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Center conditions and the bifurcation of limit cycles for a seven-degree polynomial differential system in which the origin is a
nilpotent critical point are studied. Using the computer algebra system Mathematica, the first 14 quasi-Lyapunov constants of the
origin are obtained, and then the conditions for the origin to be a center and the 14th-order fine focus are derived, respectively.
Finally, we prove that the system has 14 limit cycles bifurcated from the origin under a small perturbation. As far as we know, this
is the first example of a seven-degree system with 14 limit cycles bifurcated from a nilpotent critical point.

1. Introduction

In the qualitative theory of planar differential equations,
the center-focus problem and bifurcation of limit cycles for
nilpotent system
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𝑏
𝑘𝑗
𝑥
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𝑦
𝑗

= 𝑌 (𝑥, 𝑦) ,

(1)

are known as a difficult problem. Some advance of this
problem can be dated back to [1–3]. In recent years, due to
the improvement of research method and development of
computer symbolic computation, the problem has attracted
more and more scholars’ attention and has received a lot of
results. For instance, in [4, 5], the center conditions of the
nilpotent critical points were obtained for several systems. In
[6] the center conditions and the bifurcations of limit cycles
were investigated for a quintic and a nine-degree nilpotent
systems.The center and the limit cycles problems of a quintic
nilpotent system were also solved in [7]. And in [8], the
authors gave a recursive method to calculate quasi-Lyapunov
constants of the nilpotent critical point. The nilpotent center
problem and limit cycles bifurcations were performed also in

[9]. It is interesting how many limit cycles can be bifurcated
from the nilpotent critical point. Let 𝑁(𝑛) be the maximum
possible number of limit cycles bifurcated from a nilpotent
critical point of system (1) when𝑋 and𝑌 are of degree atmost
𝑛. The known results of 𝑁(𝑛) are: Andreev et al. given have
𝑁(3) ≥ 2,𝑁(5) ≥ 5,𝑁(7) ≥ 9, see [5]. Y. Liu and J. Li showed
𝑁(3) ≥ 4, 𝑁(3) ≥ 7, 𝑁(3) ≥ 8, see [8, 10–12]. Li et al. found
𝑁(7) ≥ 12 in [13]. Recently, Li et al. [14] obtained𝑁(7) ≥ 13.

In this paper, we study the bifurcation of limit cycles for a
seven-degree nilpotent system with the following form:

𝑑𝑥
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= 𝛿𝑥 + 𝑦 + 𝑎

30
𝑥
3

+ 𝑎
12
𝑥𝑦
2

+ 𝑎
32
𝑥
3

𝑦
2

+ 𝑎
14
𝑥𝑦
4

+ 𝑎
05
𝑦
5

+ 𝑎
06
𝑦
6

+ 𝑎
15
𝑥𝑦
5

+ 𝑎
24
𝑥
2

𝑦
4

+ 𝑎
33
𝑥
3

𝑦
3

+ 𝑎
51
𝑥
5

𝑦 + 𝑎
07
𝑦
7

+ 𝑎
16
𝑥𝑦
6

+ 𝑎
25
𝑥
2

𝑦
5

+ 𝑎
34
𝑥
3

𝑦
4

+ 𝑎
43
𝑥
4

𝑦
3

+ 𝑎
61
𝑥
6

𝑦,

𝑑𝑦

𝑑𝑡
= 2𝛿𝑦 − 2𝑥

3

+ 𝑥𝑦
2

+ 𝑏
33
𝑥
3

𝑦
3

+ 𝑎
51
𝑥
4

𝑦
2

.

(2)

By the computation of the quasi-Lyapunov constants, we
prove that its perturbed system has 14 small-amplitude limit
cycles bifurcated from the origin, namely, 𝑁(7) ≥ 14 which
improves the result in [14].
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In Section 2, we give some preliminary knowledge con-
cerning the nilpotent critical point. In Section 3, we obtain
the first 14 quasi-Lyapunov constants and derive the sufficient
and necessary conditions of the origin to be a center and a
14th-order fine focus. At the end, it is proved that there exist
14 limit cycles in the neighborhood of the origin of the system.

2. Focal Values and Quasi-Lyapunov Constants

In order to discuss limit cycles of the system, we state some
preliminary results given by [8].

According to [2], the origin of system is a 3th-order
monodromic critical point and a center or a focus if and only
if 𝑏
20
= 0, (2𝑎

20
− 𝑏
11
)
2

+ 8𝑏
30
≤ 0. Without loss of generality,

we assume that 𝑎
20
= 𝜇, 𝑏
20
= 0, 𝑏
11
= 2𝜇, 𝑏

30
= −2, otherwise

let (2𝑎
20
− 𝑏
11
)
2

+ 8𝑏
30
= −16𝜆

2, 2𝑎
20
+ 𝑏
11
= 4𝜆𝜇.

