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We first introduce the new real function class F satisfying an implicit Lipschitz-type condition. Then, by using F-type real
functions, some common fixed point theorems for a pair of self-mappings satisfying an implicit Lipschitz-type condition in fuzzy
metric spaces (in the sense of Kaleva and Seikkala) are established. As applications, we obtain the corresponding common fixed
point theorems in metric spaces. Also, some examples are given, which show that there exist mappings which satisfy the conditions
in this paper but cannot satisfy the general contractive type conditions.

1. Introduction

In 1984, Kaleva and Seikkala [1] introduced the concept of a
fuzzymetric space by setting the distance between two points
to be a nonnegative fuzzy real number and studied some of its
properties. From then on, some important results for single-
valued and multivalued mappings in fuzzy metric spaces,
such as coincidence theorems, various fixed point theorems,
and so forth, were stated in subsequent work (see [1–11], etc.).
Recently, Zhang [12, 13] established some new common fixed
point theorems for generalized contractive type mappings in
metric spaces and for Lipschitz-typemappings in conemetric
spaces.These theorems extended the original contractive type
conditions. Moreover, various real function classes satisfying
an implicit relation were introduced in [10, 14–23], and
some common fixed point theorems for composite mappings
satisfying an implicit relation were established in metric
spaces and fuzzy metric spaces, respectively.

It is well known that the fuzzy metric space is an
important generalization of the ordinary metric space (see
[1]). Inspired by [13–23], we establish some common fixed
point theorems for new contractive type mappings in fuzzy
metric spaces in this paper. In Section 3, we first introduce
the new real function classF satisfying an implicit Lipschitz-
type condition. Then, in Section 4, by using F-type real

functions, some common fixed point theorems for a pair of
self-mappings satisfying an implicit Lipschitz-type condition
in fuzzy metric spaces are established. In Section 5, as their
applications, we obtain the corresponding common fixed
point theorems in metric spaces. Also, some examples are
given, which show that there exist mappings which satisfy
the conditions in this paper but cannot satisfy the general
contractive type conditions.

2. Preliminaries and Lemmas

Throughout this paper, let Z+ be the set of all positive
integers,R = (−∞, +∞) andR+ = [0, +∞). For the details of
fuzzy real number, we refer the reader to Kaleva and Seikkala
[1], Dubois and Prade [24], and Bag and Samanta [25].

Definition 1 (cf. Dubois and Prade [24]). Amapping 𝜂 : R →

[0, 1] is called a fuzzy real number or fuzzy interval, whose 𝛼-
level set is denoted by [𝜂]

𝛼
= {𝑡 ∈ R : 𝜂(𝑡) ⩾ 𝛼}, if it satisfies

two axioms.

(1) There exists 𝑡
0
∈ R such that 𝜂(𝑡

0
) = 1.

(2) [𝜂]
𝛼
= [𝜆
𝛼
, 𝜌
𝛼
] is a closed interval of R for each 𝛼 ∈

(0, 1], where −∞ < 𝜆
𝛼
≤ 𝜌
𝛼
< +∞.
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The set of all such fuzzy real numbers is denoted by 𝐺. If
𝜂 ∈ 𝐺 and 𝜂(𝑡) = 0 whenever 𝑡 < 0, then 𝜂 is called a
nonnegative fuzzy real number, and by 𝐺+ we mean the set
of all nonnegative fuzzy real numbers. If 𝜆

𝛼
= −∞ and 𝜌

𝛼
=

+∞ are admissible, then, for the sake of clarity, 𝜂 is called
a generalized fuzzy real number. The sets of all generalized
fuzzy real numbers or all generalized nonnegative fuzzy real
numbers are denoted by 𝐺

∞
and 𝐺+

∞
, respectively. In that

case, if 𝜆
𝛼
= −∞, for instance, then [𝜆

𝛼
, 𝜌
𝛼
] means the

interval (−∞, 𝜌
𝛼
].

The notation 0 stands for the fuzzy number satisfying
0(0) = 1 and 0(𝑡) = 0 if 𝑡 ̸= 0. Clearly, 0 ∈ 𝐺+. R can be
embedded in 𝐺: if 𝑎 ∈ R, then 𝑎 ∈ 𝐺 satisfies 𝑎(𝑡) = 0(𝑡 − 𝑎).

Lemma 2 (Xiao et al. [8]). Let 𝜂 ∈ 𝐺, 𝛼 ∈ (0, 1], and [𝜂]
𝛼
=

[𝜆
𝛼
, 𝜌
𝛼
]. Then

(1) lim
𝑡→−∞

𝜂(𝑡) = 0 = lim
𝑡→+∞

𝜂(𝑡).
(2) 𝜂(𝑡) is a left continuous and nonincreasing function for
𝑡 ∈ (𝜆

1
, +∞).

(3) 𝜌
𝛼
is a left continuous and nonincreasing function for

𝛼 ∈ (0, 1].

Definition 3 (cf. Kaleva and Seikkala [1]). Suppose that 𝑋 is
a nonempty set and that 𝑑 is a mapping from 𝑋 × 𝑋 into
𝐺

+. Let 𝐿, 𝑅 : [0, 1] × [0, 1] → [0, 1] be two symmetric and
nondecreasing functions such that 𝐿(0, 0) = 0 and 𝑅(1, 1) =
1. For 𝛼 ∈ (0, 1] and 𝑥, 𝑦 ∈ 𝑋, define the mapping

[𝑑 (𝑥, 𝑦)]

𝛼
= [𝜆
𝛼
(𝑥, 𝑦) , 𝜌

𝛼
(𝑥, 𝑦)] . (1)

The quadruple (𝑋, 𝑑, 𝐿, 𝑅) is called a fuzzy metric space
(briefly, FMS), and 𝑑 is called a fuzzy metric, if

(FM-1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(FM-2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(FM-3) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 :
(FM-3L) 𝑑(𝑥, 𝑦)(𝑠 + 𝑡) ⩾ 𝐿(𝑑(𝑥, 𝑧)(𝑠), 𝑑(𝑧, 𝑦)(𝑡)),
whenever 𝑠 ⩽ 𝜆

1
(𝑥, 𝑧), 𝑡 ⩽ 𝜆

1
(𝑧, 𝑦) and 𝑠 + 𝑡 ⩽

𝜆
1
(𝑥, 𝑦);

(FM-3R) 𝑑(𝑥, 𝑦)(𝑠 + 𝑡) ⩽ 𝑅(𝑑(𝑥, 𝑧)(𝑠), 𝑑(𝑧, 𝑦)(𝑡)),
whenever 𝑠 ⩾ 𝜆

1
(𝑥, 𝑧), 𝑡 ⩾ 𝜆

1
(𝑧, 𝑦) and 𝑠 + 𝑡 ⩾

𝜆
1
(𝑥, 𝑦).

If 𝑑 is a mapping from𝑋×𝑋 into𝐺+
∞
and (𝑋, 𝑑, 𝐿, 𝑅) satisfies

(FM-1)–(FM-3), then (𝑋, 𝑑, 𝐿, 𝑅) is called a generalized fuzzy
metric space (briefly, GFMS).

From Lemma 2 and Definition 3, we obtain the following
consequences.

Lemma 4. Let (𝑋, 𝑑, 𝐿, 𝑅) be a FMS, [𝑑(𝑥, 𝑦)]
𝛼
= [𝜆
𝛼
(𝑥, 𝑦),

𝜌
𝛼
(𝑥, 𝑦)] for 𝛼 ∈ (0, 1], where 𝑥, 𝑦 ∈ 𝑋 are any two fixed

elements. Then

(1) lim
𝑡→−∞

𝑑(𝑥, 𝑦)(𝑡) = 0 = lim
𝑡→+∞

𝑑(𝑥, 𝑦)(𝑡).
(2) 𝑑(𝑥, 𝑦)(𝑡) is a left continuous and nonincreasing func-

tion for 𝑡 ∈ (𝜆
1
(𝑥, 𝑦), +∞).

(3) 𝜌
𝛼
(𝑥, 𝑦) is a left continuous and nonincreasing function

for 𝛼 ∈ (0, 1].

Lemma 5 (Xiao et al. [8]). Let (𝑋, 𝑑, 𝐿, 𝑅) be a FMS, and
suppose that

(R-1) 𝑅 ⩽ max;
(R-2) lim

𝑎→0
+𝑅(𝑎, 𝑎) = 0.

Then (R-1)⇒(R-2).

Lemma 6. Let (𝑋, 𝑑, 𝐿, 𝑅) be a FMS. Then

(1) (R-1) ⇒ for each 𝛼 ∈ (0, 1], 𝜌
𝛼
(𝑥, 𝑦) ⩽ 𝜌

𝛼
(𝑥, 𝑧) +

𝜌
𝛼
(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 (cf. [4, 5]).

(2) (R-2) ⇒ for each 𝛼 ∈ (0, 1] there exists 𝜇 = 𝜇(𝛼) ∈
(0, 𝛼] such that 𝜌

𝛼
(𝑥, 𝑦) ⩽ 𝜌

𝜇
(𝑥, 𝑧) + 𝜌

𝜇
(𝑧, 𝑦) for all

𝑥, 𝑦, 𝑧 ∈ 𝑋 (cf. [5, 6, 8]).

Lemma 7 (Kaleva and Seikkala [1]). Let (𝑋, 𝑑, 𝐿, 𝑅) be a FMS
with (R-2). Then the family {𝑈(𝜀, 𝛼) : 𝜀 > 0, 𝛼 ∈ (0, 1]} of sets
𝑈(𝜀, 𝛼) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 : 𝜌

𝛼
(𝑥, 𝑦) < 𝜀} forms a basis for a

Hausdorff uniformity on 𝑋 × 𝑋. Moreover, the sets

𝑁
𝑥
(𝜀, 𝛼) = {𝑦 ∈ 𝑋 : 𝜌

𝛼
(𝑥, 𝑦) < 𝜀} (2)

form a basis for a Hausdorff topology on𝑋 and this topology is
metrizable.

