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By using the standard scaling arguments, we show that the infimum of the following minimization problem: 𝐼
𝜌2

=

inf{(1/2) ∫
R3
|∇𝑢|
2
𝑑𝑥 + (1/4)∬

R3
(|𝑢(𝑥)|

2
|𝑢(𝑦)|

2
/|𝑥 − 𝑦|)𝑑𝑥 𝑑𝑦 − (1/𝑝) ∫

R3
|𝑢|
𝑝
𝑑𝑥: 𝑢 ∈ 𝐵

𝜌
} can be achieved for 𝑝 ∈ (2, 3) and

𝜌 > 0 small, where 𝐵
𝜌
:= {𝑢 ∈ 𝐻

1
(R3) : ‖𝑢‖2 = 𝜌}. Moreover, the properties of 𝐼

𝜌2
/𝜌
2 and the associated Lagrange multiplier 𝜆

𝜌

are also given if 𝑝 ∈ (2, 8/3].

1. Introduction

In this paper, we consider the nonlinear Schrödinger-Poisson
type equation:

−Δ𝑢 + (|𝑥|
−1
∗ |𝑢|
2
) 𝑢 − |𝑢|

𝑝−2
𝑢 = 𝜆𝑢, in R

3
, (1)

where 𝜆 ∈ R is a parameter, 𝑝 ∈ (2, 6), and ∗ denotes the
convolution. Problems like (1) have attracted considerable
attentions recently since a pair (𝑢, 𝜆), solution of (1), corre-
sponds to a solitary wave of the form 𝜓(𝑥, 𝑡) = 𝑒

−𝑖𝜆𝑡
𝑢(𝑥) of

the evolution equation:

𝑖𝜓𝑡 + Δ𝜓 − (|𝑥|
−1
∗
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2
) 𝜓 +

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

𝑝−2
𝜓 = 0, in R

3
×R
+
,

(2)

which was obtained by approximation of a special case
of Hatree-Fock equation with the frequency 𝜆 describing a
quantum mechanical system of many particles. For more
mathematical and physical background of (2), we refer to [1–
4] and the references therein.

In the case that the frequency 𝜆 is a fixed and assigned
parameter, the critical points of the following functional
defined in 𝐻

1
(R3;R):

𝐸 (𝑢) =
1

2
∫

R3
|∇𝑢|
2
𝑑𝑥 −

𝜆

2
∫

R3
|𝑢|
2
𝑑𝑥

+
1

4
∬

R3

|𝑢 (𝑥)|
2󵄨󵄨󵄨󵄨𝑢 (𝑦)

󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑑𝑥 𝑑𝑦 −
1

𝑝
∫

R3
|𝑢|
𝑝
𝑑𝑥,

(3)

are the solutions of (1), where 𝐸(𝑢) is obviously well defined
and is a 𝐶1 functional for each 𝑝 ∈ (2, 6) (cf. [5]). Such case
has been extensively studied by using variational methods
in the past decades including the existence, nonexistence,
and multiplicity of solutions; see, for example, [5–12] and the
references therein.

On the other hand, the physicists are often interested
in the solutions with prescribed 𝐿

2-norm and unknown
frequency 𝜆, such a solution is called a “normalized solution,”
which is associated with the existence of stable standing
waves. Precisely, by a “normalized solution” (𝑢𝜌, 𝜆𝜌) of (1),
we mean that

(𝑢𝜌, 𝜆𝜌) ∈ 𝐻
1
(R
3
;C) ×R solves (1)with 󵄩󵄩󵄩󵄩󵄩

𝑢𝜌

󵄩󵄩󵄩󵄩󵄩2
= 𝜌. (4)
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Clearly, this kind of solutions can be obtained as the con-
strained critical points of the 𝐶1 functional

𝐼 (𝑢) =
1

2
∫

R3
|∇𝑢|
2
𝑑𝑥 +

1

4
∬

R3

|𝑢 (𝑥)|
2󵄨󵄨󵄨󵄨𝑢 (𝑦)

󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑑𝑥 𝑑𝑦

−
1

𝑝
∫

R3
|𝑢|
𝑝
𝑑𝑥,

(5)

on the constraint

𝐵𝜌 = {𝑢 ∈ 𝐻
1
(R
3
;C) : ‖𝑢‖2 = 𝜌} . (6)

Thus, the frequency 𝜆𝜌 ∈ R cannot be fixed any longer
and it will appear as a Lagrange multiplier associated with
the critical point 𝑢𝜌 on 𝐵𝜌. Among all the critical points
of 𝐼 constrained on 𝐵𝜌, we are interested in the ones with
minimal energy since the corresponded standing waves are
orbitally stable under the flow of (2) and can provide us
some information on the dynamics of (2). Therefore, we are
reduced to study the minimization problem

𝐼𝜌2 = min
𝑢∈𝐵
𝜌

𝐼 (𝑢) , (7)

for 𝑝 ∈ (2, 10/3). Here we note that, for each 𝜌 > 0, 𝐼𝜌2
∈ (−∞, 0] if 𝑝 ∈ (2, 10/3), and 𝐼𝜌2 = −∞ if 𝑝 ∈

(10/3, 6) (cf. [13, Remark 1.1] or (15) below). When 𝑝 ∈

(10/3, 6) (now 𝐼𝜌2 = −∞), by using a mountain pass argu-
ment, it was proved in [14] that 𝐼 has a critical point con-
strained on 𝐵𝜌 at a strictly positive energy level for 𝜌 >

0 small, and this critical point is orbitally unstable.
The main difficulty of considering (7) is the lack of

compactness for the (bounded) minimizing sequence {𝑢𝑛} ⊂
𝐵𝜌. We recall that the necessary and sufficient condition due
to Lions [15, 16] in order that anyminimizing sequence for (7)
is relatively compact is the strong subadditivity inequality:

𝐼𝜌2 < 𝐼𝜇2 + 𝐼𝜌2−𝜇2 , ∀0 < 𝜇 < 𝜌. (8)

In the range 𝑝 ∈ {8/3} ∪ (3, 10/3), by using the standard
scaling arguments, Bellazzini and Siciliano in [17] proved that
(8) holds for 𝜌 > 0 large. In the range 𝑝 ∈ (2, 3), Bellazzini
and Siciliano also showed in [18] that (8) holds for 𝜌 >

0 small, where they developed a new abstract theorem which
guarantees the following condition (𝑀𝐷) for 𝑠 > 0 small:

(MD) The function 𝑠 󳨃→ 𝐼𝑠2/𝑠
2 is monotone decreasing.

We remark that their abstract theorem heavily relies on
the behavior of 𝐼𝜌2 near zero; that is, to use the abstract
theorem, one has to verify some extra conditions, such as

𝜌 󳨃󳨀→ 𝐼𝜌2 is continuous; lim
𝜌→0

𝐼𝜌2

𝜌
2
= 0; (9)

these are unnecessary if one can show (8) by using the
standard scaling arguments like [17]. However, as mentioned
in [18], the authors were not sure whether (8) can be proved
or not by using the standard scaling arguments if 𝑝 ∈ (2, 3).
Therefore, the first aim of this paper is to show that (8) holds

for 𝜌 > 0 small when 𝑝 ∈ (2, 3) by using the standard
scaling arguments. To achieve this aim, we introduce a
new subset 𝐵𝜌 ∩P of 𝐵𝜌 (see details in Section 3), then we
consider the minimization problem (7) constrained on 𝐵𝜌 ∩

P instead of 𝐵𝜌, and we use the standard scaling arguments
to prove that (8) holds for 𝜌 > 0 small. Moreover, we can get
a specific estimate on 𝜌 that allows us to obtain the sign and
the behavior of the Lagrange multiplier 𝜆𝜌 if 𝑝 ∈ (2, 8/3];
these are not considered in [18].

Theother aimof this paper is to study the properties of the
Lagrange multiplier 𝜆𝜌 and the ratio 𝐼𝜌2/𝜌

2 corresponding
to the solution (𝑢𝜌, 𝜆𝜌) of (1) with ‖𝑢𝜌‖2

= 𝜌. It is known
that 𝜆𝜌 and 𝐼𝜌2/𝜌

2 are interpreted in physics as the fre-
quency and the ratio between the infimum of the energy of
the standing waves with fixed charge and the charge itself,
respectively, and the relevance of the energy/charge ratio for
the existence of standing waves in field theories has been
discussed under a general framework in [19].

Our main results read as follows.

Theorem 1. All the minimizing sequences for (7) are precom-
pact in 𝐻

1
(R3;C) up to translations provided that one of the

following conditions holds

(1) 𝑝 ∈ (2, 8/3] and 0 < 𝜌 < 𝜌
1

:= 3
(3𝑝−8)/8(3−𝑝)

𝜋
(3𝑝−10)/8(3−𝑝)

𝑆
3/2
((𝑝 − 2)/2𝑝)

1/4(3−𝑝), where 𝑆 is
defined by (12);

(2) 𝑝 ∈ (8/3, 3) and 0 < 𝜌 < 𝜌
2
for some 𝜌

2
> 0.

