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We prove a coupled coincidence point theorem for mappings F :X×X → X and g :X → X, where
F has the mixed g-monotone property, in partially ordered metric spaces via implicit relations. Our
result extends and improves several results in the literature. Examples are also given to illustrate
our work.

1. Introduction and Preliminaries

The notion of coupled fixed point was introduced by Guo and Lakshmikantham [1] in 1987.
Later, Bhaskar and Lakshmikantham [2] defined the notions of mixed monotone mapping
and proved some coupled fixed point theorems for the mixed monotone mappings. In this
pioneer paper [2], they also discussed the existence and uniqueness of solution for a periodic
boundary value problem. We start with recalling these basic concepts.

Definition 1.1 (see [2]). Let (X,�) be a partially ordered set and F : X ×X → X. The mapping
F is said to have the mixed monotone property if F(x, y) is monotone nondecreasing in x and
is monotone nonincreasing in y, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 =⇒ F
(
x1, y

) � F(x2, y
)
,

y1, y2 ∈ X, y1 � y2 =⇒ F
(
x, y1

) � F(x, y2
)
.

(1.1)
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Definition 1.2 (see [2]). An element (x, y) ∈ X × X is called a coupled fixed point of the
mapping F : X ×X → X if

x = F
(
x, y

)
, y = F

(
y, x

)
. (1.2)

The main results of Bhaskar and Lakshmikantham in [2] are the following theorems.

Theorem 1.3 (see [2]). Let (X,�) be a partially ordered set and suppose there exists a metric d on X
such that (X, d) is a complete metric space. Let F : X ×X → X be a continuous mapping having the
mixed monotone property on X. Assume that there exists a k ∈ [0, 1) with

d
(
F
(
x, y

)
, F(u, v)

) ≤ k

2
[
d(x, u) + d

(
y, v

)]
, (1.3)

for all x � u and y � v. If there exist two elements x0, y0 ∈ X with

x0 � F
(
x0, y0

)
, y0 � F

(
y0, x0

)
, (1.4)

then there exist x, y ∈ X such that

x = F
(
x, y

)
, y = F

(
y, x

)
. (1.5)

Theorem 1.4 (see [2]). Let (X,�) be a partially ordered set and suppose there exists a metric d on X
such that (X, d) is a complete metric space. Assume that X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn � x for all n,

(ii) if a nonincreasing sequence {yn} → y, then y � yn for all n.
Let F : X × X → X be a mapping having the mixed monotone property on X. Assume that there
exists a k ∈ [0, 1) with

d
(
F
(
x, y

)
, F(u, v)

) ≤ k

2
[
d(x, u) + d

(
y, v

)]
, (1.6)

for all x � u and y � v. If there exist two elements x0, y0 ∈ X with

x0 � F
(
x0, y0

)
, y0 � F

(
y0, x0

)
, (1.7)

then there exist x, y ∈ X such that

x = F
(
x, y

)
, y = F

(
y, x

)
. (1.8)

Afterwards, a number of coupled coincidence/fixed point theorems and their applica-
tion to integral equations, matrix equations, and periodic boundary value problem have been
established (e.g., see [3–28] and references therein). In particular, Lakshmikantham and Ćirić
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[7] established coupled coincidence and coupled fixed point theorems for two mappings F :
X ×X → X and g : X → X, where F has the mixed g-monotone property and the functions
F and g commute, as an extension of the fixed point results in [2]. Choudhury and Kundu in
[15] introduced the concept of compatibility and proved the result established in [7] under
a different set of conditions. Precisely, they established their result by assuming that F and g
are compatible mappings. For the sake of completeness, we remind these characterizations.

Definition 1.5 (see [7]). Let (X,�) be a partially ordered set and let F : X × X → X and
g : X → X are two mappings. We say F has the mixed g-monotone property if F(x, y) is
g-nondecreasing in its first argument and is g-nonincreasing in its second argument, that is,
for any x, y ∈ X,

x1, x2 ∈ X, gx1 � gx2 =⇒ F
(
x1, y

) � F(x2, y
)
,

y1, y2 ∈ X, gy1 � gy2 =⇒ F
(
x, y1

) � F(x, y2
)
.