According to Lemma 7, convergence in a FMS (𝑋, 𝑑, 𝐿, 𝑅)
can be defined by sequences. A sequence {𝑥

𝑛
} in 𝑋 is said to

be convergent to 𝑥 (we write 𝑥
𝑛
→ 𝑥 or lim

𝑛→∞
𝑥
𝑛
= 𝑥)

if lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 0; that is, lim

𝑛→∞
𝜌
𝛼
(𝑥
𝑛
, 𝑥) = 0 for

each 𝛼 ∈ (0, 1]; {𝑥
𝑛
} is called a Cauchy sequence in 𝑋 if

lim
𝑚,𝑛→∞

𝑑(𝑥
𝑚
, 𝑥
𝑛
) = 0; equivalently, for any given 𝜀 > 0

and 𝛼 ∈ (0, 1], there exists 𝑁 = 𝑁(𝜀, 𝛼) ∈ Z+ such that
𝜌
𝛼
(𝑥
𝑚
, 𝑥
𝑛
) < 𝜀, whenever 𝑚, 𝑛 ⩾ 𝑁; (𝑋, 𝑑, 𝐿, 𝑅) is said to

be complete, if each Cauchy sequence in 𝑋 is convergent to
some point in𝑋.

Lemma 8 (Kaleva and Seikkala [1]). Let (𝑋, 𝑑, 𝐿, 𝑅) be a FMS
with 𝑅 ⩽ max. Then for each 𝛼 ∈ (0, 1], 𝜌

𝛼
(𝑥, 𝑦) is continuous

at (𝑥, 𝑦) ∈ 𝑋 × 𝑋.

3. The Real Functions Satisfying an Implicit
Lipschitz-Type Condition

Definition 9. A lower semicontinuous function 𝐹 : R+
6
→ R

is called a real function satisfying an implicit Lipschitz-type
condition, if the following conditions are satisfied.

(F-1) 𝐹(𝑡
1
, . . . , 𝑡

6
) is nonincreasing in 𝑡

5
, 𝑡
6
.

(F-2) There exist 𝐴, 𝐵 > 0 with 𝐴𝐵 < 1 such that for
all 𝑢, V ⩾ 0, we have
(F-2a) 𝑢 ⩽ 𝐴V, whenever 𝐹(𝑢, V, V, 𝑢, V + 𝑢, 0) ⩽ 0,
(F-2b) 𝑢 ⩽ 𝐵V, whenever 𝐹(𝑢, V, 𝑢, V, 0, V + 𝑢) ⩽ 0.
(F-3) For all 𝑢 ⩾ 0with𝐹(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) ⩽ 0, we have
𝑢 = 0.

We denote byF the collection of all real functions 𝐹 : R+
6
→

R satisfying an implicit Lipschitz-type condition.
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Remark 10. Let 𝐹 ∈ F; if 𝐹(𝑢, 0, 0, 𝑢, 𝑢, 0) ⩽ 0

or 𝐹(𝑢, 0, 𝑢, 0, 0, 𝑢) ⩽ 0, then by condition (F-2)
of Definition 9, we have 𝑢 = 0.

The following examples show that the collection F is a
largish class of real functions.

Example 11. Let 𝑎 ∈ (0, 1/2). The function 𝐹
1
: R+
6
→ R is

defined by

𝐹
1
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
− 𝑎 (max {𝑡

2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
}) ; (3)

then 𝐹
1
∈ F.

In fact, it is easy to see that 𝐹
1
is continuous. Also,

(F-1) and (F-3) are easy to check. For any 𝑢, V ⩾ 0, if
𝐹
1
(𝑢, V, V, 𝑢, V + 𝑢, 0) ⩽ 0 or 𝐹

1
(𝑢, V, 𝑢, V, 0, V + 𝑢) ⩽ 0, then

we have 𝑢 ⩽ (𝑎/(1 − 𝑎))V, or 𝑢 ⩽ (𝑎/(1 − 𝑎))V respectively.
Taking 𝐴 = 𝐵 = 𝑎/(1 − 𝑎), we have 𝐴𝐵 = (𝑎/(1 − 𝑎))2 < 1;
that is, (F-2) holds. Hence 𝐹

1
∈ F.

Example 12. Let 𝑎, 𝑏, 𝑐, 𝑑 > 0with 𝑎+𝑏+𝑐 ∈ (0, 1) and 𝑎+𝑑 ∈
(0, 1). The function 𝐹

2
: R+
6
→ R is defined by

𝐹
2
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡

2

1
− 𝑡
1
(𝑎𝑡
2
+ 𝑏𝑡
3
+ 𝑐𝑡
4
) − 𝑑𝑡

5
𝑡
6
;

(4)

then 𝐹
2
∈ F.

Obviously,𝐹
2
is continuous, and (F-1) and (F-3) are easy

to check. For any 𝑢, V ⩾ 0, if 𝐹
2
(𝑢, V, V, 𝑢, V + 𝑢, 0) ⩽ 0 or

𝐹
2
(𝑢, V, 𝑢, V, 0, V + 𝑢) ⩽ 0, then we have 𝑢2 − 𝑢(𝑎V + 𝑏V + 𝑐𝑢) ⩽

0 or 𝑢2 − 𝑢(𝑎V + 𝑏𝑢 + 𝑐V) ⩽ 0, respectively, which implies
that 𝑢 ⩽ ((𝑎 + 𝑏)/(1 − 𝑐))V or 𝑢 ⩽ ((𝑎 + 𝑐)/(1 − 𝑏))V. Let
𝐴 = (𝑎+𝑏)/(1−𝑐) and 𝐵 = (𝑎+𝑐)/(1−𝑏). By 𝑎+𝑏+𝑐 ∈ (0, 1),
we have 𝐴 < 1 and 𝐵 < 1; that is, 𝐴𝐵 < 1. Thus (F-2) holds.
Hence 𝐹

2
∈ F.

Example 13. Let 𝑎 ∈ (0, 1/25). The function 𝐹
3
: R+
6
→ R is

defined by

𝐹
3
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡

3

1
− 𝑎 (𝑡

3

2
+ ⋅ ⋅ ⋅ + 𝑡

3

6
) ; (5)

then 𝐹
3
∈ F.

Obviously,𝐹
3
is continuous, and (F-1) and (F-3) are easy

to check.
For any 𝑢, V ⩾ 0, if 𝐹

3
(𝑢, V, V, 𝑢, V+𝑢, 0) ⩽ 0, then we have

𝑢

3
− 𝑎(2V3 + 𝑢3 + (V + 𝑢)3) ⩽ 0, which implies that

(1 − 𝑎) 𝑢

3

⩽ 2𝑎V
3

+ 𝑎(V + 𝑢)
3

⩽ 3𝑎(V + 𝑢)
3

󳨐⇒ 𝑢 ⩽

V 3√3𝑎/ (1 − 𝑎)

(1 −

3

√3𝑎/ (1 − 𝑎))

.

(6)

Similarly, if 𝐹
3
(𝑢, V, 𝑢, V, 0, V + 𝑢) ⩽ 0, then we also have

𝑢 ⩽ V 3√3𝑎/(1 − 𝑎)/(1 − 3

√3𝑎/(1 − 𝑎)). Let 𝐴 = 𝐵 =

3

√3𝑎/(1 − 𝑎)/(1 −

3

√3𝑎/(1 − 𝑎)). Note that 𝑎 ∈ (0, 1/25); we
have 3𝑎/(1 − 𝑎) ∈ (0, 1/8) ⇒ 3

√3𝑎/(1 − 𝑎) ∈ (0, 1/2); that is,
𝐴 = 𝐵 ∈ (0, 1); thus 𝐴𝐵 < 1. Therefore (F-2) holds. Hence
𝐹
3
∈ F.

Example 14. Let 𝜙
1
, . . . , 𝜙

5
: R+ → [0, 1) be five continuous

functions satisfying the following conditions.

(i) 𝜙
1
(𝑡) + 𝜙

4
(𝑡) + 𝜙

5
(𝑡) < 1 for all 𝑡 ∈ R+,

(ii) There exist 𝑎 > 0, 𝑏 > 0, 𝐶 > 0, 𝐷 > 0 with 𝐶𝐷 <
𝑎𝑏, such that

inf
𝑡⩾0

{1 − 𝜙
2
(𝑡) − 𝜙

5
(𝑡)} = 𝑎,

inf
𝑡⩾0

{1 − 𝜙
3
(𝑡) − 𝜙

4
(𝑡)} = 𝑏,

sup
𝑡⩾0

{𝜙
1
(𝑡) + 𝜙

2
(𝑡) + 𝜙

4
(𝑡)} = 𝐶,

sup
𝑡⩾0

{𝜙
1
(𝑡) + 𝜙

3
(𝑡) + 𝜙

5
(𝑡)} = 𝐷.

(7)

We define the function 𝐹
4
: R+
6
→ R as follows:

𝐹
4
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
)

= 𝑡
1
− (𝜙
1
(𝑡
2
) 𝑡
2
+ 𝜙
2
(𝑡
2
) 𝑡
3
+ 𝜙
3
(𝑡
2
) 𝑡
4

+𝜙
4
(𝑡
2
) 𝑡
5
+ 𝜙
5
(𝑡
2
) 𝑡
6
) .

(8)

Then 𝐹
4
∈ F.