In particular, (1) has a solution (𝑢𝜌, 𝜆𝜌) ∈ 𝐻
1
(R3;C) ×

R such that 𝐼(𝑢𝜌) = 𝐼𝜌2 and ‖𝑢𝜌‖2
= 𝜌. Moreover, if the

above assumption (1) holds and (𝑢𝜌, 𝜆𝜌) is a solution of (1)
with ‖𝑢𝜌‖2

= 𝜌 > 0 and 𝐼(𝑢𝜌) = 𝐼𝜌2 , then 𝜆𝜌 < 0, 𝜆𝜌 →

0 and 𝐼𝜌2/𝜌
2
→ 0 as 𝜌 → 0, respectively.

Theorem 2. Let 𝑝 ∈ (2, 12/5] and let 𝜌 > 0. If (𝑢𝜌, 𝜆𝜌) is a
solution of (1) with ‖ 𝑢𝜌‖2 = 𝜌, then we have

(i) 𝜆𝜌 < 0, 𝐼(𝑢𝜌) < 0, 𝜆𝜌 → 0 as 𝜌 → 0 and there
exists a positive constant 𝐶1, independent of 𝜌, such
that 𝜆𝜌 ∈ (−𝐶1, 0);

(ii) there exists a positive constant 𝐶2, independent of 𝜌,
such that 𝐼(𝑢𝜌)/𝜌2 ∈ (−𝐶2, 0). In particular, if 𝐼(𝑢𝜌) =
𝐼𝜌2 , then 𝐼𝜌2/𝜌

2
∈ (−𝐶2, 0).

Remarks. (a)We point out that parts ofTheorem 1 are already
contained in [18, Theorem 4.1]. In the proof of Theorem 1,
with 𝜌

1
in hand, we can obtain some additional information

of the Lagrange multiplier 𝜆𝜌 and the ratio 𝐼𝜌2/𝜌
2 when 𝑝 ∈

(2, 8/3], and these are not contained in [18, Theorem 4.1].
However, we do not know whether 𝜌

1
is optimal or not.

(b)Theorem 2(i) shows that (1) has only the zero solution
if 𝑝 ∈ (2, 12/5] and 𝜆 ≥ 0. In the case of 𝑝 ∈ (2, 3), it
was shown in [5, 20] (see also [13, Remark 1.4]) that there
exists 𝜆0 < 0 such that (1) has only the zero solution for 𝜆 ∈

(−∞, 𝜆0).Thenonexistence results of nonzero solutions of (1)
were also discussed in [13] for 𝑝 ∈ [3, 10/3].

(c) As we have anticipated, the existence of minimizers
for 𝐼𝜌2 is related to the existence and stability of the standing
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wave solutions to (2). For the existence of stable standing
wave solutions to (2), we refer to [4, 14, 17, 18, 20, 21] and the
references therein.

This paper is organized as follows. In Section 2, we give
some preliminaries. Section 3 is devoted to the proof of
the main theorems, especially in the proof of Theorem 1,
we first define a new subset of 𝐵𝜌 and then analyze the
properties of minimizing sequences for 𝐼𝜌2 constrained on
the new subset, and finally, we prove that (8) holds when 𝑝 ∈

(2, 8/3] and 𝑝 ∈ (8/3, 3), respectively.

2. Preliminaries

Throughout this paper, all the functions, unless other-
wise stated, are complex valued, but for simplicity we will
write 𝐿𝑞(R3), 𝐻1(R3) and D1,2(R3) defined in the follow-
ing:

(i) 𝐿𝑞(R3) is the usual Lebesgue space endowed with the
norm ‖𝑢‖𝑞 := (∫

R3
|𝑢|
𝑞
𝑑𝑥)
1/𝑞, where 𝑞 ∈ [1,∞);

(ii) 𝐻1(R3) is the usual Sobolev space endowed with the
norm

‖𝑢‖ := (∫

R3
(|∇𝑢|
2
+ |𝑢|
2
) 𝑑𝑥)

1/2

; (10)

(iii) D1,2(R3) is the completion of 𝐶∞
0
(R3) with respect

to the norm

‖∇𝑢‖2 = (∫

R3
|∇𝑢|
2
𝑑𝑥)

1/2

; (11)

(iv) 𝑆 is the best Sobolev imbedding constant
of D1,2(R3) 󳨅→ 𝐿

6
(R3) defined as

𝑆 := inf {‖∇𝑢‖2 : 𝑢 ∈ D
1,2
(R
3
) , ‖𝑢‖6 = 1} . (12)

Moreover, the letter 𝐶 will denote a suitable positive con-
stant, whose value may change in the same line, and the
symbol 𝑜(1) denotes a quantity which goes to zero. We also
use 𝑂(1) to denote a bounded quantity.

Let 𝜙𝑢(𝑥) = |𝑥 − 𝑦|
−1

∗ |𝑢|
2, and then, for each 𝑢 ∈

𝐻
1
(R3), 𝜙𝑢 is the unique solution of the Poisson equa-

tion −Δ𝜙 = 4𝜋|𝑢|
2 and is usually interpreted as the

Coulombian potential of the electrostatic field generated by
the charge density |𝑢|2. Evidently, see, for example [5],

∫

R3

󵄨󵄨󵄨󵄨∇𝜙𝑢
󵄨󵄨󵄨󵄨

2
𝑑𝑥 = 4𝜋∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥

= 4𝜋∬

R3

|𝑢 (𝑥)|
2󵄨󵄨󵄨󵄨𝑢 (𝑦)

󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑑𝑥 𝑑𝑦,

(13)

∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥 ≤

󵄩󵄩󵄩󵄩𝜙𝑢
󵄩󵄩󵄩󵄩6‖

𝑢‖
2

12/5
≤
4𝜋

𝑆
2
‖𝑢‖
4

12/5
. (14)

For each 𝜌 > 0, let 𝑢 ∈ 𝐵𝜌 and 𝑢
𝑡
(𝑥) = 𝑡

3/2
𝑢(𝑡𝑥) (𝑡 > 0), and

we have ‖𝑢𝑡‖2 = ‖𝑢‖2 = 𝜌, that is, 𝑢𝑡 ∈ 𝐵𝜌. Let

𝑓𝑢 (𝑡) = 𝐼 (𝑢
𝑡
) =

𝑡
2

2
∫

R3
|∇𝑢|
2
𝑑𝑥 +

𝑡

4
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥

−
𝑡
(3/2)(𝑝−2)

𝑝
∫

R3
|𝑢|
𝑝
𝑑𝑥;

(15)

it is clear that 𝐼𝜌2 ≤ 0 for all 𝜌 > 0 since 𝑓𝑢(𝑡) → 0 as 𝑡 →
0.

We now recall an abstract result on the constrained
minimization problem

𝐽𝜌2 = inf
𝑢∈𝐵
𝜌

𝐽 (𝑢) , (we agree 𝐽0 = 0) , (16)

where 𝜌 > 0, 𝐵𝜌 = {𝑢 ∈ 𝐻
1
(R3) : ‖𝑢‖2 = 𝜌}, 𝐽𝜌2 > −∞ is

assumed, and

𝐽 (𝑢) =
1

2
‖∇𝑢‖
2

2
+ 𝑇 (𝑢) , (17)

for some functional 𝑇 ∈ 𝐶
1
(𝐻
1
(R3),R).

Lemma 3 (see [17, 18, Lemma 2.1]). Let 𝑇 ∈ 𝐶
1
(𝐻
1
(R3),R).

Let 𝜌 > 0 and {𝑢𝑛} ⊂ 𝐵𝜌 be a minimizing sequence
for 𝐽𝜌2 weakly convergent, up to translations, to a nonzero
function 𝑢. Assume that (8) holds and that

𝑇 (𝑢𝑛 − 𝑢) + 𝑇 (𝑢) = 𝑇 (𝑢𝑛) + 𝑜 (1) ; (18)

𝑇 (𝛼𝑛 (𝑢𝑛 − 𝑢)) − 𝑇 (𝑢𝑛 − 𝑢) = 𝑜 (1)

𝑤ℎ𝑒𝑟𝑒 𝛼𝑛 =
𝜌
2
− ‖𝑢‖
2

2

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
󵄩󵄩󵄩󵄩2

;

(19)

⟨𝑇
󸀠
(𝑢𝑛) , 𝑢𝑛⟩ = 𝑂 (1) ; (20)

⟨𝑇
󸀠
(𝑢𝑛) − 𝑇

󸀠
(𝑢𝑚) , 𝑢𝑛 − 𝑢𝑚⟩ = 𝑜 (1) 𝑎𝑠 𝑛,𝑚 󳨀→ ∞.

(21)

Then ‖𝑢𝑛 − 𝑢‖ → 0. In particular it follows that 𝑢 ∈ 𝐵𝜌 and
𝐽(𝑢) = 𝐽𝜌2 .

