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Homotopy analysis method (HAM) is applied to obtain the approximate solution of inner-resonance of tangent cushioning
packaging system based on critical components. The solution is obtained in the form of infinite series with components which
can be easily calculated. Using a convergence-control parameter, the HAM utilizes a simple method to adjust and control the
convergence region of the infinite series solution. The obtained results show that the HAM is a very accurate technique to obtain
the approximate solution.

1. Introduction

One of the most important subjects in packaging system is to
investigate products damaged due to being dropped. Many
researchers have investigated cushioning packaging system
in this special field [1, 2]. The mechanical and electronic
products are composed of large number of elements and,
generally, damage at the so-called critical components. To
prevent any damage, a critical component and a cushioning
packaging are included in a package system [3].The following
assumptions are made basically in the last decade by the
researchers [1, 4].

(1) The researchers considered that the packaging system
is a spring-mass, single degree of freedom system.

(2) The use of simple linear or nonlinear springs for
cushioning packaging may not be appropriate.

Wang et al. [2] considered a linear model for this system,
while the oscillation in the package system is inborn non-
linearity (see [4, 5]). Our goal of this paper is to obtain the
approximate solution of inner-resonance of tangent nonlin-
ear cushioning packaging system with critical components

introduced in [1, 4] using HAM, which is one of the semi-
linear approximate analytical methods.

In the last two decades, many researchers have employed
the approximate analytical methods such as adomian
decompositionmethod (ADM), variational iterationmethod
(VIM), homotopy perturbationmethod (HPM), andHAM to
solve differential equations. These methods give the solution
of the differential equations in the form of infinite series.
One of the advantages of approximate analytical methods
is that these methods do not produce rounding-off errors.
Contrary to the implicit finite difference method (FDM),
the approximate analytical methods do not require the
numerical solution of the systems of differential equations.

We apply theHAM to construct the series solution for the
inner-resonance of tangent nonlinear cushioning packaging
system with critical components. An advantage of HAM
over perturbation methods is that it is not dependent on
small or large parameters. As it is well known, perturba-
tion methods cannot be applied to all nonlinear equations
because these methods are based on the existence of small
or large parameters. Besides, nonperturbation methods are
independent of small parameters. According to [6], both
of the two techniques (perturbation and nonperturbative
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Figure 1: The model of packaging system with critical component (𝑚
1
≪ 𝑚
2
) and 𝑥

1
= 𝑥(𝑡), 𝑥

2
= 𝑦(𝑡).

techniques) cannot provide a simple procedure to adjust or
control the convergence region and rate of given approximate
series. According to [7, 8], HAM also allows for fine-
tuning of convergence region and rate of convergence by
allowing an auxiliary parameter ℏ to vary. To the best of
our knowledge, this is the first attempt at solving the inner-
resonance of tangent nonlinear cushioning packaging system
with components approximately using the HAM.

In recent years, the HAM has been successfully applied
for solving various nonlinear systems of equations in many
branches of mathematics and sciences, such as strongly cou-
pled reaction-diffusion system [9], fractional Lorenz system
[7], coupled Schrodinger-KdV equation [10], Burgers and
coupled Burgers equation [11], system of second-order BVPs
[8], and HIV infection CD4

+ T-cell [12]. For more studies of
HAM and its applications, the readers are also referred to see
[13–16].

Our paper is organized as follows.
In Section 2, we introducemathematical modelling of the

inner-resonance of tangent nonlinear cushioning packaging
system with critical components. In Section 3, we present a
description of the HAM on system of equations, as expanded
by previous researchers in particular [9, 12], applied to the
inner-resonance of tangent nonlinear cushioning packaging
system with critical components. We prove the convergence
of homotopy series solution for the inner-resonance of
tangent nonlinear cushioning packaging system with critical
components also in this section. In Section 4, we have applied
the HAM to obtain the approximate solution of inner-
resonance of tangent nonlinear cushioning packaging system
with critical components. Finally, in Section 5, we give the
conclusion of this study.

2. Modeling and Equations

Generally, imagine that everything we know and have a rela-
tionship to, including things such as art, clothes, possessions,
homes, gardens, trees and fields, mountains, lakes, oceans,
continents, our friends, and loved ones, are instances where
resonance can and does occur. Now, consider that everything
we do and think is an attempt to seek out and to return to the
experience of resonance, a return to the feeling of Belonging
and feeling that things feel right. Even though we may not
identify the motivation for making and forming certain

relationships, the real attraction and value of any relationship
is whether it is fulfilling and makes us feel good. We are
searching for the feeling of resonance. The profound nature
of these kinds of experiences is dependent on the nature and
quality of the relationship we can have to something of an
external nature, but we also have the potential to experience
resonance within our own body and our inner being, and
this I would call a “state of Inner Resonance.” When a
practitioner consciously perceives resonance happening in a
therapeutic relationship between themselves and patient, it
is also a state of Inner Resonance. In this circumstance, the
practitioners create the appropriate environment, conditions,
and quality of presence so that they can receive the patients
intention to be understood and received. In another way, the
patient’s need to experience resonance (whether consciously
or unconsciously) is met. Inner Resonance, then, is a state
of receptive presence or conscious empathy between two or
more people.

