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We prove a theorem on the existence and uniqueness of a solution as well as on a sensitivity (i.e., differentiable dependence of a
solution on a functional parameter) of a fractional integrodifferential Cauchy problem of Volterra type. The proof of this result is
based on a theorem on diffeomorphism between Banach and Hilbert spaces. The main assumption is the Palais-Smale condition.

1. Introduction

In the paper, we consider the following fractional Integrodif-
ferential Cauchy problem of Volterra type of order 𝛼 ∈ (0, 1):

𝐷
𝛼

𝑎+
𝑥 (𝑡) = ∫

𝑡

𝑎

Φ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 + 𝑔 (𝑡) ,

𝑡 ∈ [𝑎, 𝑏] a.e.,

𝐼
1−𝛼

𝑎+
𝑥 (𝑎) = 0,

(1)

whereΦ : 𝑃
Δ
×R𝑛 → R𝑛, 𝑃

Δ
= {(𝑡, 𝑠) ∈ [0, 1]× [0, 1]; 𝑡 ≥ 𝑠},

and 𝑔 ∈ 𝐿
2

= 𝐿
2

([𝑎, 𝑏],R𝑛). We consider the existence and
uniqueness of a solution in the space 𝐼𝛼

𝑎+
(𝐿
2

) (the range of the
right-sided integral Riemann-Liouville operator 𝐼𝛼

𝑎+
: 𝐿
2

→

𝐿
2) as well as sensitivity, that is, differentiable dependence of

a solution on a functional parameter 𝑔 ∈ 𝐿2.
Fractional functional systems, including Integrodiffer-

ential ones, have recently been studied by several authors.
The reasons for this interest are numerous applications of
fractional differential calculus in physics, chemistry, biology,
economics, signal processing, image processing, aerodynam-
ics, and so forth. Integrodifferential systems are investigated
in finite and infinite dimensional spaces, with Riemann-
Liouville andCaputo derivatives aswell aswith different types
of initial and boundary conditions, local, nonlocal, involving
values of solutions or their fractional integrals, delay [1–7].
Applied methods also are of different type. They are based

on Banach, Brouwer, Schauder, Schaefer, Krasnoselskii fixed
point theorems, nonlinear alternative Leray-Schauder type,
strongly continuous operator semigroups, the reproducing
kernel Hilbert space method, and so forth.

We propose a newmethod for the study problems of type
(1), namely, a theorem on diffeomorphism between Banach
and Hilbert spaces obtained by the authors in paper [8].
This theorem is based on the Palais-Smale condition. In
the mentioned work, an application of this result to study
problem of type (1) with 𝛼 = 1 is given. In the paper, we use
the line of the proof presented therein. The main difference
between cases of 𝛼 ∈ (0, 1) and 𝛼 = 1 is that, in the first
case, the elements of the solution space 𝐼𝛼

𝑎+
(𝐿
2

) are not, in
general, continuous functions on [𝑎, 𝑏] as it is when 𝛼 = 1

(cf. Remark 10).
The paper is organized as follows. In the second section,

we recall some facts from the fractional calculus and for-
mulate a theorem on diffeomorphism between Banach and
Hilbert spaces. Third section is devoted to the existence and
uniqueness of a solution as well as sensitivity of problem
(1) (Theorem 9). Let us point that Lemma 7 in itself is a
general result on the existence and uniqueness of a solution
to problem (1) under a Lipschitz condition with respect to
the state variable, imposed on the integrand. Strengthening
the smoothness assumptions about the integrand and Palais-
Smale condition allows us to prove sensitivity of (1).

To our best knowledge, sensitivity of fractional systems of
type (1) has not been studied by other authors so far.
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2. Preliminaries

2.1. Fractional Calculus. Let 𝛼 > 0, ℎ ∈ 𝐿
1

= 𝐿
1

([𝑎, 𝑏],R𝑛).
By the left-sided Riemann-Liouville fractional integral of ℎ
on the interval [𝑎, 𝑏], we mean (cf. [9]) a function 𝐼𝛼

𝑎+
ℎ given

by

(𝐼
𝛼

𝑎+
ℎ) (𝑡) =

1

Γ (𝛼)

∫

𝑡

𝑎

ℎ (𝜏)

(𝑡 − 𝜏)
1−𝛼

𝑑𝜏, 𝑡 ∈ [𝑎, 𝑏] a.e., (2)

where Γ is the Euler function.
One can show that the above integral exists and is finite

a.e. on [𝑎, 𝑏]. Moreover, if ℎ ∈ 𝐿
𝑝

= 𝐿
𝑝

([𝑎, 𝑏],R𝑛), 1 ≤ 𝑝 <

∞, then 𝐼𝛼
𝑎+
ℎ ∈ 𝐿
𝑝 and

󵄩
󵄩
󵄩
󵄩
𝐼
𝛼

𝑎+
ℎ
󵄩
󵄩
󵄩
󵄩𝐿
𝑝 ≤

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

‖ℎ‖
𝐿
𝑝 . (3)

In [10], the following useful theorem is proved.

Theorem 1. The operator 𝐼𝛼
𝑎+
: 𝐿
𝑝

→ 𝐿
𝑝, 1 ≤ 𝑝 < ∞, is com-

pact, that is, it maps bounded sets onto relatively compact ones.

Now, let 𝛼 ∈ (0, 1). One says that [9] 𝑥 ∈ 𝐿
1 possesses

the left-sided Riemann-Liouville derivative 𝐷𝛼
𝑎+
𝑥 of order

𝛼 ∈ (0, 1) on the interval [𝑎, 𝑏], if the integral 𝐼1−𝛼
𝑎+

𝑥 is abso-
lutely continuous on [𝑎, 𝑏] (more precisely, if 𝐼1−𝛼

𝑎+
𝑥 has an

absolutely continuous representant a.e. on [𝑎, 𝑏]). By this
derivative one means the classical derivative 𝐷1(𝐼1−𝛼

𝑎+
𝑥), that

is,

(𝐷
𝛼

𝑎+
𝑥) (𝑡) =

1

Γ (1 − 𝛼)

𝐷
1

(∫

𝑡

𝑎

𝑥 (𝜏)

(𝑡 − 𝜏)
𝛼
𝑑𝜏) ,

𝑡 ∈ [𝑎, 𝑏] a.e.
(4)

One has ([9], Theorem 2.4).