As pointed out in [18], Lemma 3 is a variant of the
concentration-compactness principle of Lions [15, 16]. Assu-
mption (18) shows that 𝑇 possesses the Brizis-Lieb splitting
property and (19) is the homogeneity of 𝑇. If, in addition, the
condition (8) holds, then one can show that dichotomy does
not occur; that is, 𝑢 ∈ 𝐵𝜌. Furthermore, if (20) and (21) are
also fulfilled, then {𝑢𝑛} strongly converges to 𝑢 in 𝐻

1
(R3).

Finally we recall the following results obtained in [17, 18].

Lemma 4 (see [18]). If 𝑝 ∈ (2, 3), then 𝐼𝜌2 < 0 for all 𝜌 > 0.

Lemma 5 (see [17, Lemma 3.1]). If 𝑝 ∈ (2, 10/3), then, for
every 𝜌 > 0, the functional 𝐼 is bounded below and coercive
on 𝐵𝜌.
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Remark 6. For 𝑝 ∈ (2, 3), it follows from Lemmas 4 and
5 that each minimizing sequence for 𝐼𝜌2 is bounded from
below and above by two positive constants in D1,2(R3) and
𝐻
1
(R3), up to a subsequence, respectively.

3. Proof of the Main Theorems

Before proving our main theorems, we need some prelimi-
nary lemmas. First, we set

P := {𝑢 ∈ 𝐻
1
(R
3
) : 𝑄 (𝑢) = 0, 𝐼 (𝑢) = min

𝑡>0
𝐼 (𝑢
𝑡
)} , (22)

where 𝑢𝑡(𝑥) = 𝑡
3/2
𝑢(𝑡𝑥) with 𝑡 > 0 and 𝑄(𝑢) is a functional

on 𝐻
1
(R3) defined as

𝑄 (𝑢) = ∫

R3
|∇𝑢|
2
𝑑𝑥 +

1

4
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥

−
3 (𝑝 − 2)

2𝑝
∫

R3
|𝑢|
𝑝
𝑑𝑥.

(23)

It was shown in [13, Lemma 2.1] that if 𝑢𝜌 is a constrained
critical point of 𝐼 on 𝐵𝜌 associated with the Lagrange
multiplier 𝜆𝜌,then 𝑄(𝑢𝜌) = 0, which is nothing but a linear
combination of ⟨𝐸󸀠(𝑢𝜌), 𝑢𝜌⟩ = 0 (recall that 𝐸(𝑢) is given by
(3)) and the following Pohozaev identity for (1) (cf. [5, 9])

1

2

󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
−

3𝜆𝜌

2

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
+
5

4
∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 −
3

𝑝

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
= 0.

(24)

The following lemma shows that 𝐵𝜌 ∩P is well defined.

Lemma 7. Let 𝑝 ∈ (2, 3) and let 𝜌 > 0. For each 𝑢 ∈

𝐵𝜌 with 𝐼(𝑢) < 0, there exists a unique 𝑡𝑢 > 0 such that
𝐼(𝑢
𝑡
𝑢) = min {𝐼(𝑢𝑡) : 𝑡 > 0}; moreover, 𝑢𝑡𝑢 ∈ 𝐵𝜌 ∩P.

Proof. We divide the proof into two cases.
Case 1 (𝑝 ∈ (2, 8/3)). Let 𝑢 ∈ 𝐵𝜌, for simplicity, and we will
write 𝑓󸀠

𝑢
(𝑡), 𝑓󸀠󸀠
𝑢
(𝑡) and 𝑓

󸀠󸀠󸀠

𝑢
(𝑡), the derivatives of 𝑓𝑢(𝑡) on 𝑡,

instead of 𝑑𝑓𝑢(𝑡)/𝑑𝑡, 𝑑
2
𝑓𝑢(𝑡)/𝑑𝑡

2 and 𝑑
3
𝑓𝑢(𝑡)/𝑑𝑡

3. From
(15), we have

𝑓
󸀠

𝑢
(𝑡) = 𝑡 ∫

R3
|∇𝑢|
2
𝑑𝑥 +

1

4
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥

−
3 (𝑝 − 2)

2𝑝
𝑡
(3𝑝−8)/2

∫

R3
|𝑢|
𝑝
𝑑𝑥.

(25)

Noting that (3𝑝 − 8)/2 ∈ (−1, 0) since 𝑝 ∈ (2, 8/3), then,
by (25), lim𝑡→0𝑓

󸀠

𝑢
(𝑡) = −∞ and lim𝑡→∞𝑓

󸀠

𝑢
(𝑡) = +∞; thus

there exists 𝑡𝑢 > 0 such that 𝑓󸀠
𝑢
(𝑡𝑢) = 0. If there exists

another 𝑠𝑢 > 0 such that 𝑓󸀠
𝑢
(𝑠𝑢) = 0, without loss of general-

ity, we may assume that 𝑠𝑢 > 𝑡𝑢, and then we get

0 = 𝑓
󸀠

𝑢
(s𝑢) − 𝑓

󸀠

𝑢
(𝑡𝑢)

= (𝑠𝑢 − 𝑡𝑢) ∫

R3
|∇𝑢|
2
𝑑𝑥

+
3 (𝑝 − 2)

2𝑝
(𝑡
(3𝑝−8)/2

𝑢
− 𝑠
(3𝑝−8)/2

𝑢
)∫

R3
|𝑢|
𝑝
𝑑𝑥 > 0,

(26)

a contradiction. Therefore, 𝑡𝑢 is unique and it is clear
that 𝐼(𝑢𝑡𝑢) = min {𝐼(𝑢𝑡) : 𝑡 > 0}. Moreover, 𝑢𝑡𝑢 ∈ 𝐵𝜌 ∩

P because of 𝑓󸀠
𝑢
(𝑡𝑢)𝑡𝑢 = 0.

Case 2 (𝑝 ∈ [8/3, 3)). By Lemma 4, we know that the
set 𝐴𝜌 := {𝑢 ∈ 𝐵𝜌 : 𝐼(𝑢) < 0} ̸= 0. Let 𝑢 ∈ 𝐴𝜌, if 𝑓

󸀠

𝑢
(𝑡) > 0 for

all 𝑡 > 0; that is, 𝑓𝑢(𝑡) is strictly increasing, then we obtain
that 𝑓𝑢(𝑡) < 𝑓𝑢(1) = 𝐼(𝑢) < 0 for all 𝑡 ∈ (0, 1). However, it is
easy to see that lim𝑡→0𝑓𝑢(𝑡) = 0; this is a contradiction. On
the other hand, we know that 𝑓𝑢(𝑡) → ∞ as 𝑡 → ∞; hence
there is a 𝑡𝑢 > 0 such that 𝑓󸀠

𝑢
(𝑡𝑢) = 0, 𝑢𝑡𝑢 ∈ 𝐵𝜌 ∩P and

𝑓𝑢 (𝑡𝑢) = min {𝑓𝑢 (𝑡) : 𝑡 > 0} ≤ 𝑓𝑢 (1) = 𝐼 (𝑢) < 0. (27)

Next, we will show that 𝑡𝑢 is unique. Arguing by contradic-
tion, suppose that there is another 𝑠𝑢 > 0 such that 𝑓𝑢(𝑡𝑢) =
𝑓𝑢(𝑠𝑢) = min {𝑓𝑢(𝑡) : 𝑡 > 0}, without loss of generality, we
may assume that 𝑠𝑢 > 𝑡𝑢, and then we have

𝑓
󸀠

𝑢
(𝑡𝑢) = 𝑓

󸀠

𝑢
(𝑠𝑢) = 0, 𝑓

󸀠󸀠

𝑢
(𝑡𝑢) ≥ 0, 𝑓

󸀠󸀠

𝑢
(𝑠𝑢) ≥ 0. (28)

According to (28), there exists 𝜔𝑢 ∈ (𝑡𝑢, 𝑠𝑢) such
that 𝑓󸀠󸀠

𝑢
(𝜔𝑢) = 0. After a simple calculation, we get

𝑓
󸀠󸀠

𝑢
(𝑡) = ‖∇𝑢‖

2

2
−
3 (𝑝 − 2) (3𝑝 − 8)

4𝑝
𝑡
(3𝑝−10)/2

∫

R3
|𝑢|
𝑝
𝑑𝑥,

(29)

𝑓
󸀠󸀠󸀠

𝑢
(𝑡) = −

3 (𝑝 − 2) (3𝑝 − 8) (3𝑝 − 10)

8𝑝
𝑡
(3𝑝−12)/2

× ∫

R3
|𝑢|
𝑝
𝑑𝑥.