In fact, it is easy to see that 𝐹
4
is continuous, and (F-1) is

satisfied.
For any 𝑢, V ⩾ 0, if 𝐹

4
(𝑢, V, V, 𝑢, V + 𝑢, 0) ⩽ 0, then we

have 𝑢 − (𝜙
1
(V)V + 𝜙

2
(V)V + 𝜙

3
(V)𝑢 + 𝜙

4
(V)(V + 𝑢)) ⩽ 0, which

implies that 𝑢 ⩽ ((𝜙
1
(V) +𝜙

2
(V) +𝜙

4
(V))/(1−𝜙

3
(V) −𝜙

4
(V)))V.

From condition (ii), we obtain 𝑢 ⩽ (𝐶/𝑏)V. Similarly, if
𝐹
4
(𝑢, V, 𝑢, V, 0, V + 𝑢) ⩽ 0, then we have 𝑢 ⩽ ((𝜙

1
(V) + 𝜙

3
(V) +

𝜙
5
(V))/(1 − 𝜙

2
(V) − 𝜙

5
(V)))V ⩽ 𝐷/𝑎V. Let 𝐴 = 𝐶/𝑏, 𝐵 =

𝐷/𝑎. Note that 𝐶𝐷 < 𝑎𝑏; we have 𝐴𝐵 < 1; that is, (F-2)
holds.

Furthermore, for any 𝑢 ⩾ 0, if 𝐹
4
(𝑢, 𝑢, 0, 0, 𝑢, 𝑢) ⩽ 0, then

we have 𝑢−(𝜙
1
(𝑢)𝑢+𝜙

4
(𝑢)𝑢+𝜙

5
(𝑢)𝑢) ⩽ 0, which implies that

(1−𝜙
1
(𝑢)−𝜙

4
(𝑢)−𝜙

5
(𝑢))𝑢 ⩽ 0. Note that𝜙

1
(𝑡)+𝜙
4
(𝑡)+𝜙
5
(𝑡) <

1 for all 𝑡 ∈ R+; we have 𝑢 = 0. This shows that (F-3) holds.
Hence 𝐹

4
∈ F.

Example 15. Let the function 𝐹
5
: R+
6
→ R be defined by

𝐹
5
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
)

= 𝑡
1
− (

𝑡
2
+ 1

20𝑡
2
+ 21

𝑡
2
+

𝑡
2
+ 1

20𝑡
2
+ 21

𝑡
3
+

2𝑡
2
+ 1

5𝑡
2
+ 6

𝑡
4

+

𝑡
2
+ 1

40𝑡
2
+ 42

𝑡
5
+

𝑡
2
+ 1

2𝑡
2
+ 3

𝑡
6
) ;

(9)

then 𝐹
5
∈ F.

In fact, in Example 14, taking 𝜙
1
(𝑡) = (𝑡 + 1)/(20𝑡 + 21),

𝜙
2
(𝑡) = (𝑡 + 1)/(20𝑡 + 21), 𝜙

3
(𝑡) = (2𝑡 + 1)/(5𝑡 + 6), 𝜙

4
(𝑡) =

(𝑡 + 1)/(40𝑡 + 42), and 𝜙
5
(𝑡) = (𝑡 + 1)/(2𝑡 + 3), we obtain five
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continuous functions 𝜙
1
, . . . , 𝜙

5
fromR+ into [0, 1) satisfying

the following conditions:

17

42

⩽ 𝜙
1
(𝑡) + 𝜙

4
(𝑡) + 𝜙

5
(𝑡) <

23

40

< 1,

inf
𝑡⩾0

{1 − 𝜙
2
(𝑡) − 𝜙

5
(𝑡)} =

9

20

,

inf
𝑡⩾0

{1 − 𝜙
3
(𝑡) − 𝜙

4
(𝑡)} =

23

40

,

sup
𝑡⩾0

{𝜙
1
(𝑡) + 𝜙

2
(𝑡) + 𝜙

4
(𝑡)} =

1

8

,

sup
𝑡⩾0

{𝜙
1
(𝑡) + 𝜙

3
(𝑡) + 𝜙

5
(𝑡)} =

19

20

.

(10)

It is evident that 1/8 ⋅ 19/20 = 19/160 < 207/800 =

9/20 ⋅ 23/40, and so all conditions of Example 14 are satisfied.
Therefore, 𝐹

5
∈ F.

Example 16. Let 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ⩾ 0with 𝑎+𝑑+𝑒 < 1, 𝑐+𝑑 < 1 and
𝑏 + 𝑒 < 1. There exists 𝛿 > 0 such that 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 1 + 𝛿
and (𝑐 − 𝑏)(𝑒 − 𝑑) > 2𝛿. We define the function 𝐹

6
: R+
6
→ R

as follows:

𝐹
6
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
− (𝑎𝑡
2
+ 𝑏𝑡
3
+ 𝑐𝑡
4
+ 𝑑𝑡
5
+ 𝑒𝑡
6
) ;

(11)

then 𝐹
6
∈ F.

Obviously, in Example 14, taking 𝜙
1
(𝑡) = 𝑎, 𝜙

2
(𝑡) = 𝑏,

𝜙
3
(𝑡) = 𝑐, 𝜙

4
(𝑡) = 𝑑, and 𝜙

5
(𝑡) = 𝑒, we obtain five continuous

functions 𝜙
1
, . . . , 𝜙

5
from R+ into [0, 1). Moreover, by (𝑐 −

𝑏)(𝑒 − 𝑑) > 2𝛿, we have 𝑒 ̸= 𝑑. Hence, 0 < 𝑎 + 𝑑 + 𝑒 < 1; that
is, condition (i) of Example 14 holds.

Furthermore, 0 < 1 − 𝑏 − 𝑒, 0 < 1 − 𝑐 − 𝑑 is obvious. Note
that 𝑎 < 1 and (𝑐 − 𝑏)(𝑒 − 𝑑) > 2𝛿; it follows that

𝑎 (1 + 𝛿) + 𝑏𝑒 + 𝑐𝑑 < 𝑎 + 𝛿 + 𝑏𝑒 + 𝑐𝑑 < 𝑎 − 𝛿 + 𝑏𝑑 + 𝑐𝑒.

(12)

By 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 1 + 𝛿, we obtain

𝑎 (𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒) + 𝑏𝑒 + 𝑐𝑑

+ 𝑏𝑐 + 𝑑𝑒 < 1 − 𝑏 − 𝑐 − 𝑑

− 𝑒 + 𝑏𝑑 + 𝑐𝑒 + 𝑏𝑐 + 𝑑𝑒,

(13)

which implies that (𝑎 + 𝑏 + 𝑑)(𝑎 + 𝑐 + 𝑒) < (1 − 𝑐 − 𝑑)(1 −
𝑏 − 𝑒). Hence, condition (ii) of Example 14 is satisfied. Thus,
by Example 14, we have 𝐹

6
∈ F.

Remark 17. The numbers 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝛿 in Example 16
really exist. For example, if we take 𝛿 = 1/40, 𝑎 = 1/20,
𝑏 = 1/20, 𝑐 = 2/5, 𝑑 = 1/40, and 𝑒 = 1/2, then 𝑎+𝑏+𝑐+𝑑+𝑒 =
1 + 1/40, 𝑎 + 𝑑 + 𝑒 = 23/40 < 1, 𝑐 + 𝑑 = 17/40 < 1,
𝑏 + 𝑒 = 11/20 < 1, and (𝑐 − 𝑏)(𝑒 − 𝑑) = 133/800 > 1/20;
that is, the conditions of Example 16 are satisfied.

Example 18. Define the function 𝐹
7
: R+
6
→ R as follows:

𝐹
7
(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
− (𝑎𝑡
2
+ 𝑏𝑡
3
+ 𝑐𝑡
4
+ 𝑑𝑡
5
+ 𝑒𝑡
6
) ,

(14)

where 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are nonnegative real numbers, with 𝑎 +
𝑏+ 𝑐 +𝑑+ 𝑒 = 1 and either 𝑐 > 𝑏, 𝑒 > 𝑑 or 𝑐 < 𝑏, 𝑒 < 𝑑. Then
𝐹
7
∈ F.

In fact, if we take 𝜙
1
(𝑡) = 𝑎, 𝜙

2
(𝑡) = 𝑏, 𝜙

3
(𝑡) = 𝑐, 𝜙

4
(𝑡) = 𝑑,

and 𝜙
5
(𝑡) = 𝑒, then condition (i) of Example 14 is obviously

satisfied. Note that 𝑐 > 𝑏, 𝑒 > 𝑑; we have (𝑎+𝑏+𝑑)(𝑎+𝑐+𝑒) =
(1 − 𝑐 − 𝑒)(1 − 𝑏 − 𝑑) < (1 − 𝑐 − 𝑑)(1 − 𝑏 − 𝑒); that is, condition
(ii) of Example 14 is satisfied. Similarly, we can prove the case
of 𝑐 < 𝑏, 𝑒 < 𝑑. Therefore, by Example 14, 𝐹

7
∈ F.