Theorem 2. If ℎ ∈ 𝐿1, then 𝐷𝛼
𝑎+
𝐼
𝛼

𝑎+
ℎ = ℎ a.e. on [𝑎, 𝑏]. If 𝑥 ∈

𝐼
𝛼

𝑎+
(𝐿
1

), then 𝐼𝛼
𝑎+
𝐷
𝛼

𝑎+
𝑥 = 𝑥 a.e. on [𝑎, 𝑏].

From the second part of the above theorem and (3), it
follows that if 𝑥 ∈ 𝐼𝛼

𝑎+
(𝐿
𝑝

), then

‖𝑥‖
𝐿
𝑝 ≤

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

󵄩
󵄩
󵄩
󵄩
𝐷
𝛼

𝑎+
𝑥
󵄩
󵄩
󵄩
󵄩𝐿
𝑝 . (5)

Of course, 𝐼𝛼
𝑎+
(𝐿
𝑝

) with the norm

‖𝑥‖
𝐼
𝛼
𝑎+
(𝐿
𝑝
)
=
󵄩
󵄩
󵄩
󵄩
𝐷
𝛼

𝑎+
𝑥
󵄩
󵄩
󵄩
󵄩𝐿
𝑝 , 𝑥 ∈ 𝐼

𝛼

𝑎+
(𝐿
𝑝

) (6)

is complete. When 𝑝 = 2, the above norm is generated by the
following scalar product:

⟨𝑥, 𝑦⟩
𝐼
𝛼
𝑎+
(𝐿
2
)
= ∫

𝑏

𝑎

𝐷
𝛼

𝑎+
𝑥 (𝑡)𝐷

𝛼

𝑎+
𝑦 (𝑡) 𝑑𝑡,

𝑥, 𝑦 ∈ 𝐼
𝛼

𝑎+
(𝐿
2

) .

(7)

Next, one will use the following.

Lemma 3. If a sequence (𝑥
𝑛
) is weakly convergent in 𝐼𝛼

𝑎+
(𝐿
𝑝

)

to some 𝑥
0
, then it is convergent to 𝑥

0
with respect to the norm

in 𝐿𝑝, and the sequence (𝐷𝛼
𝑎+
𝑥
𝑛
) is weakly convergent in 𝐿𝑝 to

𝐷
𝛼

𝑎+
𝑥
0
.

Proof. To prove the second part of the theorem, it is sufficient
to observe that the linear operator 𝐷𝛼

𝑎+
: 𝐼
𝛼

𝑎+
(𝐿
𝑝

) → 𝐿
𝑝 is

continuous. Consequently, it preserves weak convergence. To
prove the first part, let us observe that, fromTheorem 1, it fol-
lows that 𝐼𝛼

𝑎+
: 𝐿
𝑝

→ 𝐿
𝑝 maps weakly convergent sequences

onto strongly convergent (with respect to the norm) ones.
Thus, the sequence (𝑥

𝑛
) = (𝐼

𝛼

𝑎+
𝐷
𝛼

𝑎+
𝑥
𝑛
) is convergent to 𝑥

0
=

𝐼
𝛼

𝑎+
𝐷
𝛼

𝑎+
𝑥
0
with respect to the norm in 𝐿𝑝.

2.2. A Theorem on a Diffeomorphism. In [8], we proved the
following theorem.

Theorem 4. Let𝑋 be a real Banach space, let𝐻 be a real Hil-
bert space. If 𝑓 : 𝑋 → 𝐻 is a 𝐶1-mapping (i.e., differentiable
in Frechet sense on𝑋 with the differential 𝑓󸀠 continuous on𝑋)
such that

(𝛼) for any 𝑦 ∈ 𝐻, the functional

𝜑 : 𝑋 ∋ 𝑥 󳨃󳨀→ (

1

2

)
󵄩
󵄩
󵄩
󵄩
𝑓(𝑥) − 𝑦

󵄩
󵄩
󵄩
󵄩

2

∈ R (8)

satisfies Palais-Smale condition,
(𝛽) for any𝑥 ∈ 𝑋,𝑓󸀠(𝑥) : 𝑋 → 𝐻 is “one-one” and “onto”,

then 𝑓 is a diffeomorphism (i.e., it is “one-one”, “onto” and the
inverse 𝑓−1 : 𝐻 → 𝑋 is differentiable in Frechet sense).

Let us recall that a 𝐶1-functional 𝜑 : 𝑋 → R satisfies
Palais-Smale condition if any sequence (𝑥

𝑘
) such that

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑥
𝑘
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 ∀𝑘 ∈ N, and some 𝑀 > 0,

𝜑
󸀠

(𝑥
𝑘
) 󳨀→ 0,

(9)

admits a convergent subsequence (here, 𝜑󸀠(𝑥
𝑘
) is the Frechet

differential of 𝜑 at 𝑥
𝑘
).

3. Main Result

Let us consider problem (1) with 𝑔 ∈ 𝐿
2. We assume that

function Φ = (Φ
1
, . . . , Φ

𝑛
) : 𝑃
Δ
× R𝑛 → R𝑛 satisfies the

following conditions:

(A
1
) Φ is measurable in (𝑡, 𝑠) ∈ 𝑃

Δ
and continuously dif-

ferentiable in Frechet sense in 𝑥 ∈ R𝑛,
(A
2
) there exist functions 𝑎, 𝑏 ∈ 𝐿

2

(𝑃
Δ
) = 𝐿
2

(𝑃
Δ
,R) such

that

|Φ (𝑡, 𝑠, 𝑥)| ≤ 𝑎 (𝑡, 𝑠) |𝑥| + 𝑏 (𝑡, 𝑠) , (10)

for (𝑡, 𝑠) ∈ 𝑃
Δ
a.e., 𝑥 ∈ R𝑛,

‖𝑎‖
𝐿
2
(𝑃Δ)

<

Γ (𝛼 + 1)

2(𝑏 − 𝑎)
𝛼
, (11)
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(A
3
) there exists a function 𝑐 ∈ 𝐿2(𝑃

Δ
) such that

󵄨
󵄨
󵄨
󵄨
Φ
𝑥
(𝑡, 𝑠, 𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝑐 (𝑡, 𝑠) , (12)

for (𝑡, 𝑠) ∈ 𝑃
Δ
a.e., 𝑥 ∈ R𝑛,

∫

𝑡

𝑎

𝑐
2

(𝑡, 𝑠) 𝑑𝑠 ≤ 𝐶, (13)

for 𝑡 ∈ [𝑎, 𝑏] a.e. and some 𝐶 > 0.