Under the substitutions

𝜂 = 𝜆𝑦 +
1

4
(2𝑎
20
− 𝑏
11
)
2

𝜆𝑥
2

𝜉 = 𝜆𝑥, (3)

system (1) becomes

𝑑𝑥

𝑑𝑡
= 𝑦 + 𝜇𝑥

2
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∞

∑

𝑘+2𝑗=3

𝑎
𝑘𝑗
𝑥
𝑘

𝑦
𝑗

= 𝑋 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= −2𝑥

3

+ 2𝜇𝑥𝑦 +

∞

∑

𝑘+2𝑗=4

𝑏
𝑘𝑗
𝑥
𝑘

𝑦
𝑗

= 𝑌 (𝑥, 𝑦) .

(4)

By the transformation of the generalized polar coordi-
nates,

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟
2 cos 𝜃, (5)

system (4) is transformed into

𝑑𝑟

𝑑𝜃
=
cos 𝜃𝑅

1
(𝜃)

𝑄
1
(𝜃)

+ 𝑜 (𝑟) , (6)

where

𝑅
1
(𝜃) = sin 𝜃 (1 − 2cos2𝜃) + 𝜇 (cos2𝜃 + 2sin2𝜃) ,

𝑄
1
(𝜃) = −2 (cos4𝜃 + sin2𝜃) < 0.

(7)

For sufficiently small ℎ, let

𝑟 = 𝑟 (𝜃, ℎ) =

∞

∑

𝑘=1

]
𝑘
(𝜃) ℎ
𝑘 (8)

be a solution of (6) satisfying the initial value condition
𝑟|
𝜃=0

= ℎ, where

]
1
(𝜃) = (cos4𝜃 + sin2𝜃)

−1/4

× exp((
−𝜇

2
) arctan( sin 𝜃

cos2𝜃
)) ,

]
1
(𝑘𝜋) = 1, 𝑘 = 0, ±1, ±2 . . . .

(9)

Because for all sufficiently small 𝑟, there is 𝑑𝜃/𝑑𝑡 < 0, in
a small neighborhood; we obtain the Poincaré return map of
(6) in a small neighborhood of the origin as follows:

Δ (ℎ) = 𝑟 (−2𝜋, ℎ) − ℎ =

∞

∑

𝑘=2

]
𝑘
(−2𝜋) ℎ

𝑘

. (10)

Lemma 1. For any positive integer𝑚, ]
2𝑚+1

(−2𝜋) has the form

]
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∞

∑

𝑘=1

𝜁
(𝑘)

𝑚
]
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where 𝜁
(𝑘)

𝑚
is a polynomial of ]

𝑖
(𝜋), ]

𝑖
(2𝜋), ]

𝑖
(−2𝜋), (𝑖 =

2, 3, . . . 2𝑚) with rational coefficients.

Definition 2. (i) For any positive integer𝑚, ]
2𝑚
(−2𝜋) is called

the 𝑚th-order focal value of system (4) at the origin; (ii) if
]
2
(−2𝜋) ̸= 0, the origin of system (4) is called an 1th-order

weak focus; if there is an integer 𝑚 > 1 such that ]
2
(−2𝜋) =

]
4
(−2𝜋) = ⋅ ⋅ ⋅ = ]

2𝑚−2
(−2𝜋) = 0, ]

2𝑚
(−2𝜋) ̸= 0, then the

origin of system (4) is called a 𝑚th-order weak focus; (iii) if
for all positive integer𝑚, we have ]

2𝑚
(−2𝜋) = 0, the origin of

system (4) is called a center.

Lemma 3. For system (4), one can derive successively the
formal series
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)] .

(13)

Lemma 4. If there exists a natural number 𝑠 and formal series

𝑀(𝑥, 𝑦) = 𝑥
4
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2

+ 𝑜 (𝑟
4

) (14)

such that (13) holds, then
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𝑚
𝜆
𝑚
, 𝑚 = 1, 2, 3 . . . , (15)
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𝜎
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1

2
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0
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In (15), ∼ is the symbol of algebraic equivalence, meaning that
there exists 𝜉(𝑘)

𝑚
(𝑘 = 1, 2, . . . 𝑚 − 1), polynomial functions of

the coefficients of system (4), such that

]
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𝑚
𝜆
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+
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∑
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Definition 5. In Lemma 4, 𝜆
𝑚
is called the 𝑚th-order quasi-

Lyapunov constant of the origin of system (4).