(30)

If 𝑝 = 8/3,then, by (29), 𝑓󸀠󸀠
𝑢
(𝑡) > 0 for all 𝑡 > 0, which

contradicts 𝑓󸀠󸀠
𝑢
(𝜔𝑢) = 0. If 𝑝 ∈ (8/3, 3), then, by (30),

𝑓
󸀠󸀠󸀠

𝑢
(𝑡) > 0 for all 𝑡 > 0. Noting that 𝜔𝑢 ∈ (𝑡𝑢, 𝑠𝑢), we have

0 ≤ 𝑓
󸀠󸀠

𝑢
(𝑡𝑢) < 𝑓

󸀠󸀠

𝑢
(𝜔𝑢) = 0, (31)

again a contradiction. Therefore, 𝑡𝑢 > 0 is unique.

Lemma 8. Let 𝑝 ∈ (2, 3) and 𝜌 > 0. For each {𝑢𝑛} ⊂ 𝐵𝜌 such
that 𝐼(𝑢𝑛) → 𝐼𝜌2 < 0 as 𝑛 → ∞ and 𝐼(𝑢𝑛) < 0 for all 𝑛 ∈

N, there exists a bounded sequence {𝑡𝑛} ⊂ R+ such that {𝑢𝑡𝑛
𝑛
} ⊂

𝐵𝜌 ∩ P and 𝐼(𝑢
𝑡
𝑛

𝑛
) → 𝐼𝜌2 as 𝑛 → ∞ with 𝐼(𝑢

𝑡
𝑛

𝑛
) <

0 for all 𝑛 ∈ N; that is, {𝑢𝑡𝑛
𝑛
} is also a minimizing sequence

for 𝐼𝜌2 constrained on 𝐵𝜌.
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Proof. It follows from Lemma 7 that, for each 𝑢𝑛, there
exists 𝑡𝑛 > 0 such that 𝑢𝑡𝑛

𝑛
∈ 𝐵𝜌 ∩ P and 𝐼(𝑢

𝑡
𝑛

𝑛
) =

min {𝐼(𝑢𝑡
𝑛
) : 𝑡 > 0} ≤ 𝐼(𝑢𝑛) < 0; therefore, we have

𝐼𝜌2 ≤ 𝐼 (𝑢
𝑡
𝑛

𝑛
) ≤ 𝐼 (𝑢𝑛) 󳨀→ 𝐼𝜌2 , (32)

as 𝑛 → ∞, that is, {𝑢𝑡𝑛
𝑛
} is a minimizing sequence. Next,

we will show that {𝑡𝑛} is bounded. Indeed, from
Remark 6, {𝑢𝑛} and {𝑢

𝑡
𝑛

𝑛
} are bounded from below and

above by two positive constants in D1,2(R3) and 𝐻
1
(R3),

respectively. Noting that ∫
R3
|∇𝑢
𝑡
𝑛

𝑛
|
2
𝑑𝑥 = 𝑡

2

𝑛
∫
R3
|∇𝑢𝑛|
2
𝑑𝑥;

therefore, {𝑡𝑛} is bounded from below and above by two
positive constants.

Remark 9. Thanks to the Lemma 8, we know that 𝐼𝜌2 =

inf{𝐼(𝑢) : 𝑢 ∈ 𝐵𝜌} = inf{𝐼(𝑢) : 𝑢 ∈ 𝐵𝜌 ∩ P}, and, in
the following, we will consider the minimization problem (7)
restricted to 𝐵𝜌 ∩ P instead of 𝐵𝜌. By Lemmas 4 and 8, for
each 𝜌 > 0, if {𝑢𝑛} ⊂ 𝐵𝜌 ∩P satisfying 𝐼(𝑢𝑛) → 𝐼𝜌2 as 𝑛 →

∞, then, up to a subsequence, wemay assume that 𝐼(𝑢𝑛) < 0.
It follows from Lemma 5 that {𝑢𝑛} is bounded in 𝐻

1
(R3); by

the results of [17, 18], wemay assume that 𝑢𝑛 ⇀ 𝑢 ̸= 0 as 𝑛 →

∞ in 𝐻
1
(R3).

The following estimates of the elements of 𝐵𝜌 ∩ P are
crucial to proving the strong subadditivity inequality (8).

Lemma 10. Let 𝑝 ∈ (2, 3) and 𝜌 > 0. For each 𝑢 ∈ 𝐵𝜌 ∩P,
it holds

‖∇𝑢‖
2

2
≤ (

3 (𝑝 − 2)

2𝑝
)

4/(10−3𝑝)

𝑆
−6(𝑝−2)/(10−3𝑝)

𝜌
2(6−𝑝)/(10−3𝑝)

,

‖𝑢‖
𝑝

𝑝
≤(

3 (𝑝−2)

2𝑝
)

3(𝑝−2)/(10−3𝑝)

𝑆
−6(𝑝−2)/(10−3𝑝)

𝜌
2(6−𝑝)/(10−3𝑝)

.

(33)

Proof. Since 𝑢 ∈ 𝐵𝜌 ∩P,

‖∇𝑢‖
2

2
+
1

4
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥 −

3 (𝑝 − 2)

2𝑝
‖𝑢‖
𝑝

𝑝
= 0. (34)

Noting that ∫
R3
𝜙𝑢|𝑢|
2
𝑑𝑥 ≥ 0 (see (13)), by using the Hölder

inequality, we get

‖∇𝑢‖
2

2
≤
3 (𝑝 − 2)

2𝑝
‖𝑢‖
𝑝

𝑝
≤
3 (𝑝 − 2)

2𝑝
‖𝑢‖
(6−𝑝)/2

2
‖𝑢‖
3(𝑝−2)/2

6

≤
3 (𝑝 − 2)

2𝑝
𝑆
−3(𝑝−2)/2

‖𝑢‖
(6−𝑝)/2

2
‖∇𝑢‖
3(𝑝−2)/2

2
,

(35)

which implies that

‖∇𝑢‖
2

2
≤ (

3 (𝑝 − 2)

2𝑝
)

4/(10−3𝑝)

𝑆
−6(𝑝−2)/(10−3𝑝)

𝜌
2(6−𝑝)/(10−3𝑝)

.

(36)

On the other hand, we have

‖𝑢‖
𝑝

𝑝
≤ ‖𝑢‖
(6−𝑝)/2

2
‖𝑢‖
3(𝑝−2)/2

6

≤ 𝑆
−3(𝑝−2)/2

‖𝑢‖
(6−𝑝)/2

2
‖∇𝑢‖
3(𝑝−2)/2

2

≤ (
3 (𝑝 − 2)

2𝑝
)

3(𝑝−2)/(10−3𝑝)

× 𝑆
−6(𝑝−2)/(10−3𝑝)

𝜌
2(6−𝑝)/(10−3𝑝)

;

(37)

this concludes the proof of this lemma.

Remark 11. Let 𝑝 ∈ (3, 10/3). It was shown in [13, Theorem
1.1] that 𝐼𝜌2 < 0 if and only if 𝜌 ∈ (𝜌,∞), where the positive
number 𝜌 is defined as

𝜌 = inf {𝜌 > 0 : 𝐼𝜌2 < 0} . (38)

Therefore, after a simple calculation, we can show that both
of Lemmas 7 and 10 hold if 𝑝 ∈ (3, 10/3) and 𝜌 ∈ (𝜌,∞).

Motivated by [17], we will use the standard scaling
arguments to prove that the strong subadditivity inequality
(8) holds for 𝑝 ∈ (2, 3). First, we consider the case of 𝑝 ∈

(2, 8/3].

Lemma 12. For 𝑝 ∈ (2, 8/3], let

𝜌
1
= 3
(3𝑝−8)/8(3−𝑝)

𝜋
(3𝑝−10)/8(3−𝑝)

𝑆
3/2
(
𝑝 − 2

2𝑝
)

1/4(3−𝑝)

> 0.