We shall show that the operator

𝑓 : 𝐼
𝛼

𝑎+
(𝐿
2

) ∋ 𝑥 󳨃󳨀→ 𝐷
𝛼

𝑎+
𝑥 (⋅)

− ∫

⋅

𝑎

Φ (⋅, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 ∈ 𝐿
2

(14)

satisfies assumptions of Theorem 4 with the spaces 𝑋 =

𝐼
𝛼

𝑎+
(𝐿
2

), 𝑌 = 𝐿
2. Namely, we have the following.

Lemma5. Theoperator𝑓 is well-defined𝐶1-mappingwith the
differential 𝑓󸀠(𝑥) at any 𝑥 ∈ 𝐼𝛼

𝑎+
(𝐿
2

) given by

𝑓
󸀠

(𝑥) : 𝐼
𝛼

𝑎+
(𝐿
2

) ∋ ℎ 󳨃󳨀→ 𝐷
𝛼

𝑎+
ℎ (⋅)

− ∫

⋅

𝑎

Φ
𝑥
(⋅, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) 𝑑𝑠 ∈ 𝐿

2

,

(15)

whereΦ
𝑥
is the Jacobi matrix of Φ with respect to 𝑥.

Proof. Well-definiteness of 𝑓. Since Φ is the Caratheodory
function with respect to (𝑡, 𝑠) ∈ 𝑃

Δ
and 𝑥 ∈ R𝑛, the function

𝑃
Δ
∋ (𝑡, 𝑠) 󳨃󳨀→ Φ (𝑡, 𝑠, 𝑥 (𝑠)) ∈ R

𝑛 (16)

is measurable. From (A
2
), it follows that it belongs to 𝐿1. The

Fubini theorem implies integrability of the function

[𝑎, 𝑏] ∋ 𝑡 󳨃󳨀→ ∫

𝑡

𝑎

Φ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 ∈ R
𝑛

. (17)

Moreover,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

Φ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ (∫

𝑡

𝑎

𝑎 (𝑡, 𝑠) |𝑥 (𝑠)| 𝑑𝑠 + ∫

𝑡

𝑎

𝑏 (𝑡, 𝑠) 𝑑𝑠)

2

≤ ((∫

𝑡

𝑎

𝑎
2

(𝑡, 𝑠) 𝑑𝑠)

1/2

(∫

𝑡

𝑎

|𝑥 (𝑠)|
2

𝑑𝑠)

1/2

+ (∫

𝑡

𝑎

1
2

𝑑𝑠)

1/2

(∫

𝑡

𝑎

𝑏
2

(𝑡, 𝑠) 𝑑𝑠)

1/2

)

2

≤ 2(∫

𝑡

𝑎

𝑎
2

(𝑡, 𝑠) 𝑑𝑠)(∫

𝑏

𝑎

|𝑥 (𝑠)|
2

𝑑𝑠)

+ 2 (𝑏 − 𝑎) (∫

𝑡

𝑎

𝑏
2

(𝑡, 𝑠) 𝑑𝑠) .

(18)

The right-hand side is integrable on [𝑎, 𝑏]. So, function (17)
belongs to 𝐿2.

Differentiability of 𝑓. Continuous differentiability of the first
term of 𝑓 follows from the linearity and continuity of the
operator𝐷𝛼

𝑎+
: 𝐼
𝛼

𝑎+
(𝐿
2

) → 𝐿
2.

So, let one consider the second term, that is, the operator

𝑔 : 𝐼
𝛼

𝑎+
(𝐿
2

) ∋ 𝑥 󳨃󳨀→ ∫

⋅

𝑎

Φ (⋅, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 ∈ 𝐿
2

. (19)

One will check that the operator

𝑔
󸀠

(𝑥) : 𝐼
𝛼

𝑎+
(𝐿
2

) ∋ ℎ 󳨃󳨀→ ∫

⋅

𝑎

Φ
𝑥
(⋅, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) 𝑑𝑠 ∈ 𝐿

2 (20)

is the Frechet differential of 𝑔 at 𝑥 ∈ 𝐼𝛼
𝑎+
(𝐿
2

).
First, let one observe that 𝑔󸀠(𝑥) is well defined. Of course,

the function

𝑃
Δ
∋ (𝑡, 𝑠) 󳨃󳨀→ Φ

𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) ∈ R

𝑛

, (21)

where ℎ ∈ 𝐼
𝛼

𝑎+
(𝐿
2

), is measurable. By (A
3
) it belongs to 𝐿1.

From the Fubini theorem it follows that the function

[𝑎, 𝑏] ∋ 𝑡 󳨃󳨀→ ∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) 𝑑𝑠 (22)

is integrable. Moreover, similarly as in the case of 𝑓,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ (∫

𝑡

𝑎

𝑐 (𝑡, 𝑠) |ℎ (𝑠)| 𝑑𝑠)

2

≤ (∫

𝑡

𝑎

𝑐
2

(𝑡, 𝑠) 𝑑𝑠)(∫

𝑡

𝑎

|ℎ (𝑠)|
2

𝑑𝑠)

≤ 𝐶(∫

𝑏

𝑎

|ℎ (𝑠)|
2

𝑑𝑠) .