In Figure 1, the model of packaging system with critical
component is shown to be considered as a nonlinear spring
with stiffness coefficient 𝑘

2
. It can also idealize the joining

part between the mass of critical component 𝑚
1
and the

main part of the product 𝑚
2
as a linear spring with stiffness

coefficient 𝑘
1
. According to Figures 1 and 2, themotion of this

system can be written as [1, 4]

𝑚
1

𝑑
2
𝑥 (𝑡)

𝑑𝑡
2

+ 𝑘
1
(𝑥 (𝑡) − 𝑦 (𝑡)) = 0,

𝑚
2

𝑑
2
𝑦 (𝑡)

𝑑𝑡
2

+

2𝑘
2
𝑑
𝑏

𝜋

tan(

𝜋

2𝑑
𝑏

𝑦 (𝑡)) − 𝑘
1
(𝑥 (𝑡) − 𝑦 (𝑡)) = 0,

(1)

with initial conditions

𝑥 (0) = 0, 𝑥
󸀠
(0) = √2𝑔ℎ,

𝑦 (0) = 0, 𝑦
󸀠
(0) = √2𝑔ℎ.

(2)

Table 1 summarize the meanings of parameters and vari-
ables. To simplify (1), new variables are introduced as

𝑋 =

𝑥

𝐿

, 𝑌 =

𝑦

𝐿

, 𝑇 =

𝑡

𝑇
0

, (3)
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Figure 2: The ℏ-curves of 𝑋󸀠(0.1) and 𝑌
󸀠
(0.1) obtained by the 5-order approximation of HAM.

Table 1: List of variables and parameters (modified from [1, 4]).

Parameters and
variables Illustration

𝑥

Displacement response of critical
component

𝑦 Main body of the product

𝑚
1

Mass of critical component

𝑚
2

Main part of product

𝑘
1

Stiffness coefficient

𝑘
2

Stiffness coefficient

𝑑
𝑏

Compression limit of the cushioning pad

ℎ Dropping height

𝑔 Gravity acceleration
√2𝑔ℎ Dropping shock velocity of the product

where

𝑇
0
= √

𝑚
2

𝑘
2

, 𝐿 =

2𝑑
𝑏

𝜋

. (4)

Wedefine the frequency parameters of the critical component
and main part of product as 𝑤

1
= √𝑘

1
/𝑚
1
and 𝑤

2
=

√𝑘
2
/𝑚
2
, respectively. The notations 𝜆

1
= 𝑤
1
/𝑤
2
and 𝜆

2
=

𝑚
1
/𝑚
2
are considered as parameter ratio and mass ratio,

respectively. By considering all parameters defined, (1) can
be equivalently written in the following system of nonlinear
equations [1]:

𝑑
2
𝑋

𝑑𝑇
2
+ 𝑤
2

01
𝑋 − 𝑤

2

01
𝑌 = 0,

𝑑
2
𝑌

𝑑𝑇
2
+ 𝑤
2

02
𝑌 +

1

3

𝑌
3
+

2

15

𝑌
5
+ (1 − 𝑤

2

02
)𝑋 = 0,

(5)

with initial conditions

𝑋 (0) = 0, 𝑋
󸀠
(0) =

𝑇
0

𝐿

√2𝑔ℎ,

𝑌 (0) = 0, 𝑌
󸀠
(0) =

𝑇
0

𝐿

√2𝑔ℎ,

(6)

where 𝑋 = 𝑋(𝑇), 𝑌 = 𝑌(𝑇) and

𝑤
01

= 𝜆
1
, 𝑤

02
= √1 + 𝜆

2

1
𝜆
2
. (7)

3. Homotopy Analysis Method (HAM)

To apply theHAM, the nonlinear system (5) is considered.We
make initial gusses on 𝑋(𝑇) and 𝑌(𝑇) such that they satisfy
the initial conditions (6) that are defined as

𝑋 (0) = 𝑋
0
=

𝑇
0

𝐿

√2𝑔ℎ𝑇,

𝑌 (0) = 𝑌
0
=

𝑇
0

𝐿

√2𝑔ℎ𝑇.

(8)

The auxiliary linear operatorsL
𝑋
andL

𝑌
are selected as

L
𝑋

=

𝑑
2
𝑋

𝑑𝑇
2
, L

𝑌
=

𝑑
2
𝑌

𝑑𝑇
2
, (9)

satisfying the following properties:

L
𝑋
(𝑐
1,𝑋

𝑇 + 𝑐
2,𝑋

) = 0,

L
𝑌
(𝑐
1,𝑌

𝑇 + 𝑐
2,𝑌

) = 0,

(10)
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where 𝑐
1,𝑋

, 𝑐
2,𝑋

, 𝑐
1,𝑌

, and 𝑐
2,𝑌

are integral constants. Define the
homotopy maps

H
𝑋
(𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞))

= (1 − 𝑞)L
𝑋
[𝑋 (𝑇; 𝑞) − 𝑋

0
(𝑇)]

− 𝑞ℏ𝐻
𝑋
(𝑡)𝑁
𝑋
[𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞)] ,

H
𝑌
(𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞))

= (1 − 𝑞)L
𝑌
[𝑌̂ (𝑇; 𝑞) − 𝑌

0
(𝑇)]