(39)

Then

𝐼𝜌2 < 𝐼𝜇2 + 𝐼𝜌2−𝜇2 ∀0 < 𝜇 < 𝜌 < 𝜌
1
. (40)

Proof. By Lemma 8 and Remark 9, for each {𝑢𝑛} ⊂ 𝐵𝜌 ∩

P satisfying 𝐼(𝑢𝑛) → 𝐼𝜌2 < 0 as 𝑛 → ∞, we may assume
that, for all 𝑛, 𝐼(𝑢𝑛) ≤ 𝐼𝜌2/2, which implies that

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝
≥ −

𝑝

2
𝐼𝜌2 . (41)

Noting that 𝑡𝑢𝑛 ∈ 𝐵𝑡𝜌 (𝑡 > 0), we have

𝐼 (𝑡𝑢𝑛) =
𝑡
2

2
∫

R3

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥 +

𝑡
4

4
∫

R3
𝜙𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥

−
𝑡
𝑝

𝑝
∫

R3

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥

= 𝑡
2
(𝐼 (𝑢𝑛) +

𝑡
2
− 1

4
∫

R3
𝜙𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥

−
𝑡
𝑝−2

− 1

𝑝
∫

R3

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

= 𝑡
2
(𝐼 (𝑢𝑛) + 𝑔 (𝑡, 𝑢𝑛)) ,

(42)

where

𝑔 (𝑡, 𝑢) =
𝑡
2
− 1

4
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥 −

𝑡
𝑝−2

− 1

𝑝
∫

R3
|𝑢|
𝑝
𝑑𝑥. (43)
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We calculate the derivative of 𝑔(𝑡, 𝑢) on 𝑡:

𝑑𝑔 (𝑡, 𝑢)

𝑑𝑡
=
𝑡

2
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥 −

𝑝 − 2

𝑝
𝑡
𝑝−3

‖𝑢‖
𝑝

𝑝
. (44)

Letting 𝑑𝑔(𝑡, 𝑢)/𝑑𝑡 = 0, we see from (14) that

𝑡
𝑝−4

=

𝑝∫
R3
𝜙𝑢|𝑢|
2
𝑑𝑥

2 (𝑝 − 2) ‖𝑢‖
𝑝

𝑝

≤

2𝜋𝑝‖𝑢‖
4

12/5

𝑆
2
(𝑝 − 2) ‖𝑢‖

𝑝

𝑝

. (45)

Furthermore,

𝑑
2
𝑔 (𝑡, 𝑢)

𝑑𝑡
2

=
1

2
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥 −

(𝑝 − 2) (𝑝 − 3)

𝑝
𝑡
𝑝−4

‖𝑢‖
𝑝

𝑝
> 0.

(46)

Now we divide the value of 𝑝 into two cases to discuss
𝑑𝑔(𝑡, 𝑢𝑛)/𝑑𝑡.
Case 1 (𝑝 ∈ (2, 12/5)). It follows from Lemma 10, (14), and
the Hölder inequality that

𝑑𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

=
1

2
∫

R3
𝜙𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥 −

𝑝 − 2

𝑝
∫

R3

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥

≤
2𝜋

𝑆
2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

4

12/5
−
𝑝 − 2

𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝

≤
2𝜋

𝑆
2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

6𝑝/(6−𝑝)

𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2(12−5𝑝)/(6−𝑝)

6

−
𝑝 − 2

𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝

=
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝑝

𝑝
(2𝜋𝑆
12(𝑝−3)/(6−𝑝) 󵄩󵄩󵄩󵄩∇𝑢𝑛

󵄩󵄩󵄩󵄩

2(12−5𝑝)/(6−𝑝)

2

×
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝑝
2
/(6−𝑝)

𝑝
−
𝑝 − 2

𝑝
)

≤
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝑝

𝑝
(2𝜋𝑆

12(𝑝−3)/(10−3𝑝)
(
3 (𝑝 − 2)

2𝑝
)

(8−3𝑝)/(10−3𝑝)

× 𝜌
8(3−𝑝)/(10−3𝑝)

−
𝑝 − 2

𝑝
) .

(47)

Case 2 (𝑝 ∈ [12/5, 8/3]). Again by Lemma 10, (14), and the
Hölder inequality, we have

𝑑𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

=
1

2
∫

R3
𝜙𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥 −

𝑝 − 2

𝑝
∫

R3

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥

≤
2𝜋

𝑆
2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

4

12/5
−
𝑝 − 2

𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝

≤
2𝜋

𝑆
2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2(5𝑝−12)/3(𝑝−2)

2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2𝑝/3(𝑝−2)

𝑝
−
𝑝 − 2

𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝

≤
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝑝

𝑝

× (
2𝜋

𝑆
2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

2(5𝑝−12)/3(𝑝−2)

2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝(8−3𝑝)/3(𝑝−2)

𝑝
−
𝑝 − 2

𝑝
)

≤
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝑝

𝑝
(2𝜋𝑆

12(𝑝−3)/(10−3𝑝)
(
3 (𝑝 − 2)

2𝑝
)

(8−3𝑝)/(10−3𝑝)

× 𝜌
8(3−𝑝)/(10−3𝑝)

−
𝑝 − 2

𝑝
) .

(48)

Let

𝜌
1
= 3
(3𝑝−8)/8(3−𝑝)

𝜋
(3𝑝−10)/8(3−𝑝)

𝑆
3/2
(
𝑝 − 2

2𝑝
)

1/4(3−𝑝)

. (49)

Then by (47), (48), and (49), we know that, for each 0 < 𝜌 <

𝜌
1
, there holds

𝜌1 (𝜌) :=
2𝜋𝑝

𝑝 − 2
𝑆
12(𝑝−3)/(10−3𝑝)

× (
3 (𝑝 − 2)

2𝑝
)

(8−3𝑝)/(10−3𝑝)

𝜌
8(3−𝑝)/(10−3𝑝)

< 1,

𝑑𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

< 0,

(50)

for all 𝑛 ∈ N. On the other hand, for each 𝜀 ∈ (0, 1 − 𝜌1(𝜌)),
it follows from (41), (44), (45), (46), and Lemma 10 that, for
all 𝑡 ∈ (1, (𝜌1(𝜌)/(1 − 𝜀))

1/(𝑝−4)
) and all 𝑛 ∈ N,

𝑑𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡
=
𝑝 − 2

𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝
𝑡
𝑝−3

(

𝑝∫
R3
𝜙𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥

2 (𝑝 − 2)
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝑝

𝑝

𝑡
4−𝑝

− 1)

≤
𝜀 (𝑝 − 2)

2
𝐼𝜌2 < 0.

(51)

This, together with the mean value theorem and (41), yields
that for all 𝑡 ∈ (1, ((1 − 𝜀)−1𝜌1(𝜌))

1/(𝑝−4)
) and all 𝑛 ∈ N,

𝑔 (𝑡, 𝑢𝑛) = 𝑔 (1, 𝑢𝑛) +
𝑑𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝜃
𝑡𝑛

(𝑡 − 1) < −𝐶 (𝑡 − 1) ,

(52)

where 𝜃𝑡
𝑛

∈ (1, 𝑡) and 𝐶 > 0 depend only on 𝜀, 𝑝,and 𝜌. By
(42), we have

𝐼
(𝑡𝜌)
2 ≤ 𝐼 (𝑡𝑢𝑛) = 𝑡

2
(𝐼 (𝑢𝑛) + 𝑔 (𝑡, 𝑢𝑛))

≤ 𝑡
2
𝐼 (𝑢𝑛) − 𝐶𝑡

2
(𝑡 − 1)

= 𝑡
2
𝐼𝜌2 − 𝐶𝑡

2
(𝑡 − 1) + 𝑜 (1) ,

(53)
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then

𝐼
(𝑡𝜌)
2 < 𝑡
2
𝐼𝜌2 ∀𝑡 ∈ (1, (

𝜌1 (𝜌)

1 − 𝜀
)

1/(𝑝−4)

) , 𝜌 ∈ (0, 𝜌
1
) .

(54)

Clearly, 𝜌1 (cf. (50)) is strictly increasing on 𝜌, and then
(𝜌1/(1 − 𝜀))

1/(𝑝−4) is strictly decreasing on 𝜌 since 𝑝 ∈

(2, 3).
Let

ℎ (𝜌) := (
𝜌1 (𝜌)

1 − 𝜀
)

1/(𝑝−4)

. (55)

For each 𝜌 ∈ (0, 𝜌
1
), let 𝜇 ∈ (0, 𝜌) without loss of

generality, we may assume that 𝜇 > √𝜌
2
− 𝜇
2. Choosing 𝜀 ∈

(0,min {𝜌
1
−𝜌, 1−𝜌1(𝜌), 𝜇−√𝜌

2
− 𝜇
2
}), then by (50) we know

that ℎ(√𝜌2 − 𝜇2) > ℎ(𝜇) > ℎ(𝜌) > 1.

(a) If𝜌/𝜇 ∈ (1, ℎ(𝜇)), then by (54)

𝐼𝜌2 = 𝐼(𝜌2/𝜇2)𝜇2 <
𝜌
2

𝜇
2
𝐼𝜇2 = 𝐼𝜇2 +

𝜌
2
− 𝜇
2

𝜇
2

𝐼𝜇2

= 𝐼𝜇2 +
𝜌
2
− 𝜇
2

𝜇
2

𝐼
(𝜇
2
/(𝜌
2
−𝜇2))(𝜌2−𝜇2)

.

(56)

(b) If𝜌/𝜇 ∉ (1, ℎ(𝜇)), then there exists 𝑘 ∈ N such
that (𝜌/𝜇)1/𝑘 ∈ (1, ℎ(𝜌)). Therefore

(
𝜌

𝜇
)

1/𝑘

∈ (1, ℎ((
𝜌

𝜇
)

(𝑘−𝑖)/𝑘

𝜇)) , ∀𝑖 = 1, 2, . . . , 𝑘. (57)

It follows from (54) that

𝐼𝜌2 = 𝐼
(𝜌/𝜇)
2/𝑘
((𝜌/𝜇)

2(𝑘−1)/𝑘
𝜇2)

< (
𝜌

𝜇
)

2/𝑘

𝐼
(𝜌/𝜇)
2(𝑘−1)/𝑘
𝜇2
< ⋅ ⋅ ⋅ <

𝜌
2

𝜇
2
𝐼𝜇2 .

