Korean Mathematical Society, vol. 47, no. 6, pp.
1299–1316, 2010.

[24] J. R. Higgins, Sampling Theory in Fourier and Signal Analysis:
Foundations, Oxford University Press, Oxford, UK, 1996.

[25] P. L. Butzer, J. R. Higgins, and R. L. Stens, “Sampling theory of
signal analysis,” in Development of Mathematics 1950–2000, pp.
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