(1.9)

Definition 1.6 (see [7]). An element (x, y) ∈ X × X is called a coupled coincident point of the
mappings F : X ×X → X and g : X → X if

gx = F
(
x, y

)
, gy = F

(
y, x

)
. (1.10)

Definition 1.7 (see [15]). The mappings F and g where F : X ×X → X,g : X → X are said to
be compatible if

lim
n→∞

d
(
gF

(
xn, yn

)
, F

(
gxn, gyn

))
= 0,

lim
n→∞

d
(
gF

(
yn, xn

)
, F

(
gyn, gxn

))
= 0,

(1.11)

where {xn} and {yn} are sequences in X such that limn→∞F(xn, yn) = limn→∞gxn = x and
limn→∞F(yn, xn) = limn→∞gyn = y for all x, y ∈ X are satisfied.

Luong and Thuan [11] slightly extended the concept of compatible mappings into
the context of partially ordered metric spaces, namely, O-compatible mappings and proved
some coupled coincidence point theorems for suchmappings in partially ordered generalized
metric spaces.

The concept of O-compatible mappings is stated as follows.

Definition 1.8 (cf. [11]). Let (X,�, d) be a partially ordered metric space. The mappings F :
X ×X → X and g : X → X are said to be O-compatible if

lim
n→∞

d
(
gF

(
xn, yn

)
, F

(
gxn, gyn

))
= 0,

lim
n→∞

d
(
gF

(
yn, xn

)
, F

(
gyn, gxn

))
= 0,

(1.12)
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where {xn} and {yn} are sequences in X such that {gxn}, {gyn} are monotone and

lim
n→∞

F
(
xn, yn

)
= lim

n→∞
gxn = x,

lim
n→∞

F
(
yn, xn

)
= lim

n→∞
gyn = y,

(1.13)

for all x, y ∈ X are satisfied.

Let (X,�, d) be a partially metric space. If F : X × X → X and g : X → X are
compatible then they are O-compatible. However, the converse is not true. The following
example shows that there exist mappings that are O-compatible but not compatible.

Example 1.9 (see [11]). Let X = {0} ∪ [1/2, 2] with the usual metric d(x, y) = |x − y|, for all
x, y ∈ X. We consider the following order relation on X:

x, y ∈ X x � y ⇐⇒ x = y or
(
x, y

) ∈ {(0, 0), (0, 1), (1, 1)}. (1.14)

Let F : X ×X → X be given by

F
(
x, y

)
=

⎧
⎨

⎩
0, if x, y ∈ {0} ∪

[
1
2
, 1
]
,

1, otherwise,
(1.15)

and g : X → X be defined by

gx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if x = 0,

1, if
1
2
≤ x ≤ 1,

2 − x, if 1 < x ≤ 3
2
,

1
2
, if

3
2
< x ≤ 2.

(1.16)

Then F and g are O-compatible but not compatible.

Indeed, let {xn}, {yn} in X such that {gxn}, {gyn} are monotone and

lim
n→∞

F
(
xn, yn

)
= lim

n→∞
gxn = x,

lim
n→∞

F
(
yn, xn

)
= lim

n→∞
gyn = y,

(1.17)

for some x, y ∈ X. Since F(xn, yn) = F(yn, xn) ∈ {0, 1} for all n, x = y ∈ {0, 1}. The case
x = y = 1 is impossible. In fact, if x = y = 1. Then since {gxn}, {gyn} are monotone, gxn =
gyn = 1 for all n ≥ n1, for some n1. That is xn, yn ∈ [1/2, 1] for all n ≥ n1. This implies
F(xn, yn) = F(yn, xn) = 0, for all n ≥ n1, which is a contradiction. Thus x = y = 0. That implies
gxn = gyn = 0 for all n ≥ n2, for some n2. That is xn = yn = 0 for all n ≥ n2. Thus, for all n ≥ n2,

d
(
gF

(
xn, yn

)
, F

(
gxn, gyn

))
= d

(
gF

(
yn, xn

)
, F

(
gyn, gxn

))
= 0. (1.18)
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Hence

lim
n→∞

d
(
gF

(
xn, yn

)
, F

(
gxn, gyn

))
= 0,

lim
n→∞

d
(
gF

(
yn, xn

)
, F

(
gyn, gxn

))
= 0

(1.19)

hold. Therefore F and g are O-compatible.
Now let {xn}, {yn} in X be defined by

xn = yn = 1 +
1

n + 1
, n = 1, 2, 3, . . . . (1.20)