(23)

So, function (22) belongs to 𝐿2.
Linearity of 𝑔󸀠(𝑥) is obvious. Its continuity follows from

the following estimations (cf. (5)):

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠

(𝑥) ℎ

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
= ∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡

≤ 𝐶 (𝑏 − 𝑎) ‖ℎ‖
2

𝐿
2

≤ 𝐶

(𝑏 − 𝑎)
2𝛼+1

Γ(𝛼 + 1)
2
‖ℎ‖
2

𝐼
𝛼
𝑎+(𝐿
2
)
.

(24)

Now, one will check that 𝑔󸀠(𝑥) is the Gateaux differential of 𝑔
at 𝑥, that is,

lim
𝜆󳨀→0

𝑔 (𝑥 + 𝜆ℎ) − 𝑔 (𝑥)

𝜆

= 𝑔
󸀠

(𝑥) ℎ (25)
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in 𝐿2, for any 𝑥, ℎ ∈ 𝐼𝛼
𝑎+
(𝐿
2

). Indeed, let (𝜆
𝑘
) be a sequence of

real numbers converging to 0 and consider the limit

lim
𝑘󳨀→∞

∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

(

Φ (𝑡, 𝑠, 𝑥 (𝑠) + 𝜆
𝑘
ℎ (𝑠)) − Φ (𝑡, 𝑠, 𝑥 (𝑠))

𝜆
𝑘

−Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) ) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡.

(26)

From the differentiability of Φ with respect to 𝑥, it follows
that, for 𝑡 ∈ [𝑎, 𝑏] a.e., the sequence of functions

[𝑎, 𝑡] ∋ 𝑠 󳨃󳨀→

Φ (𝑡, 𝑠, 𝑥 (𝑠) + 𝜆
𝑘
ℎ (𝑠)) − Φ (𝑡, 𝑠, 𝑥 (𝑠))

𝜆
𝑘

− Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) ∈ R

𝑛

(27)

converges pointwise a.e. on [𝑎, 𝑡] to the zero function. From
the mean value theorem applied to any coordinate function

[0, 1] ∋ 𝜏 󳨃󳨀→ Φ
𝑗
(𝑡, 𝑠, 𝑥 (𝑠) + 𝜏𝜆

𝑘
ℎ (𝑠)) ∈ R (28)

(𝑗 = 1, . . . , 𝑛), it follows that functions (27) indexed by 𝑘 ∈

N are commonly pointwise (a.e. on [𝑎, 𝑡]) bounded by an
integrable function (cf. (A

3
)). So,

∫

𝑡

𝑎

(

Φ (𝑡, 𝑠, 𝑥 (𝑠) + 𝜆
𝑘
ℎ (𝑠)) − Φ (𝑡, 𝑠, 𝑥 (𝑠))

𝜆
𝑘

−Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) ) 𝑑𝑠 󳨀→ 0,

(29)

for 𝑡 ∈ [𝑎, 𝑏] a.e. Moreover, using once again the mean value
theorem, one obtains

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

(

Φ (𝑡, 𝑠, 𝑥 (𝑠) + 𝜆
𝑘
ℎ (𝑠)) − Φ (𝑡, 𝑠, 𝑥 (𝑠))

𝜆
𝑘

−Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ (∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

Φ (𝑡, 𝑠, 𝑥 (𝑠) + 𝜆
𝑘
ℎ (𝑠)) − Φ (𝑡, 𝑠, 𝑥 (𝑠))

𝜆
𝑘

−Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠)

2

≤ (𝑛 + 1)
2

(∫

𝑡

𝑎

𝑐 (𝑡, 𝑠) |ℎ (𝑠)| 𝑑𝑠)

2

≤ (𝑛 + 1)
2

∫

𝑡

𝑎

𝑐
2

(𝑡, 𝑠) 𝑑𝑠 ∫

𝑏

𝑎

|ℎ (𝑠)|
2

𝑑𝑠

≤ (𝑛 + 1)
2

𝐶‖ℎ‖
𝐿
2 .

(30)

Consequently,

lim
𝑘󳨀→∞

∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

(

Φ (𝑡, 𝑠, 𝑥 (𝑠) + 𝜆
𝑘
ℎ (𝑠)) − Φ (𝑡, 𝑠, 𝑥 (𝑠))

𝜆
𝑘

−Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 = 0,

(31)

that is, (25) holds true.

Continuity of 𝑔󸀠. Let (𝑥
𝑘
) be a sequence converging in 𝐼𝛼

𝑎+
(𝐿
2

)

to some 𝑥
0
. Similarly, as mentioned above, one obtains

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑔
󸀠

(𝑥
𝑘
) − 𝑔
󸀠

(𝑥
0
)) ℎ

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2

= ∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

(Φ
𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠))

−Φ
𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠))) ℎ (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡

≤ ∫

𝑏

𝑎

(∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
Φ
𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠))

−Φ
𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠))

󵄨
󵄨
󵄨
󵄨
|ℎ (𝑠)| 𝑑𝑠)

2

𝑑𝑡

≤ ∫

𝑏

𝑎

∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
Φ
𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠))

−Φ
𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠))

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠 𝑑𝑡 (∫

𝑏

𝑎

|ℎ (𝑠)|
2

𝑑𝑠)

≤ (

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

)

2

× ∫

𝑏

𝑎

∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
Φ
𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠)) − Φ

𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠))

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠 𝑑𝑡

× ‖ℎ‖
2

𝐼
𝛼
𝑎+(𝐿
2
)

(32)

for any ℎ ∈ 𝐿2. Convergence

∫

𝑏

𝑎

∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
Φ
𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠)) − Φ

𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠))

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠 𝑑𝑡 󳨀→ 0 (33)

follows from (A
3
), the Krasnoselskii theorem on the continu-

ity of the Nemytskii operator and from (5).
So, 𝑔 being continuously differentiable in Gateaux sense

is continuously differentiable in Frechet sense.

Now, one will prove.

Lemma 6. For any fixed 𝑦 ∈ 𝐿2, the functional

𝜑 : 𝐼
𝛼

𝑎+
(𝐿
2

) ∋ 𝑥 󳨃󳨀→

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐷
𝛼

𝑎+
𝑥 (⋅)

−∫

⋅

𝑎

Φ (⋅, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 − 𝑦 (⋅)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2

∈ R

(34)

satisfies Palais-Smale condition.