4. Main Results

Theorem19. Let (𝑋, 𝑑, 𝐿, 𝑅) be a complete FMSwith𝑅 ⩽ max
and let 𝑆 and 𝑇 be two self-mappings on (𝑋, 𝑑, 𝐿, 𝑅). If there
exists 𝐹 ∈ F such that

𝑢 − 𝐹 (𝑢, V, 𝑤, 𝑠, 𝑡, 𝑔) ⩾ 𝜆
1
(𝑆𝑥, 𝑇𝑦) ,

𝑑 (𝑆𝑥, 𝑇𝑦) (𝑢 − 𝐹 (𝑢, V, 𝑤, 𝑠, 𝑡, 𝑔))

⩽ max {𝑑 (𝑆𝑥, 𝑇𝑦) (𝑢) , 𝑑 (𝑥, 𝑦) (V) , 𝑑 (𝑥, 𝑆𝑥) (𝑤) ,

𝑑 (𝑦, 𝑇𝑦) (𝑠) , 𝑑 (𝑥, 𝑇𝑦) (𝑡) , 𝑑 (𝑦, 𝑆𝑥) (𝑔)} ,

(15)

for all 𝑥, 𝑦 ∈ 𝑋, whenever 𝑢 ⩾ 𝜆
1
(𝑆𝑥, 𝑇𝑦), V ⩾ 𝜆

1
(𝑥, 𝑦),

𝑤 ⩾ 𝜆
1
(𝑥, 𝑆𝑥), 𝑠 ⩾ 𝜆

1
(𝑦, 𝑇𝑦), 𝑡 ⩾ 𝜆

1
(𝑥, 𝑇𝑦), and 𝑔 ⩾

𝜆
1
(𝑦, 𝑆𝑥), then 𝑆 and 𝑇 have a unique common fixed point in

𝑋. Moreover, for any 𝑥
0
∈ 𝑋, the iterative process 𝑥

2𝑘+1
= 𝑆𝑥
2𝑘
,

𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1

, 𝑘 = 0, 1, 2, . . ., converges to the fixed point.

Proof. Firstly, we use (15) to prove that the following inequal-
ity:

𝐹 (𝜌
𝛼
(𝑆𝑥, 𝑇𝑦) , 𝜌

𝛼
(𝑥, 𝑦) , 𝜌

𝛼
(𝑥, 𝑆𝑥) ,

𝜌
𝛼
(𝑦, 𝑇𝑦) , 𝜌

𝛼
(𝑥, 𝑇𝑦) , 𝜌

𝛼
(𝑦, 𝑆𝑥)) ⩽ 0

(16)

holds for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1].
In fact, for each 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1], if we set

𝜌
𝛼
(𝑆𝑥, 𝑇𝑦) = 𝑢, 𝜌

𝛼
(𝑥, 𝑦) = V, 𝜌

𝛼
(𝑥, 𝑆𝑥) = 𝑤, 𝜌

𝛼
(𝑦, 𝑇𝑦) =

𝑠, 𝜌
𝛼
(𝑥, 𝑇𝑦) = 𝑡, 𝜌

𝛼
(𝑦, 𝑆𝑥) = 𝑔, then, for any 𝜀 > 0, it

is obvious that 𝑑(𝑆𝑥, 𝑇𝑦)(𝑢 + 𝜀) < 𝛼, 𝑑(𝑥, 𝑦)(V + 𝜀) < 𝛼,
𝑑(𝑥, 𝑆𝑥)(𝑤 + 𝜀) < 𝛼, 𝑑(𝑦, 𝑇𝑦)(𝑠 + 𝜀) < 𝛼, 𝑑(𝑥, 𝑇𝑦)(𝑡 + 𝜀) <
𝛼, 𝑑(𝑦, 𝑆𝑥)(𝑔 + 𝜀) < 𝛼, and 𝑢 + 𝜀 ⩾ 𝜆

1
(𝑆𝑥, 𝑇𝑦), V + 𝜀 ⩾

𝜆
1
(𝑥, 𝑦), 𝑤 + 𝜀 ⩾ 𝜆

1
(𝑥, 𝑆𝑥), 𝑠 + 𝜀 ⩾ 𝜆

1
(𝑦, 𝑇𝑦), 𝑡 + 𝜀 ⩾

𝜆
1
(𝑥, 𝑇𝑦), 𝑔 + 𝜀 ⩾ 𝜆

1
(𝑦, 𝑆𝑥). By (15), we have 𝑢 + 𝜀 − 𝐹(𝑢 +

𝜀, V+𝜀, 𝑤+𝜀, 𝑠+𝜀, 𝑡+𝜀, 𝑔+𝜀) ⩾ 𝜆
1
(𝑆𝑥, 𝑇𝑦) and 𝑑(𝑆𝑥, 𝑇𝑦)(𝑢+

𝜀 − 𝐹(𝑢 + 𝜀, V + 𝜀, 𝑤 + 𝜀, 𝑠 + 𝜀, 𝑡 + 𝜀, 𝑔 + 𝜀)) < 𝛼, which imply
that

𝐹 (𝜌
𝛼
(𝑆𝑥, 𝑇𝑦) + 𝜀, 𝜌

𝛼
(𝑥, 𝑦) + 𝜀, 𝜌

𝛼
(𝑥, 𝑆𝑥) + 𝜀, 𝜌

𝛼
(𝑦, 𝑇𝑦)

+ 𝜀, 𝜌
𝛼
(𝑥, 𝑇𝑦) + 𝜀, 𝜌

𝛼
(𝑦, 𝑆𝑥) + 𝜀) < 𝜀;

(17)
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then by the arbitrariness of 𝜀 and the lower semicontinuity of
𝐹, we have

𝐹 (𝜌
𝛼
(𝑆𝑥, 𝑇𝑦) , 𝜌

𝛼
(𝑥, 𝑦) , 𝜌

𝛼
(𝑥, 𝑆𝑥) , 𝜌

𝛼
(𝑦, 𝑇𝑦) ,

𝜌
𝛼
(𝑥, 𝑇𝑦) , 𝜌

𝛼
(𝑦, 𝑆𝑥))

⩽ lim inf
𝜀→0

𝐹 (𝜌
𝛼
(𝑆𝑥, 𝑇𝑦) + 𝜀, 𝜌

𝛼
(𝑥, 𝑦) + 𝜀, 𝜌

𝛼
(𝑥, 𝑆𝑥) + 𝜀,

𝜌
𝛼
(𝑦, 𝑇𝑦) + 𝜀, 𝜌

𝛼
(𝑥, 𝑇𝑦) + 𝜀, 𝜌

𝛼
(𝑦, 𝑆𝑥) + 𝜀)

⩽ 0,

(18)

for each 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1]; that is, the inequality (16)
holds for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1].

For any 𝑥
0
∈ 𝑋, we construct an iterative sequence {𝑥

𝑛
}

in𝑋 as follows:

𝑥
2𝑘+1

= 𝑆𝑥
2𝑘
, 𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1
, 𝑘 = 0, 1, 2, . . . . (19)

For 𝑘 = 0, 1, 2, . . ., applying (16), we obtain for each 𝛼 ∈ (0, 1]

𝐹 (𝜌
𝛼
(𝑆𝑥
2𝑘
, 𝑇𝑥
2𝑘+1
) , 𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
) , 𝜌
𝛼
(𝑥
2𝑘
, 𝑆𝑥
2𝑘
) ,

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑇𝑥
2𝑘+1
) , 𝜌
𝛼
(𝑥
2𝑘
, 𝑇𝑥
2𝑘+1
) , 𝜌
𝛼
(𝑥
2𝑘+1
, 𝑆𝑥
2𝑘
))

= 𝐹 (𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) , 𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
) , 𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
) ,

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) , 𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+2
) , 0) ⩽ 0.

(20)

By the known condition 𝑅 ⩽ max and conclusion (1)
of Lemma 6, we have 𝜌

𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+2
) ⩽ 𝜌

𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
) +

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
). Note that 𝐹 is nonincreasing in 𝑡

6
; it is not

difficult to see that

𝐹 (𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) , 𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
) , 𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
) ,

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) , 𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
)

+ 𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) , 0) ⩽ 0, for each 𝛼 ∈ (0, 1] .

(21)

Since 𝐹 ∈ F, there exists 𝐴 > 0 such that

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) ⩽ 𝐴𝜌

𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
) , for each 𝛼 ∈ (0, 1] .

(22)

Similarly, for 𝑘 = 0, 1, 2, . . ., applying (16), we obtain for
each 𝛼 ∈ (0, 1]

𝐹 (𝜌
𝛼
(𝑆𝑥
2𝑘+2
, 𝑇𝑥
2𝑘+1
) , 𝜌
𝛼
(𝑥
2𝑘+2
, 𝑥
2𝑘+1
) ,

𝜌
𝛼
(𝑥
2𝑘+2
, 𝑆𝑥
2𝑘+2
) , 𝜌

𝛼
(𝑥
2𝑘+1
, 𝑇𝑥
2𝑘+1
) ,

𝜌
𝛼
(𝑥
2𝑘+2
, 𝑇𝑥
2𝑘+1
) , 𝜌

𝛼
(𝑥
2𝑘+1
, 𝑆𝑥
2𝑘+2
))

= 𝐹 (𝜌
𝛼
(𝑥
2𝑘+3
, 𝑥
2𝑘+2
) , 𝜌
𝛼
(𝑥
2𝑘+2
, 𝑥
2𝑘+1
) ,

𝜌
𝛼
(𝑥
2𝑘+2
, 𝑥
2𝑘+3
) , 𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) , 0,

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+3
)) ⩽ 0.

(23)

By 𝑅 ⩽ max and (1) of Lemma 6, we have 𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+3
) ⩽

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
)+𝜌
𝛼
(𝑥
2𝑘+2

, 𝑥
2𝑘+3
). Note that 𝐹 is nonincreas-

ing in 𝑡
6
; we obtain

𝐹 (𝜌
𝛼
(𝑥
2𝑘+3
, 𝑥
2𝑘+2
) , 𝜌
𝛼
(𝑥
2𝑘+2
, 𝑥
2𝑘+1
) , 𝜌
𝛼
(𝑥
2𝑘+2
, 𝑥
2𝑘+3
) ,

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) , 0, 𝜌

𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
)

+𝜌
𝛼
(𝑥
2𝑘+2
, 𝑥
2𝑘+3
)) ⩽ 0, for each 𝛼 ∈ (0, 1] .