We have

F
(
xn, yn

)
= F

(
yn, xn

)
= F

(
1 +

1
n + 1

, 1 +
1

n + 1

)
= 1,

gxn = gyn = g
(
1 +

1
n + 1

)
= 1 − 1

n + 1
−→ 1 as n −→ ∞,

(1.21)

but

d
(
gF

(
xn, yn

)
, F

(
gxn, gyn

))
= d

(
F

(
1 − 1

n + 1
, 1 − 1

n + 1

)
, g1

)

= d(0, 1) = 1 � 0 as n −→ ∞.

(1.22)

Thus, F and g are not compatible.
Implicit relation on metric spaces has been used in many articles (see, e.g., [29–31] and

references therein). In this paper, we use the following implicit relation to prove a coupled
coincidence point theorem for mappings F : X × X → X and g : X → X, where F has the
mixed g-monotone property and F, g are O-compatible.

Let Φ denote all functions ϕ : R
+ → R

+ which satisfy

(i) ϕ is continuous,

(ii) ϕ(t) < t for each t > 0.

Obviously, if ϕ ∈ Φ then ϕ(0) = 0.
Let H denote all continuous functionsH : (R+)5 → R which satisfy

(H1) H(t1, t2, t3, t4, t5) is nonincreasing in t2 and t5,

(H2) there exists a function ϕ ∈ Φ such that

H(u, u + v, v,w, u + v) ≤ 0 implies u ≤ ϕ(max{v,w}). (1.23)

It is easy to check that the following functions are in H:

(i) H1(t1, t2, t3, t4, t5) = t1 − αt2 − βt3 − γt4 − θt5, where α, β, γ, θ are nonnegative real
numbers satisfying 2α + β + γ + 2θ < 1;
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(ii) H2(t1, t2, t3, t4, t5) = t1 − αmax{t2/2, t3, t4, t5/2}, where α ∈ (0, 1);

(iii) H3(t1, t2, t3, t4, t5) = t1 − ϕ(max{t3, t4}), where ϕ ∈ Φ.

In this paper, we prove a coupled coincidence point theorem for mappings satisfying
such implicit relations.

2. Coupled Coincidence Point Theorem

Now we are going to prove our main result.

Theorem 2.1. Let (X, d,�) be a partially ordered complete metric space. Suppose F : X × X → X
and g : X → X are mappings such that F has the mixed g-monotone property. Assume that there
existsH ∈ H such that

H

(
d
(
F
(
x, y

)
, F(u, v)

)
, d

(
F
(
x, y

)
, gx

)
+ d

(
F(u, v), gu

)
,

d
(
gx, gu

)
, d

(
gy, gv

)
, d

(
F
(
x, y

)
, gu

)
+ d

(
F(u, v), gx

)
)

≤ 0, (2.1)

for all x, y, u, v ∈ X with gx � gu and gy � gv. Suppose F(X ×X) ⊆ g(X), g is continuous and g
is O-compatible with F. Suppose either

(a) F is continuous or;

(b) X has the following property:

(i) if a nondecreasing sequence {xn} → x, then gxn � gx for all n,

(ii) if a nonincreasing sequence {yn} → y, then gy � gyn for all n.

If there exist two elements x0, y0 ∈ X with

gx0 � F
(
x0, y0

)
, gy0 � F

(
y0, x0

)
, (2.2)

then F and g have a coupled coincidence point in X.