− 𝑞ℏ𝐻
𝑌
(𝑡)𝑁
𝑌
[𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞)] ,

(11)

where 𝑞 ∈ [0, 1] is an embedding parameter, ℏ is nonzero
auxiliary parameter, 𝐻

𝑋
and 𝐻

𝑌
are auxiliary functions, and

𝑁
𝑋
and𝑁

𝑌
are nonlinear operators that are defined as

𝑁
𝑋
[𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞)] =

𝜕
2
𝑋(𝑇; 𝑞)

𝜕𝑇
2

+ 𝑤
2

01
𝑋(𝑇; 𝑞)

− 𝑤
2

01
𝑌̂ (𝑇; 𝑞) ,

𝑁
𝑌
[𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞)] =

𝜕
2
𝑌̂ (𝑇; 𝑞)

𝜕𝑇
2

+ 𝑤
2

02
𝑌̂ (𝑇; 𝑞)

+

(𝑌̂ (𝑇; 𝑞))

3

3

+

2

15

(𝑌̂ (𝑇; 𝑞))

5

+ (1 − 𝑤
2

02
)𝑋 (𝑇; 𝑞) .

(12)

Clearly, when 𝑞 = 0, we have the homotopy maps

H
𝑋
(𝑋 (𝑇; 0) , 𝑌̂ (𝑇; 0)) = L

𝑋
[𝑋 (𝑇; 0) − 𝑋

0
(𝑇)] ,

H
𝑌
(𝑋 (𝑇; 0) , 𝑌̂ (𝑇; 0)) = L

𝑌
[𝑌̂ (𝑇; 0) − 𝑌

0
(𝑇)] .

(13)

And when 𝑞 = 1, we have

H
𝑋
(𝑋 (𝑇; 1) , 𝑌̂ (𝑇; 1))

= −ℏ𝐻
𝑋
(𝑇)𝑁

𝑋
[𝑋 (𝑇; 1) , 𝑌̂ (𝑇; 1)] ,

H
𝑌
(𝑋 (𝑇; 1) , 𝑌̂ (𝑇; 1))

= −ℏ𝐻
𝑌
(𝑇)𝑁

𝑌
[𝑋 (𝑇; 1) , 𝑌̂ (𝑇; 1)] .

(14)

Thus, by requiring

H
𝑋
(𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞)) = H

𝑌
(𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞)) = 0,

(15)

we can obtain

(1 − 𝑞)L
𝑋
[𝑋 (𝑇; 𝑞) − 𝑋

0
(𝑇)]

= 𝑞ℏ𝐻
𝑋
(𝑇)𝑁

𝑋
[𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞)] ,

(1 − 𝑞)L
𝑌
[𝑌̂ (𝑇; 𝑞) − 𝑌

0
(𝑇)]

= 𝑞ℏ𝐻
𝑌
(𝑇)𝑁

𝑌
[𝑋 (𝑇; 𝑞) , 𝑌̂ (𝑇; 𝑞)] .

(16)

If 𝑞 = 0 and 𝑞 = 1, the homotopy equations are as follows:

𝑋(𝑇; 0) = 𝑋
0
, 𝑋 (𝑇; 1) = 𝑋 (𝑇) ,

𝑌̂ (𝑇; 0) = 𝑌
0
, 𝑌̂ (𝑇; 1) = 𝑌 (𝑇) .

(17)

As 𝑞 varies from 0 to 1, the solution of the nonlinear system
(5) will vary from the initial guesses 𝑋

0
(𝑇) and 𝑌

0
(𝑇) to

the exact solutions 𝑋(𝑇) and 𝑌(𝑇) of the nonlinear system
(5). Expanding 𝑋(𝑇; 𝑞) and 𝑌̂(𝑇; 𝑞) as a Taylor series with
respect to 𝑞 yields

𝑋(𝑇; 𝑞) = 𝑋
0
+

∞

∑

𝑚=1

𝑋
𝑚
𝑞
𝑚
,

𝑌̂ (𝑇; 𝑞) = 𝑌
0
+

∞

∑

𝑚=1

𝑌
𝑚
𝑞
𝑚
,

(18)

where

𝑋
𝑚

=

1

𝑚!

𝜕
𝑚
𝑋(𝑇; 𝑞)

𝜕𝑞
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑞=0

, 𝑌
𝑚

=

1

𝑚!

𝜕
𝑚
𝑌̂(𝑇; 𝑞)

𝜕𝑞
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑞=0

.

(19)

According to [17], the convergence of the series (18) strongly
depends on the auxiliary parameter ℏ. Note that if 𝑞 = 1, then

𝑋 (𝑇; 1) = 𝑋 = 𝑋
0
+

∞

∑

𝑚=1

𝑋
𝑚
,

𝑌̂ (𝑇; 1) = 𝑌 = 𝑌
0
+

∞

∑

𝑚=1

𝑌
𝑚
.

(20)

According to definitions (18), the governing equations for
the unknowns can be deduced from the zeroth-deformation
equations (16). For further analysis, the vectors are defined as

𝑋
𝑛
= {𝑋
0
, 𝑋
1
, . . . , 𝑋

𝑛
} ,

𝑌̂
𝑛
= {𝑌
0
, 𝑌
1
, . . . , 𝑌

𝑛
} .