Lemma 6. For system (4), one can derive successively the
formal series

𝑀(𝑥, 𝑦) = 𝑦
2

+

∞

∑

𝛼+𝛽=3

𝑐
𝛼𝛽
𝑥
𝛼

𝑦
𝛽 (18)

such that

(
𝜕𝑋

𝜕𝑥
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𝜕𝑌

𝜕𝑦
)𝑀 − (𝑠 + 1) (

𝜕𝑀
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𝜕𝑦
𝑌)

=

∞

∑
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𝜔
𝑚
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𝑚

,

(19)

where 𝑐
00

= 𝑐
10

= 𝑐
01

= 𝑐
20

= 𝑐
11

= 0, 𝑐
02

= 1. For 𝛼 ≥ 1,
𝛼 + 𝛽 ≥ 3, 𝑐

𝛼𝛽
, and 𝜔

𝑚
(𝑠, 𝜇) are determined by the following

recursive formulas:

𝑐
𝛼𝛽

=
1

(𝑠 + 1) 𝛼
(𝐴
𝛼−1,𝛽+1

+ 𝐵
𝛼−1,𝛽+1

) ,

𝜔
𝑚
(𝑠, 𝜇) = 𝐴

𝑚,0
+ 𝐵
𝑚,0

,

(20)

where

𝐴
𝛼𝛽

=

𝛼+𝛽−1

∑

𝑘+𝑗=2

[𝑘 − (𝑠 + 1) (𝛼 − 𝑘 + 1)] 𝑎
𝑘𝑗
𝑐
𝛼−𝑘+1,𝛽−𝑗

,

𝐵
𝛼𝛽

=

𝛼+𝛽−1

∑

𝑘+𝑗=2

[𝑗 − (𝑠 + 1) (𝛽 − 𝑗 + 1)] 𝑏
𝑘𝑗
𝑐
𝛼−𝑘,𝛽−𝑗+1

.

(21)

By choosing {𝑐
0𝛽
} such that

𝜔
2𝑘+1

(𝑠, 𝜇) = 0, 𝑘 = 1, 2, . . . , (22)

one has

𝜆
𝑚
=
𝜔
2𝑚+4

(𝑠, 𝜇)

2𝑚 − 4𝑠 − 1
. (23)

One considers the perturbed system of system (4)

𝑑𝑥

𝑑𝑡
= 𝛿𝑥 + 𝑦 + 𝜇𝑥

2

+

∞

∑

𝑘+2𝑗=3

𝑎
𝑘𝑗
𝑥
𝑘

𝑦
𝑗

,

𝑑𝑦

𝑑𝑡
= 2𝛿𝑦 − 2𝑥

3

+ 2𝜇𝑥𝑦 +

∞

∑

𝑘+2𝑗=4

𝑏
𝑘𝑗
𝑥
𝑘

𝑦
𝑗

.

(24)

For system (24)|
𝛿=0

, from Lemma 4, we know that the
first nonvanishing quasi-Lyapunov constant 𝜆

𝑚
is positive

constant times as much as the first nonvanishing focal value,
so the former shows the same effect as the latter in the study
of bifurcation of limit cycles. From [10,Theorem 4.7], we have
the following.

Theorem 7. For the system (27)|
𝛿=0

, assume that the quasi-
Lyapunov constants of the origin 𝜆

𝑖
(𝑖 = 1, 2, . . .) have 𝑘

independent parameters 𝛾 = (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑘
); that is, 𝜆

𝑖
=

𝜆
𝑖
(𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑘
). If 𝛾 = 𝛾

0
, the origin of the system (4) is an

𝑚th-order weak focus (𝑚 ≤ 𝑘), and the Jacobian determinant

𝜕 (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑚−1
)

𝜕 (𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑚−1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾=𝛾0

̸= 0, (25)

then, the perturbed system (24) exists𝑚 small amplitude limit
cycles bifurcated from the origin.

3. Criterion of Center Focus and Bifurcation of
Limit Cycles

Applying the recursive formulas in Lemma 6, we compute
the quasi-Lyapunov constants of the origin of system (2)|

𝛿=0

with the computer algebra system Mathematica and obtain
the following result.

Theorem 8. For system (2)|
𝛿=0

, the first 14 quasi-Lyapunov
constants are as follows:

𝜆
1
= 𝑎
30
,

𝜆
2
=
2

5
𝑎
12
,

𝜆
3
=
2

7
𝑎
32
,

𝜆
4
=

4

15
𝑎
14
,

𝜆
5
=
12

77
𝑎
34
,

𝜆
6
=

2

195
(20𝑎
16
+ 3𝑎
51
𝑏
33
) ,

𝜆
7
=

1

385
𝑏
33
(35𝑎
51
− 8𝑎
33
) ,

𝜆
8
=

7

13260
𝑏
33
(128𝑎

15
− 355𝑎

51
) ,

𝜆
9
=

3

33440
𝑏
33
𝑎
51
(1385 + 64𝑎

61
) ,

𝜆
10
=

1

278460
𝑏
33
𝑎
51

× (−192495 + 12320𝑎
05
+ 1904𝑎

43
) ,

𝜆
11
=

9

1184444800
𝑏
33
𝑎
51

× (317763455 + 1688064𝑎
43
+ 1158080𝑎

2

51
) ,

𝜆
12
=

1

505504614521088000
𝑏
33
𝑎
51

× (424870735079675775 − 8480461063976518𝑎
2

51

−164955456258816𝑏
2

33
) ,
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𝜆
13
=

1

2497759223828804812800

× 𝑏
33
𝑎
51
(1154557205782671354192175

−25287050037965301847744𝑎
2

51
) ,

𝜆
14
= −

1

1926846314779614102444810240000
𝑏
33
𝑎
51

× (1913839774991447312487020909964625

− 38616043776955260227746202006848𝑎
2

51

+457974511144735287048192000𝑎
4

51
) .

(26)

Here, every 𝜆
𝑘
(𝑘 = 1, 2, . . . , 14) was computed under the

assumption 𝜆
1
= 𝜆
2
= ⋅ ⋅ ⋅ = 𝜆

𝑘−1
= 0.

It is easy to obtain the following Theorem.

Theorem 9. For system (2)|
𝛿=0

, the first 14 quasi-Lyapunov
constants at the origin are all zero if and only if the following
condition is satisfied:

𝑎
30
= 𝑎
12
= 𝑎
32
= 𝑎
14
= 𝑎
34
= 𝑎
51
= 𝑎
33
= 𝑎
15
= 𝑎
16
= 0.

(27)

If 𝛿 = 0 and the condition (27) holds, system (2) becomes

𝑑𝑥

𝑑𝑡
= 𝑦 + 𝑎

05
𝑦
5

+ 𝑎
06
𝑦
6

+ 𝑎
24
𝑥
2

𝑦
4

+ 𝑎
07
𝑦
7

+ 𝑎
25
𝑥
2

𝑦
5

+ 𝑎
43
𝑥
4

𝑦
3

+ 𝑎
61
𝑥
6

𝑦,

𝑑𝑦

𝑑𝑡
= −2𝑥

3

+ 𝑥𝑦
2

+ 𝑏
33
𝑥
3

𝑦
3

,

(28)

which is symmetric with respect to the 𝑦-axis, one has the
following.

Theorem 10. The origin of system (2) is a center if and only if
𝛿 = 0 and (27) holds.

By 𝜆
1
= 𝜆
2
= ⋅ ⋅ ⋅ = 𝜆

13
= 0, 𝜆

14
̸= 0, one has the following.

Theorem11. Theorigin of system (2) is a 14th-orderweak focus
if and only if

𝛿 = 𝑎
30
= 𝑎
12
= 𝑎
32
= 𝑎
14
= 𝑎
34
= 0,

𝑎
61
= −

1385

64
,

𝑎
05
=
30075794600575314214479775

606889200911167244345856
,

𝑎
43
= −

66625696625444520068811785

303444600455583622172928
,

𝑏
2

33
=
10913994716347225847247003725

4779252457175442049223616
,

𝑎
2

51
=
1154557205782671354192175

25287050037965301847744
,

𝑎
16
= −

3

20
𝑎
51
𝑏
33
, 𝑎

33
=
35

8
𝑎
51
, 𝑎

15
=
355

128
𝑎
51
.

(29)

By computing carefully, we obtain that the Jacobian
determinant

𝜕(𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
, 𝜆
7
, 𝜆
8
, 𝜆
9
, 𝜆
10
, 𝜆
11
, 𝜆
12
, 𝜆
13
)

𝜕(𝑎
30
, 𝑎
12
, 𝑎
32
, 𝑎
14
, 𝑎
34
, 𝑎
16
, 𝑎
33
, 𝑎
15
, 𝑎
61
, 𝑎
05
, 𝑎
43
, 𝑎
51
, 𝑏
33
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(29)

= −
11259131158497337756164795883686035195310097999201613627491381814272𝑎

4

51
𝑏
6

33

110636634525265639383282317978327920684865639296808353136757452754003615234375

≈ −2526.4563514134 ̸= 0.

(30)

From (30) andTheorem 7, one has the following.

Theorem 12. For system (2), under the condition (29),
by small perturbations of the parameter group (𝛿, 𝑎

30
, 𝑎
12
,

𝑎
32
, 𝑎
14
, 𝑎
34
, 𝑎
16
, 𝑎
33
, 𝑎
15
, 𝑎
61
, 𝑎
05
, 𝑎
43
, 𝑎
51
, 𝑏
33
), then there are 14

small amplitude limit cycles bifurcated from the origin.
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