Proof. Let x0, y0 ∈ X be such that gx0 � F(x0, y0) and gy0 � F(y0, x0). Since F(X ×X) ⊆ g(X),
we construct the sequences {xn} and {yn} in X as follows:

gxn+1 = F
(
xn, yn

)
, gyn+1 = F

(
yn, xn

) ∀n ≥ 0. (2.3)

By using the mathematical induction and the mixed g-monotone property of F, we can show
that

gxn � gxn+1, gyn � gyn+1, ∀n ≥ 0. (2.4)
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If there is some n0 ∈ N
∗ such that gxn0 = gxn0+1 and gyn0 = gyn0+1 then

gxn0 = gxn0+1 = F
(
xn0 , yn0

)
, gyn0 = gyn0+1 = F

(
yn0 , xn0

)
, (2.5)

that means (xn0 , yn0) is a coupled coincidence point of F and g. Thus we may assume that
max{d(gxn+1, gxn), d(gyn+1, gyn)} > 0 for all n.

Since gxn+1 � gxn and gyn+1 � gyn, from (2.1), we have

H

(
d
(
F
(
xn+1, yn+1

)
, F

(
xn, yn

))
, d

(
F
(
xn+1, yn+1

)
, gxn+1

)
+ d

(
F
(
xn, yn

)
, gxn

)
,

d
(
gxn+1, gxn

)
, d

(
gyn+1, gyn

)
, d

(
F
(
xn+1, yn+1

)
, gxn

)
+ d

(
F
(
xn, yn

)
, gxn+1

)
)

≤ 0 (2.6)

or

H

(
d
(
gxn+2, gxn+1

)
, d

(
gxn+2, gxn+1

)
+ d

(
gxn+1, gxn

)
,

d
(
gxn+1, gxn

)
, d

(
gyn+1, gyn

)
, d

(
gxn+2, gxn

)
)

≤ 0. (2.7)

By the properties ofH, we have

H

(
d
(
gxn+2, gxn+1

)
, d

(
gxn+2, gxn+1

)
+ d

(
gxn+1, gxn

)
,

d
(
gxn+1, gxn

)
, d

(
gyn+1, gyn

)
, d

(
gxn+2, gxn+1

)
+ d

(
gxn+1, gxn

)
)

≤ 0, (2.8)

which implies that

d
(
gxn+2, gxn+1

) ≤ ϕ(max
{
d
(
gxn+1, gxn

)
, d

(
gyn+1, gyn

)})
. (2.9)

Similarly, one can show that

d
(
gyn+2, gyn+1

) ≤ ϕ(max
{
d
(
gxn+1, gxn

)
, d

(
gyn+1, gyn

)})
. (2.10)

From (2.9) and (2.10), we have

max
{
d
(
gxn+2, gxn+1

)
, d

(
gyn+2, gyn+1

)} ≤ ϕ(max
{
d
(
gxn+1, gxn

)
, d

(
gyn+1, gyn

)})
, (2.11)

which implies

max
{
d
(
gxn+2, gxn+1

)
, d

(
gyn+2, gyn+1

)}
< max

{
d
(
gxn+1, gxn

)
, d

(
gyn+1, gyn

)}
. (2.12)

This means that {dn := max{d(gxn+1, gxn), d(gyn+1, gyn)}} is a decreasing sequence of
positive real numbers. So there is a d ≥ 0 such that

lim
n→∞

dn = lim
n→∞

max
{
d
(
gxn+1, gxn

)
, d

(
gyn+1, gyn

)}
= d. (2.13)
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We will show that d = 0. Assume, to the contrary, that d > 0. Taking n → ∞ in (2.11), we
have

d ≤ lim
n→∞

ϕ(dn) = ϕ(d) < d, (2.14)

which is a contradiction. Thus d = 0.
In what follows, we will show that {gxn} and {gyn} are Cauchy sequences. Suppose,

to the contrary that at least one of {gxn} or {gyn} is not a Cauchy sequence. This means
that there exists an ε > 0 for wich we can find subsequences {gxn(k)}, {gxm(k)} of {gxn} and
{gyn(k)}, {gym(k)} of {gyn}with n(k) > m(k) ≥ k such that

max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)} ≥ ε. (2.15)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) > m(k) ≥ k and satisfies (2.15). Then

max
{
d
(
gxn(k)−1, gxm(k)

)
, d

(
gyn(k)−1, gym(k)

)}
< ε. (2.16)

Using the triangle inequality and (2.16), we have

d
(
gxn(k), gxm(k)

) ≤ d(gxn(k), gxn(k)−1
)
+ d

(
gxn(k)−1, gxm(k)

)

< d
(
gxn(k), gxn(k)−1

)
+ ε,

d
(
gyn(k), gym(k)

) ≤ d(gyn(k), gyn(k)−1
)
+ d

(
gyn(k)−1, gym(k)

)

< d
(
gyn(k), gyn(k)−1

)
+ ε.