Proof. It is easy to see that

𝜑 (𝑥) ≥

1

2

‖𝑥‖
2

𝐼
𝛼
𝑎+(𝐿
2
)
+

1

2

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2

𝐿
2

− 𝜑
1
(𝑥) + 𝜑

2
(𝑥) − 𝜑

3
(𝑥) ,

(35)
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for 𝑥 ∈ 𝐼𝛼
𝑎+
(𝐿
2

), where

𝜑
1
(𝑥) = ∫

𝑏

𝑎

(𝐷
𝛼

𝑎+
𝑥 (𝑡)) 𝑦 (𝑡) 𝑑𝑡,

𝜑
2
(𝑥) = ∫

𝑏

𝑎

(𝐷
𝛼

𝑎+
𝑥 (𝑡)) ∫

𝑡

𝑎

Φ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 𝑑𝑡,

𝜑
3
(𝑥) = ∫

𝑏

𝑎

𝑦 (𝑡) ∫

𝑡

𝑎

Φ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 𝑑𝑡.

(36)

Of course,

󵄨
󵄨
󵄨
󵄨
𝜑
1
(𝑥)

󵄨
󵄨
󵄨
󵄨
≤
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝐿
2‖𝑥‖𝐼

𝛼
𝑎+
(𝐿
2
)
. (37)

Moreover,

󵄨
󵄨
󵄨
󵄨
𝜑
2
(𝑥)

󵄨
󵄨
󵄨
󵄨
≤ ∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
𝐷
𝛼

𝑎+
𝑥 (𝑡)

󵄨
󵄨
󵄨
󵄨
∫

𝑡

𝑎

(𝑎 (𝑡, 𝑠) |𝑥 (𝑠)| + 𝑏 (𝑡, 𝑠)) 𝑑𝑠 𝑑𝑡

≤ ∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
𝐷
𝛼

𝑎+
𝑥 (𝑡)

󵄨
󵄨
󵄨
󵄨
((∫

𝑡

𝑎

𝑎
2

(𝑡, 𝑠) 𝑑𝑠)

1/2

× (∫

𝑡

𝑎

|𝑥 (𝑠)|
2

𝑑𝑠)

1/2

+ (𝑏 − 𝑎)
1/2

×(∫

𝑡

𝑎

𝑏
2

(𝑡, 𝑠) 𝑑𝑠)

1/2

)𝑑𝑡

≤ ‖𝑥‖
𝐿
2‖𝑥‖
𝐼
𝛼
𝑎+
(𝐿
2
)
‖𝑎‖
𝐿
2
(𝑃Δ)

+ (𝑏 − 𝑎)
1/2

‖𝑥‖
𝐼
𝛼
𝑎+
(𝐿
2
)
‖𝑏‖
𝐿
2
(𝑃Δ)

≤

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

‖𝑎‖
𝐿
2
(𝑃Δ)

‖𝑥‖
2

𝐼
𝛼
𝑎+(𝐿
2
)

+ (𝑏 − 𝑎)
1/2

‖𝑥‖
𝐼
𝛼
𝑎+
(𝐿
2
)
‖𝑏‖
𝐿
2
(𝑃Δ)

,

(38)
󵄨
󵄨
󵄨
󵄨
𝜑
3
(𝑥)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
∫

𝑡

𝑎

(𝑎 (𝑡, 𝑠) |𝑥 (𝑠)| + 𝑏 (𝑡, 𝑠)) 𝑑𝑠 𝑑𝑡

≤

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

‖𝑥‖
𝐼
𝛼
𝑎+
(𝐿
2
)

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝐿
2‖𝑎‖𝐿

2
(𝑃Δ)

+ (𝑏 − 𝑎)
1/2󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝐿
2‖𝑏‖𝐿

2
(𝑃Δ)

.

(39)

So,

𝜑 (𝑥) ≥

1

2

‖𝑥‖
2

𝐼
𝛼
𝑎+(𝐿
2
)
+

1

2

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2

𝐿
2 −

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝐿
2‖𝑥‖𝐼

𝛼
𝑎+
(𝐿
2
)

−

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

‖𝑎‖
𝐿
2
(𝑃Δ)

‖𝑥‖
2

𝐼
𝛼
𝑎+(𝐿
2
)

− (𝑏 − 𝑎)
1/2

‖𝑥‖
𝐼
𝛼
𝑎+
(𝐿
2
)
‖𝑏‖
𝐿
2
(𝑃Δ)

−

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

‖𝑥‖
𝐼
𝛼
𝑎+
(𝐿
2
)

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝐿
2‖𝑎‖𝐿

2
(𝑃Δ)

− (𝑏 − 𝑎)
1/2󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝐿
2‖𝑏‖𝐿

2
(𝑃Δ)

= 𝑑
0
‖𝑥‖
2

𝐼
𝛼
𝑎+(𝐿
2
)
+ 𝑑
1
‖𝑥‖
𝐼
𝛼
𝑎+
(𝐿
2
)
+ 𝑑
2
,

(40)

for 𝑥 ∈ 𝐼𝛼
𝑎+
(𝐿
2

), where

𝑑
0
= (

1

2

−

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

‖𝑎‖
𝐿
2
(𝑃Δ)

) ,

𝑑
1
= −

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝐿
2 − (𝑏 − 𝑎)

1/2

‖𝑏‖
𝐿
2
(𝑃Δ)

−

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝐿
2‖𝑎‖𝐿

2
(𝑃Δ)

,

𝑑
2
=

1

2

󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

2

𝐿
2 − (𝑏 − 𝑎)

1/2󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩𝐿
2‖𝑏‖𝐿

2
(𝑃Δ)

.

(41)

Since,𝑑
0
> 0 (by (A

1
)), therefore𝜑 is coercive, that is,𝜑(𝑥) →

∞ as ‖𝑥‖
𝐼
𝛼
𝑎+
(𝐿
2
)
→ ∞.