(21)

Differentiating (16)𝑚-times with respect to 𝑞, dividing by𝑚!,
and setting 𝑞 = 0 give the linear equations

L
𝑋
[𝑋
𝑚

− 𝜒
𝑚
𝑋
𝑚−1

] = ℏ𝐻
𝑋
(𝑇) 𝑅
𝑚,𝑋

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

) ,

L
𝑌
[𝑌
𝑚

− 𝜒
𝑚
𝑌
𝑚−1

] = ℏ𝐻
𝑌
(𝑇) 𝑅
𝑚,𝑌

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

) ,

(22)

with initial conditions

𝑋
𝑚
(0) = 0, 𝑋

󸀠

𝑚
(0) = 0,

𝑌
𝑚
(0) = 0, 𝑌

󸀠

𝑚
(0) = 0,

(23)
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where

𝑅
𝑚,𝑋

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

) = 𝑋
󸀠󸀠

𝑚−1
+ 𝑤
2

01
𝑋
𝑚−1

− 𝑤
2

01
𝑌
𝑚−1

, (24)

𝑅
𝑚,𝑌

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

) = 𝑌
󸀠󸀠

𝑚−1
+ 𝑤
2

02
𝑌
𝑚−1

+

1

3

𝑚−1

∑

𝑖
1
=0

𝑌
𝑖
1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

𝑌
𝑚−1−𝑖

1
−𝑖
2

+

2

15

𝑚−1

∑

𝑖
1
=0

𝑌
𝑖
1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

𝑚−1−𝑖
1
−𝑖
2

∑

𝑖
3
=0

𝑌
𝑖
3

×

𝑚−1−𝑖
1
−𝑖
2
−𝑖
3

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑚−1−𝑖

1
−𝑖
2
−𝑖
3
−𝑖
4

+ (1 − 𝑤
2

02
)𝑋
𝑚−1

,

(25)

𝜒
𝑚

:= {

0 𝑚 ≤ 1

1 𝑚 > 1.

(26)

Using 𝐻
𝑋
(𝑇) = 𝐻

𝑌
(𝑇) = 1, the solution of the 𝑚-order

deformation equations (22) for 𝑚 ≥ 1 becomes

𝑋
𝑚

= 𝜒
𝑚
𝑋
𝑚−1

+ ℏ∬𝑅
𝑚,𝑋

(𝑋⃗
𝑚−1

(𝜏) , 𝑌⃗
𝑚−1

(𝜏)) 𝑑𝜏 𝑑𝜏

+ 𝑐
1,𝑋

𝑇 + 𝑐
2,𝑋

,

𝑌
𝑚

= 𝜒
𝑚
𝑌
𝑚−1

+ ℏ∬𝑅
𝑚,𝑌

(𝑋⃗
𝑚−1

(𝜏) , 𝑌⃗
𝑚−1

(𝜏)) 𝑑𝜏 𝑑𝜏

+ 𝑐
1,𝑌

𝑇 + 𝑐
2,𝑌

.

(27)

The coefficients 𝑐
1,𝑋

, 𝑐
2,𝑋

, 𝑐
1,𝑌

, and 𝑐
2,𝑌

are determined using
initial conditions (23).

3.1. Convergence Theorem

Theorem 1. The series 𝑋(𝑇) = 𝑋
0
+ ∑
∞

𝑚=1
𝑋
𝑚
and 𝑌(𝑇) =

𝑌
0
+ ∑
∞

𝑚=1
𝑌
𝑚
converge where 𝑋

𝑚
and 𝑌

𝑚
are governed by

(22) under definitions (24)–(26);𝑋 and𝑌must be the solutions
of system of (5).

Proof. If the series ∑
∞

𝑚=0
𝑋
𝑚
and ∑

∞

𝑚=0
𝑌
𝑚
are convergent,

we can write

𝑆
𝑋

=

∞

∑

𝑚=0

𝑋
𝑚
,

𝑆
𝑌
=

∞

∑

𝑚=0

𝑌
𝑚
.

(28)

And it holds that

lim
𝑚→∞

𝑋
𝑚

= lim
𝑚→∞

𝑌
𝑚

= 0. (29)

From (22) and using (9), we have

ℏ

∞

∑

𝑚=1

𝑅
𝑚,X (𝑋⃗

𝑚−1
, 𝑌⃗
𝑚−1

) =

∞

∑

𝑚=1

L
𝑋
[𝑋
𝑚

− 𝜒
𝑚
𝑋
𝑚−1

]

= lim
𝑚→∞

𝑛

∑

𝑚=0

L
𝑋
[𝑋
𝑚

− 𝜒
𝑚
𝑋
𝑚−1

]

= L
𝑋
[ lim
𝑚→∞

𝑛

∑

𝑚=0

(𝑋
𝑚

− 𝜒
𝑚
𝑋
𝑚−1

)]

= L
𝑋
[ lim
𝑚→∞

𝑋
𝑛
] = 0,

ℏ

∞

∑

𝑚=1

𝑅
𝑚,𝑌

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

) =

∞

∑

𝑚=1

L
𝑌
[𝑌
𝑚

− 𝜒
𝑚
𝑌
𝑚−1

]

= lim
𝑚→∞

𝑛

∑

𝑚=0

L
𝑌
[𝑌
𝑚

− 𝜒
𝑚
𝑌
𝑚−1

]

= L
𝑌
[ lim
𝑚→∞

𝑛

∑

𝑚=0

(𝑌
𝑚

− 𝜒
𝑚
𝑌
𝑚−1

)]

= L
𝑌
[ lim
𝑚→∞

𝑌
𝑛
] = 0.