(2.17)

From (2.15) and (2.17), we have

ε ≤ max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)}

< max
{
d
(
gxn(k), gxn(k)−1

)
, d

(
gyn(k), gyn(k)−1

)}
+ ε.

(2.18)

Letting k → ∞ in the inequalities above and using (2.13) we get

lim
k→∞

max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)}
= ε. (2.19)

By the triangle inequality

d
(
gxn(k), gxm(k)

) ≤ d(gxn(k), gxn(k)−1
)
+ d

(
gxn(k)−1, gxm(k)−1

)
+ d

(
gxm(k)−1, gxm(k)

)
,

d
(
gyn(k), gym(k)

) ≤ d(gyn(k), gyn(k)−1
)
+ d

(
gyn(k)−1, gym(k)−1

)
+ d

(
gym(k−1, gym(k)

)
.

(2.20)
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From the last two inequalities and (2.15), we have

ε ≤ max
{
d
(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)}

≤ max
{
d
(
gxn(k), gxn(k)−1

)
, d

(
gyn(k), gyn(k)−1

)}

+max
{
d
(
gxm(k)−1, gxm(k)

)
, d

(
gym(k)−1, gym(k)

)}

+max
{
d
(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)}
.

(2.21)

Again, by the triangle inequality,

d
(
gxn(k)−1, gxm(k)−1

) ≤ d(gxn(k)−1, gxm(k)
)
+ d

(
gxm(k), gxm(k)−1

)

< d
(
gxm(k), gxm(k)−1

)
+ ε,

d
(
gyn(k)−1, gym(k)−1

) ≤ d(gyn(k)−1, gym(k)
)
+ d

(
gym(k), gym(k)−1

)

< d
(
gym(k), gym(k)−1

)
+ ε.

(2.22)

Therefore,

max
{
d
(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)}

< max
{
d
(
gxm(k), gxm(k)−1

)
, d

(
gym(k), gym(k)−1

)}
+ ε.

(2.23)

From (2.21) and (2.23), we have

ε −max
{
d
(
gxn(k), gxn(k)−1

)
, d

(
gyn(k), gyn(k)−1

)}

−max
{
d
(
gxm(k)−1, gxm(k)

)
, d

(
gym(k)−1, gym(k)

)}

≤ max
{
d
(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)}

< max
{
d
(
gxm(k), gxm(k)−1

)
, d

(
gym(k), gym(k)−1

)}
+ ε.

(2.24)

Taking k → ∞ in the inequalities above and using (2.13), we get

lim
k→∞

max
{
d
(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)}
= ε. (2.25)

From (2.19) and (2.25), the sequences {d(gxn(k), gxm(k))}, {d(gyn(k), gym(k))}, {d(gxn(k)−1,
gxm(k)−1)}, and {d(gyn(k)−1, gym(k)−1)} have subsequences converging to ε1, ε2, ε3 and ε4,
respectively, and max{ε1, ε2} = max{ε3, ε4} = ε > 0. We may assume that

lim
k→∞

d
(
gxn(k), gxm(k)

)
= ε1, lim

k→∞
d
(
gyn(k), gym(k)

)
= ε2,

lim
k→∞

d
(
gxn(k)−1, gxm(k)−1

)
= ε3, lim

k→∞
d
(
gyn(k)−1, gym(k)−1

)
= ε4.