(24)

Since 𝐹 ∈ F, there exists 𝐵 > 0 such that

𝜌
𝛼
(𝑥
2𝑘+3
, 𝑥
2𝑘+2
) ⩽ 𝐵𝜌

𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) , for each 𝛼 ∈ (0, 1] .

(25)

Using inductive method, for 𝑘 = 0, 1, 2, . . ., we can obtain

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) ⩽ 𝐴𝜌

𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
)

⩽ 𝐴𝐵𝜌
𝛼
(𝑥
2𝑘−1
, 𝑥
2𝑘
)

⩽ ⋅ ⋅ ⋅ ⩽ (𝐴𝐵)

𝑘

𝐴𝜌
𝛼
(𝑥
0
, 𝑥
1
) ,

𝜌
𝛼
(𝑥
2𝑘+2
, 𝑥
2𝑘+3
) ⩽ 𝐵𝜌

𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
)

⩽ 𝐵𝐴𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑘+1
)

⩽ ⋅ ⋅ ⋅ ⩽ (𝐴𝐵)

𝑘+1

𝜌
𝛼
(𝑥
0
, 𝑥
1
) ,

for each 𝛼 ∈ (0, 1] .

(26)

Next, we prove that the sequence {𝑥
𝑛
} is a Cauchy

sequence. For 𝑘 < 𝑝, by 𝑅 ⩽ max and conclusion (1) of
Lemma 6, we have for each 𝛼 ∈ (0, 1]

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑝+1
) ⩽ 𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑘+2
) + ⋅ ⋅ ⋅ + 𝜌

𝛼
(𝑥
2𝑝
, 𝑥
2𝑝+1
)

⩽ (𝐴

𝑝−1

∑

𝑖=𝑘

(𝐴𝐵)

𝑖

+

𝑝

∑

𝑖=𝑘+1

(𝐴𝐵)

𝑖

)𝜌
𝛼
(𝑥
0
, 𝑥
1
)

⩽ (𝐴

(𝐴𝐵)

𝑘

1 − 𝐴𝐵

+

(𝐴𝐵)

𝑘+1

1 − 𝐴𝐵

)𝜌
𝛼
(𝑥
0
, 𝑥
1
)

⩽ 𝑀(𝐴𝐵)

𝑘

𝜌
𝛼
(𝑥
0
, 𝑥
1
) ,

(27)

where 𝑀 = (𝐴 + 𝐴𝐵)/(1 − 𝐴𝐵). By the similar reasoning
process, we have for each 𝛼 ∈ (0, 1]

𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑝+1
) ⩽ 𝑀(𝐴𝐵)

𝑘

𝜌
𝛼
(𝑥
0
, 𝑥
1
) ,

𝜌
𝛼
(𝑥
2𝑘
, 𝑥
2𝑝
) ⩽ 𝑀(𝐴𝐵)

𝑘

𝜌
𝛼
(𝑥
0
, 𝑥
1
) ,

𝜌
𝛼
(𝑥
2𝑘+1
, 𝑥
2𝑝
) ⩽ 𝑀(𝐴𝐵)

𝑘

𝜌
𝛼
(𝑥
0
, 𝑥
1
) .

(28)

Then there exists 𝑘(𝑛)with (𝑛−1)/2 ⩽ 𝑘 ⩽ 𝑛/2 for 0 < 𝑛 < 𝑚,
such that for each 𝛼 ∈ (0, 1]

𝜌
𝛼
(𝑥
𝑚
, 𝑥
𝑛
) ⩽ 𝑀(𝐴𝐵)

𝑘

𝜌
𝛼
(𝑥
0
, 𝑥
1
) . (29)
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Since 0 < 𝐴𝐵 < 1, it is evident that the sequence {𝑥
𝑛
} is

a Cauchy sequence in 𝑋. By the completeness of 𝑋, we set
lim
𝑛→∞

𝑥
𝑛
= 𝑥
∗
∈ 𝑋. Applying (16), we have

𝐹 (𝜌
𝛼
(𝑆𝑥
∗
, 𝑇𝑥
2𝑛+1
) , 𝜌
𝛼
(𝑥
∗
, 𝑥
2𝑛+1
) , 𝜌
𝛼
(𝑥
∗
, 𝑆𝑥
∗
) ,

𝜌
𝛼
(𝑥
2𝑛+1
, 𝑇𝑥
2𝑛+1
) , 𝜌
𝛼
(𝑥
∗
, 𝑇𝑥
2𝑛+1
) , 𝜌
𝛼
(𝑥
2𝑘+1
, 𝑆𝑥
∗
))

= 𝐹 (𝜌
𝛼
(𝑆𝑥
∗
, 𝑥
2𝑛+2
) , 𝜌
𝛼
(𝑥
∗
, 𝑥
2𝑛+1
) , 𝜌
𝛼
(𝑥
∗
, 𝑆𝑥
∗
) ,

𝜌
𝛼
(𝑥
2𝑛+1
, 𝑥
2𝑛+2
) , 𝜌
𝛼
(𝑥
∗
, 𝑥
2𝑛+2
) , 𝜌
𝛼
(𝑥
2𝑘+1
, 𝑆𝑥
∗
))

⩽ 0,

(30)

for each 𝛼 ∈ (0, 1]. Let 𝑛 → ∞; by the lower semicontinuity
of 𝐹 and Lemma 8, we have

𝐹 (𝜌
𝛼
(𝑆𝑥
∗
, 𝑥
∗
) , 0, 𝜌

𝛼
(𝑥
∗
, 𝑆𝑥
∗
) , 0, 0, 𝜌

𝛼
(𝑥
∗
, 𝑆𝑥
∗
))

⩽ lim inf
𝑛→∞

𝐹 (𝜌
𝛼
(𝑆𝑥
∗
, 𝑥
2𝑛+2
) , 𝜌
𝛼
(𝑥
∗
, 𝑥
2𝑛+1
) ,

𝜌

𝛼
(𝑥
∗
, 𝑆𝑥
∗
) , 𝜌
𝛼
(𝑥
2𝑛+1
, 𝑥
2𝑛+2
) ,

𝜌
𝛼
(𝑥
∗
, 𝑥
2𝑛+2
) , 𝜌
𝛼
(𝑥
2𝑘+1
, 𝑆𝑥
∗
)) ⩽ 0,

(31)

for each 𝛼 ∈ (0, 1]. By Remark 10, 𝜌
𝛼
(𝑆𝑥
∗
, 𝑥
∗
) = 0 for each

𝛼 ∈ (0, 1], which implies that 𝑥
∗
is a fixed point of 𝑆.

Similarly, for each 𝛼 ∈ (0, 1], we have

𝐹 (𝜌
𝛼
(𝑆𝑥
2𝑛
, 𝑇𝑥
∗
) , 𝜌
𝛼
(𝑥
2𝑛
, 𝑥
∗
) , 𝜌
𝛼
(𝑥
2𝑛
, 𝑆𝑥
2𝑛
) ,

𝜌
𝛼
(𝑥
∗
, 𝑇𝑥
∗
) , 𝜌
𝛼
(𝑥
2𝑛
, 𝑇𝑥
∗
) , 𝜌
𝛼
(𝑥
∗
, 𝑆𝑥
2𝑛
))

= 𝐹 (𝜌
𝛼
(𝑥
2𝑛+1
, 𝑇𝑥
∗
) , 𝜌
𝛼
(𝑥
2𝑛
, 𝑥
∗
) , 𝜌
𝛼
(𝑥
2𝑛
, 𝑥
2𝑛+1
) ,

𝜌
𝛼
(𝑥
∗
, 𝑇𝑥
∗
) , 𝜌
𝛼
(𝑥
2𝑛
, 𝑇𝑥
∗
) , 𝜌
𝛼
(𝑥
∗
, 𝑥
2𝑛+1
)) ⩽ 0.

(32)

Let 𝑛 → ∞; by the lower semicontinuity of 𝐹 and Lemma 8,
we have for each 𝛼 ∈ (0, 1]

𝐹 (𝜌
𝛼
(𝑥
∗
, 𝑇𝑥
∗
) , 0, 0, 𝜌

𝛼
(𝑥
∗
, 𝑇𝑥
∗
) , 𝜌
𝛼
(𝑥
∗
, 𝑇𝑥
∗
) , 0) ⩽ 0.

(33)

By Remark 10, 𝜌
𝛼
(𝑥
∗
, 𝑇𝑥
∗
) = 0 for each 𝛼 ∈ (0, 1], which

implies that 𝑥
∗
is also a fixed point of𝑇.Thus 𝑥

∗
is a common

fixed point of 𝑆, 𝑇.
Lastly, we prove the uniqueness of the common fixed

point. If 𝑥∗ is another common fixed point of 𝑆, 𝑇, then by
(16), we have for each 𝛼 ∈ (0, 1]

𝐹 (𝜌
𝛼
(𝑆𝑥
∗
, 𝑇𝑥

∗

) , 𝜌
𝛼
(𝑥
∗
, 𝑥

∗

) , 𝜌
𝛼
(𝑥
∗
, 𝑆𝑥
∗
) ,

𝜌
𝛼
(𝑥

∗

, 𝑇𝑥

∗

) , 𝜌
𝛼
(𝑥
∗
, 𝑇𝑥

∗

) , 𝜌
𝛼
(𝑥

∗

, 𝑆𝑥
∗
))

= 𝐹 (𝜌
𝛼
(𝑥
∗
, 𝑥

∗

) , 𝜌
𝛼
(𝑥
∗
, 𝑥

∗

) , 0, 0,

𝜌
𝛼
(𝑥
∗
, 𝑥

∗

) , 𝜌
𝛼
(𝑥

∗

, 𝑥
∗
)) ⩽ 0.

(34)

Note that 𝐹 ∈ F, and by (F-3) of Definition 9, we obtain
𝜌
𝛼
(𝑥

∗
, 𝑥
∗
) = 0 for each 𝛼 ∈ (0, 1]; hence 𝑥∗ = 𝑥

∗
.