(30)

Since ℏ ̸= 0, then
∞

∑

𝑚=1

𝑅
𝑚,𝑋

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

) = 0, (31)

∞

∑

𝑚=1

𝑅
𝑚,𝑌

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

) = 0. (32)

Substituting (24) into (31) and simplifying it, we obtain

∞

∑

𝑚=1

𝑅
𝑚,𝑋

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

)

=

∞

∑

𝑚=1

(𝑋
󸀠󸀠

𝑚−1
+ 𝑤
2

01
𝑋
𝑚−1

− 𝑤
2

01
𝑌
𝑚−1

)

=

∞

∑

𝑚=1

𝑋
󸀠󸀠

𝑚−1
+ 𝑤
2

01

∞

∑

𝑚=1

𝑋
𝑚−1

− 𝑤
2

01

∞

∑

𝑚=1

𝑌
𝑚−1

=

𝑑
2

𝑑𝑇
2

∞

∑

𝑚=0

𝑋
𝑚

+ 𝑤
2

01

∞

∑

𝑚=0

𝑋
𝑚

− 𝑤
2

01

∞

∑

𝑚=0

𝑌
𝑚

= 𝑋
󸀠󸀠
+ 𝑤
2

01
𝑋 − 𝑤

2

01
𝑌 = 0.

(33)

We repeat this process and substitute (25) into (32), and
simplifying it, we obtain

∞

∑

𝑚=1

𝑅
𝑚,𝑌

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

)

=

∞

∑

𝑚=1

𝑌
󸀠󸀠

𝑚−1
+ 𝑤
2

02

∞

∑

𝑚=1

𝑌
𝑚−1

+

∞

∑

𝑚=1

(1 − 𝑤
2

02
)𝑋
𝑚−1



6 Abstract and Applied Analysis

+

1

3

∞

∑

𝑚=1

[

𝑚−1

∑

𝑖
1
=0

𝑌
𝑖
1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

𝑌
𝑚−1−𝑖

1
−𝑖
2

]

+

2

15

∞

∑

𝑚=1

[

𝑚−1

∑

𝑖
1
=0

𝑌
𝑖
1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

𝑚−1−𝑖
1
−𝑖
2

∑

𝑖
3
=0

𝑌
𝑖
3

×

𝑚−1−𝑖
1
−𝑖
2
−𝑖
3

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑚−1−𝑖

1
−𝑖
2
−𝑖
3
−𝑖
4

] .

(34)

For the first three terms of (34), we can easily conclude that

∞

∑

𝑚=1

𝑌
󸀠󸀠

𝑚−1
+ 𝑤
2

02

∞

∑

𝑚=1

𝑌
𝑚−1

+

∞

∑

𝑚=1

(1 − 𝑤
2

02
)𝑋
𝑚−1

= 𝑌
󸀠󸀠
(𝑇) + 𝑤

2

02
𝑌 (𝑇) + (1 − 𝑤

2

02
)𝑋 (𝑇) .

(35)

For the fourth and fifth terms in (34), we have

1

3

∞

∑

𝑚=1

[

𝑚−1

∑

𝑖
1
=0

𝑌
𝑖
1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

𝑌
𝑚−1−i

1
−𝑖
2

]

=

1

3

∞

∑

𝑚=1

𝑚−1

∑

𝑖
1
=0

𝑌
𝑖
1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

𝑌
𝑚−1−𝑖

1
−𝑖
2

=

1

3

∞

∑

𝑖
1
=0

∞

∑

𝑚=𝑖
1
+1

𝑌
𝑖
1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

𝑌
𝑚−1−𝑖

1
−𝑖
2

=

1

3

∞

∑

𝑖
1
=0

∞

∑

𝑗=0

𝑌
𝑖
1

𝑗

∑

𝑖
2
=0

𝑌
𝑖
2

𝑌
𝑗−𝑖
2

=

1

3

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑗=0

𝑗

∑

𝑖
2
=0

𝑌
𝑖
2

𝑌
𝑗−𝑖
2

=

1

3

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑖
2
=0

∞

∑

𝑗=𝑖
2

𝑌
𝑖
2

𝑌
𝑗−𝑖
2

=

1

3

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑖
2
=0

𝑌
𝑖
2

∞

∑

𝑗=𝑖
2

𝑌
𝑗−𝑖
2

=

1

3

(

∞

∑

𝑚=0

𝑌
𝑚
)

3

=

1

3

𝑌
3
(𝑇) ,

2

15

∞

∑

𝑚=1

[

𝑚−1

∑

𝑖
1
=0

𝑌
𝑖
1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

𝑚−1−𝑖
1
−𝑖
2

∑

𝑖
3
=0

𝑌
𝑖
3

×

𝑚−1−𝑖
1
−𝑖
2
−𝑖
3

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑚−1−𝑖

1
−𝑖
2
−𝑖
3
−𝑖
4

]