(2.26)
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We first assume that ε1 = max{ε1, ε2} = ε. Since n(k) > m(k), gxn(k)−1 � gxm(k)−1 and
gyn(k)−1 � gym(k)−1. From (2.1), we have

H

⎛

⎝
d
(
F
(
xn(k)−1, yn(k)−1

)
, F

(
xm(k)−1, ym(k)−1

))
, d

(
F
(
xn(k)−1, yn(k)−1

)
, gxn(k)−1

)

+d
(
F
(
xm(k)−1, ym(k)−1

)
, gxm(k)−1

)
, d

(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)
,

d
(
F
(
xn(k)−1, yn(k)−1

)
, gxm(k)−1

)
+ d

(
F
(
xm(k)−1, ym(k)−1

)
, gxn(k)−1

)

⎞

⎠ ≤ 0

(2.27)

or

H

(
d
(
gxn(k), gxm(k)

)
, d

(
gxn(k), gxn(k)−1

)
+ d

(
gxm(k), gxm(k)−1

)
,

d
(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)
, d

(
gxn(k), gxm(k)−1

)
+ d

(
gxm(k), gxn(k)−1

)
)

≤ 0

(2.28)

or

H

⎛

⎝
d
(
gxn(k), gxm(k)

)
, d

(
gxn(k), gxn(k)−1

)
+ d

(
gxm(k), gxm(k)−1

)
,

d
(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)
, d

(
gxn(k), gxm(k)

)

+d
(
gxm(k), gxm(k)−1

)
+ d

(
gxm(k), gxm(k)−1

)
+ d

(
gxm(k)−1, gxn(k)−1

)

⎞

⎠ ≤ 0. (2.29)

Letting k → ∞, we have

H
(
ε1, 0, ε3, ε4, ε1 + ε3

) ≤ 0. (2.30)

Thus,

H
(
ε1, ε1 + ε3, ε3, ε4, ε1 + ε3

) ≤ 0, (2.31)

which implies ε = ε1 ≤ ϕ(max{ε3, ε4}) = ϕ(ε) < ε. That is a contradiction.
Using the same argument as above for the case ε2 = max{ε1, ε2} = ε, we also get a

contradiction. Thus {gxn} and {gyn} are Cauchy sequences. Since X is complete, there exist
x, y ∈ X such that

lim
n→∞

gxn = x, lim
n→∞

gyn = y. (2.32)

Thus

lim
n→∞

F
(
xn, yn

)
= lim

n→∞
gxn = x, lim

n→∞
F
(
yn, xn

)
= lim

n→∞
gyn = y. (2.33)

Since F and g are O-compatible, from (2.33), we have

lim
n→∞

d
(
gF

(
xn, yn

)
, F

(
gxn, gyn

))
= 0, (2.34)

lim
n→∞

d
(
gF

(
yn, xn

)
, F

(
gyn, gxn

))
= 0. (2.35)
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Now, suppose that assumption (a) holds. We have

d
(
gx, F

(
g(xn), g

(
yn

))) ≤ d(gx, gF(xn, yn
))

+ d
(
gF

(
xn, yn

)
, F

(
gxn, gyn

))
. (2.36)

Taking the limit as n → ∞ in (2.36) and by (2.32), (2.34) and the continuity of F and g we
get d(gx, F(x, y)) = 0.

Similarly, we can show that d(gy, F(y, x)) = 0. Therefore, gx = F(x, y) and gy =
F(y, x).

Finally, suppose that assumption (b) holds. Since {gxn} is nondecreasing sequence
and gxn → x and {gyn} is nonincreasing sequence and gyn → y, by the assumption, we
have ggxn � gx and ggyn � gy for all n.

Since g is continuous, from (2.32), (2.34), and (2.35) we have

lim
n→∞

ggxn = gx = lim
n→∞

gF
(
xn, yn

)
= lim

n→∞
F
(
gxn, gyn

)
,

lim
n→∞

ggyn = gy = lim
n→∞

gF
(
yn, xn

)
= lim

n→∞
F
(
gyn, gxn

)
.