(58)

Combining the above cases (a) and (b), we can show that

𝐼𝜌2 < 𝐼𝜇2 + 𝐼𝜌2−𝜇2 ∀0 < 𝜇 < 𝜌 < 𝜌
1
. (59)

Thus the conclusion of this lemma holds.

Remark 13. For the case of 𝑝 = 8/3, it has been proved
in [4, 17] that the strong subadditivity inequality (8) holds
for 𝜌 > 0 small. By using the result of [17], we can give
a specific estimate of lower bound of 𝜌 such that (8) holds;
that is, (8) holds for all 𝜌 ∈ (0, (8𝜋)

−3/4
𝑆
3/2
). However, if we

plug 𝑝 = 8/3 into (49), then we have 𝜌
1
= (8𝜋)

−3/4
𝑆
3/2,

which coincides with the one given in [17].

Next, we will show (8) for 𝑝 ∈ (8/3, 3). We point out
that the case of 𝑝 ∈ (8/3, 3) is quite different from the
case of 𝑝 ∈ (2, 8/3] since the inequality (48) does not
hold anymore. Inspired by [18], we will give some estimates
for 𝐼𝜌2 in Lemmas 14 and 15, and these are crucial for the
proof of (8) if 𝑝 ∈ (8/3, 3).

Lemma 14. Let 𝑝 ∈ (8/3, 3) and 𝜌 > 0 be fixed. If there
exists 𝑢 ∈ 𝐵𝜌 ∩P such that 𝐼(𝑢) ≤ 𝐼𝜌2/2 and

‖𝑢‖
𝑝

𝑝
> 3‖∇𝑢‖

2

2
, (60)

then there exist positive constants 𝐶3 and 𝐶4 dependent
on 𝑝 and 𝜌, such that

𝐼𝜇2 ≤ −𝐶3𝜇
2(6−𝑝)/(10−3𝑝)

+ 𝐶4𝜇
2(18−5𝑝)/(10−3𝑝)

∀𝜇 > 0. (61)

Proof. From the assumptions of the lemma, we see that

‖∇𝑢‖
2

2
+
1

4
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥 −

3 (𝑝 − 2)

2𝑝
‖𝑢‖
𝑝

𝑝
= 0, (62)

1

2
‖∇𝑢‖
2

2
+
1

4
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥 −

1

𝑝
‖𝑢‖
𝑝

𝑝
= 𝐼 (𝑢) ≤

𝐼𝜌2

2
. (63)

By (60), (62), and (63), we deduce that

𝐼𝜌2

2
≥ 𝐼 (𝑢) = −

1

2
‖∇𝑢‖
2

2
+
3𝑝 − 8

2𝑝
‖𝑢‖
𝑝

𝑝
>
4 (𝑝 − 3)

𝑝
‖∇𝑢‖
2

2
.

(64)

Combining (62) and (64), and using Lemma 10, we also
obtain

1

4
∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥

=
3 (𝑝 − 2)

2𝑝
‖𝑢‖
𝑝

𝑝
− ‖∇𝑢‖

2

2

≤ (
3 (𝑝 − 2)

2𝑝
)

4/(10−3𝑝)

𝑆
−6(𝑝−2)/(10−3𝑝)

× 𝜌
2(6−𝑝)/(10−3𝑝)

+
𝑝

8 (3 − 𝑝)
𝐼𝜌2 .

(65)

For each 𝑡 > 0, let 𝑢𝑡(𝑥) = 𝑡
4/(10−3𝑝)

𝑢(𝑡
2(𝑝−2)/(10−3𝑝)

𝑥), we
have ‖𝑢𝑡‖2 = 𝑡‖𝑢‖2 = 𝑡𝜌. It follows from (60), (64), and (65)
that

𝐼
(𝑡𝜌)
2 ≤ 𝐼 (𝑢𝑡) =

1

2
𝑡
2(6−𝑝)/(10−3𝑝)

‖∇𝑢‖
2

2

+
1

4
𝑡
2(18−5𝑝)/(10−3𝑝)

∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥

−
1

𝑝
𝑡
2(6−𝑝)/(10−3𝑝)

‖𝑢‖
𝑝

𝑝

≤ (
1

2
−
3

𝑝
) 𝑡
2(6−𝑝)/(10−3𝑝)

‖∇𝑢‖
2

2
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+
1

4
𝑡
2(18−5𝑝)/(10−3𝑝)

∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥

≤
6 − 𝑝

16 (3 − 𝑝)

𝐼𝜌2

𝜌
2(6−𝑝)/(10−3𝑝)

(𝑡𝜌)
2(6−𝑝)/(10−3𝑝)

+ ((
3 (𝑝 − 2)

2𝑝
)

4/(10−3𝑝)

𝑆
−6(𝑝−2)/(10−3𝑝)

× 𝜌
8(𝑝−3)/(10−3𝑝)

+
𝑝

8 (3 − 𝑝)

𝐼𝜌2

𝜌
2(18−5𝑝)/(10−3𝑝)

)

× (𝑡𝜌)
2(18−5𝑝)/(10−3𝑝)

.

(66)

Set 𝑡𝜌 = 𝜇, then 𝜇 ∈ (0,∞) since 𝑡 ∈ (0,∞) and 𝜌 is a fixed
positive constant. From the above inequality, we see that

𝐼𝜇2 ≤ −𝐶3𝜇
2(6−𝑝)/(10−3𝑝)

+ 𝐶4𝜇
2(18−5𝑝)/(10−3𝑝)

, (67)

for some positive constants 𝐶3 and 𝐶4 depending on 𝑝 and
𝜌.

Lemma 15. Suppose that 𝑝 ∈ (8/3, 3) and {𝑢𝑘} ⊂ 𝐵𝜌
𝑘

∩

P satisfying ‖𝑢𝑘‖
𝑝

𝑝
> 3‖∇𝑢𝑘‖

2

2
and 𝐼(𝑢𝑘) ≤ 𝐼𝜌2

𝑘

/2 for all 𝑘 ∈

N. Then there exists a positive constant 𝐶 dependent on 𝑝,
such that

𝐼𝜌2
𝑘

≥ −𝐶𝜌
2(5𝑝−12)/(3𝑝−8)

𝑘
∀𝑘 ∈ N. (68)

Proof. Following the line of the proof of Lemma 14, we arrive
that

1

4
∫

R3
𝜙𝑢
𝑘

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
𝑑𝑥 =

3 (𝑝 − 2)

2𝑝

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

𝑝

𝑝
−
󵄩󵄩󵄩󵄩∇𝑢𝑘

󵄩󵄩󵄩󵄩

2

2

>
7𝑝 − 18

6𝑝

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

𝑝

𝑝
,

(69)

which, together with (14) and the Höder inequality, implies
that

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

𝑝

𝑝
≤

3𝑝

2 (7𝑝 − 18)
∫

R3
𝜙𝑢
𝑘

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
𝑑𝑥

≤
6𝜋𝑝

(7𝑝 − 18) 𝑆
2

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

4

12/5

≤
6𝜋𝑝

(7𝑝 − 18) 𝑆
2

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

2(5𝑝−12)/3(𝑝−2)

2

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

2𝑝/3(𝑝−2)

𝑝
,

(70)

and then

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

𝑝

𝑝
≤ (

6𝜋𝑝

(7𝑝 − 18) 𝑆
2
)

3(𝑝−2)/(3𝑝−8)

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

2(5𝑝−12)/(3𝑝−8)

2

= (
6𝜋𝑝

(7𝑝 − 18) 𝑆
2
)

3(𝑝−2)/(3𝑝−8)

𝜌
2(5𝑝−12)/(3𝑝−8)

𝑘
.

(71)

Combining (62), (69), and (71), we have

𝐼𝜌2
𝑘

2
> 𝐼 (𝑢𝑘) =

1

2

󵄩󵄩󵄩󵄩∇𝑢𝑘
󵄩󵄩󵄩󵄩

2

2
+
1

4
∫

R3
𝜙𝑢
𝑘

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
𝑑𝑥 −

1

𝑝

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

𝑝

𝑝

=
3𝑝 − 10

4𝑝

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

𝑝

𝑝
+
1

8
∫

R3
𝜙𝑢
𝑘

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
𝑑𝑥

≥
4 (𝑝 − 3)

3𝑝

󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩

𝑝

𝑝

≥
4 (𝑝 − 3)

3𝑝
(

6𝜋𝑝

(7𝑝 − 18) 𝑆
2
)

3(𝑝−2)/(3𝑝−8)

× 𝜌
2(5𝑝−12)/(3𝑝−8)

𝑘
,

(72)

and this completes the proof.