=

2

15

∞

∑

𝑚=1

𝑚−1

∑

𝑖
1
=0

𝑌
𝑖
1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

×

𝑚−1−𝑖
1
−𝑖
2

∑

𝑖
3
=0

𝑌
𝑖
3

𝑚−1−𝑖
1
−𝑖
2
−𝑖
3

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑚−1−𝑖

1
−𝑖
2
−𝑖
3
−𝑖
4

=

2

15

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑚=𝑖
1
+1

𝑚−1−𝑖
1

∑

𝑖
2
=0

𝑌
𝑖
2

×

𝑚−1−𝑖
1
−𝑖
2

∑

𝑖
3
=0

𝑌
𝑖
3

𝑚−1−𝑖
1
−𝑖
2
−𝑖
3

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑚−1−𝑖

1
−𝑖
2
−𝑖
3
−𝑖
4

=

2

15

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑗=0

𝑗

∑

𝑖
2
=0

𝑌
𝑖
2

𝑚−1−𝑖
1
−𝑖
2

∑

𝑖
3
=0

𝑌
𝑖
3

×

𝑚−1−𝑖
1
−𝑖
2
−𝑖
3

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑚−1−𝑖

1
−𝑖
2
−𝑖
3
−𝑖
4

=

2

15

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑖
2
=0

𝑌
𝑖
2

∞

∑

𝑚=1+𝑖
1
+𝑖
2

𝑚−1−𝑖
1
−𝑖
2

∑

𝑖
3
=0

𝑌
𝑖
3

×

𝑚−1−𝑖
1
−𝑖
2
−𝑖
3

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑚−1−𝑖

1
−𝑖
2
−𝑖
3
−𝑖
4

=

2

15

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑖
2
=0

𝑌
𝑖
2

∞

∑

𝑙=0

𝑙

∑

𝑖
3
=0

𝑌
𝑖
3

×

𝑚−1−𝑖
1
−𝑖
2
−𝑖
3

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑚−1−𝑖

1
−𝑖
2
−𝑖
3
−𝑖
4

=

2

15

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑖
2
=0

𝑌
𝑖
2

∞

∑

𝑖
3
=0

𝑌
𝑖
3

×

∞

∑

𝑚=1+𝑖
1
+𝑖
2
+𝑖
3

𝑚−1−𝑖
1
−𝑖
2
−𝑖
3

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑚−1−𝑖

1
−𝑖
2
−𝑖
3
−𝑖
4

=

2

15

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑖
2
=0

𝑌
𝑖
2

∞

∑

𝑖
3
=0

𝑌
𝑖
3

∞

∑

𝑘=0

𝑘

∑

𝑖
4
=0

𝑌
𝑖
4

𝑌
𝑘−𝑖
4

=

2

15

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑖
2
=0

𝑌
𝑖
2

∞

∑

𝑖
3
=0

𝑌
𝑖
3

∞

∑

𝑖
4
=0

𝑘

∑

𝑘=𝑖
4

𝑌
𝑖
4

𝑌
𝑘−𝑖
4

=

2

15

∞

∑

𝑖
1
=0

𝑌
𝑖
1

∞

∑

𝑖
2
=0

𝑌
𝑖
2

∞

∑

𝑖
3
=0

𝑌
𝑖
3

∞

∑

𝑖
4
=0

𝑌
𝑖
4

𝑘

∑

𝑘=𝑖
4

𝑌
𝑘−𝑖
4

=

2

15

𝑌
5
(𝑇) .

(36)
Thus,
∞

∑

𝑚=1

𝑅
𝑚,𝑌

(𝑋⃗
𝑚−1

, 𝑌⃗
𝑚−1

) = 𝑌
󸀠󸀠
+ 𝑤
2

02
𝑌 +

1

3

𝑌
3

+

2

15

𝑌
5
+ (1 − 𝑤

2

02
)𝑋 = 0.

(37)
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Figure 3: The ℏ-curves of 𝑋󸀠(0.1) and 𝑌
󸀠
(0.1) obtained by the 6-order approximation of HAM.

From (2) and (23), it holds that

𝑋
0
=

∞

∑

𝑚=0

𝑋
𝑚
(0) = 𝑋

0
(0) +

∞

∑

𝑚=1

𝑋
𝑚
(0) = 0,

𝑋
󸀠

0
=

∞

∑

𝑚=0

𝑋
󸀠

𝑚
(0) = 𝑋

󸀠

0
(0) +

∞

∑

𝑚=1

𝑋
󸀠

𝑚
(0) =

𝑇
0

𝐿

√2𝑔ℎ,

𝑌
0
=

∞

∑

𝑚=0

𝑌
𝑚
(0) = 𝑌

0
(0) +

∞

∑

𝑚=1

𝑌
𝑚
(0) = 0,

𝑌
󸀠

0
=

∞

∑

𝑚=0

𝑌
󸀠

𝑚
(0) = 𝑌

󸀠

0
(0) +

∞

∑

𝑚=1

𝑌
󸀠

𝑚
(0) =

𝑇
0

𝐿

√2𝑔ℎ.

(38)

Thus, 𝑋 and 𝑌 satisfy the system (5) and it must be the exact
solution for (5) with the initial conditions (6).