The uniqueness is proved and we complete the proof of the
theorem.

According to the proof of Theorem 19, we can easily
obtain the following corollary.

Corollary 20. Let (𝑋, 𝑑, 𝐿, 𝑅) be a complete FMS with 𝑅 ⩽
max and let 𝑆 and 𝑇 be two self-mappings on (𝑋, 𝑑, 𝐿, 𝑅). If
there exists 𝐹 ∈ F such that (16) holds for all 𝑥, 𝑦 ∈ 𝑋 and
𝛼 ∈ (0, 1], then 𝑆 and 𝑇 have a unique common fixed point in
𝑋. Moreover, for any 𝑥

0
∈ 𝑋, the iterative process 𝑥

2𝑘+1
= 𝑆𝑥
2𝑘
,

𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1

, 𝑘 = 0, 1, 2, . . ., converges to the fixed point.

Theorem 21. Let (𝑋, 𝑑, 𝐿, 𝑅) be a complete FMS with 𝑅 ⩽
max. Let 𝜙

1
, . . . , 𝜙

5
: R+ → [0, 1) be five continuous functions

which satisfy the following conditions:

(i) 𝜙
1
(𝑡) + 𝜙

4
(𝑡) + 𝜙

5
(𝑡) < 1 for all 𝑡 ∈ R+,

(ii) 0 < inf
𝑡⩾0
{1−𝜙
2
(𝑡) −𝜙

5
(𝑡)} = 𝑎, 0 < inf

𝑡⩾0
{1−𝜙
3
(𝑡) −

𝜙
4
(𝑡)} = 𝑏, 0 < sup

𝑡⩾0
{𝜙
1
(𝑡) + 𝜙

2
(𝑡) + 𝜙

4
(𝑡)} = 𝐶,

0 < sup
𝑡⩾0
{𝜙
1
(𝑡) + 𝜙

3
(𝑡) + 𝜙

5
(𝑡)} = 𝐷 and 𝐶𝐷 < 𝑎𝑏.

Let 𝑆 and 𝑇 be two self-mappings on (𝑋, 𝑑, 𝐿, 𝑅) such that

𝜌
𝛼
(𝑆𝑥, 𝑇𝑦) ⩽ 𝜙

1
(𝜌
𝛼
(𝑥, 𝑦)) 𝜌

𝛼
(𝑥, 𝑦) +𝜙

2
(𝜌
𝛼
(𝑥, 𝑦))

× 𝜌
𝛼
(𝑥, 𝑆𝑥) + 𝜙

3
(𝜌
𝛼
(𝑥, 𝑦)) 𝜌

𝛼
(𝑦, 𝑇𝑦)

+ 𝜙
4
(𝜌
𝛼
(𝑥, 𝑦)) 𝜌

𝛼
(𝑥, 𝑇𝑦)

+ 𝜙
5
(𝜌
𝛼
(𝑥, 𝑦)) 𝜌

𝛼
(𝑦, 𝑆𝑥) ,

(35)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1]. Then 𝑆 and 𝑇 have a unique
common fixed point in 𝑋. Moreover, for any 𝑥

0
∈ 𝑋, the

iterative process 𝑥
2𝑘+1

= 𝑆𝑥
2𝑘
, 𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1
, 𝑘 = 0, 1, 2, . . .,

converges to the fixed point.

Proof. Taking 𝐹(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
−[𝜙
1
(𝑡
2
)𝑡
2
+𝜙
2
(𝑡
2
)𝑡
3
+

𝜙
3
(𝑡
2
)𝑡
4
+ 𝜙
4
(𝑡
2
)𝑡
5
+ 𝜙
5
(𝑡
2
)𝑡
6
], from the known conditions (i)

and (ii) and Example 14, we obtain𝐹 = 𝐹
4
∈ F. Furthermore,

from (35) we can easily derive the inequality (16). Then by
Corollary 20, the theorem is proved.

Corollary 22. Let (𝑋, 𝑑, 𝐿, 𝑅) be a complete FMS with 𝑅 ⩽
max and let 𝑆 and 𝑇 be two self-mappings on (𝑋, 𝑑, 𝐿, 𝑅). If
there exist 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ⩾ 0 and 𝛿 > 0with 𝑎+𝑏+𝑐+𝑑+𝑒 = 1+𝛿,
𝑎 + 𝑑+ 𝑒 < 1, 𝑐 + 𝑑 < 1, 𝑏 + 𝑒 < 1 and (𝑐 − 𝑏)(𝑒 − 𝑑) > 2𝛿, such
that

𝜌
𝛼
(𝑆𝑥, 𝑇𝑦) ⩽ 𝑎𝜌

𝛼
(𝑥, 𝑦) + 𝑏𝜌

𝛼
(𝑥, 𝑆𝑥)

+ 𝑐𝜌
𝛼
(𝑦, 𝑇𝑦) + 𝑑𝜌

𝛼
(𝑥, 𝑇𝑦) + 𝑒𝜌

𝛼
(𝑦, 𝑆𝑥) ,

(36)

for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0, 1], then 𝑆 and 𝑇 have a unique
common fixed point in 𝑋. Moreover, for any 𝑥

0
∈ 𝑋, the

iterative process 𝑥
2𝑘+1

= 𝑆𝑥
2𝑘
, 𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1

, 𝑘 = 0, 1, 2, . . .,
converges to the fixed point.

Proof. Taking 𝐹(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
− (𝑎𝑡
2
+ 𝑏𝑡
3
+ 𝑐𝑡
4
+

𝑑𝑡
5
+ 𝑒𝑡
6
), note that the known conditions and Example 16,

we have 𝐹 = 𝐹
6
∈ F. Furthermore, from (36) we can easily

derive the inequality (16).Then by Corollary 20, the corollary
is proved.
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5. Applications to the Ordinary Metric
Spaces and Examples

In this section, we first establish some common fixed point
theorems for a pair of self-mappings satisfying an implicit
Lipschitz-type condition in complete metric spaces. After
that, we give two examples, by which we can claim that our
conclusions are really generalizations of the early results.

Let (𝑋, 𝜌) be an ordinary metric space and

𝑑 (𝑥, 𝑦) (𝑡) = {

1, 𝑡 = 𝜌 (𝑥, 𝑦) ,

0, 𝑡 ̸= 𝜌 (𝑥, 𝑦) ,

∀𝑥, 𝑦 ∈ 𝑋, 𝑡 ∈ R. (37)

Then (𝑋, 𝑑,min,max) is a FMS (cf. [1, 9]). It is easy to see that
(𝑋, 𝜌) and (𝑋, 𝑑,min,max) are homeomorphic and 𝜌(𝑥, 𝑦) =
𝜌
𝛼
(𝑥, 𝑦) for all 𝛼 ∈ (0, 1].

Theorem 23. Let (𝑋, 𝜌) be a complete metric space and let 𝑆
and 𝑇 be two self-mappings on (𝑋, 𝜌). If there exists 𝐹 ∈ F
such that

𝐹 (𝜌 (𝑆𝑥, 𝑇𝑦) , 𝜌 (𝑥, 𝑦) , 𝜌 (𝑥, 𝑆𝑥) ,

𝜌 (𝑦, 𝑇𝑦) , 𝜌 (𝑥, 𝑇𝑦) , 𝜌 (𝑦, 𝑆𝑥)) ⩽ 0,

(38)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑆 and 𝑇 have a unique common fixed
point in 𝑋. Moreover, for any 𝑥

0
∈ 𝑋, the iterative process

𝑥
2𝑘+1

= 𝑆𝑥
2𝑘
, 𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1

, 𝑘 = 0, 1, 2, . . ., converges to
the fixed point.

Proof. Note that the topology and completeness of (𝑋, 𝜌) and
the induced FMS (𝑋, 𝑑,min,max) are coincident, as well as
𝜌(𝑥, 𝑦) = 𝜌

𝛼
(𝑥, 𝑦) for all 𝛼 ∈ (0, 1]; it is not difficult to see

that the inequality (16) holds as a result of (38). Moreover,
the other conditions of Corollary 20 are satisfied; thus by
Corollary 20, the theorem is proved.

Applying the same method, we can obtain the follow-
ing theorem and corollary by virtue of Theorem 21 and
Corollary 22, respectively.

Theorem 24. Let (𝑋, 𝜌) be a complete metric space. Let
𝜙
1
, . . . , 𝜙

5
: R+ → [0, 1) be five continuous functions which

satisfy the following conditions:

(i) 𝜙
1
(𝑡) + 𝜙

4
(𝑡) + 𝜙

5
(𝑡) < 1 for all 𝑡 ∈ R+,

(ii) 0 < inf
𝑡⩾0
{1−𝜙

2
(𝑡) −𝜙

5
(𝑡)} = 𝑎, 0 < inf

𝑡⩾0
{1−𝜙

3
(𝑡) −

𝜙
4
(𝑡)} = 𝑏, 0 < sup

𝑡⩾0
{𝜙
1
(𝑡) + 𝜙

2
(𝑡) + 𝜙

4
(𝑡)} = 𝐶, 0 <

sup
𝑡⩾0
{𝜙
1
(𝑡) + 𝜙

3
(𝑡) + 𝜙

5
(𝑡)} = 𝐷 and 𝐶𝐷 < 𝑎𝑏.