Lemma 16. If 𝑝 ∈ (8/3, 3), then there exists a positive
constant 𝜌

2
such that

𝐼𝜌2 < 𝐼𝜇2 + 𝐼𝜌2−𝜇2 ∀0 < 𝜇 < 𝜌 < 𝜌
2
. (73)

Proof. Suppose that 𝜌 > 0 and {𝑢𝑛} ⊂ 𝐵𝜌 ∩

P satisfying 𝐼(𝑢𝑛) → 𝐼𝜌2 as 𝑛 → ∞. It follows from
Remark 9 that, up to a subsequence, 𝐼(𝑢𝑛) ≤ 𝐼𝜌2/2 < 0 for
all 𝑛 ∈ N. By Lemma 5, it is easy to see that {𝑢𝑛} is bounded
in 𝐻
1
(R3). Noting that 𝑡𝑢𝑛 ∈ 𝐵𝑡𝜌, then, by (42), we have

𝐼 (𝑡𝑢𝑛) = 𝑡
2
(𝐼 (𝑢𝑛) + 𝑔 (𝑡, 𝑢𝑛)) , (74)

where 𝑔(𝑡, 𝑢) is given by (43). Obviously,

𝑑𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

=
1

2
∫

R3
𝜙𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥 −

(𝑝 − 2)

𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝

= 𝐼 (𝑢𝑛) −
1

2

󵄩󵄩󵄩󵄩∇𝑢𝑛
󵄩󵄩󵄩󵄩

2

2

+
1

4
∫

R3
𝜙𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥 +

(3 − 𝑝)

𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝

= 𝐼 (𝑢𝑛) −
3

2

󵄩󵄩󵄩󵄩∇𝑢𝑛
󵄩󵄩󵄩󵄩

2

2
+
1

2

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝
,

(75)

since 𝑢𝑛 ∈ 𝐵𝜌 ∩P and (34) holds. Moreover,

𝑑
2
𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡
2

=
1

2
∫

R3
𝜙𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥

−
(𝑝 − 2) (𝑝 − 3)

𝑝
𝑡
𝑝−4󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝑝

𝑝
> 0,

(76)

for all 𝑡 > 0 and 𝑛 ∈ N.
We claim that there exists 𝜌

2
> 0 such that for each 𝜌 ∈

(0, 𝜌
2
) and for each {𝑢𝑛} ⊂ 𝐵𝜌 ∩P satisfying 𝐼(𝑢𝑛) ≤ 𝐼𝜌2/2 <

0 and 𝐼(𝑢𝑛) → 𝐼𝜌2 as 𝑛 → ∞, we have

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝
≤ 3

󵄩󵄩󵄩󵄩∇𝑢𝑛
󵄩󵄩󵄩󵄩

2

2
. (77)
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Indeed, if not, we can find {𝜌𝑘} and {𝑢
𝑘

𝑛
} ⊂ 𝐵𝜌

𝑘

∩P such
that 𝜌𝑘 → 0 as 𝑘 → ∞ and for each 𝑘 ∈ N, 𝐼(𝑢𝑘

𝑛
) →

𝐼𝜌2
𝑘

< 0 as 𝑛 → ∞, but ‖𝑢𝑘
𝑛
‖
𝑝

𝑝
> 3‖∇𝑢

𝑘

𝑛
‖
2

2
. For 𝑘 = 1, there

exists 𝑛1 > 0 such that 𝐼(𝑢1
𝑛
1

) < 𝐼𝜌2
1

/2 < 0, and it can be
deduced from Lemma 14 that

𝐼𝜇2 ≤ −𝐶3𝜇
2(6−𝑝)/(10−3𝑝)

+ 𝐶4𝜇
2(18−5𝑝)/(10−3𝑝)

∀𝜇 > 0, (78)

where 𝐶3 and 𝐶4 are positive constants dependent on 𝑝

and 𝜌1. On the other hand, we know that for each 𝑘 ∈

N there exists 𝑛𝑘 > 0 such that 𝐼(𝑢𝑘
𝑛
𝑘

) < 𝐼𝜌2
𝑘

/2 < 0. Then
by Lemma 15, we obtain

𝐼𝜌2
𝑘

≥ −𝐶𝜌
2(5𝑝−12)/(3𝑝−8)

𝑘
∀𝑘 ∈ N, (79)

where 𝐶 is a positive constant depending only on 𝑝. Noting
that (78) holds for all 𝜇 > 0, by (78) and (79), we deduce that

−𝐶𝜌
2(5𝑝−12)/(3𝑝−8)

𝑘
≤ 𝐼𝜌2
𝑘

≤ − 𝐶3𝜌
2(6−𝑝)/(10−3𝑝)

𝑘

+ 𝐶4𝜌
2(18−5𝑝)/(10−3𝑝)

𝑘
,

(80)

which is a contradiction for 𝑘 large since 𝑝 ∈ (8/3, 3) impl-
ies

2 (5𝑝 − 12)

3𝑝 − 8
>
2 (6 − 𝑝)

10 − 3𝑝
. (81)

Thus we have shown the claim. Now for each 𝜌 ∈ (0, 𝜌
2
) and

for all {𝑢𝑛} ⊂ 𝐵𝜌 ∩ P with 𝐼(𝑢𝑛) ≤ 𝐼𝜌2/2 and 𝐼(𝑢𝑛) →

𝐼𝜌2 as 𝑛 → ∞, using (77), we have

𝑑𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

≤ 𝐼 (𝑢𝑛) ≤

𝐼𝜌2

2
< 0. (82)

By (76), similarly as in the proofs of (45) and (51), we get that

𝑡
4−𝑝

=
2 (𝑝 − 2)

𝑝

󵄩󵄩󵄩󵄩𝑢𝑛
󵄩󵄩󵄩󵄩

𝑝

𝑝

∫
R3
𝜙𝑢
𝑛

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

2
𝑑𝑥

=
2 (𝑝 − 2)

𝑝

‖ 𝑢𝑛‖
𝑝

𝑝

(6 (𝑝 − 2) /𝑝)
󵄩󵄩󵄩󵄩𝑢𝑛

󵄩󵄩󵄩󵄩

𝑝

𝑝
− 4

󵄩󵄩󵄩󵄩∇𝑢𝑛
󵄩󵄩󵄩󵄩

2

2

≥
3 (𝑝 − 2)

7𝑝 − 18
> 1.

(83)

Now, we can choose 𝜀 > 0 so small that there exists a positive
constant 𝐶 dependent on 𝑝, 𝜌,and 𝜀, such that

𝑑𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡
≤ −𝐶 < 0 ∀𝑡 ∈ (1, (

3 (1 − 𝜀) (𝑝 − 2)

7𝑝 − 18
)

1/(4−𝑝)

) .

(84)

Since, for each 𝑛, 𝑔(1, 𝑢𝑛) = 0, it follows that, for each 𝑡 ∈

(1, (3(1 − 𝜀)(𝑝 − 2)/(7𝑝 − 18))
1/(4−𝑝)

),

𝐼
(𝑡𝜌)
2 ≤ 𝐼 (𝑡𝑢𝑛) = 𝑡

2
(𝐼 (𝑢𝑛) + 𝑔 (𝑡, 𝑢𝑛))

≤ 𝑡
2
(𝐼 (𝑢𝑛) +

𝑑𝑔 (𝑡, 𝑢𝑛)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝜃
𝑡𝑛

(𝑡 − 1))

≤ 𝑡
2
(𝐼 (𝑢𝑛) − 𝐶 (𝑡 − 1))

= 𝑡
2
𝐼𝜌2 − 𝐶𝑡

2
(𝑡 − 1) + 𝑜 (1) ,

(85)

where 𝜃𝑡
𝑛

∈ (1, 𝑡), namely, 𝐼
(𝑡𝜌)
2 < 𝑡
2
𝐼𝜌2 for all 𝑡 ∈ (1, (3(1 −

𝜀)(𝑝−2)/(7𝑝−18))
1/(4−𝑝)

).Thus we complete the proof of this
lemma by using the arguments in the proof of Lemma 12.

Lemma 17. Let 𝜌 > 0. Assume that (𝑢𝜌, 𝜆𝜌) is a solution of
(1) with ‖𝑢𝜌‖2

= 𝜌.

(a) If 𝑝 ∈ (2, 12/5], then 𝜆𝜌 < 0.
(b) If 𝑝 ∈ (12/5, 8/3] and 𝜆𝜌 ≥ 0, then

𝜌 ≥ 𝜌
3
:= (

6 − 𝑝

6𝜋𝑝
)

(10−3𝑝)/8(3−𝑝)

× 𝑆
3/2
(
3 (𝑝 − 2)

2𝑝
)

(8−3𝑝)/8(3−𝑝)

.