4. Example

In this section, the HAM is applied to obtain the approximate
solutions of the system (5) with the initial conditions (6).
We have also used symbolic software Mathematica to solve
the system of linear equations (22) with the initial conditions
(23). Few components of the series solutions of (20) are given
as follows:

𝑋
0
=

𝑇
0
√𝑔ℎ𝜋𝑇

√2𝑑
𝑏

,

𝑌
0
=

𝑇
0
√𝑔ℎ𝜋𝑇

√2𝑑
𝑏

,

𝑋
1
= 0,

𝑌
1
=

ℏ𝜋𝑇
3
√𝑔ℎ𝑇

0

6√2𝑑
𝑏

(1 +

𝑔𝜋
2
𝑇
2
ℎ𝑚
2

20𝑑
2

𝑏
𝑘
2

+

𝑔
2
𝜋
4
𝑇
4
ℎ
2
𝑚
2

2

210𝑑
4

𝑏
𝑘
2

2

) ,

𝑋
2
=

ℏ
2
𝜋𝑇
5
√𝑔ℎ𝑇

0
𝑘
1
𝑚
2

120√2𝑑
𝑏
𝑘
2
𝑚
1

(1 +

𝑔𝜋
2
𝑇
2
ℎ𝑚
2

42𝑑
2

𝑏
𝑘
2

+

𝑔
2
𝜋
4
𝑇
4
ℎ
2
𝑚
2

2

756𝑑
4

𝑏
𝑘
2

2

) ,

𝑌
2
=

ℏ𝜋𝑇
3
√𝑔ℎ𝑇

0

6√2𝑑
𝑏

(1 + ℏ +

ℏ𝑇
2

2

+

ℏ𝑇
2
𝑘
1

20𝑘
2

+

𝑔ℏ𝜋
2
𝑇
4
ℎ𝑚
2
𝑘
1

840𝑑
2

𝑏
𝑘
2

2

+

𝑔𝜋
2
𝑇
2
ℎ𝑚
2

20𝑑
2

𝑏
𝑘
2

+

11𝑔ℏ𝜋
2
𝑇
4
ℎ𝑚
2

840𝑑
2

𝑏
𝑘
2

+ ⋅ ⋅ ⋅ ) ,

...
(39)

It is clear that the HAM series solutions (20) on depend
on the convergence-control parameter ℏ which provides a
simple way to adjust and control the convergence of the series
solutions. In fact, it is very important to ensure that the series
(20) are convergent. To this end, we have plotted ℏ-curve of
𝑋
󸀠
(0.1) and 𝑌

󸀠
(0.1) by fifth- and sixth-order approximation

of the HAM in Figures 2 and 3, respectively, for values
𝑚
1

= 0.01, 𝑚
2

= 1, 𝑘
1

= 0.1, 𝑘
2

= 0.02, 𝑔 = 0.8,
ℎ = 0.01, and 𝑑

𝑏
= 0.9. According to these ℏ-curves, it

is easy to discover the valid region of convergence-control
parameter ℏ which corresponds to the line segment nearly
parallel to the horizontal axis. For clearer presentation, these
valid regions have been listed in Table 2. Furthermore, these
valid regions ensure us the convergence of the obtained series.
Liao [18] has pointed out that when ℏ = −1, the solution
obtained by the HAM is the same as the series solution
obtained using HPM.

Now, an error analysis is introduced to obtain the optimal
value of convergence-control parameter ℏ. Toward this end,
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we define 𝜑
𝑋
(𝑇; ℏ) and 𝜑

𝑌
(𝑇; ℏ) to be𝑚-order approximation

HAM solution as follows:

𝜑
𝑋
(𝑇; ℏ) =

𝑚−1

∑

𝑗=0

𝑋
𝑗
,

𝜑
𝑌
(𝑇; ℏ) =

𝑚−1

∑

𝑗=0

𝑌
𝑗
.

(40)

We substitute (40) into nonlinear system (5) and obtain the
residual error functions ER

𝑋
(𝑋, 𝑌, ℏ

1
) and ER

𝑌
(𝑋, 𝑌, ℏ

2
) as

follows:

ER
𝑋
(𝑋, 𝑌; ℏ

1
) =

𝑑
2
𝜑
𝑋
(𝑇; ℏ
1
)

𝑑𝑇
2

+ 𝑤
2

01
𝜑
𝑋
(𝑇; ℏ
1
)

− 𝑤
2

01
𝜑
𝑌
(𝑇; ℏ
1
) ,

(41)

ER
𝑌
(𝑋, 𝑌; ℏ

2
) =

𝑑
2
𝜑
𝑌
(𝑇; ℏ
2
)

𝑑𝑇
2

+ 𝑤
2

02
𝜑
𝑌
(𝑇; ℏ
2
) +

1

3

(𝜑
𝑌
(𝑇; ℏ
2
))
3

+

2

15

(𝜑
𝑌
(𝑇; ℏ
2
))
5

+ (1 − 𝑤
2

02
) 𝜑
𝑋
(𝑇; ℏ
2
) .