Let us fix a sequence (𝑥
𝑘
) ⊂ 𝐼
𝛼

𝑎+
(𝐿
2

) such that

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑥
𝑘
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑀 ∀ 𝑘 ∈ N and some 𝑀 > 0,

𝜑
󸀠

(𝑥
𝑘
) 󳨀→ 0.

(42)

Thefirst condition and coercivity of𝜑 imply that the sequence
(𝑥
𝑘
) is bounded. So, without loss of the generality, we may

assume that it weakly converges in 𝐼
𝛼

𝑎+
(𝐿
2

) to some 𝑥
0
.

Lemma 5 implies that 𝜑 is of class 𝐶1 and

𝜑
󸀠

(𝑥) ℎ = ∫

𝑏

𝑎

𝐷
𝛼

𝑎+
𝑥 (𝑡)𝐷

𝛼

𝑎+
ℎ (𝑡) 𝑑𝑡 − ∫

𝑏

𝑎

𝑦 (𝑡)𝐷
𝛼

𝑎+
ℎ (𝑡) 𝑑𝑡

− ∫

𝑏

𝑎

𝐷
𝛼

𝑎+
ℎ (𝑡) ∫

𝑡

𝑎

Φ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 𝑑𝑡

− ∫

𝑏

𝑎

𝐷
𝛼

𝑎+
𝑥 (𝑡) ∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) 𝑑𝑠 𝑑𝑡

+ ∫

𝑏

𝑎

𝑦 (𝑡) ∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) 𝑑𝑠 𝑑𝑡

+ ∫

𝑏

𝑎

(∫

𝑡

𝑎

Φ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠)

× (∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (𝑠) 𝑑𝑠) 𝑑𝑡𝑤

(43)

for 𝑥, ℎ ∈ 𝐼𝛼
𝑎+
(𝐿
2

). Consequently,

(𝜑
󸀠

(𝑥
𝑘
) − 𝜑
󸀠

(𝑥
0
)) (𝑥
𝑘
− 𝑥
0
)

=
󵄩
󵄩
󵄩
󵄩
𝑥
𝑘
− 𝑥
0

󵄩
󵄩
󵄩
󵄩

2

𝐼
𝛼
𝑎+(𝐿
2
)
+

6

∑

𝑖=1

𝜓
𝑖
(𝑥
𝑘
) ,

(44)
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where

𝜓
1
(𝑥
𝑘
) = −∫

𝑏

𝑎

(𝐷
𝛼

𝑎+
𝑥
𝑘
(𝑡) − 𝐷

𝛼

𝑎+
𝑥
0
(𝑡))

× (∫

𝑡

𝑎

(Φ (𝑡, 𝑠, 𝑥
𝑘
(𝑠))

−Φ (𝑡, 𝑠, 𝑥
0
(𝑠))) 𝑑𝑠) 𝑑𝑡,

(45)

𝜓
2
(𝑥
𝑘
) = − ∫

𝑏

𝑎

𝐷
𝛼

𝑎+
𝑥
𝑘
(𝑡)

× (∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠)) (𝑥

𝑘
(𝑠) − 𝑥

0
(𝑠)) 𝑑𝑠) 𝑑𝑡,

(46)

𝜓
3
(𝑥
𝑘
) = ∫

𝑏

𝑎

𝐷
𝛼

𝑎+
𝑥
0
(𝑡)

× (∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠)) (𝑥

𝑘
(𝑠) − 𝑥

0
(𝑠)) 𝑑𝑠) 𝑑𝑡,

(47)

𝜓
4
(𝑥
𝑘
) = ∫

𝑏

𝑎

𝑦 (𝑡)

× (∫

𝑏

𝑎

(Φ
𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠)) − Φ

𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠)))

× (𝑥
𝑘
(𝑠) − 𝑥

0
(𝑠)) 𝑑𝑠) 𝑑𝑡,

(48)

𝜓
5
(𝑥
𝑘
) = ∫

𝑏

𝑎

(∫

𝑡

𝑎

Φ(𝑡, 𝑠, 𝑥
𝑘
(𝑠)) 𝑑𝑠)

× (∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠)) (𝑥

𝑘
(𝑠) − 𝑥

0
(𝑠)) 𝑑𝑠) 𝑑𝑡,

(49)

𝜓
6
(𝑥
𝑘
) = − ∫

𝑏

𝑎

(∫

𝑡

𝑎

Φ(𝑡, 𝑠, 𝑥
0
(𝑠)) 𝑑𝑠)

× (∫

𝑡

𝑎

Φ
𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠)) (𝑥

𝑘
(𝑠) − 𝑥

0
(𝑠)) 𝑑𝑠) 𝑑𝑡.

(50)

The left-hand side converges to 0 because

(𝜑
󸀠

(𝑥
𝑘
) − 𝜑
󸀠

(𝑥
0
)) (𝑥
𝑘
− 𝑥
0
) = 𝜑
󸀠

(𝑥
𝑘
) (𝑥
𝑘
− 𝑥
0
)

− 𝜑
󸀠

(𝑥
0
) (𝑥
𝑘
− 𝑥
0
)

(51)

and 𝜑󸀠(𝑥
𝑘
) → 0 as well as 𝑥

𝑘
⇀ 𝑥
0
weakly in 𝐼𝛼

𝑎+
(𝐿
2

). Terms
𝜓
𝑖
(𝑥
𝑘
), 𝑖 = 1, . . . , 6, also converge to 0. This follows from the

strong convergence of the sequence (𝑥
𝑘
) to 𝑥
0
in 𝐿2 and weak

convergence of the sequence (𝐷𝛼
𝑎+
𝑥
𝑘
(𝑡)) to𝐷𝛼

𝑎+
𝑥
0
(𝑡) in 𝐿2 (cf.

Lemma 3) as well as from the Krasnoselskii theorem on the
continuity of the Nemytskii operator.