(86)

Proof. Since (𝑢𝜌, 𝜆𝜌) is a solution of (1), it follows that

󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
+ ∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 −
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
= 𝜆𝜌

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
, (87)

󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
+
1

4
∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 −
3 (𝑝 − 2)

2𝑝

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
= 0. (88)

Thus, from (87) and (88), after a simple calculation, we have

𝜆𝜌

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
=

𝑝 − 6

3 (𝑝 − 2)

󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
+

5𝑝 − 12

6 (𝑝 − 2)
∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥,

(89)

which yields that (a) holds. Moreover, if 𝑝 ∈ (12/5, 8/3]

and 𝜆𝜌 ≥ 0, then (89) implies that

5𝑝 − 12

6 (𝑝 − 2)
∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≥
6 − 𝑝

3 (𝑝 − 2)

󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
. (90)

Thus we get from (88) that

3 (𝑝 − 2)

2𝑝

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
=
󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
+
1

4
∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
9 (𝑝 − 2)

4 (6 − 𝑝)
∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
9 (𝑝 − 2) 𝜋

(6 − 𝑝) 𝑆
2

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

4

12/5
.

(91)
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By using the Hölder inequality, it can be deduced from (91)
and Lemma 10 that

6 − 𝑝

6𝜋𝑝
𝑆
2󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝

≤
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

4

12/5
≤
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2(5𝑝−12)/3(𝑝−2)

2

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2𝑝/3(𝑝−2)

𝑝

≤ (𝑆
−2(8−3𝑝)/(10−3𝑝)

(
3 (𝑝 − 2)

2𝑝
)

(8−3𝑝)/(10−3𝑝)

× 𝜌
8(3−𝑝)/(10−3𝑝)

)
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
,

(92)

and this means that

𝜌 ≥ (
6 − 𝑝

6𝜋𝑝
)

(10−3𝑝)/8(3−𝑝)

𝑆
3/2
(
3 (𝑝 − 2)

2𝑝
)

(3𝑝−8)/8(3−𝑝)

. (93)

Thus (b) holds. At this point, the lemma is proved.

Proof of Theorem 1. It follows from Lemmas 12 and 16 that
(8) holds. Let 𝑇(𝑢) = ∫

R3
𝜙𝑢|𝑢|
2
𝑑𝑥/4 − ‖𝑢‖

𝑝

𝑝
/𝑝. From the

results of [17, 18], we know that (18), (19), (20), and (21)
hold. Therefore, by Lemma 3, all the minimizing sequences
for (7) are precompact and then (1) has a solution (𝑢𝜌, 𝜆𝜌).
Lemma 17 shows that, for 𝑝 ∈ (2, 8/3], 𝜆𝜌 < 0 since 𝜌

1
< 𝜌
3
,

where 𝜌
1
and 𝜌

3
are given by (49) and (86), respectively.

To complete the proof of Theorem 1, we need to show
that 𝜆𝜌 → 0 and 𝐼𝜌2/𝜌

2
→ 0 as 𝜌 → 0 provided that the

assumption (1) ofTheorem 1 holds. Indeed, since (𝑢𝜌, 𝜆𝜌) is
the solution of (1), it follows from (87), (88), and Lemma 10
that

0 ≤
3

4
∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 − 𝜆𝜌𝜌
2

=
6 − 𝑝

2𝑝

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
≤ 𝐶𝜌
2(6−𝑝)/(10−3𝑝)

,

(94)

which implies that

0 ≤ −𝜆𝜌 ≤ 𝐶𝜌
4(𝑝−2)/(10−3𝑝)

, (95)

and that is, 𝜆𝜌 → 0 as 𝜌 → 0. On the other hand, we have

𝐼 (𝑢𝜌) =
1

2

󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
+
1

4
∫

R3
𝜙𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 −
1

𝑝

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
, (96)

this, together with (87) and (88), gives

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
=

3𝑝

2 (𝑝 − 3)
𝐼 (𝑢𝜌) +

𝑝

4 (3 − 𝑝)
𝜆𝜌𝜌
2
. (97)

Therefore, 𝐼(𝑢𝜌) < 0 since 𝜆𝜌 < 0 and 𝑝 ∈ (2, 8/3). Noting
that 𝐼(𝑢𝜌) = 𝐼𝜌2 , by Lemma 10 and (97), we obtain

0 <
3𝑝

2 (𝑝 − 3)

𝐼𝜌2

𝜌
2

≤ (
3 (𝑝 − 2)

2𝑝
)

3(𝑝−2)/(10−3𝑝)

𝑆
−6(𝑝−2)/(10−3𝑝)

× 𝜌
4(𝑝−2)/(10−3𝑝)

−
𝑝

4 (3 − 𝑝)
𝜆𝜌 󳨀→ 0 as 𝜌 󳨀→ 0.

(98)

Proof of Theorem 2. Suppose that 𝑝 ∈ (2, 12/5] and (𝑢𝜌, 𝜆𝜌)

is a solution of (1) with ‖𝑢𝜌‖2
= 𝜌. Then Lemma 17 and

the above proof of Theorem 1 show that 𝜆𝜌 < 0, 𝐼(𝑢𝜌) <

0 and 𝜆𝜌 → 0 as 𝜌 → 0. It was proved in [5, 20] (see
also [13, Remark 1.4]) that there exists 𝜆0 < 0 such that
(1) has only the zero solution when 𝑝 ∈ (2, 3) and 𝜆 ∈

(−∞, 𝜆0). Therefore, 𝜆𝜌 must be bounded; that is, (i) holds.
For (ii), it is clear that (87), (88), and (96) hold; after a simple
calculation, we have

󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
=

5𝑝 − 12

2 (𝑝 − 3)
𝐼 (𝑢𝜌) +

3𝑝 − 8

4 (3 − 𝑝)
𝜆𝜌𝜌
2
,

∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 =
6 − 𝑝

𝑝 − 3
𝐼 (𝑢𝜌) +

10 − 3𝑝

2 (3 − 𝑝)
𝜆𝜌𝜌
2
,

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
=

3𝑝

2 (𝑝 − 3)
𝐼 (𝑢𝜌) +

𝑝

4 (3 − 𝑝)
𝜆𝜌𝜌
2
.

(99)

On the other hand, since 𝜙𝑢
𝜌

is the solution of the Pois-
son equation −Δ𝜙 = 4𝜋|𝑢𝜌|

2, multiplying this equation
by |𝑢𝜌| and integrating, we obtain

4𝜋
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

3

3
= ∫

R3
∇𝜙𝜌∇

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

≤
1

2

󵄩󵄩󵄩󵄩󵄩
∇𝜙𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
+
1

2

󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2

= 2𝜋∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
1

2

󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
.

(100)

It follows from (99) and (100) that

0 <
3𝑝

2 (𝑝 − 3)
𝐼 (𝑢𝜌) +

𝑝

4 (3 − 𝑝)
𝜆𝜌𝜌
2

=
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

𝑝

𝑝
≤
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2(3−𝑝)

2

󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

3(𝑝−2)

3

≤
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2(3−𝑝)

2
(
1

2
∫

R3
𝜙𝑢
𝜌

󵄨󵄨󵄨󵄨󵄨
𝑢𝜌

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 +
󵄩󵄩󵄩󵄩󵄩
∇𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
)

𝑝−2

= (
2

𝑝
)

𝑝−2
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2(3−𝑝)

2

× (
𝑝 (2𝑝 − 3)

2 (𝑝 − 3)
𝐼 (𝑢𝜌) +

𝑝

4 (3 − 𝑝)
𝜆𝜌𝜌
2
)

𝑝−2
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≤ (
2

𝑝
)

𝑝−2
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2(3−𝑝)

2

× (
3𝑝

2 (𝑝 − 3)
𝐼 (𝑢𝜌) +

𝑝

4 (3 − 𝑝)
𝜆𝜌𝜌
2
)

𝑝−2

,

(101)

which implies that

0 <
3𝑝

2 (𝑝 − 3)
𝐼 (𝑢𝜌) +

𝑝

4 (3 − 𝑝)
𝜆𝜌𝜌
2

≤ (
2

𝑝
)

(𝑝−2)/(3−𝑝)
󵄩󵄩󵄩󵄩󵄩
𝑢𝜌

󵄩󵄩󵄩󵄩󵄩

2

2
= (

2

𝑝
)

(𝑝−2)/(3−𝑝)

𝜌
2
.

(102)

Therefore we get

0 <
3𝑝

2 (𝑝 − 3)

𝐼 (𝑢𝜌)

𝜌
2

+
𝑝

4 (3 − 𝑝)
𝜆𝜌 ≤ (

2

𝑝
)

(𝑝−2)/(3−𝑝)

,

(103)

so that there exists 𝐶 > 0 such that 𝐼(𝑢𝜌)/𝜌
2
∈ (−𝐶, 0) since,

by (i), 𝜆𝜌 < 0 is bounded.
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de l’Institut Henri Poincaré, vol. 1, no. 2, pp. 109–145, 1984.

[16] P.-L. Lions, “The concentration-compactness principle in the
calculus of variation.The locally compact case, part II,” Annales
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