(42)

Following [19], we define the square residual error for the𝑚-
order approximation to be

𝑅𝑋 (ℏ
1
) = ∫

1

0

(ER
𝑋
(𝑋, 𝑌, ; ℏ

1
))
2

𝑑𝑇,

𝑅𝑌 (ℏ
2
) = ∫

1

0

(ER
𝑌
(𝑋, 𝑌, ; ℏ

2
))
2

𝑑𝑇.

(43)

We can obtain the values of ℏ
1
and ℏ

2
for which the

𝑅𝑋(ℏ
1
) and 𝑅𝑌(ℏ

2
) are minimum. The optimal values of

convergence-control parameters ℏ
1
and ℏ
2
are determined by

solving the system of equations as

𝑑𝑅𝑋 (ℏ
∗

1
)

𝑑ℏ
1

= 0,

𝑑𝑅𝑌 (ℏ
∗

2
)

𝑑ℏ
2

= 0. (44)

In [20], several methods have been introduced to find the
optimal value of ℏ. In Table 3, theminimum values of𝑅𝑋(ℏ

1
)

and 𝑅𝑌(ℏ
2
) have been given with optimal values of ℏ∗

1
and ℏ
∗

2

for 4-, 5-, and 6-order approximations.
In Table 4, the absolute errors ER

𝑋
and ER

𝑌
have been

calculated for various 𝑇 ∈ (0, 1)when 5- and 6-order approx-
imation HAM solutions are considered. From the table, it

Table 2: The admissible value of ℏ derived from Figures 2 and 3.

𝑚 5 6
𝑇(𝑡) −1.8 ≤ ℏ ≤ −0.7 −1.3 ≤ ℏ ≤ −0.8

𝐼(𝑡) −1.3 ≤ ℏ ≤ −0.75 −1.25 ≤ ℏ ≤ −0.75

Table 3: The minimum values of 𝑅𝑋(ℏ
∗
) and 𝑅𝑌(ℏ

∗
) for various

orders of approximations.

𝑚

𝑋(𝑇) 𝑌(𝑇)

ℏ
∗ Minimum 𝑅𝑋(ℏ

∗
) ℏ

∗ Minimum 𝑅𝑌(ℏ
∗
)

4 −0.950213 1.60718 × 10
−12

−0.950432 2.54142 × 10
−8

5 −0.973770 3.80411 × 10
−15

−0.971307 3.62018 × 10
−11

6 −0.983485 3.84892 × 10
−18

−0.993411 4.43599 × 10
−14
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Comparison errors of residual function ERX for various ℏ
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Figure 4: The errors of residual equation (41) using the sixth-order
approximate solution for various ℏ and 𝑇 ∈ (0, 1).

can be seen that the HAM provides us with the accurate
approximate solution for the inner-resonance of tangent
cushioning packaging system based on critical components
(5).

The residual errors ER
𝑋
and ER

𝑌
have been plotted in

Figures 4 and 5 for 𝑇 ∈ (0, 1) and various convergence-
control parameters ℏ. By considering these Figures, it is to
be noted that the solution obtained using HAM gives an
analytical solution with high order of accuracy with few
iterations.

5. Conclusion

The homotopy analysis method (HAM) is applied to obtain
approximate solution of inner-resonance of tangent cush-
ioning packaging system based on critical components. It
is shown that the HAM solution contains the convergence-
control parameter ℏ, which provides a simple way to adjust
and control the convergence region of the resulting infinite
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Table 4: The residual errors ER
𝑋
and ER

𝑌
for various 𝑇 ∈ (0, 1).

𝑇

5-order 6-order
ER
𝑋

ER
𝑌

ER
𝑋

ER
𝑌

0.1 7.65813 × 10
−11

1.37420 × 10
−9

3.18762 × 10
−13

4.47395 × 10
−11

0.2 3.06638 × 10
−10

2.43550 × 10
−8

1.76197 × 10
−14

4.84994 × 10
−11

0.3 1.58864 × 10
−10

8.87158 × 10
−8

3.49043 × 10
−12

1.21465 × 10
−9

0.4 2.05543 × 10
−9

5.62311 × 10
−7

9.40057 × 10
−12

7.36418 × 10
−10

0.5 2.20192 × 10
−9

1.18024 × 10
−6

7.17227 × 10
−11

1.31996 × 10
−8

0.6 1.04361 × 10
−8

6.66260 × 10
−7

5.64075 × 10
−11

4.10080 × 10
−8

0.7 5.15236 × 10
−8

3.16150 × 10
−7

6.52645 × 10
−10

1.44031 × 10
−8

0.8 1.17256 × 10
−7

1.07335 × 10
−5

2.96157 × 10
−9

2.22440 × 10
−7

0.9 1.17456 × 10
−7

1.27292 × 10
−5

4.99250 × 10
−9

5.66406 × 10
−7

0.0 0.2 0.4 0.6 0.8 1.0

ℏ = −0.9

Optimal ℏ
ℏ = −1

ℏ = −1.1

t
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Figure 5: The errors of residual equation (42) using the sixth-order
approximate solution for various ℏ and 𝑇 ∈ (0, 1).

series. The convergence of HAM is also proved for inner-
resonance of tangent cushioning packaging system based on
critical components. The obtained results show that HAM is
an accurate and effective technique for obtaining the approx-
imate solution of inner-resonance of tangent cushioning
packaging system based on critical components.
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