Indeed, from the Krasnoselskii theorem, it follows that
the sequence

(∫

⋅

𝑎

(Φ (⋅, 𝑠, 𝑥
𝑘
(𝑠)) − Φ (⋅, 𝑠, 𝑥

0
(𝑠))) 𝑑𝑠) (52)

converges pointwise a.e. on [𝑎, 𝑏] to the zero function.
Moreover, in the same way as in the proof of Lemma 5, one
can check that the sequence

(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

⋅

𝑎

(Φ (⋅, 𝑠, 𝑥
𝑘
(𝑠)) − Φ (⋅, 𝑠, 𝑥

0
(𝑠))) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

) (53)

is bounded on [𝑎, 𝑏] by an integrable function. This means
that

∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

(Φ (𝑡, 𝑠, 𝑥
𝑘
(𝑠)) − Φ (𝑡, 𝑠, 𝑥

0
(𝑠))) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 󳨀→ 0, (54)

that is, the sequence (∫

⋅

𝑎

(Φ(⋅, 𝑠, 𝑥
𝑘
(𝑠)) − Φ(⋅, 𝑠, 𝑥

0
(𝑠)))𝑑𝑠)

converges in 𝐿2 to the zero function.
Similarly, if 𝜒

𝑘
(𝑡, 𝑠), 𝑘 ∈ N, are functions belonging to

𝐿
2

(𝑃
Δ
), commonly bounded on 𝑃

Δ
by a function 𝜒 ∈ 𝐿

2

(𝑃
Δ
),

then the sequence

(∫

⋅

𝑎

𝜒
𝑘
(⋅, 𝑠) (𝑥

𝑘
(𝑠) − 𝑥

0
(𝑠)) 𝑑𝑠) (55)

converges pointwise a.e. on [𝑎, 𝑏] to the zero function.
Moreover,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

𝜒(𝑡, 𝑠) (𝑥
𝑘
(𝑠) − 𝑥

0
(𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ (∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
𝜒
𝑘
(𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝑥
𝑘
(𝑠) − 𝑥

0
(𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑𝑠)

2

≤ (∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
𝜒 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠)(∫

𝑏

𝑎

󵄨
󵄨
󵄨
󵄨
𝑥
𝑘
(𝑠) − 𝑥

0
(𝑠)
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠)

≤ const(∫
𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
𝜒 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠) ,

(56)

where const is a constant which bounds the sequence (𝑥
𝑘
) in

𝐿
2. So, sequence (55) converges in 𝐿

2 to the zero function.
Applying these facts to the functions

𝜒
𝑘
(𝑡, 𝑠) = Φ

𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠)) ,

𝜒
𝑘
(𝑡, 𝑠) = Φ

𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠)) ,

𝜒
𝑘
(𝑡, 𝑠) = Φ

𝑥
(𝑡, 𝑠, 𝑥

𝑘
(𝑠)) − Φ

𝑥
(𝑡, 𝑠, 𝑥

0
(𝑠)) ,

(57)

and using (54) one asserts that 𝜓
𝑖
(𝑥
𝑘
) → 0, for 𝑖 = 1, . . . , 6.

Consequently, ‖𝑥
𝑘
− 𝑥
0
‖
2

𝐼
𝛼
𝑎+
(𝐿
2
)
→ 0, that is, 𝜑 satisfies

Palais-Smale condition.

Now, one will show that 𝑓 satisfies assumption (𝛽) from
Theorem 4. More precisely, one will prove a more general
result, namely.
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Lemma 7. If Ψ = Ψ(𝑡, 𝑠, ℎ) : 𝑃
Δ
×R𝑛 → R𝑛 is

(𝐵
1
) measurable in (𝑡, 𝑠) ∈ 𝑃

Δ
,

(𝐵
2
) there exists a function 𝑑 ∈ 𝐿2(𝑃

Δ
) such that

󵄨
󵄨
󵄨
󵄨
Ψ (𝑡, 𝑠, ℎ

1
) − Ψ (𝑡, 𝑠, ℎ

2
)
󵄨
󵄨
󵄨
󵄨
≤ 𝑑 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
ℎ
1
− ℎ
2

󵄨
󵄨
󵄨
󵄨

(58)

for (𝑡, 𝑠) ∈ 𝑃
Δ
a.e., ℎ

1
, ℎ
2
∈ R𝑛,

∫

𝑡

𝑎

𝑑
2

(𝑡, 𝑠) 𝑑𝑠 ≤ 𝐷 (59)

for 𝑡 ∈ [𝑎, 𝑏] a.e. and some 𝐷 > 0,
(𝐵
3
) Ψ(⋅, ⋅, 0) ∈ 𝐿2(𝑃

Δ
),

then the operator

Λ : 𝐼
𝛼

a+ (𝐿
2

) ∋ ℎ 󳨃󳨀→ 𝐷
𝛼

𝑎+
ℎ (⋅) − ∫

⋅

𝑎

Ψ (⋅, 𝑠, ℎ (𝑠)) 𝑑𝑠 ∈ 𝐿
2

(60)

is well defined, “one-one” and “onto”.

Proof. First, let us observe that Λ is well defined. Indeed, for
any ℎ ∈ 𝐿2 (in particular, for ℎ ∈ 𝐼𝛼

𝑎+
(𝐿
2

)), one has

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑎

Ψ (𝑡, 𝑠, ℎ (𝑠)) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

𝑎

|Ψ (𝑡, 𝑠, ℎ (𝑠)) − Ψ (𝑡, 𝑠, 0)| 𝑑𝑠

+ ∫

𝑡

𝑎

|Ψ (𝑡, 𝑠, 0)| 𝑑𝑠

≤ ∫

𝑡

𝑎

𝑑 (𝑡, 𝑠) |ℎ (𝑠)| 𝑑𝑠

+ ∫

𝑡

𝑎

|Ψ (𝑡, 𝑠, 0)| 𝑑𝑠

≤ (∫

𝑡

𝑎

𝑑
2

(𝑡, 𝑠) 𝑑𝑠)

1/2

(∫

𝑏

𝑎

|ℎ (𝑠)|
2

𝑑𝑠)

1/2

+ ∫

𝑡

𝑎

|Ψ (𝑡, 𝑠, 0)| 𝑑𝑠,

(61)

for 𝑡 ∈ [𝑎, 𝑏] a.e., and the right-hand side belongs to 𝐿2.
Now, let one consider some auxiliary problem

𝐷
𝛼

𝑎+
ℎ (𝑡) = V (𝑡) , 𝑡 ∈ [𝑎, 𝑏] a.e.,

𝐼
1−𝛼

𝑎+
ℎ (𝑎) = 0.