(2.37)

We have

H

(
d
(
F
(
gxn, gyn

)
, F

(
x, y

))
, d

(
F
(
gxn, gyn

)
, ggxn

)
+ d

(
F
(
x, y

)
, gx

)

d
(
ggxn, gx

)
, d

(
ggyn, gy

)
, d

(
F
(
gxn, gyn

)
, gx

)
+ d

(
F
(
x, y

)
, ggxn

)
)

≤ 0. (2.38)

Letting n → ∞ and using (2.37), we have

H
(
d
(
gx, F

(
x, y

))
, d

(
gx, F

(
x, y

))
, 0, 0, d

(
gx, F

(
x, y

))) ≤ 0, (2.39)

which implies that d(gx, F(x, y)) ≤ ϕ(max{0, 0}) = 0. Hence gx = F(x, y). Similarly, one can
show that gy = F(y, x).

Thus proved that F and g have a coupled coincidence point in X.

Example 2.2 (see, e.g., [11]). Let (X, d,�),F and g be defined as in Example 1.9. Then

(i) X is complete and X has the property

(a) if a nondecreasing sequence {xn} → x, then gxn � gx for all n,

(b) if a nonincreasing sequence {yn} → y, then gy � gyn for all n;

(ii) F(X ×X) = {0, 1} ⊂ {0} ∪ [1/2, 1] = g(X);

(iii) g is continuous and g and F are O-compatible;

(iv) there exist x0 = 0, y0 = 1 such that gx0 � F(x0, y0) and gy0 � F(y0, x0);
(v) F has the mixed g-monotone property. Indeed, for every y ∈ X, let x1, x2 ∈ X such

that gx1 � gx2
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(a) if gx1 = gx2 then x1, x2 = 0 or x1, x2 ∈ [1/2, 1] or x1, x2 ∈ (1, 3/2] or x1, x2 ∈
(3/2, 2]. Thus,

F
(
x1, y

)
= 0 = F

(
x2, y

)
if y ∈ {0} ∪

[
1
2
, 1
]
, x1, x2 = 0 or x1, x2 ∈

[
1
2
, 1
]
, (2.40)

otherwise F(x1, y) = 1 = F(x2, y),
(b) if gx1 ≺ gx2, then gx1 = 0 and gx2 = 1, that is, x1 = 0 and x2 ∈ [1/2, 1]. Thus

F
(
x1, y

)
= 0 = F

(
x2, y

)
if y ∈ {0} ∪

[
1
2
, 1
]
, F

(
x1, y

)
= 1 = F

(
x2, y

)
if y ∈ (1, 2],

(2.41)

therefore, F is the g-nondecreasing in its first argument. Similarly, F is the g-
nonincreasing in its second argument;

(vi) for x, y, u, v ∈ X, if gx � gu and gy � gv then d(F(x, y), F(u, v)) = 0. Indeed,

(a) if gx � gu and gy ≺ gv then y = u = 0 and x, v ∈ [1/2, 1]. Thus d(F(x, y),
F(u, v)) = d(0, 0) = 0,

(b) if gx = gu and gy ≺ gv then y = 0 and v ∈ [1/2, 1]. Thus if x = u = 0 or x, u ∈
[1/2, 1] then d(F(x, y), F(u, v)) = d(0, 0) = 0, otherwise d(F(x, y), F(u, v)) =
d(1, 1) = 0. Similarly, if gx � gu and gy = gv then d(F(x, y), F(u, v)) = 0,

(c) if gx = gu and gy = gv then both x, u are in one of the sets {0}, [1/2, 1],
(1, 3/2] or (3/2, 2] and both y, v are also in one of the sets {0}, [1/2, 1], (1, 3/2]
or (3/2, 2]. Thus d(F(x, y), F(u, v)) = d(0, 0) = 0 if x = u = 0 or x, u ∈ [1/2, 1]
and y = v = 0 or y, v ∈ [1/2, 1], otherwise, d(F(x, y), F(u, v)) = d(1, 1) = 0.

Therefore, all the conditions of Theorem 2.1 are satisfied with H(t1, t2, t3, t4, t5) = t1 −
max{t3, t4}/2. Applying Theorem 2.1, we conclude that F and g have a coupled coincidence
point.

Note that, we cannot apply the result of Choudhury and Kundu [15], the result of
Choudhury et al. [32] as well as the result of Lakshmikantham and Ćirić [7] to this example.
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