Let 𝑆 and 𝑇 be two self-mappings on (𝑋, 𝜌) such that

𝜌 (𝑆𝑥, 𝑇𝑦) ⩽ 𝜙
1
(𝜌 (𝑥, 𝑦)) 𝜌 (𝑥, 𝑦)

+ 𝜙
2
(𝜌 (𝑥, 𝑦)) 𝜌 (𝑥, 𝑆𝑥)

+ 𝜙
3
(𝜌 (𝑥, 𝑦)) 𝜌 (𝑦, 𝑇𝑦)

+ 𝜙
4
(𝜌 (𝑥, 𝑦)) 𝜌 (𝑥, 𝑇𝑦)

+ 𝜙
5
(𝜌 (𝑥, 𝑦)) 𝜌 (𝑦, 𝑆𝑥) ,

(39)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑆 and 𝑇 have a unique common fixed
point in 𝑋. Moreover, for any 𝑥

0
∈ 𝑋, the iterative process

𝑥
2𝑘+1

= 𝑆𝑥
2𝑘
, 𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1

, 𝑘 = 0, 1, 2, . . ., converges to
the fixed point.

Corollary 25. Let (𝑋, 𝜌) be a complete metric space and let 𝑆
and𝑇 be two self-mappings on (𝑋, 𝜌). If there exist 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ⩾
0, and 𝛿 > 0 with 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 1 + 𝛿, 𝑎 + 𝑑 + 𝑒 < 1,
𝑐 + 𝑑 < 1, 𝑏 + 𝑒 < 1, and (𝑐 − 𝑏)(𝑒 − 𝑑) > 2𝛿, such that
𝜌 (𝑆𝑥, 𝑇𝑦) ⩽ 𝑎𝜌 (𝑥, 𝑦) + 𝑏𝜌 (𝑥, 𝑆𝑥)

+ 𝑐𝜌 (𝑦, 𝑇𝑦) + 𝑑𝜌 (𝑥, 𝑇𝑦) + 𝑒𝜌 (𝑦, 𝑆𝑥) ,

(40)

for all 𝑥, 𝑦 ∈ 𝑋, then 𝑆 and 𝑇 have a unique common fixed
point in 𝑋. Moreover, for any 𝑥

0
∈ 𝑋, the iterative process

𝑥
2𝑘+1

= 𝑆𝑥
2𝑘
, 𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1

, 𝑘 = 0, 1, 2, . . ., converges to
the fixed point.

By Theorem 23 and Example 18, we can also obtain the
following corollary.

Corollary 26. Let (𝑋, 𝜌) be a complete metric space and let 𝑆
and𝑇 be two self-mappings on (𝑋, 𝜌). If there exist 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ⩾
0 with 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 1 and either 𝑐 > 𝑏, 𝑒 > 𝑑 or 𝑐 < 𝑏,
𝑒 < 𝑑, such that
𝜌 (𝑆𝑥, 𝑇𝑦) ⩽ 𝑎𝜌 (𝑥, 𝑦) + 𝑏𝜌 (𝑥, 𝑆𝑥)

+ 𝑐𝜌 (𝑦, 𝑇𝑦) + 𝑑𝜌 (𝑥, 𝑇𝑦) + 𝑒𝜌 (𝑦, 𝑆𝑥) ,

(41)

for all 𝑥, 𝑦 ∈ 𝑋, then 𝑆 and 𝑇 have a unique common fixed
point in 𝑋. Moreover, for any 𝑥

0
∈ 𝑋, the iterative process

𝑥
2𝑘+1

= 𝑆𝑥
2𝑘
, 𝑥
2𝑘+2

= 𝑇𝑥
2𝑘+1

, 𝑘 = 0, 1, 2, . . ., converges to
the fixed point.

Remark 27. In the conditions of Theorem 1 of [13], if we
suppose the functions 𝐴(𝑥, 𝑦), 𝐵(𝑥, 𝑦), 𝐶(𝑥, 𝑦), 𝐷(𝑥, 𝑦), and
𝐸(𝑥, 𝑦) to be continuous, then the theorem is justTheorem 24
in this paper. Therefore, in some sense, Theorem 23 is
the improvement and generalizations of Theorem 1 in [13].
Meanwhile, Corollaries 25 and 26 are just Corollaries 1 and 2
in [13], respectively.

If we assume 𝑇 = 𝑆, then, by Corollary 26, we can obtain
the following corollary.

Corollary 28. Let (𝑋, 𝜌) be a complete metric space and let 𝑆
be a self-mapping on (𝑋, 𝜌). If there exist 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ⩾ 0 with
𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 1 and either 𝑐 > 𝑏, 𝑒 > 𝑑 or 𝑐 < 𝑏, 𝑒 < 𝑑,
such that
𝜌 (𝑆𝑥, 𝑆𝑦) ⩽ 𝑎𝜌 (𝑥, 𝑦) + 𝑏𝜌 (𝑥, 𝑆𝑥)

+ 𝑐𝜌 (𝑦, 𝑆𝑦) + 𝑑𝜌 (𝑥, 𝑆𝑦) + 𝑒𝜌 (𝑦, 𝑆𝑥) ,

(42)

for all 𝑥, 𝑦 ∈ 𝑋, then 𝑆 has a unique fixed point in𝑋. Moreover,
for any 𝑥

0
∈ 𝑋, the iterative process 𝑥

𝑛+1
= 𝑆𝑥
𝑛
, 𝑛 = 0, 1, 2, . . .,

converges to the fixed point.

Corollary 29. Let (𝑋, 𝜌) be a complete metric space and let 𝑆
be a self-mapping on (𝑋, 𝜌). If there exist 𝐴, 𝐵, 𝐶 ∈ [0, 1) with
𝐴 + 𝐵 + 𝐶 < 1, such that

𝜌 (𝑆𝑥, 𝑆𝑦) ⩽ 𝐴𝜌 (𝑥, 𝑦) + 𝐵𝜌 (𝑥, 𝑆𝑥) + 𝐶𝜌 (𝑦, 𝑆𝑦) , (43)
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for all 𝑥, 𝑦 ∈ 𝑋, then 𝑆 has a unique fixed point in𝑋. Moreover,
for any 𝑥

0
∈ 𝑋, the iterative process 𝑥

𝑛+1
= 𝑆𝑥
𝑛
, 𝑛 = 0, 1, 2, . . .,

converges to the fixed point.

Proof. If 𝐵 ⩾ 𝐶, by 𝐴 + 𝐵 + 𝐶 < 1, we can take 4𝛿 = 1 − (𝐴 +
𝐵+𝐶), and let 𝑎 = 𝐴, 𝑏 = 𝐵+𝛿, 𝑐 = 𝐶, 𝑑 = 2𝛿, and 𝑒 = 𝛿; then
we have 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 1, 𝑐 < 𝑏, 𝑒 < 𝑑, and for 𝑥, 𝑦 ∈ 𝑋,

𝜌 (𝑆𝑥, 𝑆𝑦) ⩽ 𝐴𝜌 (𝑥, 𝑦) + 𝐵𝜌 (𝑥, 𝑆𝑥) + 𝐶𝜌 (𝑦, 𝑆𝑦)

⩽ 𝑎𝜌 (𝑥, 𝑦) + 𝑏𝜌 (𝑥, 𝑆𝑥) + 𝑐𝜌 (𝑦, 𝑆𝑦)

+ 𝑑𝜌 (𝑥, 𝑆𝑦) + 𝑒𝜌 (𝑦, 𝑆𝑥) ,

(44)

which imply that the conditions of Corollary 28 are satisfied.
Similarly, we can prove the case of 𝐵 ⩽ 𝐶. Therefore, by
Corollary 28, the corollary is proved.

Remark 30. Corollary 29 is just the fixed point theorem for
Reich-type contraction mappings in [26, 27]. Meanwhile, we
can easily see that the conditions of Corollary 28 generalize
the Reich-type contractive conditions in Corollary 29.

Remark 31. If we take 𝐹 = 𝐹
1
in Theorem 23, then

Theorem 23 is the generalizations of the fixed point theorem
for mappings satisfying Cirić-type [28] contractive condi-
tions to the common fixed point theorem for a pair of self-
mappings with 𝑎 ∈ (0, 1/2).

Now we give two examples, by which we can claim that
the theorems in this paper are really the generalizations of
the general contractive type fixed point theorems.

Example 32. Suppose 𝑋 = {0, 1, 2}, 𝜌 is an ordinary metric;
then (𝑋, 𝜌) is a complete metric space.

We define two mappings 𝑆, 𝑇 : 𝑋 → 𝑋 as follows: 𝑆(0) =
𝑆(1) = 𝑆(2) = 0, 𝑇(0) = 𝑇(1) = 0, 𝑇(2) = 1; then

𝜌 (𝑆 (0) , 𝑇 (0)) = 𝜌 (𝑆 (0) , 𝑇 (1))

= 𝜌 (𝑆 (1) , 𝑇 (0)) = 𝜌 (𝑆 (1) , 𝑇 (1))

= 𝜌 (𝑆 (2) , 𝑇 (0)) = 𝜌 (𝑆 (2) , 𝑇 (1)) = 0,

𝜌 (𝑆 (0) , 𝑇 (2)) = 𝜌 (𝑆 (1) , 𝑇 (2)) = 𝜌 (𝑆 (2) , 𝑇 (2)) = 1.