(62)

with a fixed V ∈ 𝐿
2. Of course, problem (62) has a unique

solution ℎV(𝑡) = 𝐼
𝛼

𝑎+
V(𝑡) in the space 𝐼𝛼

𝑎+
(𝐿
2

) (cf. [11]).
To end the proof, it is sufficient to show that the operator

𝐾 : 𝐿
2

∋ V 󳨃󳨀→ ∫

⋅

𝑎

Ψ (⋅, 𝑠, ℎV (𝑠)) 𝑑𝑠 + 𝑔 (⋅) ∈ 𝐿
2 (63)

with any fixed 𝑔 ∈ 𝐿2 possesses a unique fixed point.

One will show that there exist constants 𝜅 ∈ (0, 1), 𝑙 ∈ N

such that
󵄩
󵄩
󵄩
󵄩
𝐾V
1
− 𝐾V
2

󵄩
󵄩
󵄩
󵄩𝑙
≤ 𝜅

󵄩
󵄩
󵄩
󵄩
V
1
− V
2

󵄩
󵄩
󵄩
󵄩
, (64)

for any V
1
, V
2
∈ 𝐿
2, where ‖ ⋅ ‖

𝑙
is the Bielecki norm in 𝐿2 given

by

‖V‖2
𝑙
= ∫

𝑏

𝑎

𝑒
−𝑙𝑡

|V (𝑡)|2𝑑𝑡, V ∈ 𝐿2. (65)

Indeed, one has
󵄩
󵄩
󵄩
󵄩
𝐾V
1
− 𝐾V
2

󵄩
󵄩
󵄩
󵄩

2

𝑙

= ∫

𝑏

𝑎

𝑒
−𝑙𝑡󵄨
󵄨
󵄨
󵄨
𝐾V
1
(𝑡) − 𝐾V

2
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡

≤ ∫

𝑏

𝑎

𝑒
−𝑙𝑡

(∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
󵄨
Ψ (𝑡, 𝑠, ℎV1

(𝑠)) − Ψ (𝑡, 𝑠, ℎV2
(𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠)

2

𝑑𝑡

≤ ∫

𝑏

𝑎

𝑒
−𝑙𝑡

(∫

𝑡

𝑎

𝑑 (𝑡, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
ℎV1

(𝑠) − ℎV2
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠)

2

𝑑𝑡

= ∫

𝑏

𝑎

𝑒
−𝑙𝑡

(∫

𝑡

𝑎

𝑑 (𝑡, 𝑠)
󵄨
󵄨
󵄨
󵄨
𝐼
𝛼

𝑎+
(V
1
− V
2
) (𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠)

2

𝑑𝑡

≤ ∫

𝑏

𝑎

𝑒
−𝑙𝑡

∫

𝑡

𝑎

𝑑
2

(𝑡, 𝑠) 𝑑𝑠 ∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
𝐼
𝛼

𝑎+
(V
1
− V
2
) (𝑠)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠 𝑑𝑡

≤ 𝐷(

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

)

2

∫

𝑏

𝑎

𝑒
−𝑙𝑡

∫

𝑡

𝑎

󵄨
󵄨
󵄨
󵄨
(V
1
− V
2
) (𝑠)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑠 𝑑𝑡

≤ 𝐷(

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

)

2

1

𝑙

∫

𝑏

𝑎

𝑒
−𝑙𝑡󵄨
󵄨
󵄨
󵄨
(V
1
− V
2
) (𝑡)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡

=

𝐷

𝑙

(

(𝑏 − 𝑎)
𝛼

Γ (𝛼 + 1)

)

2

󵄩
󵄩
󵄩
󵄩
V
1
− V
2

󵄩
󵄩
󵄩
󵄩

2

𝑙
,

(66)

for V
1
, V
2
∈ 𝐿
2. It is sufficient to choose 𝑙 ∈ N, such that

√𝐷/𝑘((𝑏 − 𝑎)
𝛼

/Γ(𝛼 + 1)) < 1.

Applying Lemma 7 to the function

Ψ (𝑡, 𝑠, ℎ) = Φ
𝑥
(𝑡, 𝑠, 𝑥 (𝑠)) ℎ (67)

with a fixed 𝑥 ∈ 𝐼𝛼
𝑎+
(𝐿
2

), one obtains the following.

Lemma 8. Operator 𝑓 satisfies (𝛽).

Theorem 4 and Lemmas 5, 6, and 8 imply the following.

Theorem 9. Problem (1) possesses a unique solution 𝑥
𝑔

∈

𝐼
𝛼

𝑎+
(𝐿
2

), for any 𝑔 ∈ 𝐿2, and the operator

𝐿
2

∋ 𝑔 󳨃󳨀→ 𝑥
𝑔
∈ 𝐼
𝛼

𝑎+
(𝐿
2

) (68)

is differentiable in Frechet sense.

Remark 10. When 𝛼 ∈ (1/2, 1), all elements of 𝐼𝛼
𝑎+
(𝐿
2

)

are continuous (cf. [9], Theorem 3.6). Consequently, growth
condition (A

3
) can be slightly weakened just like in [8].
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4. Conclusions

In the paper, sensitivity of a fractional Integrodifferential
Cauchy problem of Volterra type has been investigated.
Namely, it has been proved that problem (1) possesses
(under the appropriate assumptions) a unique solution 𝑥

𝑔
∈

𝐼
𝛼

𝑎+
(𝐿
2

) for any fixed functional parameter 𝑔 ∈ 𝐿
2 and the

dependence (68) is differentiable in Frechet sense. In the next
paper, sensitivity of such a problem with an integral term of
Fredholm type as well as of a problem containing the both
terms will be considered.
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