(45)

We take 𝛿 = 1/40, 𝑎 = 1/40, 𝑏 = 1/40, 𝑐 = 9/20, 𝑑 = 1/40,
and 𝑒 = 1/2; then 𝑎+𝑏+𝑐+𝑑+𝑒 = 1+𝛿, 𝑎+𝑑+𝑒 < 1, 𝑐+𝑑 <
1, 𝑏 + 𝑒 < 1, and (𝑐 − 𝑏)(𝑒 − 𝑑) > 2𝛿; that is, these numbers
satisfy the conditions of Corollary 25. Moreover,

𝜌 (𝑆 (0) , 𝑇 (2)) ⩽

1

40

𝜌 (0, 2) +

1

40

𝜌 (0, 𝑆 (0)) +

9

20

𝜌 (2, 𝑇 (2))

+

1

40

𝜌 (0, 𝑇 (2)) +

1

2

𝜌 (2, 𝑆 (0)) =

61

40

,

𝜌 (𝑆 (1) , 𝑇 (2)) ⩽

1

40

𝜌 (1, 2) +

1

40

𝜌 (1, 𝑆 (1)) +

9

20

𝜌 (2, 𝑇 (2))

+

1

40

𝜌 (1, 𝑇 (2)) +

1

2

𝜌 (2, 𝑆 (1)) =

3

2

,

𝜌 (𝑆 (2) , 𝑇 (2)) ⩽

1

40

𝜌 (2, 2) +

1

40

𝜌 (2, 𝑆 (2)) +

9

20

𝜌 (2, 𝑇 (2))

+

1

40

𝜌 (2, 𝑇 (2)) +

1

2

𝜌 (2, 𝑆 (2)) =

61

40

.

(46)

Hence 𝑆, 𝑇 satisfy the nonexpansive condition, and they have
a unique common fixed point. But for any nonnegative real
numbers 𝛼, 𝛽, 𝛾 with 0 < 𝛼 + 2𝛽 + 2𝛾 < 1, we have

𝛼𝜌 (1, 2) + 𝛽 (𝜌 (1, 𝑆 (1)) + 𝜌 (2, 𝑇 (2)))

+ 𝛾 (𝜌 (1, 𝑇 (2)) + 𝜌 (2, 𝑆 (1)))

= 𝛼 + 2𝛽 + 2𝛾 < 1 = 𝜌 (𝑆 (1) , 𝑇 (2)) ;

(47)

thus 𝑆, 𝑇 cannot satisfy the general contractive type condition
0 < 𝛼 + 2𝛽 + 2𝛾 < 1.

Remark 33. For the examples satisfying the conditions 𝑎+𝑏+
𝑐 + 𝑑 + 𝑒 = 1 and either 𝑐 > 𝑏, 𝑒 > 𝑑 or 𝑐 < 𝑏, 𝑒 < 𝑑 in
Corollary 26, we refer the reader to Example 2 in [13].

Example 34. Suppose 𝑋 = {0, 1, 2}; 𝜌 is a discrete metric,
then (𝑋, 𝜌) is a complete metric space.

Likewise, we define the mappings 𝑆, 𝑇 : 𝑋 → 𝑋 as
follows: 𝑆(0) = 𝑆(1) = 𝑆(2) = 0, 𝑇(0) = 𝑇(1) = 0, 𝑇(2) = 1;
then

𝜌 (𝑆 (0) , 𝑇 (0)) = 𝜌 (𝑆 (0) , 𝑇 (1))

= 𝜌 (𝑆 (1) , 𝑇 (0)) = 𝜌 (𝑆 (1) , 𝑇 (1))

= 𝜌 (𝑆 (2) , 𝑇 (0)) = 𝜌 (𝑆 (2) , 𝑇 (1)) = 0,

𝜌 (𝑆 (0) , 𝑇 (2)) = 𝜌 (𝑆 (1) , 𝑇 (2)) = 𝜌 (𝑆 (2) , 𝑇 (2)) = 1.

(48)

We take 𝛿 = 1/40, 𝑎 = 1/40, 𝑏 = 1/40, 𝑐 = 9/20, 𝑑 = 1/40,
𝑒 = 1/2, then 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 = 1 + 𝛿, 𝑎 + 𝑑 + 𝑒 < 1, 𝑐 + 𝑑 < 1,
𝑏+𝑒 < 1, and (𝑐−𝑏)(𝑒−𝑑) > 2𝛿; that is, these numbers satisfy
the conditions of Corollary 25. Moreover,

𝜌 (𝑆 (0) , 𝑇 (2)) =

1

40

𝜌 (0, 2) +

1

40

𝜌 (0, 𝑆 (0)) +

9

20

𝜌 (2, 𝑇 (2))

+

1

40

𝜌 (0, 𝑇 (2)) +

1

2

𝜌 (2, 𝑆 (0)) = 1,

𝜌 (𝑆 (1) , 𝑇 (2)) =

1

40

𝜌 (1, 2) +

1

40

𝜌 (1, 𝑆 (1)) +

9

20

𝜌 (2, 𝑇 (2))

+

1

40

𝜌 (1, 𝑇 (2)) +

1

2

𝜌 (2, 𝑆 (1)) = 1,

𝜌 (𝑆 (2) , 𝑇 (2)) =

1

40

𝜌 (2, 2) +

1

40

𝜌 (2, 𝑆 (2)) +

9

20

𝜌 (2, 𝑇 (2))

+

1

40

𝜌 (2, 𝑇 (2)) +

1

2

𝜌 (2, 𝑆 (2)) = 1.

(49)
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Hence 𝑆, 𝑇 satisfy the nonexpansive condition, and they have
a unique common fixed point.While for any nonnegative real
numbers 𝛼, 𝛽, 𝛾, 𝜂, 𝜇 < 1 with 𝛼 + 𝛽 + 𝛾 + 𝜂 + 𝜇 < 1, we have

𝛼𝜌 (1, 2) + 𝛽𝜌 (1, 𝑆 (1)) + 𝛾𝜌 (2, 𝑇 (2)) + 𝜂𝜌 (1, 𝑇 (2))

+ 𝜇𝜌 (2, 𝑆 (1)) = 𝛼 + 𝛽 + 𝛾 + 𝜇 < 1 = 𝜌 (𝑆 (1) , 𝑇 (2)) ;

(50)

thus 𝑆, 𝑇 cannot satisfy the general contractive type condition
𝛼 + 𝛽 + 𝛾 + 𝜂 + 𝜇 < 1.

6. Conclusion

In this paper, we studied the existence and uniqueness of fixed
points for nonlinear contractions in fuzzymetric spaces in the
sense of Kaleva-Seikkala. By virtue of a level-cut method, we
established relationships between fuzzy metric and a family
of quasi-metrics. Using them, we obtained some common
fixed point theorems for a pair of self-mappings satisfying
an implicit Lipschitz-type conditions in fuzzy metric spaces.
Obviously, the present investigation enriches our knowledge
of fixed points in fuzzy metric spaces. But, the work in this
paper with respect to fixed point in fuzzy setting is based on
𝑅 ⩽ max.The question whether the discussion can be carried
out under the weaker condition (R-2) deserves our further
investigation.

Acknowledgments

This work was supported by the Natural Science Foundation
of the Jiangsu Higher Education Institutions (Grant no.
13KJB110004) and the Qing Lan Project of Jiangsu Province
of China.

References

[1] O. Kaleva and S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets
and Systems, vol. 12, no. 3, pp. 215–229, 1984.
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mon fixed point theorem using implicit relation and property
(E.A) in metric spaces,” Filomat, vol. 21, no. 2, pp. 211–234, 2007.

[15] I. Altun, “Fixed point and homotopy results for multivalued
maps satisfying an implicit relation,” Journal of Fixed Point
Theory and Applications, vol. 9, no. 1, pp. 125–134, 2011.

[16] A. Aliouche and B. Fisher, “Fixed point theorems for mappings
satisfying implicit relation on two complete and compactmetric
spaces,” Applied Mathematics and Mechanics, vol. 27, no. 9, pp.
1217–1222, 2006.

[17] S. Sedghi, I. Altun, and N. Shobe, “A fixed point theorem for
multi-maps satisfying an implicit relation on metric spaces,”
Applicable Analysis and Discrete Mathematics, vol. 2, no. 2, pp.
189–196, 2008.

[18] B. Singh and S. Jain, “Semicompatibility and fixed point theo-
rems in fuzzymetric space using implicit relation,” International
Journal of Mathematics and Mathematical Sciences, vol. 16, pp.
2617–2629, 2005.

[19] I. Altun and D. Turkoglu, “Some fixed point theorems on fuzzy
metric spaces with implicit relations,” Korean Mathematical
Society, vol. 23, no. 1, pp. 111–124, 2008.

[20] V. Berinde and F. Vetro, “Common fixed points of mappings
satisfying implicit contractive conditions,” Fixed Point Theory
and Applications, vol. 2012, article 105, 2012.

[21] M. S. Chauhan, M. K. Khanduja, and B. Singh, “Fixed point
theorem in fuzzy metric space by using new implicit relation,”
The International Journal of Engineering and ScienceInt, vol. 1,
pp. 192–195, 2012.

[22] M. Sharma and R. C. Dimri, “A common fixed point theorem
for a sequence of mappings in probabilistic metric spaces using
implicit relation and the property (E.A.),” International Journal
of Mathematical Analysis, vol. 6, no. 5–8, pp. 333–340, 2012.

[23] C. Vetro and F. Vetro, “Common fixed points of mappings
satisfying implicit relations in partial metric spaces,” Journal of
Nonlinear Science and Its Applications, vol. 6, no. 3, pp. 152–161,
2013.

[24] D. Dubois and H. Prade, “Operations on fuzzy numbers,”
International Journal of Systems Science, vol. 9, no. 6, pp. 613–
626, 1978.

[25] T. Bag and S. K. Samanta, “Fuzzy bounded linear operators
in Felbin’s type fuzzy normed linear spaces,” Fuzzy Sets and
Systems, vol. 159, no. 6, pp. 685–707, 2008.

[26] L. M. Saliga, “Fixed point theorems for non-self maps in d-
complete topological spaces,” International Journal of Mathe-
matics and Mathematical Sciences, vol. 19, no. 1, pp. 103–110,
1996.



10 Abstract and Applied Analysis

[27] S. Reich, “Some remarks concerning contraction mappings,”
Canadian Mathematical Bulletin, vol. 14, pp. 121–124, 1971.
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